High-speed delta-sigma modulators are in high demand for applications such as wire-line and wireless communications, medical imaging, RF receivers and high-definition video processing. A high-speed delta-sigma modulator requires that all components of the delta-sigma loop operate at the desired high frequency. For this reason, it is essential that the quantizer used in the delta-sigma loop operate at a high sampling frequency. This thesis focuses on the design of high-speed time-interleaved multi-bit successive-approximation-register (SAR) quantizers. Design techniques for high-speed medium-resolution SAR analog-to-digital converters (ADCs) using synchronous SAR logic are proposed.
Four-bit and 8-bit 5 GS/s SAR ADCs have been implemented in 65 nm CMOS using 8-channel and 16-channel time-interleaving respectively. The 4-bit SAR ADC achieves SNR of 24.3 dB, figure-of-merit (FoM) of 638 fJ/conversion-step and 42.6 mW power consumption, while the 8-bit SAR ADC achieves SNR of 41.5 dB, FoM of 191 fJ/conversion-step and 92.8 mW power consumption. High-speed operation is achieved by optimizing the critical path in the SAR ADC loop. A sampling network with a split-array with unit bridge capacitor topology is used to reduce the area of the sampling network and switch drivers.
Use this login method if you
don't
have an
@illinois.edu
email address.
(Oops, I do have one)
IDEALS migrated to a new platform on June 23, 2022. If you created
your account prior to this date, you will have to reset your password
using the forgot-password link below.