GPU accelerated Hungarian algorithm for traveling salesman problem
Kaushik, Varsha Ravi Prakash
Loading…
Permalink
https://hdl.handle.net/2142/97805
Description
Title
GPU accelerated Hungarian algorithm for traveling salesman problem
Author(s)
Kaushik, Varsha Ravi Prakash
Issue Date
2017-04-28
Director of Research (if dissertation) or Advisor (if thesis)
Nagi, Rakesh
Department of Study
Industrial&Enterprise Sys Eng
Discipline
Industrial Engineering
Degree Granting Institution
University of Illinois at Urbana-Champaign
Degree Name
M.S.
Degree Level
Thesis
Keyword(s)
Compute Unified Device Architecture (CUDA)
Linear assignment problem
Traveling salesman problem
Reformulation Linearization Technique (RLT)
Abstract
In this thesis, we present a model of the Traveling Salesman Problem (TSP) cast in a quadratic assignment problem framework with linearized objective function and constraints. This is referred to as Reformulation Linearization Technique at Level 2 (or RLT2). We apply dual ascent procedure for obtaining lower bounds that employs Linear Assignment Problem (LAP) solver recently developed by Date(2016). The solver is a parallelized Hungarian Algorithm that uses Compute Unified Device Architecture (CUDA) enabled NVIDIA Graphics Processing Units (GPU) as the parallel programming architecture. The aim of this thesis is to make use of a modified version of the Dual Ascent-LAP solver to solve the TSP.
Though this procedure is computational expensive, the bounds obtained are tight and our experimental results confirm that the gap is within 2% for most problems. However, due to limitations in computational resources, we could only test problem sizes N < 30. Further work can be directed at theoretical and computational analysis to test the efficiency of our approach for larger problem instances.
Use this login method if you
don't
have an
@illinois.edu
email address.
(Oops, I do have one)
IDEALS migrated to a new platform on June 23, 2022. If you created
your account prior to this date, you will have to reset your password
using the forgot-password link below.