Director of Research (if dissertation) or Advisor (if thesis)
Nicol, David M.
Department of Study
Electrical & Computer Eng
Discipline
Electrical & Computer Engr
Degree Granting Institution
University of Illinois at Urbana-Champaign
Degree Name
M.S.
Degree Level
Thesis
Keyword(s)
security
privacy
social networks
inference
Abstract
As the popularity of social networks expands, the information users expose to the public has potentially dangerous implications for individual privacy. While social networks allow users to restrict access to their personal data, there is currently no mechanism to enforce privacy concerns over content uploaded by other users. As group photos and stories are shared by friends and family, personal privacy goes beyond the discretion of what a user uploads about himself and becomes an issue of what every network participant reveals. In this paper, we examine how the lack of joint privacy controls over content can inadvertently reveal sensitive information about a user including preferences, relationships, conversations, and photos. Specifically, we analyze Facebook to identify scenarios where conflicting privacy settings between friends will reveal information that at least one user intended to keep private. By aggregating the information exposed in this manner, we demonstrate how a user's private attributes can be inferred from simply being listed as a friend or mentioned in a story. To mitigate this threat, we show how Facebook's privacy model can be adapted to enforce multi-party privacy. We present a proof of concept application built into Facebook that automatically ensures mutually acceptable privacy restrictions are enforced on group content.
Use this login method if you
don't
have an
@illinois.edu
email address.
(Oops, I do have one)
IDEALS migrated to a new platform on June 23, 2022. If you created
your account prior to this date, you will have to reset your password
using the forgot-password link below.