This item is only available for download by members of the University of Illinois community. Students, faculty, and staff at the U of I may log in with your NetID and password to view the item. If you are trying to access an Illinois-restricted dissertation or thesis, you can request a copy through your library's Inter-Library Loan office or purchase a copy directly from ProQuest.
Permalink
https://hdl.handle.net/2142/19104
Description
Title
Dynamics in neutron stars and the early universe
Author(s)
Link, Bennett Karl
Issue Date
1991
Doctoral Committee Chair(s)
Baym, Gordon A.
Department of Study
Astronomy
Discipline
Astronomy
Degree Granting Institution
University of Illinois at Urbana-Champaign
Degree Name
Ph.D.
Degree Level
Dissertation
Keyword(s)
Physics, Astronomy and Astrophysics
Physics, Condensed Matter
Physics, Elementary Particles and High Energy
Language
eng
Abstract
"Observations of pulsar timing suggest that glitches and post-glitch behavior are due to variable coupling between the superfluid and normal components in neutron stars. A rotating superfluid is threaded by quantized vortex lines which, in the inner crust of a neutron star, can pin to the nuclear lattice that coexists with the superfluid. The dynamics of the superfluid is described by the motion of these lines. Vortices overcome their pinning barriers through thermal activation or quantum tunneling, and ""creep"" slowly outward under forces created by the superfluid flow. To the extent that vortices remain pinned, the superfluid retains its angular momentum as the crust slows through interactions with its environment. Catastrophic unpinning of vortices could lead to sudden dissipative coupling between the superfluid and the crust thus creating glitches, while post-glitch relaxation is likely due to the recovery of the vortex creep rate to the steady state."
To explore this model, we develop a microscopic quantum theory for vortex unpinning and creep based on first principles. In considering a range of vortex pinning parameters obtained theoretically, we estimate the vortex creep rate throughout the inner crust. We make predictions for the form and time scales of post-glitch response, and compare with timing data from the Vela and Crab pulsars.
In the second part of the thesis, we study the quark-hadron phase transition in the early universe assuming the transition is first order. First order phase transitions occur dynamically; a bubble of the new phase is nucleated which expands at the expense of the old phase. Using relativistic hydrodynamics, we study the propagation of hadron bubbles with surface tension. We demonstrate the hydrodynamic instability of deflagration processes, and discuss possible consequences for baryon concentration effects relevant in later nucleosynthesis.
Use this login method if you
don't
have an
@illinois.edu
email address.
(Oops, I do have one)
IDEALS migrated to a new platform on June 23, 2022. If you created
your account prior to this date, you will have to reset your password
using the forgot-password link below.