Withdraw
Loading…
Improving multilingual speech recognition systems
Gao, Heting
Loading…
Permalink
https://hdl.handle.net/2142/113890
Description
- Title
- Improving multilingual speech recognition systems
- Author(s)
- Gao, Heting
- Issue Date
- 2021-12-03
- Director of Research (if dissertation) or Advisor (if thesis)
- Hasegawa-Johnson, Mark
- Department of Study
- Electrical & Computer Eng
- Discipline
- Electrical & Computer Engr
- Degree Granting Institution
- University of Illinois at Urbana-Champaign
- Degree Name
- M.S.
- Degree Level
- Thesis
- Keyword(s)
- multilingual speech recognition
- fairness
- language embedding
- zero-shot,
- Abstract
- End-to-end trainable deep neural networks have become the state-of-the-art architecture for automatic speech recognition (ASR), provided that the network is trained with a sufficiently large dataset. However, many existing languages are too sparsely resourced for deep learning networks to achieve as high accuracy as their resource-abundant counterparts. Multilingual recognition systems mitigate data sparsity issues by training models on data from multiple language resources to learn a speech-to-text or speech-to-phone model universal to all languages. The resulting multilingual ASR models usually have better recognition accuracy than the models trained on the individual dataset. In this work, we propose that two limitations exist for multilingual systems, and resolving the two limitations could result in improved recognition accuracy: (1) existing corpora are of the considerably varied form (spontaneous or read speech), corpus size, noise level, and phoneme distribution and the ASR models trained on the joint multilingual dataset have large performance disparities over different languages. We present an optimizable loss function, equal accuracy ratio (EAR), that measures the sequence-level performance disparity between different user groups and we show that explicitly optimizing this objective reduces the performance gap and improves the multilingual recognition accuracy. (2) While having good accuracy on the seen training language, the multilingual systems do not generalize well to unseen testing languages, which we refer to as cross-lingual recognition accuracy. We introduce language embedding using external linguistic typologies and show that such embedding can significantly increase both multilingual and cross-lingual accuracy. We illustrate the effectiveness of the proposed methods with experiments on multilingual and multi-user and multi-dialect corpora.
- Graduation Semester
- 2021-12
- Type of Resource
- Thesis
- Permalink
- http://hdl.handle.net/2142/113890
- Copyright and License Information
- Copyright 2021 Heting Gao
Owning Collections
Graduate Dissertations and Theses at Illinois PRIMARY
Graduate Theses and Dissertations at IllinoisManage Files
Loading…
Edit Collection Membership
Loading…
Edit Metadata
Loading…
Edit Properties
Loading…
Embargoes
Loading…