A characteristic study of memory over the compute eXpress link
Sun, Yan
This item is only available for download by members of the University of Illinois community. Students, faculty, and staff at the U of I may log in with your NetID and password to view the item. If you are trying to access an Illinois-restricted dissertation or thesis, you can request a copy through your library's Inter-Library Loan office or purchase a copy directly from ProQuest.
Permalink
https://hdl.handle.net/2142/124494
Description
Title
A characteristic study of memory over the compute eXpress link
Author(s)
Sun, Yan
Issue Date
2024-04-09
Director of Research (if dissertation) or Advisor (if thesis)
Kim, Nam Sung
Department of Study
Electrical & Computer Eng
Discipline
Electrical & Computer Engr
Degree Granting Institution
University of Illinois at Urbana-Champaign
Degree Name
M.S.
Degree Level
Thesis
Keyword(s)
Computer Architecture
Memory subsystem
Abstract
The ever-growing demands for memory with larger capacity and higher bandwidth have driven recent innovations on memory expansion and disaggregation technologies based on Compute eXpress Link (CXL). CXL-based memory expansion technology has recently gained notable attention for its ability not only to economically expand memory capacity and bandwidth but also to decouple memory technologies from a specific memory interface of the CPU. However, since CXL memory devices have not been widely available, they have been emulated using DDR memory in a remote NUMA node. In this paper, for the first time, we comprehensively evaluate a true CXL-ready system based on the latest 4th-generation Intel Xeon CPU with three CXL memory devices from different manufacturers. Specifically, we run a set of microbenchmarks not only to compare the performance of true CXL memory with that of emulated CXL memory but also to analyze the complex interplay between the CPU and CXL memory in depth. This reveals important differences between emulated CXL memory and true CXL memory, some of which will compel researchers to revisit the analyses and proposals from recent work. Next, we identify opportunities for memory-bandwidth-intensive applications to benefit from the use of CXL memory. Lastly, we propose a CXL-memory-aware dynamic page allocation policy, Caption to more efficiently use CXL memory as a bandwidth expander. We demonstrate that Caption can automatically converge to an empirically favorable percentage of pages allocated to CXL memory, which improves the performance of memory-bandwidth-intensive applications by up to 24% when compared to the default page allocation policy designed for traditional NUMA systems.
Use this login method if you
don't
have an
@illinois.edu
email address.
(Oops, I do have one)
IDEALS migrated to a new platform on June 23, 2022. If you created
your account prior to this date, you will have to reset your password
using the forgot-password link below.