Nanosoldering carbon nanotube fibers and graphene nanoribbon thin film transistors
Munukutla, Siddhanth
Loading…
Permalink
https://hdl.handle.net/2142/97365
Description
Title
Nanosoldering carbon nanotube fibers and graphene nanoribbon thin film transistors
Author(s)
Munukutla, Siddhanth
Issue Date
2017-04-19
Director of Research (if dissertation) or Advisor (if thesis)
Lyding, Joseph W.
Department of Study
Electrical & Computer Eng
Discipline
Electrical & Computer Engr
Degree Granting Institution
University of Illinois at Urbana-Champaign
Degree Name
M.S.
Degree Level
Thesis
Keyword(s)
Carbon nanotubes
Graphene nanoribbons
Composite fibers
Thin film transistors
Abstract
In this thesis, we explore the electronics applications of the nanoscale allotropes of carbon. We work with carbon nanotubes and graphene nanoribbons. The first part involves using carbon nanotubes (CNTs) to build composite structures such as fibers. In the past, our group developed the “nanosoldering” technique to solder carbon nanotube junctions which significantly improved the electrical properties of CNT transistors. For the purpose of our work, we apply the nanosoldering technique to the CNT junctions in the fibers to enhance their properties. We study the electrical and thermal properties of the fibers before and after nanosoldering. We measure the electrical conductivity using a four-terminal sensing circuit, and an IR microscope is used to map the real-time temperature profile of the fibers to extract thermal conductivity.
In the second part, we also fabricate and characterize transistors from thin films of atomically precise graphene nanoribbons (GNRs). Device studies of solution synthesized GNRs have been limited because of poor processing. In this work, a novel interfacial self-assembly approach is used to produce uniform thin films of GNRs. Transistors are then fabricated using the GNR thin films as the channel material and the resulting devices are characterized.
Use this login method if you
don't
have an
@illinois.edu
email address.
(Oops, I do have one)
IDEALS migrated to a new platform on June 23, 2022. If you created
your account prior to this date, you will have to reset your password
using the forgot-password link below.