Structure from duplicates: Neural inverse rendering from a single image
Cheng, Tianhang
This item is only available for download by members of the University of Illinois community. Students, faculty, and staff at the U of I may log in with your NetID and password to view the item. If you are trying to access an Illinois-restricted dissertation or thesis, you can request a copy through your library's Inter-Library Loan office or purchase a copy directly from ProQuest.
Permalink
https://hdl.handle.net/2142/124521
Description
Title
Structure from duplicates: Neural inverse rendering from a single image
Author(s)
Cheng, Tianhang
Issue Date
2024-04-26
Director of Research (if dissertation) or Advisor (if thesis)
Wang, Shenlong
Department of Study
Computer Science
Discipline
Computer Science
Degree Granting Institution
University of Illinois at Urbana-Champaign
Degree Name
M.S.
Degree Level
Thesis
Keyword(s)
inverse rendering
neural radiance field
3D reconstruction
single image
Abstract
Our world is full of identical objects (e.g., cans of coke, cars of same model). These duplicates, when seen together, provide additional and strong cues for us to effectively reason about 3D.
Inspired by this observation, we introduce Structure from Duplicates (SfD), a novel inverse graphics framework that reconstructs geometry, material, and illumination from a single image containing multiple identical objects. SfD begins by identifying multiple instances of an object within an image, and then jointly estimates the 6DoF pose for all instances. An inverse graphics pipeline is subsequently employed to jointly reason about the shape, material of the object, and the environment light, while adhering to the shared geometry and material constraint across instances.
Our primary contributions involve utilizing object duplicates as a robust prior for single-image inverse graphics and proposing an in-plane rotation-robust Structure from Motion (SfM) formulation for joint 6-DoF object pose estimation. By leveraging multi-view cues from a single image, SfD generates more realistic and detailed 3D reconstructions, significantly outperforming existing single image reconstruction models and multi-view reconstruction approaches with a similar or greater number of observations.
Use this login method if you
don't
have an
@illinois.edu
email address.
(Oops, I do have one)
IDEALS migrated to a new platform on June 23, 2022. If you created
your account prior to this date, you will have to reset your password
using the forgot-password link below.