Withdraw
Loading…
The study of aa3-type cytochrome c oxidase in Rhodobacter sphaeroides
Lee, Hyun Ju
Loading…
Permalink
https://hdl.handle.net/2142/14593
Description
- Title
- The study of aa3-type cytochrome c oxidase in Rhodobacter sphaeroides
- Author(s)
- Lee, Hyun Ju
- Issue Date
- 2010-01-06T16:13:35Z
- Director of Research (if dissertation) or Advisor (if thesis)
- Gennis, Robert B.
- Doctoral Committee Chair(s)
- Gennis, Robert B.
- Committee Member(s)
- Nair, Satish K.
- Rienstra, Chad M.
- Spies, Maria
- Department of Study
- Biochemistry
- Discipline
- Biochemistry
- Degree Granting Institution
- University of Illinois at Urbana-Champaign
- Degree Name
- Ph.D.
- Degree Level
- Dissertation
- Keyword(s)
- Cytochrome c oxidase
- adenosine triphosphate (ATP)
- proton pump
- Abstract
- Cytochrome c oxidase is the final electron acceptor in the respiratory chain and catalyzes the highly exergonic oxygen reduction reaction to water and forms a transmembrane electrochemical proton gradient. This transmembrane gradient is used by ATP synthase to produce ATP. The oxygen chemistry reaction of the enzyme is coupled to a proton pump, which substantially contributes to the transmembrane electrochemical gradient. Two proton entry pathways, D pathway and K pathway, have been resolved in X-ray crystal structures. But the exit pathway for the pumped proton and its mechanism is not well understood. The work in this thesis presents extensive studies in proton translocation in both the D-pathway and putative exit pathway. The mutations in the highly conserved R481 confirmed that the residue itself and the hydrogen bonds it forms with the heme propionates are not critical for proton pumping ability and the environmental changes of the hemes were detected on the R481 mutant oxidases. The putative exit pathway is very complicated to define due to the network of many water molecules and hydrophilic residues in the area. But clearly, changing the charge status in some of the residues in putative exit pathway affected the function of the oxidases and the environment of hemes. The D-pathway proton translocation study reveals that the waters do not necessarily need to be hydrogen-bonded to conserved serines in the middle of the pathway. However, the serine mutations caused changes in the pKa of E286 (branch point for substrate proton and pumped proton), which led to the conclusion that the pKa of E286 is not directly related to proton pumping ability.
- Graduation Semester
- 2009-12
- Permalink
- http://hdl.handle.net/2142/14593
- Copyright and License Information
- Copyright 2009 Hyun Ju Lee
Owning Collections
Graduate Dissertations and Theses at Illinois PRIMARY
Graduate Theses and Dissertations at IllinoisManage Files
Loading…
Edit Collection Membership
Loading…
Edit Metadata
Loading…
Edit Properties
Loading…
Embargoes
Loading…