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UNIQUENESS AND ESTIMATION OF THREE-DIMENSIONAL MOTION PARAMETERS 

OF RIGID OBJECTS WITH CURVED SURFACES

R. Y. Tsai and T. S. Huang*

August 14, 1981

ABSTRACT

We show that seven point correspondences are sufficient to 

uniquely determine from two perspective views the three-dimensional 

motion parameters (within a scale factor for the translations) of a 

rigid object with curved surfaces. The seven points should not be 

traversed by two planes with one plane containing the origin, nor 

by a cone containing the origin. A set of "essential parameters" 

are introduced which uniquely determine the motion parameters up to 

a scale factor for the translations, and can be estimated by solving 

a set of linear equations which are derived from the correspondences 

of eight image points. The actual motion parameters can subsequently 

be determined by computing the singular value decomposition (SVD) of a 

3x3 matrix containing the essential parameters. No nonlinear equations 

need be solved.

* The authors are with Coordinated Science Laboratory and Department of 
Electrical Engineering, University of Illinois at Urbana-Champaign, 
Urbana, Illinois 61801.
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I. INTRODUCTION

The importance of motion estimation in image sequence analysis has 

long been recognized, particularly in such fields as image coding, tracking 

and robotic vision. Methods for two-dimensional motion estimation are rela­

tively well known [11-18], As for three-dimensional motion estimation from 
two image frames, [2-3,20] show that when the object surface is planar, 

there exist a set of eight pure parameters that can be estimated by solving 

a set of linear equations. The equations were derived using the Lie Group 
theory [2], and the uniqueness of the eight pure parameters given all the 

image point correspondences on the image plane is established either using 

Lie Group Theory [2] or using elementary Mathematics [21]. In [20], it 
is shown that only four image point correspondences (no three points 

colinear) are sufficient to ensure the uniqueness of the pure parameters.

[3] shows that once these pure parameters are estimated, the motion para­

meters can be calculated by computing the SVD of a 3x3 matrix A consisting 

of vhe eight pure parameters, and the number of solutions is either one 

or two (usually two) depending on the multiplicity of the singular values 

of the matrix A. [20] shows that regardless of the multiplicity of the 

singular values, the motion parameters are always unique given three 
image frames.

For the case when the object surface is not restriced to be planar, 

existing theorectical analyses and estimation schemes were unsatisfactory 

in the sense that, theorectically, it was not known precisely how many 

image point correspondences are needed to ensure the uniqueness of the motion
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parameters (up to a scale factor for the translation parameters, of course), 

and practically, all estimation schemes rely on the solution of nonlinear 

equations using iterative search [4,10,19,23-25]. For example, it was 

stated in [10] that "in any case, the general method was not really practic­

able, nor was it .designed for efficient use." [19] ended up with 18 non­

linear equations, and [4] 5 nonlinear equations. The results stated in [23] 

on the minimum number of image correspondences were not intended to be 

rigorous or exact since the author tried simply to equate the numbers of 

unknowns ¿and equations . Another related problem is the stereo imaging prob­

lem in photogrammetry and computer vision without assuming the relative orien­

tation of the two cameras since pictures taken at two time instances with one 

camera can be regarded as taken with two cameras at one instance. After the 

motion parameters are computed, the surface structure of the object can be 

determined by computing the z coordinates up to a scale factor using Eqs. (5a) 

or (5b) in this paper. Despite the fact that much work has been done in this 

area (e.g., [27,28]), no one has studied the problem of minimum information 
required to ensure unique solutions, nor was there any technique deve­
loped other than solving nonlinear equations iteratively or making 

severe approximatens to the unknowns. Another related problem is the 

so called "Location Determination Problem" as described in [26], where 
tne distances between the observed points are assumed to be known a prior, 

which of course creates a different but simpler problem. In short, the v 

results in the present paper should be of interest to many areas of 
research.

In this paper, a solution to the problem of estimating three-
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dimensional motion of a rigid body from two image frames is presented.

Two major theorems, one lemma and six corollaries regarding the uniqueness 

and estimation of motion parameters are stated and proved. First, a 3x3 

matrix E containing 8 essential parameters are introduced. It can be 

factored into a product of a skew-sysmetric matrix containing only the 

translation parameters, and an orthonormal matrix containing only the 

rotation parameters. Theorem I states that given the E matrix, the actual 

motion parameters are unique and can be determined simply by computing the 

SVD of the E matrix. The E matrix can be estimated by solving a set of 

linear equations given 8 image point correspondences. Lemma I shows that 

the actual motion parameters are unique if and only if a certain 4x4 matrix 
C is skew-symmetric. Theorem II shows that if all the observed points

N

are not traversable by two planes with one plane containing the origin, nor 

by a cone containing the origin, then the matrix C has to be skew—symmetric. 
All other results follow from these two theorems and the lemma. For 

example: two planar patches determine the motion parameters uniquely;

4 points on a plane not passing through the origin and 2 other points 

not on this plane determine the motion parameters uniquely; 6 points with 

4 on one plane, 4 on another, and 2 common to the above two groups of 4 

points on the intersections of the two planes can insure unique solution;
7 points in general positions are sufficient to determine the motion 

parameters uniquely; etc. Note that Theorem II only gives a sufficient 

condition. Although 7 or more points in general positions are enough 

to ensure uniqueness, 6 or even 5 points are usually sufficient from 
our experience. (One should be cautious not to take solutions that yield
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z s that are positive before the motion and negative after the motion, or 

vice versa.) However, with 5, 6 or 7 points, one has to solve nonlinear 

equations with iterative search, while with 8 or more points, the simple 
method using SVD as stated in Theorem I can be used.

II. THE E MATRIX AND THE EIGHT ESSENTIAL PARAMETERS.

The basic geometry of the problem is sketched in Fig. 1. Consider 
a particular point P on an object. Let

(x,y,z) = object-space coordinates of a point P before motion. 

(x',y',z') = object-space coordinates of P after motion.
(X,Y) = image-space coordinates of P before motion.

(X',Y') = image-space coordinates of P after motion.

The mapping (X,Y)— +(X',Y') for a particular point is called an image point 

correspondence. It is well known [22] that any 3-D rigid body motion is 

equivalent to a rotation by an angle & around an axis through the origin 

with directional cosines n1,n2,n3» followed by a translation ( Ax,^y,kiz)

( 1 )

where R is a 3 x 3 orthonormal matrix of the 1st kind (i.e. det(R)s1)

R
m  + O-nl^cose n>n2 (1-cose)-n3sine

n ‘ki2 (1-cos&)+n3,sin& n2+ ( 1 -n2^cosG 

* n ki3 (1 -cos6)-n2sin» n2n 3 (1 -cos6)+n 1sind

n 1fi3 (1 -cos0)+ n 2sin 0  

n2n3 (1 -co sd )-n  leinG* 

n3 + (1 -ni)cos6*

(2)



G

Fig. 1 Basic geometry for three- 
dimensional mocion 
estimación.
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’ r 1 r2 r3 "1 * A x ‘

r4 r5 r6 and T = A y

r7W r8 r9 A z»

Although the elements in R, namely r1,r2,...,r9, are nonlinear 

functions of the rotation parameters n 1 ,n2 ,n3 and 6, throughout this 

paper, the uniqueness and computation of R rather than n1,n2,n3 and © are 

discussed. The reason is two fold. First, as will be seen later, to each 

possible R in (2), there corresponds exactly two sets of rotation parameters 

n1,n2,n3,© with one set the negative of the other. Since these two solutions 

are physically indistinguishable, we may regard the relationship between 

R and the rotation parameters as one to one. The second reason is that once 

R is determined, the task of computing n1,n2,n3 and 6 is trivial, as can

be seen in the following: 

From (2), we have

R = 3 + X

where

n1x + 0 - n 1  * )co s© n 1n2(1 -c o s © ) n1n3 ( 1 -cos©-)

s = n 1 n 2 (1 -c o s & ) n 2x + ( 1 - n 2 fc)cos© n 2 n 3 (1 -c o s © )

_ n 1 n 3 (1 -c o s © ) n 2 n 3 ( 1 - c o s o ) n3x + ( l - n 3 x )cos©

and

0 -n 3 +n2

X = s in d * +n3 0 - n  1 i s s k e w -s y m m e tr ic .

