Statistical and machine learning models for critical infrastructure resilience
Heglund, Jacob Scott White
Loading…
Permalink
https://hdl.handle.net/2142/108533
Description
Title
Statistical and machine learning models for critical infrastructure resilience
Author(s)
Heglund, Jacob Scott White
Issue Date
2020-07-22
Director of Research (if dissertation) or Advisor (if thesis)
Tran, Huy T
Department of Study
Aerospace Engineering
Discipline
Aerospace Engineering
Degree Granting Institution
University of Illinois at Urbana-Champaign
Degree Name
M.S.
Degree Level
Thesis
Keyword(s)
Critical Infrastructure Resilience
Machine Learning
Statistical Modeling
Graph Neural Networks
Abstract
This thesis presents a data-driven approach to improving predictions of critical infrastructure behaviors. In our first approach, we explore novel data sources and time series modeling techniques to model disaster impacts on power systems through the case study of Hurricane Sandy as it impacted the state of New York. We find a correlation between Twitter data and load forecast errors, suggesting that Twitter data may provide value towards predicting impacts of disasters on infrastructure systems. Based on these findings, we then develop time series forecasting methods to predict the NYISO power system behaviors at the zonal level, utilizing Twitter and load forecast data as model inputs.
In our second approach, we develop a novel, graph-based formulation of the British rail network to model the nonlinear cascading delays on the rail network. Using this formulation, we then develop machine learning approaches to predict delays in the rail network. Through experiments on real-world rail data, we find that the selected architecture provides more accurate predictions than other models due to its ability to capture both spatial and temporal dimensions of the data.
Use this login method if you
don't
have an
@illinois.edu
email address.
(Oops, I do have one)
IDEALS migrated to a new platform on June 23, 2022. If you created
your account prior to this date, you will have to reset your password
using the forgot-password link below.