Why deep neural networks for function approximation
Liang, Shiyu
Loading…
Permalink
https://hdl.handle.net/2142/99417
Description
Title
Why deep neural networks for function approximation
Author(s)
Liang, Shiyu
Issue Date
2017-12-12
Director of Research (if dissertation) or Advisor (if thesis)
Srikant, Rayadurgam
Department of Study
Electrical & Computer Eng
Discipline
Electrical & Computer Engr
Degree Granting Institution
University of Illinois at Urbana-Champaign
Degree Name
M.S.
Degree Level
Thesis
Keyword(s)
Neural networks
Deep learning
Abstract
Recently there has been much interest in understanding why deep neural networks are preferred to shallow networks. We show that, for a large class of piecewise smooth functions, the number of neurons needed by a shallow network to approximate a function is exponentially larger than the corresponding number of neurons needed by a deep network for a given degree of function approximation. First, we consider univariate functions on a bounded interval and require a neural network to achieve an approximation error of ε uniformly over the interval. We show that shallow networks (i.e., networks whose depth does not depend on ε) require Ω(poly(1/ε)) neurons while deep networks (i.e., networks whose depth grows with 1/ε) require O(polylog(1/ε)) neurons. We then extend these results to certain classes of important multivariate functions. Our results are derived for neural networks which use a combination of rectifier linear units (ReLUs) and binary step units, two of the most popular types of activation functions. Our analysis builds on a simple observation: the multiplication of two bits can be represented by a ReLU.
Use this login method if you
don't
have an
@illinois.edu
email address.
(Oops, I do have one)
IDEALS migrated to a new platform on June 23, 2022. If you created
your account prior to this date, you will have to reset your password
using the forgot-password link below.