-n 2  -h i  1 0

Since any matrix can be decomposed uniquely into a sum of 

a skew-symmetric matrix, we see that K is unique given R,

is symmetric

a symmetric and 

and thus n 1 ,n2 ,



8
n3,& are fixed up to a possible sign change. In fact, it is trvial to see

0 r2-r4 r3-r7

r4-r2 0 r8-r6

r7-r3 r8-r7 0

or n 1-sine = (r8-r6)/2, n2*sind = (r3-r7)/2, n3-sinS = (r4-r2)/2, 

which imply sinxe(n 1% n 2 % n 3*) s sin*0*1 = d/4 

or sine = ±d /2 , n 1 = jt(r3-rb )/d,

n2 = +(r3-r7)/d , n3 = +(r4-r2)/d , 

where d = (rS-rof +(r3-r7? + (r4-r2)* . (If d=0,then 0=0, R=I, and 

n1,n2,n3 can be anything since without rotation, the axis is meaningless.) 

Since sine alone does not determine 0 uniquely, we still need cos8 to fix 9. 

From (2), nl^ + (1 - nl^)cos0 » rl

cose '= ~ ° l 2  = rl ~ ( d ) , d2rl - (r8 - r6)2
1-nl /r8-»r6^  d^ - (r8-r6)^

v d '

Therefore, 0, nl, n2 and n3 can be easily determined from R.

Just as m  [2-7], we now combine (1) with the following equations 

relating the object and image space coordinates:

X = x/z X' = x ' / z '
(3 )

X = y/z r  = y ' / z '

(r1 X + r2 Y + r3)z + & x
X' = ------------— ____________

(r7 X + r5 Y + r9)z + A z

(r4 X + r5 Y + ro)z + ¿xy 
Y ' = ■

(r7 X + r3 Y + r9)z + & z

(4a)

(4b)

where the focal length F is normalized to 1 for simplicity. From (4),
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\

A x  - A z  • X '
z = ...........  ■ ..

X'(r7 X + r3 Y + r9) - (r1 X + r2 Y + r3)
(5a)

- A z  • Y '
and z : — ...... ! -....... ..... „

Y'(r7 X + ro Y + r9) -  (r4 X + r5 Y +r6)

Equating the right hand sides of (5a) and (5b) gives

(5b)

0 '  Y' 1 ] E

---
---

---
---

-i
K

 
X

 
i

where

AZ*r4 - A y - r 7 A z- r

E i Ax. r7 -Az* r 1 A x r

Ay*r1 - Ax*r 4 A y * r

= 0

-  Ay* r8 A z*r6  -  Ay* ^9

-  Az * r2 Ax*r9  - A z * r 3

-  AX*r5 A y * r3  - A x * r 6

( 6 )

(7)

e 1 e2 e3
A e4 e5 ec (S)

e l e8 e9

Note that the equality of (6) will not be influenced by multiplying E 

by any scalar. Since each element of E is linear in Ax, A y  and A z ,  

this simply means that there is a common scale factor for the translation 

parameters that cannot be determined.(This scale factor also influences 

z in (5a) and (5b), but not the rotation parameters.) For this reason, 

we can always set e9 equal to some fixed number, say 1, without losing 

generality. We call the elements in E "essential parameters" for 

reasons that will be seen later.

It is obvious by observing (6) that the 3x3 matrix E contains all 

the information one can possibly obtain given any number of image point 

correspondences (X, Y)— -^(X',Y'). Thus if the E matrix can be determined
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uniquely from a number of image point correspondences, then whether the

motion parameters are unique or not depends soly on whether the motion 

parameters in (7) can be uniquely determined from £. This is one reason why 

we call the elements in £ essential parameters. The second reason is 

that the actual 3-D motion parameters can be determined uniquely given E, 

and can be computed simply by taking the SVD of E without having to solve 

any nonlinear equations at all. The third reason is that given the image 

correspondences of eight object points in general positions, the E matrix 

can be determined uniquely by solving 8 linear equations.

Eefore giving Theorem I (which concerns the uniqueness and the 

computation of motion parameters given the matrix E), let us first 

analyze the matrix E. From (7), we have

r i —

A z 0 1 0 A y 0 0 1

E = A x 0 0 1 R - A z 1 0 0

A y 1 0 0 A x 0 1 0
-

A z Ay

s A x R - Az

A y A x

(9)

where 0 A z - A y

G = - Az 0 A x (1 0)

A y - A x 0

is skew-symmetric and contains only the translation parameters and R is 

the rotation matrix. It is well known in matrix theory [1] that any

sKew-symmetric matrix K must have even rank, say 2n, and that K, if real, 

always assumes the following normal form:
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0
-« 0

o v9» 
-y\ o

0 %
-% 0

0
0

Q ( 1 1 )

0
_

where Q is some orthonormal matrix, not necessarily unique and t h e n ’s are 

real constants. Since G in (10) is 3x3 skew-symmetric, we can see from 

the above that G must be singular, and that there exist a 3x3 orthonormal 

matrix Q and a real number such that

G = Q

0 <f

jf 0 ( 12 )

£.q.(1 2 ) will play an important role in the analysis hereafter

Let P = i £ where i=jj -1 , then from (10)
P = i * E = i- G R = H-R

where
0 i-Az •H1

H = i-G = -i-Az 0 i-Ax
i*Ay -i*Ax 0

Note that H is Hermitian. Therefore, (1 3 ) gives the polar decom­

position ["!] of P. Since the polar decomposition of any nonsingular
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matrix with distinct singular values is always unique [1 ], we can see 

that Gand R would be unique if P should satisfy the conditions that 

it was nonsingular and that P*P did not have multiple eigenvalues.

(* denotes conjugate transpose) However, we have seen that G_is 

always singular, which implies that P is always singular. Further­

more, P always contains multiple singular values since

It it
P *P = R *H *h*R (* denotes conjugate transpose) 

= R*H*R = R*(iG)(iG)-R = -R*G*R

= -r*|qt
0 9
■f 0 qM q

r o ÿ  
-y 0

U
Q>R

= -R*Q. -Y* •Q-R = R.QT .
0_ L °J (14)

and thus the eigenvalues of P*P (or the square of the singular values of 

P) are and 0. However, we shall show in Theorem I tha4- because

of the special structure of G, once E is given, G and R are unique.

III.1 UNIQUENESS AND ESTIMATION OF MOTION PARAMETERS GIVEN E : THEOREM I. 

THEOREM I

Let the SVD of £ be given by 

E = U A  VT

then there are two solutions for the rotation matrix

05)



13

( 1 6 )

or 07)

where s s det(U)*det(V) = +1 or -1

and one solution for the translation vector (up to a scale factor)

• "
Ax *1*2 ' *2*3"

Ay - a *1*2 1 *1*3
Az_ 1

where <J>i is the ith row of E, i * 1, 2, 3, and a is some scale factor. 

Furthermore, although U and V are not unique given E, once a particular pair 

of U and V are selected, (16) and (17) include all the possible solutions. 

However, only one of the two solutions yield positive z in (5a) and (5b). 

Since the object must be in front of the camera, the solution is unique.

[Proof]

' Let us first verify the uniqueness of 

computational formula for it.

From (9 ), we have

Ax
Ay
A z-

given E, and give the

G R kT GT = G ii i o N

Az* + *yx - Ax-&y - Ax-Az
- A x  Ay - Ay-Az
-Ax-Az -Ay-Az Ax1 + A y

( 18 )
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or AZ*+Ay* =
4 z l+ 4 X * 5
Ax* + Ay* =
A x -Ay = -<£T<k
A x-Az =
A  y A z  = -fjf,

(19)
( 2 0 ) 
( 21 ) 
( 2 2 )
(23)
(24)

( 1 S M 2 0 M 2 1 )  gives

or

Similarly,

2-a z x= 4T*+ - 4fh
a .z * s v / t ( <kr <l> *<Hr <k

A x  = + 1 / T  + <feT<fe

¿ y - ' F <  4 > H  -  t s i

(25) 

>* (2 6) 

*<fer<f>i (27)

Therefore, given E, Ax, Ay and Az are fixed except for the signs. 

