Resonant Raman scattering studies of III-V semiconductor microstructures
Delaney, Malcolm Emil
This item is only available for download by members of the University of Illinois community. Students, faculty, and staff at the U of I may log in with your NetID and password to view the item. If you are trying to access an Illinois-restricted dissertation or thesis, you can request a copy through your library's Inter-Library Loan office or purchase a copy directly from ProQuest.
Permalink
https://hdl.handle.net/2142/19977
Description
Title
Resonant Raman scattering studies of III-V semiconductor microstructures
Author(s)
Delaney, Malcolm Emil
Issue Date
1991
Doctoral Committee Chair(s)
Klein, Miles V.
Department of Study
Physics
Discipline
Physics
Degree Granting Institution
University of Illinois at Urbana-Champaign
Degree Name
Ph.D.
Degree Level
Dissertation
Keyword(s)
Physics, Condensed Matter
Physics, Optics
Language
eng
Abstract
Raman spectroscopy, an inelastic light scattering technique, explores III-V semiconductors by conveying crystal lattice structural information and by probing carrier dynamics both directly and via the electron-phonon interaction. We have examined three physical systems accentuating three aspects of Raman utility. Al$\sb{\rm x}$Ga$\sb{\rm 1-x}$As alloy work emphasizes electronic behavior, migration enhanced epitaxy (MEE) studies highlight structural results, and a phonon-assisted lasing project underscores electron-phonon interaction.
The disorder-induced frequency difference between the dipole-forbidden and dipole-allowed longitudinal optic (LO) modes in Al$\sb{\rm x}$Ga$\sb{\rm 1-x}$As alloys has been investigated as a function of laser photon energy, aluminum mole fraction x, and the indirect versus direct nature of the electronic band gap. For the indirect gap alloy, the intermediate resonant state is an X-valley electron effectively localized because of its short inelastic lifetime. Raman scattering via this state is described by a calculation of the Raman susceptibility that considers the random alloy potential generated by local concentration fluctuations.
MEE is a new growth technology that can order these materials in two spatial directions. In a GaSb/AlSb system we show Raman evidence of this ordering via observation of zone folded acoustic modes and compare to AlAs/GaAs results. In other work resonant Raman documents the effects on the dipole-forbidden interface mode of a periodic corrugation introduced in AlAs barrier GaAs single quantum wells.
"Finally, we investigate ""phonon-assisted"" lasing in photopumped quantum well heterostructure lasers. Resonant Raman is the natural choice to probe this system purported to have an enhanced electron-phonon interaction. For both the AlGaAs/GaAs and AlGaAs/GaAs/InGaAs structures examined, we provide evidence that indicates first order ""phonon-assisted"" lasing is actually renormalized band gap luminescence filtered by absorption from the unpumped sample volume. Although unable to examine second order ""phonon-assisted"" lasing, we suggest that it is a stimulated Raman process."
Use this login method if you
don't
have an
@illinois.edu
email address.
(Oops, I do have one)
IDEALS migrated to a new platform on June 23, 2022. If you created
your account prior to this date, you will have to reset your password
using the forgot-password link below.