A translation framework for discovering word-like units from visual scenes and spoken descriptions
Wang, Liming
Loading…
Permalink
https://hdl.handle.net/2142/108055
Description
Title
A translation framework for discovering word-like units from visual scenes and spoken descriptions
Author(s)
Wang, Liming
Issue Date
2020-05-14
Director of Research (if dissertation) or Advisor (if thesis)
Hasegawa-Johnson, Mark A
Department of Study
Electrical & Computer Eng
Discipline
Electrical & Computer Engr
Degree Granting Institution
University of Illinois at Urbana-Champaign
Degree Name
M.S.
Degree Level
Thesis
Date of Ingest
2020-08-26T21:58:07Z
Keyword(s)
multimodal learning
low-resource speech technology
machine translation
Abstract
In the absence of dictionaries, translators, or grammars, it is still possible to learn some of the words of a new language by listening to spoken descriptions of images. If several images, each containing a particular visually salient object, each co-occur with a particular sequence of speech sounds, we can infer that those speech sounds are a word whose definition is the visible object. A multimodal word discovery system accepts, as input, a database of spoken descriptions of images (or a set of corresponding phone transcriptions) and learns a mapping from waveform segments (or phone strings) to their associated image concepts. In this thesis, we propose a novel framework for multimodal word discovery systems based on statistical machine translation (SMT) and neural machine translation (NMT). We extend the existing theoretical frameworks on unsupervised word discovery and demonstrate a class of effective models for end-to-end word discovery from image regions and spoken descriptions. Finally, we provide a careful ablation study on components of my system and present some of the challenges in multimodal spoken word discovery.
Use this login method if you
don't
have an
@illinois.edu
email address.
(Oops, I do have one)
IDEALS migrated to a new platform on June 23, 2022. If you created
your account prior to this date, you will have to reset your password
using the forgot-password link below.