Optimal bandwidth selection rule for kernel regression estimator with dependent variables
Kim, Tae Yoon
This item is only available for download by members of the University of Illinois community. Students, faculty, and staff at the U of I may log in with your NetID and password to view the item. If you are trying to access an Illinois-restricted dissertation or thesis, you can request a copy through your library's Inter-Library Loan office or purchase a copy directly from ProQuest.
Permalink
https://hdl.handle.net/2142/19451
Description
Title
Optimal bandwidth selection rule for kernel regression estimator with dependent variables
Author(s)
Kim, Tae Yoon
Issue Date
1990
Doctoral Committee Chair(s)
Cox, Dennis D.
Department of Study
Statistics
Discipline
Statistics
Degree Granting Institution
University of Illinois at Urbana-Champaign
Degree Name
Ph.D.
Degree Level
Dissertation
Keyword(s)
Statistics
Language
eng
Abstract
Let $\{$(X$\sb{\rm t}$,Y$\sb{\rm t}$): t $\in$ N$\}$ be a strictly stationary process with X$\sb{\rm t}$ being R$\sp{\rm d}$-valued and Y$\sb{\rm t}$ being real valued. Consider the problem of estimating the conditional expectation function, m(x) = E(Y$\sb{\rm t}\vert$ X$\sb{\rm t}$ = x), using (X$\sb1,$Y$\sb1$),$\...$ (X$\sb{\rm n}$,Y$\sb{\rm n}$). (For example, suppose Z$\sb{\rm t}$, t = 0, $\pm$1, $\pm$2,.. is a real valued stationary time series and p is a positive integer. Set X$\sb{\rm t}$ = (Z$\sb{\rm t+1},\...$,Z$\sb{\rm t+d}$) and Y$\sb{\rm t}$ = Z$\sb{\rm t+d+p}$. Then (X$\sb{\rm t}$,Y$\sb{\rm t}$), t = 0, $\pm$1,.. is a stationary time series and m(x) = E(Z$\sb{\rm d+p}\vert$Z$\sb1,\...$Z$\sb{\rm d}$).) We consider kernel estimators of m(x). Recently, convergence properties of the kernel estimator have been developed under certain dependence structures for the process (X$\sb{\rm t}$,Y$\sb{\rm t}$). One of the crucial points in applying a kernel estimator is the choice of bandwidth. The main purpose of this work is to establish asymptotic optimality for a bandwidth selection rule under dependence which can be interpreted in terms of cross validation. In addition, some moment bounds for dependent variables will be established, which give more flexible bounds than existing ones.
Use this login method if you
don't
have an
@illinois.edu
email address.
(Oops, I do have one)
IDEALS migrated to a new platform on June 23, 2022. If you created
your account prior to this date, you will have to reset your password
using the forgot-password link below.