Spaceborne centrifugal relays for spacecraft propulsion
Ouzidane, Malika
This item is only available for download by members of the University of Illinois community. Students, faculty, and staff at the U of I may log in with your NetID and password to view the item. If you are trying to access an Illinois-restricted dissertation or thesis, you can request a copy through your library's Inter-Library Loan office or purchase a copy directly from ProQuest.
Permalink
https://hdl.handle.net/2142/18987
Description
Title
Spaceborne centrifugal relays for spacecraft propulsion
Author(s)
Ouzidane, Malika
Issue Date
1993
Doctoral Committee Chair(s)
Singer, Clifford E.
Bergman, Lawrence A.
Department of Study
Aerospace Engineering
Discipline
Aeronautical and Astronautical Engineering
Degree Granting Institution
University of Illinois at Urbana-Champaign
Degree Name
Ph.D.
Degree Level
Dissertation
Keyword(s)
Engineering, Aerospace
Engineering, Electronics and Electrical
Language
eng
Abstract
Acceleration using centrifugal relays is a recently discovered method for the acceleration of spaceborne payloads to high velocity at high thrust. Centrifugal relays are moving rotors which progressively accelerate reaction mass to higher velocities. One important engineering problem consists of accurately tracking the position of the projectiles and rotors and guiding each projectile exactly onto the appropriate guide tracks on each rotor. The topics of this research are the system kinematics and dynamics and the computerized guidance system which will allow the projectile to approach each rotor with exact timing with respect to the rotor rotation period and with very small errors in lateral positions. Kinematics studies include analysis of rotor and projectile positions versus time and projectile/rotor interactions. Guidance studies include a detailed description of the tracking mechanism (interrupt of optical beams) and the aiming mechanism (electromagnetic focusing) including the design of electromagnetic deflection coils and the switching circuitry.
Use this login method if you
don't
have an
@illinois.edu
email address.
(Oops, I do have one)
IDEALS migrated to a new platform on June 23, 2022. If you created
your account prior to this date, you will have to reset your password
using the forgot-password link below.