Tools for modulating and measuring intracellular redox environment
Henderson, Jerrod A.
Loading…
Permalink
https://hdl.handle.net/2142/16070
Description
Title
Tools for modulating and measuring intracellular redox environment
Author(s)
Henderson, Jerrod A.
Issue Date
2010-05-19T18:33:54Z
Director of Research (if dissertation) or Advisor (if thesis)
Kenis, Paul J.A.
Doctoral Committee Chair(s)
Kenis, Paul J.A.
Committee Member(s)
Gaskins, H. Rex
Kong, Hyun Joon
Price, Nathan D.
Department of Study
Chemical & Biomolecular Engr
Discipline
Chemical Engineering
Degree Granting Institution
University of Illinois at Urbana-Champaign
Degree Name
Ph.D.
Degree Level
Dissertation
Keyword(s)
redox environment
glutathione
porcine cells
electrochemical platform
Abstract
Intracellular redox environment, the relative amount of oxidized and reduced chemical species within a cell, is important in regulating cellular processes; however, molecular mechanisms that mediate redox environment are poorly understood largely because of limitations of tools to both modulate and measure the intracellular redox environment. For example, pharmacological methods that modulate intracellular redox environment often lack selectivity, cause cellular toxicity, and perturb intracellular homeostasis. Methods for monitoring intracellular redox environment can also cause toxicity and protocols typically require disruption of cells. The overall goal of my dissertation research therefore was to develop and validate tools for both modulating and measuring the intracellular redox environment.
This dissertation describes the development of three-electrode electrochemical platforms to modulate the intracellular redox environment of mammalian cells. The platforms are capable of both oxidizing and reducing the intracellular redox environment of Chinese hamster ovary (CHO) cells in correspondence to applied extracellular potential. I also demonstrate the utility of novel FRET-based biosensors, developed by collaborators, as real-time indicators of reduction/oxidation conditions in CHO and isogenic porcine fibroblasts. These studies will help unravel the role of redox regulation in many biological processes including those connected to normal and tumorigenic cells.
Use this login method if you
don't
have an
@illinois.edu
email address.
(Oops, I do have one)
IDEALS migrated to a new platform on June 23, 2022. If you created
your account prior to this date, you will have to reset your password
using the forgot-password link below.