Withdraw
Loading…
Analysis of non-unique solutions in mean field games
Livesay, Michael R.
Loading…
Permalink
https://hdl.handle.net/2142/101031
Description
- Title
- Analysis of non-unique solutions in mean field games
- Author(s)
- Livesay, Michael R.
- Issue Date
- 2018-04-19
- Director of Research (if dissertation) or Advisor (if thesis)
- Hajek, Bruce
- Department of Study
- Electrical & Computer Eng
- Discipline
- Electrical & Computer Engr
- Degree Granting Institution
- University of Illinois at Urbana-Champaign
- Degree Name
- M.S.
- Degree Level
- Thesis
- Keyword(s)
- Mean field games, initial-terminal value problem, non-uniqueness
- Abstract
- This thesis investigates cases when solutions to a mean field game (MFG) are non-unique. The symmetric Markov perfect information N-player game is considered and restricted to finite states and continuous time. The players' transitions are random with a parameter determined by their control. There is a unique joint distribution of the players for the symmetric Markov perfect equilibrium, but there can be multiple solutions to the MFG equations. This thesis focuses on understanding the behaviors of the many MFG solutions for the 2-state case. This thesis explores methods to determine which MFG solution represents the fluid limit trajectories of the N-player system for large populations. This thesis investigates the MFG map which acts on the MFG distributions and outputs a prediction of the population's distribution based on the expected response of any given player. The MFG solutions are exactly the fixed points of the MFG map. The MFG solution that approximates large population trajectories is conjectured to be the only stable point for the MFG map. There is a second concept investigated, social cost, which is the average accumulated cost per player. But as is shown, the social cost is not a good indicator of which MFG solution approximates large population trajectories. A set, called the bifurcation set, is defined by there being some possibility of multiple trajectories of a large population. Another important set is the indifference set, which indicates when the transition rate of the players to a state is positively reinforced by an increase of the empirical distribution of that state. However, numerical results are given, indicating that the fluid limit trajectory may relate to stability of the MFG map. It appears the MFG map is difficult to handle in many ways; stability of the mapping is difficult to show, even in a simple example and there are numerical anomalies such that non-fixed points appear to be numerically stable under rigorous tests.
- Graduation Semester
- 2018-05
- Type of Resource
- text
- Permalink
- http://hdl.handle.net/2142/101031
- Copyright and License Information
- Copyright 2018 Michael Richard Livesay
Owning Collections
Graduate Dissertations and Theses at Illinois PRIMARY
Graduate Theses and Dissertations at IllinoisDissertations and Theses - Electrical and Computer Engineering
Dissertations and Theses in Electrical and Computer EngineeringManage Files
Loading…
Edit Collection Membership
Loading…
Edit Metadata
Loading…
Edit Properties
Loading…
Embargoes
Loading…