A digital twin synchronization protocol for bandwidth-limited IoT applications
Kalasapura, Deepti
This item is only available for download by members of the University of Illinois community. Students, faculty, and staff at the U of I may log in with your NetID and password to view the item. If you are trying to access an Illinois-restricted dissertation or thesis, you can request a copy through your library's Inter-Library Loan office or purchase a copy directly from ProQuest.
Permalink
https://hdl.handle.net/2142/120343
Description
Title
A digital twin synchronization protocol for bandwidth-limited IoT applications
Author(s)
Kalasapura, Deepti
Issue Date
2023-04-04
Director of Research (if dissertation) or Advisor (if thesis)
Caesar, Matthew
Department of Study
Computer Science
Discipline
Computer Science
Degree Granting Institution
University of Illinois at Urbana-Champaign
Degree Name
M.S.
Degree Level
Thesis
Keyword(s)
Internet of Things
Digital Twinning
Data
Synchronization
Optimization
Abstract
Digital Twins are evolving as a key component in modern systems with diverse applications like remote prognostics, optimizing run-time operation, anomaly detection, and more. The essential elements of a digital twin are a virtual representation, a physical asset, and the transfer of data/information between the two. IoT deployments are generally characterized by resource constraints, making synchronization of digital twins with IoT devices more challenging. There is a pressing need to optimize the bandwidth of the data transferred between the system and the twin while ensuring that the twin is able to capture selected key aspects of the current operational state accurately. This thesis explores the question: is it possible to synchronize twin state with practically low bandwidth requirements while simultaneously satisfying required accuracy constraints? To study this question, we present TwinSync, a framework that can be utilized to construct flexible real-time representations of deployed IoT systems and efficiently synchronize relevant system states with the twin, over a communication bottleneck, within a configurable application-specific notion of error (henceforth referred to as weak synchronization). Our approach is optimized to achieve data transfers utilizing less bandwidth without compromising the ability of the twin to replicate real-time system states within the specified approximate synchronization semantics. We evaluate the efficacy of TwinSync’s synchronization by conducting both a synthetic analysis and a case study based on a real-life application prototype. Our evaluation indicates that using TwinSync can provide the same or greater accuracy (in many cases) while sending significantly fewer bytes than a bandwidth-insensitive synchronization approach. The result is attributed to a more judicial selection of data to transmit over bottlenecks, compared to bandwidth-insensitive approaches.
Use this login method if you
don't
have an
@illinois.edu
email address.
(Oops, I do have one)
IDEALS migrated to a new platform on June 23, 2022. If you created
your account prior to this date, you will have to reset your password
using the forgot-password link below.