Analysis of low-energy neutral hydrogen fluxes using an electron cyclotron resonance-heated discharge
Cain, Bruce Lamar
This item is only available for download by members of the University of Illinois community. Students, faculty, and staff at the U of I may log in with your NetID and password to view the item. If you are trying to access an Illinois-restricted dissertation or thesis, you can request a copy through your library's Inter-Library Loan office or purchase a copy directly from ProQuest.
Permalink
https://hdl.handle.net/2142/20247
Description
Title
Analysis of low-energy neutral hydrogen fluxes using an electron cyclotron resonance-heated discharge
Author(s)
Cain, Bruce Lamar
Issue Date
1989
Doctoral Committee Chair(s)
Ruzic, David N.
Department of Study
Nuclear, Plasma, and Radiological Engineering
Discipline
Nuclear Engineering
Degree Granting Institution
University of Illinois at Urbana-Champaign
Degree Name
Ph.D.
Degree Level
Dissertation
Keyword(s)
Engineering, Nuclear
Physics, Fluid and Plasma
Language
eng
Abstract
This dissertation describes the design, construction, and proof-of-principle verification of a neutral hydrogen flux detection system, based on an ECRH discharge as the neutral flux ionizer. The significant features of the ionizer are its small size and simultaneous excitation of the ECRH mode using a 30 MHz RF driver and relatively small static magnetic fields. Demonstrated is the ability of the ECRH ionizer to ionize $\approx$900 eV neutral hydrogen fluxes with subsequent detection in a high resolution energy analyzer. A versatile calibration technique is applied to determine the ionizer efficiency, which additionally gives a variety of elastic scattering and charge exchange cross section results. Also described are the details of a new low energy beam-target interaction research facility, along with the basic techniques required to calibrate many of the system components. The facility has potential applications in areas such as fundamental cross section measurement, plasma diagnostics, beam-plasma interactions, and further beam-target research.
Use this login method if you
don't
have an
@illinois.edu
email address.
(Oops, I do have one)
IDEALS migrated to a new platform on June 23, 2022. If you created
your account prior to this date, you will have to reset your password
using the forgot-password link below.