Director of Research (if dissertation) or Advisor (if thesis)
Levinson, Stephen E.
Doctoral Committee Chair(s)
Levinson, Stephen E.
Committee Member(s)
Hasegawa-Johnson, Mark
Shosted, Ryan K.
Varshney, Lav R.
Department of Study
Electrical & Computer Eng
Discipline
Electrical & Computer Engr
Degree Granting Institution
University of Illinois at Urbana-Champaign
Degree Name
Ph.D.
Degree Level
Dissertation
Keyword(s)
speech
langauge
artificial intelligence
speech signal processing
speech communication
speech articulation
sensorimotor primitives
speech primitives
variational autoencoder
inverse channel encoder
Abstract
This dissertation presents the development of sensorimotor primitives as a means of constructing a language-agnostic model of speech communication. Insights from major theories in speech science and linguistics are used to develop a conceptual framework for sensorimotor primitives in the context of control and information theory. Within this conceptual framework, sensorimotor primitives are defined as a system transformation that simplifies the interface to some high dimensional and/or nonlinear system. In the context of feedback control, sensorimotor primitives take the form of a feedback transformation. In the context of communication, sensorimotor primitives are represented as a channel encoder and decoder pair. Using a high fidelity simulation of articulatory speech synthesis, these realizations of sensorimotor primitives are respectively applied to feedback control of the articulators, and communication via the acoustic speech signal. Experimental results demonstrate the construction of a model of speech communication that is capable of both transmitting and receiving information, and imitating simple utterances.
Use this login method if you
don't
have an
@illinois.edu
email address.
(Oops, I do have one)
IDEALS migrated to a new platform on June 23, 2022. If you created
your account prior to this date, you will have to reset your password
using the forgot-password link below.