Withdraw
Loading…
Maximal Causal Models for Multithreaded Systems
Serbanuta, Traian Florin; Chen, Feng; Rosu, Grigore
Loading…
Permalink
https://hdl.handle.net/2142/11506
Description
- Title
- Maximal Causal Models for Multithreaded Systems
- Author(s)
- Serbanuta, Traian Florin
- Chen, Feng
- Rosu, Grigore
- Issue Date
- 2008-12
- Keyword(s)
- computer science
- Abstract
- Extracting causal models from observed executions has proved to be an effective approach to analyze concurrent programs. Most existing causal models are based on happens-before partial orders and/or Mazurkiewicz traces. Unfortunately, these models are inherently limited in the context of multithreaded systems, since multithreaded executions are mainly determined by consistency among shared memory accesses rather than by partial orders or event independence. This paper defines a novel theoretical foundation for multithreaded executions and a novel causal model, based on memory consistency con- straints. The proposed model is sound and maximal: (1) all traces consistent with the causal model are feasible executions of the multithreaded program under analysis; and (2) assuming only the observed execution and no knowledge about the source code of the program, the proposed model captures more feasible executions than any other sound causal model. An algorithm to systematically generate all the feasible executions comprised by maximal causal models is also proposed, which can be used for testing or model checking of multithreaded system executions. Finally, a specialized submodel of the maximal one is presented, which gives an efficient and effective solution to on-the-fly datarace detection. This datarace-focused model, still captures more feasible executions than the existing happens-before-based approaches.
- Type of Resource
- text
- Permalink
- http://hdl.handle.net/2142/11506
- Copyright and License Information
- You are granted permission for the non-commercial reproduction, distribution, display, and performance of this technical report in any format, BUT this permission is only for a period of 45 (forty-five) days from the most recent time that you verified that this technical report is still available from the University of Illinois at Urbana-Champaign Computer Science Department under terms that include this permission. All other rights are reserved by the author(s).
Owning Collections
Manage Files
Loading…
Edit Collection Membership
Loading…
Edit Metadata
Loading…
Edit Properties
Loading…
Embargoes
Loading…