Withdraw
Loading…
Resource management in sensing services with audio applications
Le, Long Nguyen Thang
Loading…
Permalink
https://hdl.handle.net/2142/97414
Description
- Title
- Resource management in sensing services with audio applications
- Author(s)
- Le, Long Nguyen Thang
- Issue Date
- 2017-04-20
- Director of Research (if dissertation) or Advisor (if thesis)
- Jones, Douglas L.
- Doctoral Committee Chair(s)
- Nahrstedt, Klara
- Committee Member(s)
- Srikant, Rayadurgam
- Veeravalli, Venugopal V.
- Department of Study
- Electrical & Computer Eng
- Discipline
- Electrical & Computer Engr
- Degree Granting Institution
- University of Illinois at Urbana-Champaign
- Degree Name
- Ph.D.
- Degree Level
- Dissertation
- Keyword(s)
- Resource management
- Sensing services
- Internet of Things
- Audio classification
- Guided-processing
- Feature-sharing
- Abstract
- Middleware abstractions, or services, that can bridge the gap between the increasingly pervasive sensors and the sophisticated inference applications exist, but they lack the necessary resource-awareness to support high data-rate sensing modalities such as audio/video. This work therefore investigates the resource management problem in sensing services, with application in audio sensing. First, a modular, data-centric architecture is proposed as the framework within which optimal resource management is studied. Next, the guided-processing principle is proposed to achieve optimized trade-off between resource (energy) and (inference) performance. On cascade-based systems, empirical results show that the proposed approach significantly improves the detection performance (up to 1.7x and 4x reduction in false-alarm and miss rate, respectively) for the same energy consumption, when compared to the duty-cycling approach. Furthermore, the guided-processing approach is also generalizable to graph-based systems. Resource-efficiency in the multiple-application setting is achieved through the feature-sharing principle. Once applied, the method results in a system that can achieve 9x resource saving and 1.43x improvement in detection performance in an example application. Based on the encouraging results above, a prototype audio sensing service is built for demonstration. An interference-robust audio classification technique with limited training data would prove valuable within the service, so a novel algorithm with the desired properties is proposed. The technique combines AI-gram time-frequency representation and multidimensional dynamic time warping, and it outperforms the state-of-the-art using the prominent-region-based approach across a wide range of (synthetic, both stationary and transient) interference types and signal-to-interference ratios, and also on field recordings (with areas under the receiver operating characteristic and precision-recall curves being 91% and 87%, respectively).
- Graduation Semester
- 2017-05
- Type of Resource
- text
- Permalink
- http://hdl.handle.net/2142/97414
- Copyright and License Information
- Copyright 2017 Long Le
Owning Collections
Graduate Dissertations and Theses at Illinois PRIMARY
Graduate Theses and Dissertations at IllinoisDissertations and Theses - Electrical and Computer Engineering
Dissertations and Theses in Electrical and Computer EngineeringManage Files
Loading…
Edit Collection Membership
Loading…
Edit Metadata
Loading…
Edit Properties
Loading…
Embargoes
Loading…