When a particular sign for A z is chosen, the signs for Ax and Ay

are determined from (28) and (29). Thus the translation vector

is fixed except for the sign. Since, as mentioned twice before, 

multiplying E or G with any scalar does not alter the equality of (6),

Axl .
Ay is unique up to a scale factor. Alternatively, since there is a common
Az
scale factor among the translations, Ax, Ay and Az, we have from (23) and

(2 4 ),
Ax

1"" T T
*1*2  '  *2+3

Ay *  a *1+2 > +1+3

Az _ 1

where a is a scale factor. We now proceed to prove that given E, there 

are two solutions given in (17) and (18) for the rotation matrix R with 

only one among the two yielding z in (5a) and (5b) with the same signs 

before and after the motion.
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From (9), (12) and (15), we have 

E = U A VT= G R = QT 0 </>

H
Q R (28)

Since P P s (i (i E) s ET E, it follows from (14) that ^ a n d  0, 

wnich are the squares of the singular values of P*P, are also singular 

values of E £T and ETE. Since, as mentioned earlier, multiplying E with 

any scalar will not influence the equality of (6) and will only scale the 

translation parameters in G, we can always, for the purpose of simplicity, 

set 9> in (12) to 4  without losing generality. Thus (28) becomes

E s U-
~1

1 • VT s qt.
1----

T °
O
 t—

i___

o
1 

_
I o'

Q *R (29)

By taking Q as UT , and premultiplying (29) with u"T we have

“l ..T “ 0 - 1  -
1

0
• V s +1 0

0
Q-R (30)

Let the ith column of V be denoted by Vi, and the ith column of the 

product QR be denoted by Qi, where is 1,2,3. Then (30) gives

V1T
mm mm
- Q2T

V2T ii + Q1T

I--
-- o o l9 q o q_

Thus C2 s -V1 , Q 1 s +V2. Then it follows from the orthonormality of QR 

that Q3 s + V3. Thus

R = Q*Q*R s U• Q • R



1*

= U [+V2 -V1 +V5 ] (3D

where s s +1 or -1. Since R is orthonormal of the first kind, we have 

from (3D ,

det(R) = 1 = det (U)* det( 

= det(U). s.det(V)

- 1  0 )•det(V)

Thus
det(U) det(V) 1 = s [det(U)]* Cdet(V)]1“

= s • 1

or s : det(U)• det(V ). Although U and V are not unique given E si.ice 

the multiplicity of the sngular values of E is 2, we shall show later 

tnat due to the special structure of G, the solution for R is either 

given by (3D ,  or by

R = U

and no others. Furthermore, only one of (3D and (32) can be accepted.

Let R 1 and R2 be two orthonormal matrices of the 1st kind (i.e., 

det(R1) = det(R2) = +1 and not -1) that satisfy (9), i.e.,

0 -1
1 0 (32)

E = G-R1 = ±  G-R2 (33)

The sign in (33) comes from the fact explained earlier that a sign 

change of E will not influence the equality of (6). From (33) and (12), 

tnere exist two orthonormal matrices Q1 and Q2, not necessarily equal, 

sucn that

Q1T -
”  0 1 
-1 0 • Q1-R1 = Q2T •

” 0 1 
-1 0

0 L  o.
Q2-R2 (34)
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where G = Q 1 Q1 = ± Q2
0 1
•1 0 Q2 (35)

First, we show that Q1 and Q2 have to be related by follow! ng

Q2 = W Q1

wners W is a 2x2 orthonormal matrix. From (9) and (12) with set to 

1 as explained earlier, we have

£•bT = G R Rt Gt = - Gl

r t ‘ 0 1  ’ r r o 1 -
Gi - 1  0 Q i V oS - 1  0 Qi>= QiT

0 J 0. f o.
Qi (36)

_T .
iince iS fixed (including the sign) given j- £, we have from (36),

Q 1T- i • Q 1 = Q2^
1

1
0 0_

Q2 (37)

Premuxtiplying (o7) by Q2 and postmultiplying by Q 1 give

G2-Q1

— — — -Y
1 1

1 s 1
0

Q2-Q1 (36)

L e t  Q2-Q1T ^
q1 q2 q3"
q4 q5 q o , t h e n  from  (
q 7 qS q9_

“q1 q2 0 ”q1 q 2 q j f
q4 q5 0 = qi* q 5 q6

_Q7 q3 0_ L 0 0 0^

w h i c h  i m p l i e s t h a t q3 = q6 = q7  = 0 , o r

Q2* Q 1T s
~qi q2 0 i 1q4 q5 0 2 afw
_ 0 0 q9_ 1 <9J

(39)



where W = [q 1 q 2*]
[q4 q 5j

(40)

(alternatively, one can show from (3 5), after some similar derivation 

as above, that Vi has to be either r±i oi or r o +fi.
L0 *1J L- °J

But since (40)

is sufficient and handy for all the later purposes, it is simpler just 

to maintain (40)). Since Q1 and Q2 are both orthonormal, it follows 

from (39) that W is orthonormal and q9 = +1. Therefore,

Q2 = Q1 (41)

Next, we substitute (41) into (34) to obtain

t F° 1
Q1 M 00 | Q 1 R 1 = Q 1

0 1 
-1 0 Q1 R2 = Q 1 WT K W Q1 R2 (42)

where K
n -

Since Vi is defined by (40), we have

J k W = [q1 q4|f 0 if [c¡1 q2% f-q3 q1 +d3 q1 -q3 q2 + q1 q4
b2 osJL-1 0J [q3 j4 q 1 +q3 q2 -q2 q4 + q2 q4

= r o det(w7| = T 0 L.O

L-det( iw) 0 J L-1 o] L1 0

Thus (42) gives T “ 0 1  ' T"0 s
Q1 •-1 0 . Q1-R1 = Q1 •-s 0 • Q1-R2 0

O_ 'm 0_

where s = +1 or -1. Premultiplying (43) by Q1 and postmultiplying by

R 1^Q1T  give
“ 0 1 o —*

i o ii 1 —k o

L oj> 1 o

s(Q1*R2*R11*Q 1T ) (44)

Let b = Q1-R2*R1^Q1T ^ E2T
B3t

(45)
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Thus

“ 0 1 ' " 0 1 £ 1T" +sB2
- 1 0 = s - 1 0 32T = -sB 1t

0 0 B5t 0 0 0

Hence
B2 = s[0 1 0] (46)

B1T =-s [-1 0 0] s s[1 0 0] (4 7)

Since Q1, R1 and R2 in (45) are orthonormal, and that

det(B) = det(Q1 ).det(R2)•det(r1 )*det(Q1 ) = (det(Q1 ))*"s (± 1 )* = 1

we see that £ is orthonormal is orthonormal of the 1st kind. This 

fact, together with (46) and (47), imply that

-r* — _ s
53 = CO 0 1 ] or B(= Q V  R2-R1-Q1 )=: sL i_

Q1 R1

For s = +1, R2 r Q1T-I-Q1-R1 = R 1 . (43)

For s = - 1 , R2 = Q?

Therefore, given E, if we regard R1 as a reference solution, then should 

there be any other solution for the rotation matrix, it must satisfy 

(49). We now show that although Q1 is not unique, (49) remains fixed 

for different, choices of Q1.

Let Q2 be another orthonormal matrix that satisfies (55) or

-1
-1 Q 1 R 1 (49)

Thus R2 = Q 1
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(36), and let R5 = Q2

R 3 = Q 1-

-1 3- 1 -Q2-R1, then from (41),

f* -1 ’- 1
-1w w T

+1 1 i1JLm J
. W 1-Q1-R1 = Q1T- |-WT W Tgi • R 1
L ¿1J L ±1J

-1
= Q1« -1 ■Q1-R1

+ 1 (50)

-1
or : Qf -1 ■Q1-R1 = -R 1

-1
( 5 D

(51) is obviously not a solution since it implies that det.(R3) = - 1 , 

not +1. But (50) is exactly the same as (49). Note that. (49) implies

that

•Q1-R2
1

i.e., no matter which solution is chosen as the reference, the other 

solution must be given be (49), of course.

