Algebraic dependence testing in the perspective of algebraic matroids
Liu, Minghao
Loading…
Permalink
https://hdl.handle.net/2142/108061
Description
Title
Algebraic dependence testing in the perspective of algebraic matroids
Author(s)
Liu, Minghao
Issue Date
2020-05-14
Director of Research (if dissertation) or Advisor (if thesis)
Forbes, Michael A
Department of Study
Computer Science
Discipline
Computer Science
Degree Granting Institution
University of Illinois at Urbana-Champaign
Degree Name
M.S.
Degree Level
Thesis
Keyword(s)
Computational Complexity
Algebraic Complexity
Arithmetic Circuits
Algebraic Matroids
Algebraic Dependence
Annihilating Polynomials
Linear Representation
Abstract
We study the computational problem called algebraic dependence testing, where we seek to find a polynomial relation among a set of polynomials. This notion generalizes linear dependence, and understanding it has had applications to deterministic polynomial identity testing and algebraic circuit lower bounds. We present previous works on this topic including Perron's bound on the annihilating polynomial and the Jacobian criterion. By Perron's bound, there is a brute-force algorithm that solves for the annihilating polynomial in exponential time. By the Jacobian criterion, in fields with large or zero characteristics, we can represent the polynomials with a set of vectors while preserving independence, thus reducing the problem to linear dependence testing. We present the above results and discuss their discrepancy in complexity.
While algebraic independence gives rise to a class of matroids, this relation is rarely discussed in the computer science literature. We then describe the previous results on algebraic dependence testing in the perspective of algebraic matroids, and hope to provide powerful tools and novel directions to explore on this topic in future.
Use this login method if you
don't
have an
@illinois.edu
email address.
(Oops, I do have one)
IDEALS migrated to a new platform on June 23, 2022. If you created
your account prior to this date, you will have to reset your password
using the forgot-password link below.