Performance evaluation of deep learning on smartphones
Srivastava, Abhishek
Loading…
Permalink
https://hdl.handle.net/2142/106260
Description
Title
Performance evaluation of deep learning on smartphones
Author(s)
Srivastava, Abhishek
Issue Date
2019-12-09
Director of Research (if dissertation) or Advisor (if thesis)
Hwu, Wen-Mei
Department of Study
Computer Science
Discipline
Computer Science
Degree Granting Institution
University of Illinois at Urbana-Champaign
Degree Name
M.S.
Degree Level
Thesis
Keyword(s)
Deep Learning
Benchmarking
Performance Evaluation
Mobile Devices
Abstract
Deep Learning powers a variety of applications from self driving cars and autonomous robotics to web search and voice assistants. It is fair to say that it is omnipresent and here to stay. It is deployed in all sorts of devices ranging from consumer electronics to Internet of Things (IoT). Such a deployment is categorized as inference at the edge. This thesis focuses on Deep Learning on one such edge device - Mobile Phone. The thesis surveys the space of Deep Learning deployment on mobile devices, and identifies three key problems - (a) lack of common programming interface, (b) dearth of benchmarking systems and (c) shortage of in-depth performance evaluation. Then, it provides a solution to each one of them by (a) providing a common interface derived from MLModelScope, referred to as mobile Predictor (mPredictor), (b) providing a benchmarking application and (c) using aforementioned mPredictor and benchmarking application to perform a detailed evaluation. This work has been developed to assist a generic mobile developer in integrating Deep Learning service in his/her application.
Use this login method if you
don't
have an
@illinois.edu
email address.
(Oops, I do have one)
IDEALS migrated to a new platform on June 23, 2022. If you created
your account prior to this date, you will have to reset your password
using the forgot-password link below.