Withdraw
Loading…
Understanding the trust relationships of the web PKI
Ma, Zane Zheng
Loading…
Permalink
https://hdl.handle.net/2142/113009
Description
- Title
- Understanding the trust relationships of the web PKI
- Author(s)
- Ma, Zane Zheng
- Issue Date
- 2021-07-11
- Director of Research (if dissertation) or Advisor (if thesis)
- Bailey, Michael D
- Doctoral Committee Chair(s)
- Bailey, Michael D
- Committee Member(s)
- Durumeric, Zakir
- Bates, Adam
- Wang, Gang
- Borisov, Nikita
- Department of Study
- Computer Science
- Discipline
- Computer Science
- Degree Granting Institution
- University of Illinois at Urbana-Champaign
- Degree Name
- Ph.D.
- Degree Level
- Dissertation
- Keyword(s)
- trust
- PKI
- certificate authority
- Abstract
- TLS and the applications it secures (e.g., email, online banking, social media) rely on the web PKI to provide authentication. Without strong authentication guarantees, a capable attacker can impersonate trusted network entities and undermine both data integrity and confidentiality. At its core, the web PKI succeeds as a global authentication system because of the scalability afforded by trust. Instead of requiring every network entity to directly authenticate every other network entity, network entities trust certification authorities (CAs) to perform authentication on their behalf. Prior work has extensively studied the TLS protocol and CA authentication of network entities (i.e., certificate issuance), but few have examined even the most foundational aspect of trust management and understood which CAs are trusted by which TLS user agents, and why. One major reason for this disparity is the opacity of trust management in two regards: difficult data access and poor specifications. It is relatively easy to acquire and test popular TLS client/server software and issued certificates. On the other hand, tracking trust policies/deployments and evaluating CA operations is less straightforward, but just as important for securing the web PKI. This dissertation is one of the first attempts to overcome trust management opacity. By observing new measurement perspectives and developing novel fingerprinting techniques, we discover the CAs that operate trust anchors, the default trust anchors that popular TLS user agents rely on, and a general class of injected trust anchors: TLS interceptors. This research not only facilitates new ecosystem visibility, it also provides an empirical grounding for trust management specification and evaluation. Furthermore, our findings point to many instances of questionable, and sometimes broken, security practices such as improperly identified CAs, inadvertent and overly permissive trust, and trivially exploitable injected trust. We argue that most of these issues stem from inadequate transparency, and that explicit mechanisms for linking trust anchors and root stores to their origins would help remedy these problems.
- Graduation Semester
- 2021-08
- Type of Resource
- Thesis
- Permalink
- http://hdl.handle.net/2142/113009
- Copyright and License Information
- Copyright 2021 Zane Ma
Owning Collections
Graduate Dissertations and Theses at Illinois PRIMARY
Graduate Theses and Dissertations at IllinoisDissertations and Theses - Computer Science
Dissertations and Theses from the Dept. of Computer ScienceManage Files
Loading…
Edit Collection Membership
Loading…
Edit Metadata
Loading…
Edit Properties
Loading…
Embargoes
Loading…