This item is only available for download by members of the University of Illinois community. Students, faculty, and staff at the U of I may log in with your NetID and password to view the item. If you are trying to access an Illinois-restricted dissertation or thesis, you can request a copy through your library's Inter-Library Loan office or purchase a copy directly from ProQuest.
Permalink
https://hdl.handle.net/2142/20189
Description
Title
Uniformity and bounded arithmetic below P
Author(s)
Parra, Carlos Mario
Issue Date
1996
Doctoral Committee Chair(s)
Jockusch, Carl G., Jr.
Department of Study
Mathematics
Discipline
Mathematics
Degree Granting Institution
University of Illinois at Urbana-Champaign
Degree Name
Ph.D.
Degree Level
Dissertation
Keyword(s)
Mathematics
Language
eng
Abstract
We study some of the complexity classes below P and, in particular, we concentrate on $AC\sp0\subseteq NC\sp1\subseteq L=$ LogSpace. We also study the nondeterministic classes $NAC\sp{i}$ and $NNC\sp{i},$ for $i\ge0,$ which are the counterparts to the more familiar class NP. In the final part of this work we characterize the so-called Steven's Class $SC=\bigcup\sb{i\ge1}Sc\sp{i}.$
"We start by proving that certain basic arithmetic operations such as Count, Multiplication, Multiple Addition, Sorting, etc. can be carried out in Uniform-$NC\sp1$ and that similar results hold in the class Uniform-$AC\sp0$ when dealing with sufficiently ""small"" numbers. The proofs are carried out by using algebraic characterizations of the previous classes as developed, for example, in (C14) and (CT2)."
We continue with the classes $NAC\sp0\subseteq NNC\sp1\subseteq\cdots\subseteq NP$ introduced in (Ta2) and prove that, in fact, all of them coincide and therefore are equal to NPolyTime.
Finally, we move further up and consider the complexity class SC as defined in (Co2). We introduce the notion of Extended k-Bounded Recursion on Notation $(E\sb{k}BRN)$ and prove that the class $SC\sp{k}$ equals the closure of the set of basic functions INITIAL (see for example, (CT2)), under composition, CRN and $E\sb{k}BRN.$
Use this login method if you
don't
have an
@illinois.edu
email address.
(Oops, I do have one)
IDEALS migrated to a new platform on June 23, 2022. If you created
your account prior to this date, you will have to reset your password
using the forgot-password link below.