Withdraw
Loading…
A hybrid communication pattern and algorithm for distributed sparse-times-dense matrix multiplication
Block, Charles
Loading…
Permalink
https://hdl.handle.net/2142/124169
Description
- Title
- A hybrid communication pattern and algorithm for distributed sparse-times-dense matrix multiplication
- Author(s)
- Block, Charles
- Issue Date
- 2024-04-04
- Director of Research (if dissertation) or Advisor (if thesis)
- Torrellas, Josep
- Department of Study
- Computer Science
- Discipline
- Computer Science
- Degree Granting Institution
- University of Illinois at Urbana-Champaign
- Degree Name
- M.S.
- Degree Level
- Thesis
- Keyword(s)
- High-performance computing
- distributed algorithms
- sparse matrices
- SpMM
- Abstract
- Sparse matrix dense matrix multiplication (SpMM) is commonly used in applications ranging from scientific computing to graph neural networks. Typically, when SpMM is executed in a distributed platform, communication costs dominate. Such costs depend on how communication is scheduled. If it is scheduled in a sparsity-unaware manner, such as with collectives, execution is often inefficient due to unnecessary data transfers. On the other hand, if communication is scheduled in a fine-grained sparsity-aware manner, communicating only the necessary data, execution can also be inefficient due to high software overhead. We observe that individual sparse matrices often contain regions that are denser and regions that are sparser. Based on this observation, we develop a model that partitions communication into sparsity-unaware and sparsity-aware components. Leveraging the partition, we develop a new algorithm that performs collective communication for the denser regions, and fine-grained, one-sided communication for the sparser regions. We call the algorithm Two-Face. We show that Two-Face attains an average speedup of 2.11x over prior work when evaluated on a 4096-core supercomputer. Additionally, Two-Face scales well with the machine size.
- Graduation Semester
- 2024-05
- Type of Resource
- Thesis
- Copyright and License Information
- Copyright 2024 Charles Block
Owning Collections
Graduate Dissertations and Theses at Illinois PRIMARY
Graduate Theses and Dissertations at IllinoisManage Files
Loading…
Edit Collection Membership
Loading…
Edit Metadata
Loading…
Edit Properties
Loading…
Embargoes
Loading…