Withdraw
Loading…
Radiation network within a virtual environment
Zircher, Christian Donald
Loading…
Permalink
https://hdl.handle.net/2142/97462
Description
- Title
- Radiation network within a virtual environment
- Author(s)
- Zircher, Christian Donald
- Issue Date
- 2017-04-27
- Director of Research (if dissertation) or Advisor (if thesis)
- Sullivan, Clair J.
- Committee Member(s)
- Uddin, Rizwan
- Department of Study
- Nuclear, Plasma, & Rad Engr
- Discipline
- Nuclear, Plasma, Radiolgc Engr
- Degree Granting Institution
- University of Illinois at Urbana-Champaign
- Degree Name
- M.S.
- Degree Level
- Thesis
- Keyword(s)
- Radiation sensor network
- Mobile sensor network
- Radiation detection
- 3D radiation visualization
- Live-time radiation monitoring
- Live data visualization
- Unity 3D
- SketchUp
- Radiation map
- Abstract
- "Radiation sensor networks play a key role in the detection, localization, and ultimately prevention of nuclear threats. These sensor networks create large amounts of data that must be processed. Currently, there are studies focusing on how to collect, analyze, and visualize these large amounts of data. The goal of the Radiation Sensor Network within a Virtual Environment is to visualize the data collected from a radiation sensor network in real-time and in such a way that experts as well as non-experts can fully utilize the information. This thesis begins by presenting existing data presentation methods before proposing its own solution. Next the radiation sensor network used for this project is described along with the storage system for the network's data. We then discuss the game engine, Unity, used to host the virtual environment along with its purposes and abilities, which includes scripting, additional modeling, and detailing. An alternative game engine, Amazon Lumberyard, is discussed as well as a possible replacement for Unity due to its native integration to the cloud computing services used for the network's data storage. Next, the area needed to be modeled is presented along with the methods used for the 3D modeling. The computer software, SketchUp, is used for the majority of the modeling, such as the buildings and terrain. Alternative methods utilizing photogrammetry and or inferred scanning used for objects of complex geometries are also presented. The data acquisition process is then presented, which includes multiple scripts used to pull data from cloud storage and transform it into a format readable to the game engine. The next section discusses the techniques used to visualize the geospatial data within the virtual environment. This is done by converting the latitude longitude coordinates collected from each sensor node into the Cartesian format used by the game engine. Movement of the detectors is visualized using a method called ""Waypoint Based Movement"" which effectively interpolates the geospatial data points. We then focus on the multiple visualization techniques developed to display the data collected from a radiation sensor network in real-time. The methods include both 2D and 3D visualizations which utilize either or both heat maps and height maps as well as an alarm system. This thesis concludes with proposals for future work on other visualization techniques as well as decreasing the time between data collection and data visualization."
- Graduation Semester
- 2017-05
- Type of Resource
- text
- Permalink
- http://hdl.handle.net/2142/97462
- Copyright and License Information
- Copyright 2017 Christian Zircher
Owning Collections
Graduate Dissertations and Theses at Illinois PRIMARY
Graduate Theses and Dissertations at IllinoisManage Files
Loading…
Edit Collection Membership
Loading…
Edit Metadata
Loading…
Edit Properties
Loading…
Embargoes
Loading…