Director of Research (if dissertation) or Advisor (if thesis)
Bailey, Michael D
Department of Study
Computer Science
Discipline
Computer Science
Degree Granting Institution
University of Illinois at Urbana-Champaign
Degree Name
M.S.
Degree Level
Thesis
Keyword(s)
Smart Contract, Reverse Engineering
Abstract
Interacting with Ethereum smart contracts can have potentially devastating financial consequences. In light of this, several regulatory bodies have called for a need to audit smart contracts for security and correctness guarantees. Unfortunately, auditing smart contracts that do not have readily available source code can be challenging, and there are currently few tools available that aid in this process. Such contracts remain opaque to auditors. To address this, we present Erays, a reverse engineering tool for smart contracts without the need for source code. Erays takes in smart contract from the Ethereum blockchain and produces high-level pseudocode suitable for manual analysis. We show how Erays can be used to provide insight into several contract properties, such as code complexity and code reuse in the ecosystem. We then leverage Erays to link contracts with no previously available source code to public source code, thus reducing the overall opacity in the ecosystem. Finally, we demonstrate how Erays can be used for reverse-engineering in four case studies: high-value multi-signature wallets, arbitrage bots, exchange accounts, and finally, a popular smart-contract game, Cryptokitties. We conclude with a discussion regarding the value of reverse engineering in the smart contract ecosystem, and how Erays can be leveraged to address the challenges that lie ahead.
Use this login method if you
don't
have an
@illinois.edu
email address.
(Oops, I do have one)
IDEALS migrated to a new platform on June 23, 2022. If you created
your account prior to this date, you will have to reset your password
using the forgot-password link below.