Bounds on the size of strong subordinates of submartingales and subharmonic functions
Hammack, William
This item is only available for download by members of the University of Illinois community. Students, faculty, and staff at the U of I may log in with your NetID and password to view the item. If you are trying to access an Illinois-restricted dissertation or thesis, you can request a copy through your library's Inter-Library Loan office or purchase a copy directly from ProQuest.
Permalink
https://hdl.handle.net/2142/19493
Description
Title
Bounds on the size of strong subordinates of submartingales and subharmonic functions
Author(s)
Hammack, William
Issue Date
1994
Doctoral Committee Chair(s)
Peck, N.T.
Department of Study
Mathematics
Discipline
Mathematics
Degree Granting Institution
University of Illinois at Urbana-Champaign
Degree Name
Ph.D.
Degree Level
Dissertation
Keyword(s)
Mathematics
Language
eng
Abstract
Suppose X is a submartingale that is continuous on the right with limits from the left and H is a predictable process bounded by 1 in absolute value. Let $Y = (Y\sb{t})\sb{t\ge 0}$ where$$Y\sb{t} = H\sb0X\sb0 + \int\sb{(0,t\rbrack} H\sb{s}dX\sb{s}.$$An interesting and important question is: How large is Y compared to X? While it is impossible to give general $L\sp{p}$-inequalities for $p > 1,$ we show that there are sharp weak-type inequalities, and under the additional assumption that X is bounded, sharp bounds on the distribution of the maximal function $Y\sp\*$ of $Y.$ For example, for all $\lambda > 0$,$$\lambda P(Y\sp\*\ge\lambda)\le 6\Vert X\Vert\sb1$$and the constant 6 is the best possible. In fact, if $\beta 0,$ even the one-sided inequality $\lambda P(\sup\sb{t\ge 0}Y\sb{t}\ge\lambda)>\beta$ holds. We establish these inequalities by first giving more general inequalities for discrete-time submartingales:$$\lambda P(g\sp\*\ge\lambda)\le 6\Vert f\Vert\sb1$$where $\lambda > 0,\ f = (f\sb{n})\sb{n\ge 0}$ is a submartingle relative to a filtration ${\cal F} = ({\cal F}\sb{n})\sb{n\ge 0}$, and $g = (g\sb{n})\sb{n\ge 0}$ is a process also adapted to ${\cal F}$ that is both differentially and conditionally differentially subordinate to f, i.e. with $f\sb{n} = {\sum\sbsp{k=0}{n}}\ d\sb{k}$ and $g\sb{n} = {\sum\sbsp{k=0}{n}}\ e\sb{k},$ we have that $\vert e\sb{n}\vert\le\vert d\sb{n}\vert$ and $\vert$E$(e\sb{n+1}\vert{\cal F}\sb{n})\vert\le\vert$E$(d\sb{n+1}\vert{\cal F}\sb{n})\vert$ for all $n\ge 0.$ The inequalities obtained are also shown to hold for subharmonic functions and their suitably defined subordinates.
Use this login method if you
don't
have an
@illinois.edu
email address.
(Oops, I do have one)
IDEALS migrated to a new platform on June 23, 2022. If you created
your account prior to this date, you will have to reset your password
using the forgot-password link below.