It is now obvious that (16) and (17) are the only possible 

two solutions despite the fact that. U and V are not unique, since if 

we regard (31) as the reference solution R1, then the only other 

solution must be given by

-1 —i 0 1
R2 = Q* -1 •Q •R1 = Qt -1 *Q • ü • -1 01 1 s

II i 0 1

it CM -1 •I* -1 0 •VT (since Q tf)
1w. 4 •
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.yT which is identical to (3 2). vie now show that

among the two solutions, exactly one of them must yield z with opposite

signs before and after the motion«
'since the E matrix in (6) has nothing to do with the geometry of

of the object surface, for a particular point with image correspondence 

(X,Y)— » ( X ',!'), we can imagine that there are two planes passing 

through this point neither of them containing the origin. In section

= IT

0  - 1  

1 0

XV, we shall show that given the image correspondences of the points on 

two planes, neither of which containing the origin, the E matrix is fixed. 

In [3], it was shown that there are two solutions for the rotation matrix 

siven the image correspondences of one plane only :

R 1

r
s *

R2
r * £

0 1T. sp s<*

(52)

(53)

where Q1 and C2 are some 3x3 orthonormal matrices.(Note that -he rows 

of 01 and 02 are permutated for convenience.) There are two other 

solutions corresponding to k < 0  not stated in C3 l(see [3] for the defi­

nition of x) because it was proved in [32 that when k < 0, the object 

points move from the front to the back of the camera, or vice versa. It 

can be shown using exactly the same procedure as in Theorem II of [3] that 

these two other solutions are

R1 = a ? .
-* -I*

-serf C2 (54)

and R2 ' 0 1

-d (3 
-sjS - sd C 2 (55)
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Since the E matrix is fixed, it was proved earlier in this theorem

that only two solutions among the four in (5 2)— (55) may exist, and they

must be related precisly by (49). There are only two such possibilities

one is _
-1

r i ' = or - 1 01-R1 (56)

»

and the other is

01 * R2 (57)

Therefore, the two solutions are either R1,R1' or R2,R2'. In either

case, one of the solution must be one among (56) and (57), which corr­

esponds to the case when k < 0 and the object points must move from the

front to the back, or from the back to the front of the camera, as was

indicated above. We have thus proved that only one among (16) and (17),

or equivalently (48) and (49) is acceptable.

* END OF PROOF FOR THEOREM I *

III.2 ESTIMATION OF E GIVEN 8 IMAGE POINT CORRESPONDENCES.

Given eight image point correspondences (Xi,Yi)— ^ (Xi',Yi'),

for is1 ,...,8, we have from (6 ),

X1 'XI X1 'Y1 ' XI Y1 'X1 1 1 'Y1 Y1 ' X1 y T e l -1
12'12 12'12 1 2 1 Y2'X2 12'12 Y2 ' X2 Y2 e2 -1
11 ' l l X3 'Y3 X3f Y3'X3 13'13 Y3 ' X3 Y3 e3 -1
X4 'X4 X4 'Y 4 X4 1 Y4'X4 Y4'Y4 Y4 ' X4 Y4 e4 -1
X5'X5 X5'Y5 1 5 1 Y5'X5 15'15 Y5 ' X5 Y5 e5 = -1
X6'X6 Xo'Y6 1 6 1 l o ' l o 16'16 Y6 ' Xô Y6 eo -1
X7 'X7 17 '17 11' 17'17 17'17 17' 17 17 e7 -1
X6 'Xo X8 'Y8 X8 * 16'16 16'16 16' 16 16 eo -1

— ^

(58)
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iherefore, el,e£,...,eb can be estimated by solving a system of linear 

equations expressed in (58). The conditions when the ei*s are unique 

(or equivalently when the 8xo matrix in (58) is nonsingular) are stated 

and proven in Lemma I and Theorem II in Sec. IV. In practice, given 

eight image point correspondences, one first substitute the image point 

coordinates into the above 8x8 matrix and check its determinant. If it 

is nonzero, the matrix E can be determined by solving (58) for the ei's. 

Next the SVD of E is computed and used to calculate the actual motion 

parameters by the simple formula described in Theorem I.

IV. RESTRICTIONS ON THE SPATIAL DISTRIBUTION OF OBJECT POINTS TO 
ENSURE UNIQUENESS; LEMMA I AND THEOREM II.

Multiplying (6) by z and z' gives

z * [X * Y ' 1] • E- zfx'
Y
1L 4

=0

From (3 ) and (59),

(59)

T x " [x# y ' z']-G*R- * x"

y r 0 or y
z z

0 ( 80 )
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Let
0X
s

y be transformed from
x"
y0m 2 _ 2 a

with some reference rotation matrix

Ro and translation vector To =
'Ax o'
Ay° 
A  20

i e .

0X X ’ x" ’ A x o
0

y = Ro y + To = Ro y A y °
0_ 2 2. 2 Azo^

( 6 1 )

Le t Go -

0 A z o -A y °

- 0 A xo

A y o -¿^xo 0

and Eo : Go-Ro

The purpose of this section is to investigate how many image 

point correspondences are needed to ensure that there are no other 

solutions to G and R as factors of E in (9) than the reference Go and 

Rc that can satisfy (59) (or (60)), and to state the conditions 

or restrictions on the spatial distribution of the object, points under 

observation in order to ensure unique solutions.

Substituting (61) into (60) gives

( [x y 2 ] -RoT + To"*V E- “ x * Cx y 2]*R(7*E V * ’ x

y y
_

+ i.o*E* y

2u J b 2 _

T 0* "x* /
Rofi 0 y *

0 2
0̂ 0 0 0 1 {

’[x y z 1 ] ’ o '

0

0

„ 1_ i

[t5 e[x y z 1 ]
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Cx y z 1 ] T • 0
m ^

X [x y z 1 ] C r TX
= fto-E • C y s y

z z
To-E - 0 1 1

where
C = T 5 ° T 0

Ro-E j 0 s Ro-GR 0
• : 0 0

0 ToTGR 0

(62)

( 6 3 )

iM'ote that if C is skew-symmetric, then (62) is always satisfied regard­

less of what x,y,z or X,T are, since

2 * [x y ‘ x' [x y z 1]-C- rm mm

X rtx y z 1] C X
y s y * J y
z z 1 z
1

hm m l _ 1 _

[x y z 1 ] - C-~ x~ Cx y z i].c! ‘x~
£ y + y

z z
. . 1 . .

1 ]-C- " x~ Cx y z 1K-C)- ~ X

y + y
z z
1

. 1 .

It is to be proved in Lemma I that C is skew-symmetric if 

and only if £ = Eo (then according to Theorem I, the solution for the 

motion parameters is unique). The purpose of Theorem II is to prove 

• ^ a1: the matrix C in (63) has to be skew-symmetric if the object points 

under observation do not reside on two planes with one of the two planes

containing the origin, nor do they lie on a cone containing the origin, 

we note that live or fewer points m  space can always be traversed by 

two planes with one plane containing the origin, and that six or fewer
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points in space can always be traversed by a cone containing the origin.

A minimum of seven points is needed to violate these two conditions. 

iherefore, it follows from Theorem II and Lemma I that seven points in 

general positions can ensure a unique solution for the motion parameters.

LEMMA I

The necessary and sufficient conditions for C defined by (63) to be 

skew-symmetric is that

R = Ro (64)

or
Ro (65)

where Q is a 3x3 orthonormal matrix such that

(6 6)

and
Ax Axo

A y = oC A y °

N
 ' 

«--------J A zo

where o t is some constant. 

equivalent to E =o££o)

(67)

(According to Theorem I, (65) and (67) are

[Proof]

If C is skew-symmetric, then it is necessary from (63) that. 

Ro-G-R = -(RoT G R)T ( 66 )
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and

To-G-R [0 0 0]

or

RT-G^To

(68) gives

'o'
0
0

Ro-G-R = - R^gT ro s R^G-Ro

(69)

Substituting (66) into the above gives

-T Trto g
“ 0 1 T TQ R = R*Qf

” 0 1
- 1 0 -1 0

0. q,
Q Ro (70)

Premultiplying (70) by QR and postmultiplying by RT*QT give

Q R Ro QT

1
i -* 

o
 

o
 -
* 

__
__

1

. r ° 1 i
L Qj 1L o.

