Withdraw
Loading…
Coding for storage and testing
Pattabiraman, Srilakshmi
Loading…
Permalink
https://hdl.handle.net/2142/113907
Description
- Title
- Coding for storage and testing
- Author(s)
- Pattabiraman, Srilakshmi
- Issue Date
- 2021-12-03
- Director of Research (if dissertation) or Advisor (if thesis)
- Milenkovic, Olgica
- Doctoral Committee Chair(s)
- Milenkovic, Olgica
- Committee Member(s)
- Duursma, Iwan M
- Shomorony, Ilan
- Varshney, Lav R
- Warnow, Tandy
- Department of Study
- Electrical & Computer Eng
- Discipline
- Electrical & Computer Engr
- Degree Granting Institution
- University of Illinois at Urbana-Champaign
- Degree Name
- Ph.D.
- Degree Level
- Dissertation
- Keyword(s)
- Polymer-based data storage
- String reconstruction
- Adaptive Group Testing
- Abstract
- The problem of reconstructing strings from substring information has found many applications due to its importance in genomic data sequencing and DNA- and polymer-based data storage. Motivated by platforms that use chains of binary synthetic polymers as the recording media and read the content via tandem mass spectrometers, we propose new a family of codes that allows for both unique string reconstruction and correction of multiple mass errors. We first consider the paradigm where the masses of substrings of the input string form the evidence set. We consider two approaches: The first approach pertains to asymmetric errors and the error-correction is achieved by introducing redundancy that scales linearly with the number of errors and logarithmically with the length of the string. The proposed construction allows for the string to be uniquely reconstructed based only on its erroneous substring composition multiset. The asymptotic code rate of the scheme is one, and decoding is accomplished via a simplified version of the Backtracking algorithm used for the Turnpike problem. For symmetric errors, we use a polynomial characterization of the mass information and adapt polynomial evaluation code constructions for this setting. In the process, we develop new efficient decoding algorithms for a constant number of composition errors. The second part of this dissertation addresses a practical paradigm that requires reconstructing mixtures of strings based on the union of compositions of their prefixes and suffixes, generated by mass spectrometry devices. We describe new coding methods that allow for unique joint reconstruction of subsets of strings selected from a code and provide upper and lower bounds on the asymptotic rate of the underlying codebooks. Our code constructions combine properties of binary $B_h$ and Dyck strings and can be extended to accommodate missing substrings in the pool. In the final chapter of this dissertation, we focus on group testing. We begin with a review of the gold-standard testing protocol for Covid-19, real-time, reverse transcription PCR, and its properties and associated measurement data such as amplification curves that can guide the development of appropriate and accurate adaptive group testing protocols. We then proceed to examine various off-the-shelf group testing methods for Covid-19, and identify their strengths and weaknesses for the application at hand. Finally, we present a collection of new analytical results for adaptive semiquantitative group testing with combinatorial priors, including performance bounds, algorithmic solutions, and noisy testing protocols. The worst-case paradigm extends and improves upon prior work on semiquantitative group testing with and without specialized PCR noise models.
- Graduation Semester
- 2021-12
- Type of Resource
- Thesis
- Permalink
- http://hdl.handle.net/2142/113907
- Copyright and License Information
- Copyright 2021 Srilakshmi Pattabiraman
Owning Collections
Graduate Dissertations and Theses at Illinois PRIMARY
Graduate Theses and Dissertations at IllinoisManage Files
Loading…
Edit Collection Membership
Loading…
Edit Metadata
Loading…
Edit Properties
Loading…
Embargoes
Loading…