An experimental investigation of air flow and convective heat transfer in enclosures having large ventilative flow rates
Spitler, Jeffrey David
This item is only available for download by members of the University of Illinois community. Students, faculty, and staff at the U of I may log in with your NetID and password to view the item. If you are trying to access an Illinois-restricted dissertation or thesis, you can request a copy through your library's Inter-Library Loan office or purchase a copy directly from ProQuest.
Permalink
https://hdl.handle.net/2142/19046
Description
Title
An experimental investigation of air flow and convective heat transfer in enclosures having large ventilative flow rates
Author(s)
Spitler, Jeffrey David
Issue Date
1990
Doctoral Committee Chair(s)
Pedersen, Curtis O.
Department of Study
Mechanical Science and Engineering
Discipline
Mechanical Engineering
Degree Granting Institution
University of Illinois at Urbana-Champaign
Degree Name
Ph.D.
Degree Level
Dissertation
Keyword(s)
Mechanical engineering
Language
eng
Abstract
The prediction of convective heat transfer in enclosures under high ventilative flow rates is primarily of interest for building design and simulation purposes. Current models are based on experiments performed forty years ago with flat plates under natural convection conditions.
In order to investigate convective heat transfer in buildings, a full-scale experimental facility was developed with several unique features: fifty-three individually controllable heated panels which allow the room surfaces to be near isothermal, thus minimizing radiation; capability of using two different inlets; a ventilation system capable of providing temperature-controlled air at flow rates between two and one hundred air changes per hour; an air speed and temperature measurement system; and a flow visualization system.
A large number of experiments were performed with varying inlet locations and sizes, inlet temperatures, and flow rates. The room outlet temperature was identified as the most suitable reference temperature for the calculation of film coefficients. Film coefficients were successfully correlated to the jet momentum number, J. The correlations form the basis for a new convective heat transfer model that was implemented into the Building Loads Analysis and System Thermodynamics program. The new model was exercised and shown to yield much more accurate results than the current, natural convection based model.
Use this login method if you
don't
have an
@illinois.edu
email address.
(Oops, I do have one)
IDEALS migrated to a new platform on June 23, 2022. If you created
your account prior to this date, you will have to reset your password
using the forgot-password link below.