Q Ro RT QT

or

(71)

where

L : 3 R Ro QT :A
i' J2 J3
j“ J5 J6
J7 ja j9

From (71) and (72)

(72)

-J'2 J1
-J5 &

_-J8 J7

Thus j7 3 J8

and j2 3 -j2

3 -J4

J 1 3 j5

J2 J5 J3

i
-J1

0
-J1»

0

----
1

t-~ o 
•n l

0

or j2 = 0 

or jU = 0
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L =
J 1 0 j3

0 jo
0 0 J9

(73)

(72) implies that L is orthonormal of the 1st kind since R, Ro, Qo are 

orthonormal and that det(L) r det(Q) det(R) det(Ro) det(Q) = (det(Q))*" 

= (±1f = 1. Taking the inner product of the 1st and 3rd rows of L in

(73) , and equating it to zero gives J3 * J9 = 0. Since j9 / 0 (other­

wise the 3rd row of L would be zero), j3=0. Similarly, j6 = 0. With 

tnese and the fact that det(L) = 1 , we conclude taht L can assume only 

the following forms:

L =
— 4■

1 “- 1
1 or L = - 1

1
—

1

From (72),

R = q' Q-Ro = Ro

or

R = Q1
-1

-1 Q-Ro

Thus (64) and (65) are the necessary conditions for C to be skew- 

symmetric. The next thing is to verify (67).

Premultiplying (69) by R gives

GT-To =

0

- A z

Ay

A z

0

-Ax

A y

A*
o

A xo ~Q

Ay° = 0

A zo 0L J



which gives
Az Ayo -  A y - = 0

- A 2 Axo + A x  A zo = o 

A y - A xo - A x-Ay° = o

Let oC = Az/ A zo » then A y  =0<;Ayo » A *  =tfC*Axo . Hence

A x 1 A x o ’

A y = A y °

A z /\zo

which is the same as (67). The E matrix then is equal to Eo (i.e., 

unique) up to a scale factor since

0 A z - A y

= G-R = - A ? 0 A x R =o^-Go*Ro = g(-Eo

. A y - A * 0

if (64) is used, or

= Go QT
-1

Q Ro - oC QT
“ 0 1 
-1 0

>

q . qt
-1

-1
1_ 0 1_

Q Ro -o C  E o

if (65) is used.

(Sufficiency part)

From the structure of C in (63), it is obvious that in order 

for C to be skew-symmetric, the row vector TcT-G• R on the 4th row has



to be equal to the negative of the transpose of the 4th column, which

is a zero vector, and that the 3x3 matrix rJ* G • R on the upper-left

corner of C must be itself skew-symmetric. with (67) , To-G-R in (63)

becomes

To-G-R s C A x o  A v o Azo] 0 Azo - A y °

- Azo 0 Axo R

A y ° i t> X o 0

= [ - Azc-Ayo Axo-Azo- Azo-Axo -Axo-Ay°+Ay°-Axo3 R

= [o 0 0] R = [0 0 0] (74)

We now proceed to show that with R either given by (64) or by (65), the 

3x3 submatrix To^G-R in C has to be skew-symmetric, 

with (64), Ro^G-R in (63) becomes

Ro-G-R = Ro-G-Ro = Ro-(-GT )-Ro = - (Ro G Ro)T (75a)

On the other hand, with (65), Ro’'G-R in (&3) becomes

Ro* G-R = RoT-G-Q
-1 0 -1 -1

-1 •Q*Ro = Ro-Q* -1 0 .Q.Q. -1
1 0 1

Q *Ro

Ro-QT
0 -1 
1 0 Q Ro = -Ro-G-Ro

Thus
(Ro- G • R )T = (-Ro^G-Ro)T = Ro^G-Ro = -RoT-G-R (75b)

(75a) and (75o) shows that either with (64) or (65), R<>G-R is skew- 

symmetric. This fact, together with (74), imply that C in (63) is

sxew-symmetric.
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* END OF PROOF FOR LEMMA I *

THEOREM II 

If [X' Y ' 1 ] £ = 0 is satisfied by the image point correspondences

of a group of object points not lying on two planes with one plane containing
the origin, nor on a cone containing the origin, then the C matrix in 

(65) has to be skew-symmetric.

[Proof]

From (62), which is the necessary condition of (6), we have

[x y z U  c
m- *■X

y
z + -

* 1

[x y z 1] C P v-taT

or
[x y z 1]( C + C' )T ' r p

y
Z 
1

= 0 (76)

F rom (63)

C + CT *

U + CT =

I
T TRo *E + E *Ro i

_  -m, w  —  1 ,,
Er.To

ToT-G.R \
__ i

0

Ro^G-R + R^GT-Ro [ R^d'-To

ToT-G-R \ 0

-Substituting (12) into the above gives
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C + CT =

Ro-Qr , 
1

— 
o

o
 -
» 

__
__

1

■Q-R - RT-QT

r*
0 1 

-1 0
i

•Q-Ro ! -Rt-qT
" o  1 
-1 oL o_ . q. ii 0

T o V
0 1

•1 0
q.
■Q-R

•0 -To

rt-qt t tT ° 1 i r ° 1 iQ -R -R o *Qt | -1 0 1 - 1 - 1  o Q-Ro-RT-QT
0 1 
■1 0 •Q-To

0 0 0 t  r f 0 1 1
To-Q -1 0

L q..

! 0
Q-R ! 0

0

0 0 0 1

Q-R

—tT

0 0

M
" 0 1 1 ’

r ° 1 1 1 r- -1
0 1

«HM

-1 0 - -1 0 •mt ! - -1 0 •To'
0 0 1 o

TO
0 1 
■1 0

0.

Q-R

(77)

wüere M = Q-R - RoT-QT

To ' s  Q-To A
1 1 
t z

ml m2 m3

L e t  M = m4 m5 mo

ra7 mb m9



Then (77) becomes

T —
„ T Q R 2 m4 m5 ml m6 -t 2 Q RC + C s m5 -ml -2 m2 -m3 1 1

1 mb -m3 0 0 1
-t2 1 1 0 0 —  —

Let the original cordnate system be rotated with R.Q such that
- — fm

(78)

*

= Q-R (79)

then from (76) and (78),

[xc 'c zc 1] * J

Ac.

yt = 0 ( 8 0 )

wnere

J =
2 m4 m5-m1 m6 -t2
ra5-m1 -2 m2 -m3 1 1

mo -m3 0 0
-t. 2 1 1 0 0

(80) gives

(8 1)

a[m4. xe + (m5-ml )xi yt -m2-yc*'-t2.x<;+ t1-^+(a6.j^- m3-yc )zc ] = 0 (82)

or
z = [m4.xc+(n5-m1)xe;^-ni2-yet - t2 .x e *ti.jjj/(fli6.)^m3-y(:) (83)

Unless J in (31) is identically zero, (82) indicate that all the 

points must lie on a quadric surface of some type containing the 

origin. However, (33) implies that zc is a single-valued function 

of xc and yc unless m6*X£- m3 •yc = 0. There are two cases to be
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discussed. The first is when m6-xc- m3-yc devides the numerator. Then 

(83) must be a 1st order polynomial, say a-x^* b«yc + c. Thus (82) 

becomes (zc - a « ^ -  b-yc - cMra6*x.- m3-yt) = 0, which implies that 

in the new coordinate system, all the points must, lie on two planes 

with one plane vertical and passing through the origin. Since, as in 

(79), the new coordinate system is obtained by rotating the old coor­

dinate system around an axis through the origin, these two planes must 

still be two planes with one plane passing through the origin in the 

old coordinate system except that it is not necessarily vertical.

