Intersection representations of graphs and digraphs
Lin, In-Jen
This item is only available for download by members of the University of Illinois community. Students, faculty, and staff at the U of I may log in with your NetID and password to view the item. If you are trying to access an Illinois-restricted dissertation or thesis, you can request a copy through your library's Inter-Library Loan office or purchase a copy directly from ProQuest.
Permalink
https://hdl.handle.net/2142/19205
Description
Title
Intersection representations of graphs and digraphs
Author(s)
Lin, In-Jen
Issue Date
1994
Doctoral Committee Chair(s)
West, Douglas B.
Department of Study
Mathematics
Discipline
Mathematics
Degree Granting Institution
University of Illinois at Urbana-Champaign
Degree Name
Ph.D.
Degree Level
Dissertation
Keyword(s)
Mathematics
Operations Research
Computer Science
Language
eng
Abstract
A digraph is an interval digraph if each vertex can be assigned a source interval and a sink interval on the real line such that there is an edge from u to v if and only if the source interval for u intersects the sink interval for v. A digraph is an indifference digraph or unit interval digraph if and only if such a representation can be constructed in which every source and sink interval has unit length. We prove that an interval digraph is a unit interval digraph if and only if its adjacency matrix is free of six forbidden submatrices: three 3 by 4 matrices and their transposes.
We consider a hierarchy of four classes of interval digraphs. For each class, we provide a forbidden submatrix characterization for membership in the next class. In particular, we prove that a digraph in the ith class belongs to the next smaller class if and only if its adjacency matrix contains no submatrix in the collection we list. The largest class is that of all interval digraphs; the smallest is the class of unit interval digraphs. As a corollary, we obtain a second proof of the result described in the first paragraph.
The leafage of a chordal graph is the minimum number of leaves in a host tree in which the graph has an intersection representation by subtrees. We obtain upper and lower bounds on the leafage in terms of other parameters and compute the leafage on special classes of graphs. We use various new observations about chordal graphs and families of subtrees of a tree.
"We extend the idea of subtree representations of graphs to digraphs. Unlike undirected graphs, every directed graph does have a subtree representation, hence we can define the leafage of a digraph to be the minimum number of leaves in a host tree T in any subtree representation. A catch representation for a digraph D is a subtree representation in which each sink set $T\sb{v}$ is restricted to be a singleton vertex; the source tree ""catches"" the singletons assigned to its successors. The catch leafage of a digraph D is the minimum number of leaves in the host tree in any catch representation of D. We study upper and lower bounds for the leafage and catch leafage and show that the bounds are the best possible, but can be arbitrarily weak."
Use this login method if you
don't
have an
@illinois.edu
email address.
(Oops, I do have one)
IDEALS migrated to a new platform on June 23, 2022. If you created
your account prior to this date, you will have to reset your password
using the forgot-password link below.