The second case is when m6*j^- m3-yc does not devide the numerator in 

(83). In this case, Zc must be +ooor-~ (i.e., indeterminate) along 

the line mo-x^- m3-jfe = 0, while for other values of (xc ,yc ), zc has to 

be single-valued. It is well Known that any quadric surface must fall 

in one of the following categories [29]:

(1) imaginary quadric surface (e.g.,x£+ y^+ z*= -1)

(2) ellipsoid

(3) hyperboloid of one sheet

(4) hyperboloid of two sheets

(5) elliptic paraboloid

(6) hyperbolic paraboloid

(7) elliptic cylinder

(8) hyperbolic cylinder

(9) parabolic cylinder

(10) a cone

(11) two planes

Since zc is single-valued, the surface expressed in (83) cannot be
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ellipsoid or cylinder of any type. Paraboloid also is not possible 

since zc is oo or indeterminate along the line m6»xc-m3. yc =0 and as 

can be seen in Fig. 2 and 3» no such possibility can exist either 

for the elliptic paraboloid or hyperbolic paraboloid. Hyperboloid 

of one sheet should be excluded for consideration since, as is depicted 

in Fig. 4, this type of surface cannot be single-valued in 2̂ ,. It 

might seem that hyperboloid of two sheets in Fig. 5 with one of the 

separating hyperplanes vertical to the (x0 ,yc ) plane and containing the 

zcaxis could be Qualified since it is single—valued in z^ except along a 

line passing through origin, where zc is ±oo. However, since the surface 

must contain the origin as was explained earlier, one sheet of the two 

in Fig. 5 must touch the vertical separating hyperplane. But it is well 

xnown in geometry that if a hyperboloid intercepts its separating plane, 

it must degenerate into a cone as depicted in Fig. 6, in which case the 

intersection must be the axis. Therefore we conclude that unless J 

in (61) is a zero matrix, all the points must either lie on two planes 

with one plane containing the origin, or on a cone passing through the 

origin. But, as was defined in (78),

C + CT

tnerefore, 

or

f— —T P T
! 0 ! 0

Q R ! 0 Q R ! 0
! 0 • J • ! 0

1
!1 o o o oo°

i

C + CT = 0 

C = -CT

wnicn means that C has to be sxew-syrametric.

* END OF PROOF FOR THEOREM II *
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Fig. 2 Elliptic Paraboloid can be single-valued in 2;, but cannot 

diverge along a straight line.

Fig- 3 Hyperbolic paraboloid can be single-valued in but it cannot 

diverge along a straight line.
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Fig. 4 Hyperboloid of one sheet cannot be single-valued in 2̂.

Fig. 5 Hyperboloid of two sheets with vertical separating hyperplane.
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Fig. 6 If a hyperboloid intersepts its separating plane, it has to

degenerate into a Gone



39

COROLLARY I

Given the image correspondences of two planes not passing through 

the origin, the motion is unique.

[Proof]

Since neither a cone nor two planes with one plane passing through 

the origin can contain two planes not passing through the origin, it 

follows from Theorem II that the C matrix in (63) has to be skew- 

symmetric. Then the uniqueness of the motion parameters follow direct­

ly from Lemma I. Q.E.D.

CCRCLLARY II

Given the image correspondences of six points with four points on 

one plane not containing the origin, four points on the other plane also 

nov containing the origin, and two points common to the above two groups 

of four points on the intersection of the two planes can ensure unique 

solutions for the motion parameters.

[Proof]

Since as was proved in [20], the image correspondences of four 

points with none of the three points colinear determine the imasre motion 

of the whole plane, we can see that the six points with four points on 

one plane, four on the other plane can determine the image correspondences 

of two planes not containing the origin. Therefore, it 

llary I that the motion parameters are unique. Q.E.D.

follows from Coro-
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COROLLARY III

The image correspondences of four points on a plane not passing 

through ohe origin and two other points not on this plane determine the 

motion parameters uniquely.

[Proof]

Obviously, on the very plane determined by the four points, whose 

image correspondences can be determined from these four points according 

to [20], there always exist two points that are coplanar with the other 

two points not on this plane. Therefore, it follows from Corollary II 

that the motion parameters are unique. Q.E.D.

COROLLARY IV

Given the image correspondences of seven or more points not 

traversable by two planes with one plane containing the origin, nor by 

a cone containing the origin, the motion parameters are unique.

[Proof]

If one of the image points before motion is chosen to be at 

the origin, which can always be done, then should there be a cone con­

taining the origin passes through all the points, one of the separating 

nyperplane of the cone already passes through the z axis. Therefore, 

the rotation matrix QR in (79) need only rotate the original coordinate 

system around the z axis in order to arrive at (81), or
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where w is some 2x2 orthonormal matrix. Then from (78)

C + CT =
T r~ —

w w
¿1 • J • +1

1 1_

— —nr

wT-N-W
! +ra6ii

-t2

! +m3 1 1

+mo +m3 ! 0 
t

0

-t2 tl ! 0 0
l—

where
H f

2-m4

m5-m1

m5-m1 

-2 m2

Therefore, even in the original coordinate system, the surface is 

still given by the equation in the form of (82). Since (82) contains 

seven.terms with six effective coefficients, there is always a unique 

cone containing the origin that passes through six points in general 

positions, while no such cone exists that contain the origin and passes 

through seven points in general positions, nor can two planes with one 

plane containing the origin. Thus we conclude that given seven or more 

image point correspondences in general positions, the matrix C in (63) 

has to be skew-symmetric and the motion parameters can be uniquely 

determined. Q.E.D.

Since Corollary IV only gives the sufficient condition for unique­
ness, even if the seven points are traversable by two planes with one
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plane passing through the origin, or by a cone containing the origin, 

the motion parameters might still be unique in some situations. For 

example, if six among the seven points satisfy the condition stated in 

Corollary III, then the motion parameters are unique even if there may 

be two planes passing through these seven points with one plane contain­

ing the origin.

From (82), the criteria for whether there exists a cone 

containing the origin that passes through n points is whether the 

following n by 7 rectangular matrix has full column rank or not.

xl*yi ylx xl yl z W  ztyi
x2.y2 y2** x2 y2 z2-x2 z2y2

• • • • • •

• • • • • •

• • - . • • •  •

•  • • • •  •

xn-yn yn* xn yn zn-xn zn-yn

However, since only the image coordinates are given, the only useful 

criteria available is whether or not the 8x8 matrix in (58) is non­

singular or not. If it is nonsingular, one can solve for the E matrix, 

compute its SVD, and then use the formula in Theorem I to calculate 

the actual motion parameters. The following two corollaries state the 

necessary and sufficient conditions for the 8 x 8  matrix in (58) to be 

singular.

Corollary V

Given the image correspondences of eight points among which more 

than six points are coplanar, the 8 x 8  coefficient matrix in (58) is
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singular.

{Proof]

Let H be defined as the 8 x 8 coefficient matrix in (58), i.e.,

H

—
X1 'X 1 X1 ' Y l X 1 f Y I ' X I Y 1 ' Y 1 Y1' X1 Y1X 2 ' X 2 X 2 ' Y 2 X 2 ' Y 2 ' X 2 Y 2 ' Y 2 Y2' X2 Y 2
X 3 ' X 3 X 3 ' Y 3 X 3 ' Y 3 ' X 3 Y 3 ' Y 3 Y 3 ' X3 Y3XU  'X U X 4 ' Y 4 X U ' Y 4 ' X 4 Y 4  ' Y 4 Y 4 ' X4 Y 4
X 5 ' X 5 X 5 ' Y 5 X 5 ; Y 5 ' X 5 Y 5 ' Y 5 Y 5  ' X5 Y 5
X 6 ' X 6 X 6 ' Y 6 X 6 / Y 6 ' X 6 Y 6 ' Y 6 Y 6 # X6 Y 6
X 7 ' X 7 X 7 ' Y 7 X7'f

X8
Y7'X7 Y7'Y7 Y 7 ' X7 Y 7x a  ' x a XS ' Y 8 Y8'X8 Y8'Y8 Y 8 ' X8 Y8

(84)

We shall prove that if at least seven among the eight points are coplanar 

in the object space, H is singular. Since interchanging the rows of H 

will not alter the singularity of H, we can assume without losing gener­

ality that the first seven object points corresponding to the first seven 

rows of H are coplanar. Let Hz be defined as

zl*zl *

z2-z2'

Hz (85)

xl'xl xl’yl xl'zl yl*xl
x2*x2 x2*y2 x2'z2 y2'x2

z8>z8 *

yl*yl 
y2 *y2

yl’zl 
y2 *z2

zl fxl 
y2*x2

zl *yl 
z2 'yl

x8fx8 x8fy8 x8'z8 y8*x8 y8'y8 y8'z8 z8*x8 z8’y8
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From (85),
det (Hz)

8
II zi zi*) • det (H) 
i-1

(86)

Since the object points must be in front of the camera lense in order to 

be imaged, zi and zi* are greater than 1 (the normalized focal length) 

for i * 1, 8. Therefore, from (86), det (Hz) * 0 if and only if

det (H) * 0, i.e., H is singular if and only if Hz is singular. We now 

prove that the first seven rows of Hz must be linearly dependent.

Let the 7 x 8  submatrix of Hz corresponding to the first seven rows 

be denoted by B. Since the first seven points are assumed to be co- 

planar, from [3], we have

c  *
xi'

•  -
xi

y i ’ * k A yi

--------1•HN
____1 zi.

for i * 1, •.., 7, where

al a2 a3

a4 a5 a6

a7 a8 1

(87)

ai’s are the "pure parameters" defined in [2] and [3]. 

k is some constant.

Let D be defined as

D

xl2 yi2 zl2 xl*yl xl*zl yl*zl
x22
•

y22
•

z22
•-

x2y2
m

x2«z2
•

y2*z2
•

J .
•
•

x7*7

•
•

x7>z7

•
•

y7*z7



Then, with (87), the columns of 3 become

B1 =

32 *

34 =

-7
3.1x1“ + a2-xl.yl + a3xl*zl al

2
a lx2 -r a2-x2y2 a3x2*z2 0

• 0
* D

• a2

• a3
2

_alx7 + a2x7y7 + a3x7z7 0

r . 9
alxlyl + a2*yl“ a3ylzl 0

2
alx2-y2 + a2y2 + a3-y2-z2 a2

• 0
= D

• al

• 0
0

feaix7-y7 + a2-y7“ + a3y7-z7 . L a3
al-xl-zl + a2-ylzl + a3*zl2 0

• 0

• a3
• * D

• 0

€* al

aIx7-z7 + a2-y7*z7 + z3-z72 _ a2 _

, ,2 -» a^xl + aoxiyl + ao-xlzl a4

• 0

• 0
D

• 1! a5

• a6
2

a4<x7“ + a5-x7-v7 + a6-x7*z7 0 .



B5 =

36 =

B7 =

B8 =

a4-xl-yl + aSyl2 + a6yl-zl 0

•

1
a5

i
• 0

* D
•  . a4

• 0
?

_a4oc7-y7 + a5*y7" + a6-y7*z7 a6

a4ocl*zl + aSyl-zi + a6-zl2
T

0

• 0

• a6
= D

• 0

• a4

a4oc7-z7 + aoy7“z7 + a6-z7“ a5
L . -J

2 _
a7*xl + aS'xLyl + a9*xizl i * a7

• 0

• 0
= D

• a8

• a9
2

a7-x7“ + a8oc7*y7 + a£x7-z7 _ 0 .

f~ 2 "Ta7xl*yl + aSyl + a$yl-zl 0

• a 8
1

• 0
= D

• a7

• 0

a7*x7*y7 ’ + a3-y7“ -t- a9-y7-z7 a9

where 3i denotes the ith coluan of B
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Therefore,

al 0 0 a4 0 0 a7 0
0 a2 0 0 a5 0 0 a3
0 0 a3 0 0 a6 0 0
a2 al 0 a5 a4 0 a8 a7
a3 0 al a6 0 a4 a9 0
0 a3 a2 0 a6 a5 0 a9

, in (88) , B is the product of i

( 88)

6 x 8  matrix L, the column and row rank of B can be at most 6. To elaborate 

on this, since D is a 7 x 6 matrix, the SVD of D is given by

U_ AD
0 0 .... 0

where

At

Xl

X2

Ai*s are the singular values of D 

is a 7 x 7 orthonormal matrix 

VQ is a 6 x 6 orthonormal matrix.

Then (88) becomes

X6

U AD

0 0 ... 0

TA • V aD D

L o o  ....
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or

(89)

TSince is orthonormal, the row rank of B is the same as that of U^*B.
TBut the last row of u q *B is zero, as can be seen in (39). Therefore, the 

row rank of B can be at most 6« Since B is the 7 x 8  submatrix of Hz, one 

of the first seven rows of Hz can be expressed as a linear combination of 

the others. Therefore, Hz is singular, which implies that H is singular.

Q. E. D.

Corollary VI

If the 8 x 8  coefficient matrix H containing the image correspondences 

of eight points in (58) is singular, then either seven or eight points are 

coplanar in the object space, or the eight object points are on a cone 

containing the origin.

[Proof]

Corollary IV implies that if the motion parameters are not unique, 

or equivalently the E matrix is not unique and H in (58) is singular, the 

eight points are either traversable by two planes with one plane containing 

the origin, or by a cone containing the origin. This conclusion is certainly 

correct but can be made stronger since there are cases when the eight points 

are traversable by two planes with one plane containing the origin while 

the motion parameters are still unique. According to Corollary III, so long 

as four among the eight points are on a plane not containing the origin, and 

two other points not on this plane determine the motion parameters uniquely. 

Obviously there are only three possibilities for this to happen when the 

eight points are traversable by two planes with one plane containing the origin:
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(1) Six points are on a plane not passing through the origin, and two 

points on another plane containing the origin.

(2) Five points are on a plane not passing through the origin, and three 

points on another plane containing the origin.

(3) Four points are on a plane not passing through the origin, and four 

points on another plane containing the origin.

This leaves only the following two cases which have been shown in Corollary 

V to be the sufficient conditions for H to be singular:

(1) Exactly seven points among the eight are on a plane not passing through 

the origin.

(2) All the eight points are on a plane not passing through the origin.

Therefore, the assertion of the corollary is justified.

Q. E. D.

The results developed in this paper can also be applied to the stereo 

imaging problems in photogrammetry and computer vision without assuming the 

relative orientation of the two cameras since pictures taken at two time 

instances can be regarded as taken by two cameras at one instance. After 

the motion parameters are computed using the formula in Theorem I, the 

surface structure of the object can be determined up to a common scale 

factor by computing the z coordinates using (5a) or (5b).

V. PURE ROTATION AND PLANAR PATCH MOTION

Note that when the object undergoes pure rotation around an axis 

through the origin, Ax * Ay ■ Az =* 0, and therefore, from (7), E is a zero
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matrix. The converse is also true since if E = £  (£ stands for a 3 x 3
T Tzero matrix), then from (9), G =* ER * 0 R  » £, i.e., Ax - AY 38 A2 38 0*

In this case, the results described earlier in this paper cannot be applied 

since (5a) and (5b) become z = 0/0, and are no longer meaningful. However, 

it is to be seen in the following that the image motions for the case of 

three-dimensional pure rotation are equivalent to the image motions of any 

planar patch undergoing three-dimensional pure rotation with the same rota­

tion parameters 0, nl, n2, and n3. This means that even if the object 

surface is nonplanar, the motion parameters can still be computed using the 

results described in [3] for the planar patch motion. Furthermore, since 

the motion parameters have been proved to be unique for a rigid planar patch 

undergoing three-dimensional pure rotation (see Theorem III in [3]), the 

motion parameters for any curved surface undergoing three-dimensional pure 

rotation are also unique. A simple test for detecting the presence of pure 

rotation and the planar patch motion will also be described.

By setting Ax, Ay and Az in (4a) and (4b) to zero, we have

„, rl « X + r2 • Y + r3
* * r7 • X + r8 • Y + r9

(90)
, ^ r4 « X + r5 • Y + r6

r7 • X + r8 • Y + r9

It can be seen from [2,3] that (90) gives the image mapping (X,Y) -*• (X1 ,Y*) 

of a rigid planar patch undergoing 3-D motion with the 3 x 3 A matrix 

containing the pure parameters in [2,3] being

A • r;1 R (91)

Let Ua + R, Va - X, Aa =, r ^ I. Then (91) becomes

A * U . A  . V T a a a (92)
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Since R and I (and thus Ua and Va) are orthonormal, (92) is the singular 

value decomposition of A with three identical singular values. Therefore, 

according to Theorem III in [3], (90) gives the image point correspondences 

of any rigid planar patch undergoing 3-D pure rotation with rotation matrix R.

We now describe a simple procedure for detecting whether the object 

points are on a planar patch or are undergoing 3-D pure rotation (given 

eight or more image point correspondences), which are the cases when (58) 

are not to be applied, and the motion parameters have to be computed using 

the resutls in(]2,3r4].

From [2] and [3], the following mapping characterizes image corres­

pondences of n object points on a rigid planar patch undergoing 3-D motion:

alXi + a2«Yi ♦ a3
a7-Xi + a8*Yi + 1

(93)
a4»Xi + a5Yi + a6
a7*Xi + a8-Yi + 1

Xi*

Y i 1

for i * 1, 2, ..., n, and al, a8 are some constants. Rewriting (93)

as a matrix equation with the ai*s as the unknowns gives

al
a2

M B (94)

where the 2n x 8 matrix M is given by
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XI Y1 1 0 0 0 -XI'XI1 -Yl*X1*

0 0 0 XI Yl 1 -XI'Yl1 -Yl-Yl*

X2 Y2 1 0 0 0 -X2*X21 -Y2 *X21

0
•

0
•

0
•

X2
•

Y2
•

1
•

-X2*Y2 * 
•

-Y2*Y2*
•

•

Xn

•

Yn

•

1

•

0

•

0

•

0

•

-Xn-Xn’

•

-Yn*Xnf

0 0 0 Xn Yn 1 -Xn*Yn' -Yn’Yn*

- [X1 t Yl* X2 * Y 2 1 • . . . Xn* *n']T

Therefore, given eight image point correspondences, one first examines the 

consistency of the 16 x 8 matrix equation in (94). If

rank (M) « rank (M l B)
•

then (94) is consistent. An efficient way of checking the consistency of 

(94) is to solve the following 8 x 8  normal equation of (94) for the least 

square solution of (94):

TM M

al
a2

. *8 .

TM B

The solution of the above normal equation is then substituted back to (94). 

If it is satisfied, (94) is consistent. The solution will then be used to 

form the 3 x 3 A matrix defined in [2,3]. If the singular values of A are 

all identical, the motion consists of pure rotation around an axis through
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the origin only. In this case, the rotation matrix R is equal to A multi­

plied by a constant (which is equal to the inverse of the norm of any column 

of A since R is orthonormal) (See Theorem III in [4]). If (94) is not con­

sistent, one solves (58) for the E matrix, and then computes the actual 

motion parameters using the method described in Theorem I of Sec. III.l.

VI. NUMERICAL EXAMPLES FOR THE CASES WHEN FIVE AND SIX POINTS CAN YIELD 

TWO SOLUTIONS

Note that Theorem II only gives the sufficient conditions for unique­

ness. Although there always exists a cone passing through six points in 

general position and the origin, this does not imply that there are two 

solutions, one for the case when C is skew-symmetric and the other not 

skew-symmetric. Experimental results show that six points are usually but 

not always sufficient to yield unique solution. In fact, even five points 

are sometimes sufficient. The following are two numerical examples for the 

cases when five and six points are not sufficient to ensure uniqueness of 

solutions for the motion parameters. In these two examples, the image 

point correspondences were obtained by simulation. First, the image coor-
/

dinates at tl of a number of object points with randomly chosen object space 

coordinates (xi, yi, zi), i * 1, 2, ..., n (n * 5 for Example 1, and 6 for 

Example 2), are obtained using (3). Next the object points are rotated with 

some reference rotation parameters 0Q , nQl, n02* no3* n03 » and translated 

with some reference translation parameters Axo, Ayo, Azo («1), with com­

puter simulation using (1) to obtain (xi*, yi*, zi*), i * 1, ..., n. Then 

the image coordinates of these n points at t2, i.e., (Xi*, Y i ’), i * 1, 2,

..., n, were computed using (3). These n simulated image point correspondences
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(Xi,Yi) (Xi',Yi*), i ■ 1, 2, ..., n, were then substituted into (6) to 

obtain n simultaneous nonlinear equations, one for each image point corres­

pondence (Xi,Yi) (Xif,Yif). The motion parameters in E of (6) with Az 

set to 1 were obtained by solving this system of nonlinear equations using 

global search. For each of the following two examples, two solutions were 

found.

[Example 1] Five point case.

The object coordinates of the five points at tl:

(xl, yi, zl) * (3.0, 15.7, 5.0), (x2, y2, z2) - (28.1, 15.0, 32.3)

(x3, y3, z3) * (5.0, 12.9, 7.0), (x4, y*, z4) - (32.7, 24.7, 18.0)

(x5, y5, z5) * (13.1, 31.0, 22.2).

By using (3),(Xi, Yi), i » 1, ..., 5, were found to be:

(XI, Yl) »(0.6, 3.14), (X2, Y2) * (0.869969, 0.464396)

(X3, Y3) » (0.714286, 1.842857), (X4, Y4) * (1.816667, 1.372222)

(X5, Y5) * (0.590090, 1.396394).

The reference rotation and translation parameters:

6o » 78, nOl =■ 0.615661475, n02 * 0.258819045, n03 » 0.74429406,

Axo =* 23, Ayo » -10, Azo = 1

The object coordinates (xif, y i 1, zi*), and image coordinates (Xi?, Yi*) 

at t2 were then computed accordingly using (1) and (3). The following two 

solutions were found:

Solution 1: the same as the reference solution.

Solution 2: 9 * 159.722148, nl » 0.087422567, n2 =* 0.36295928

n3 * -0.9276949, Ax - 5.97327196, Ay » 1.50137639.
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[Example 2] Six point case.

The object coordinates at tl:

Cxi, yl, zl) - (3, 15.7, 54.908), (x2, y2, z2) * (28.1, 15, 166.111) 

(x3, y3, z3) = (5, 12.9, 42.232), (x4, y4, z4) - (32.7, 24.7, 309.716) 

(x5, y5, z5)*(13.1, 31, 249.971), (x6, y6, z6) - (15, 9.7, 55.868)

The image coordinates at tl:

(XI, Yl) - (0.0546368, 0.285933), (X2, Y2) - (0.169164, 0.0903011)

(X3, Y3) - (0.1183936, 0.3054556), (X4, Y4) * (0.1055806, 0.0797505) 

(X5, Y5) - (0.0524061, 0.1240144), (X6, Y6) * (0.26849, 0.1736235)

The reference motion parameters:

6o * 78, nol * 0.615661475, no2 - 0.258819045, no3 =» 0.74429406,

Axo » 23, Ayo « -10, Azo * 1.

(xi*, yi', zi*) and (Xif, Y i 1) were then computed using (1) and (3) with 

the above reference motion parameters. The following two solutions were 

found:

Solution 1: Same as the reference solution.

Solution 2: 9 * 47.65578, nl * 0.6304461986, n2 =* 0.06582693435,

n3 « 0.7735214391, Ax * -3.683375707, Ay = 0.6458049137. 

For each of the two solutions in the above two examples, the z coordinates 

for each point using (5a) and (5b) were all positive.
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VII. CONCLUSIONS

Several theorems and corollaries have been stated and proved regarding 

the uniqueness and estimation of 3-D motion parameters of rigid bodies. In 

summary, the following results have been established:

(1) The fact that we can define 8 essential parameters el,e2,...,e8, 

that contain all the information one can possibly obtain given 

any number of image correspondences, and are unique given the 

image correspondences of at least seven points not lying on two 

planes with one plane passing through the origin, nor on a cone 

containing the origin.

(2) The fact that given the E matrix consisting of the eight essential 

parameters, the actual motion parameters are unique, and can be 

computed simply by taking the singular value decomposition(SVD)

of the 3x3 E matrix.

(3) A method of determining the E matrix given 8 image correspondences.

This requires the solution of a set of linear equations only.

(4) An operational criteria for the uniqueness of motion parameters.

If the determinant of a certain 8x8 matrix containing only the 

image coordinates of eight image correspondences does not vanish, 

the uniqueness is assured.

The results in this paper should be of interest to numerous



lA)

areas of research, including image sequence analysis, tracking, image 

coding, stereo imaging, photogrammetry, and robotic vision.
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