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Abstract—We consider the problem of verifying the security
of finitely many sessions of a protocol that tosses coins in
addition to standard cryptographic primitives against a Dolev-
Yao adversary. Two properties are investigated here — secrecy,
which asks if no adversary interacting with a protocol P

can determine a secret sec with probability > 1 − p; and
indistinguishability, which asks if the probability observing any
sequence o in P1 is the same as that of observing o in P2, under
the same adversary. Both secrecy and indistinguishability are
known to be coNP-complete for non-randomized protocols. In
contrast, we show that, for randomized protocols, secrecy and
indistinguishability are both decidable in coNEXPTIME.
We also prove a matching lower bound for the secrecy problem
by reducing the non-satisfiability problem of monadic first
order logic without equality.

1. Introduction

Randomization is used in security protocols to achieve
security guarantees such as anonymity (see for example
dining cryptographers [11], Crowds [32] and onion rout-
ing [27]) and voter privacy in electronic voting (see for
example [34]). Automated techniques to formally analyze
security protocols are necessary because the design of such
protocols is subtle and error-prone. While there has been a
lot of work on understanding the computational difficulty of
verifying security protocols that do not employ randomness,
very little is known when it comes to randomized security
protocols; this paper aims to address this void. We consider
the problem of verifying security for randomized protocols
with a bounded number of sessions. The reason for con-
sidering only bounded number of sessions is because it is
well known that secrecy is undecidable for non-randomized
protocols, in general [25], [23], [17].

The usefulness of a formal analysis crucially depends on
a judicious delineation of the powers of an adversary. Given
the success of the “Dolev-Yao” adversary model and per-
fect cryptography in non-probabilistic protocols, we make
similar assumptions here. Thus protocol participants send
and receive messages over public channel controlled by an
omnipotent adversary who tosses coins, reads all messages
sent on the channel, and can inject new messages into
the network as well. The adversarial behavior can depend

on the entire communication transcript, but the adversary
cannot decrypt messages whose key (s)he is not aware of.
However, in the presence of coin tossing steps taken by
the protocol, new subtleties need to be accounted for. As
many researchers have recently observed [12], [7], [26],
[10], [9], it is essential that the protocol coin tosses remain
private to the protocol participants. In the absence of such
guarantees, the analysis can reveal “flaws” where none exist
(see examples in [12], [7], [26], [10], [9]).

In order to faithfully model private coin tosses, we
follow [5] and our protocol semantics is described using
(infinite-branching) partially observable Markov decision
processes (POMDPs). POMDPs are often used as models of
randomized, nondeterministic systems where some systems
states are indistinguishable to a scheduler/adversary, who
resolves the process nondeterminism. Indistinguishability
among states is captured by an equivalence relation on
states, and the assumption that the scheduler/adversary only
observes the equivalence class of states, and not the ac-
tual states, during a computation. In our formalism, each
state of the POMDP consists of the state of the protocol
principals (that doesn’t include the result of coin tosses)
and the frame, the state of the adversary (i.e., the messages
received by the adversary). The nondeterminism models the
actions of an adversary who chooses both the next message
and its recipient. For equivalence of states, we use static
equivalence [2]. The adversary must take the same action
in two executions with the same view. The view of an
execution is the sequence of the equivalence classes of the
states and the adversary actions in the execution. Our notion
of indistinguishability of views coincides with the trace-
indistinguishability of applied-pi calculus processes [2].

Our Contributions. In this paper we establish the com-
plexity of checking two properties of randomized proto-
cols, namely, secrecy, and indistinguishability. The secrecy
problem asks, given a bounded number of sessions of a
randomized protocol, a secret name sec, and probability
threshold p, is it the case that no adversary learns the secret
sec with probability > (1 − p)? Our first result is that
this secrecy problem is decidable in coNEXPTIME for
randomized protocols.

We outline the ideas behind establishing this decidability
result. Recall that the secrecy problem for non-probabilistic



protocols with bounded sessions is coNP-complete [33],
[23]. This result for non-probabilistic protocols is estab-
lished by observing that in the “smallest” attack, any mes-
sage sent by the adversary is either a subterm of a message
received by the adversary (i.e., sent by a protocol partic-
ipant), or is constructed by a composition of such sub-
terms. Moreover, if the adversary ever composes subterms
of messages (s)he sends, then the constructed message must
match (ie, unify with) a non-variable subterm of the protocol
of the protocol description. This results in observing that
the sizes of messages (when encoded as dags), sent in a
smallest attack, are linear in the protocol size and gives
an NP algorithm to prove insecurity. Unfortunately, these
observations no longer hold in the case of randomized
protocols. In Example 5.1 on Page 10, we show that there
are randomized protocols for which the adversary must send
exponential-sized messages in order to break secrecy.

While the strong guarantees of message terseness that
hold for non-probabilistic protocols are no longer true, we
demonstrate that weaker properties do hold. We show that in
the smallest attack, the adversary constructs a new composed
message only if in an “equivalent” trace (from the perspec-
tive of the adversary’s view), the corresponding composed
message matches a subterm of the protocol description. This
gives us an exponential upper bound on message sizes in
the smallest attack, yielding an NEXPTIME algorithm
to demonstrate insecurity.

Next we prove that this upper bound is optimal, i.e., we
show that the secrecy problem is coNEXPTIME-hard.
We establish this result by reducing the non-satisfiability
problem for monadic first order logic without equality,
which is known to be coNEXPTIME-complete [30].
There are three key ideas that play a role in establishing
this result. The first is an observation due to Rusinow-
itch and Turuani [33] that shows how the satisfiability of
propositional logic can be reduced to protocol insecurity.
The second observation is that randomization can be used
to simulate quantifier alternation, with the adversary mak-
ing existential choices, and the protocol making universal
choices by probabilistic steps. The last ingredient needed
is the ability of a randomized protocol to “examine” the
contents of an exponential sized message, which underlies
the ideas in Example 5.1 on Page 10.

We also consider the problem of checking indistin-
guishability of two randomized protocols. We say that two
protocols P and P ′ are indistinguishable if for each adver-
sary A and view o, the sum of probability of executions of
P under A with the view o is the same as sum of probability
of executions of P ′ under A with the view o. We show that
the indistinguishability problem for randomized protocols is
decidable in coNEXPTIME for randomized protocols.
This is achieved once again by bounding the size of the
recipes in a bounded attack. We observe that the protocols
in our formalism are simple; a protocol is said to be simple
if there is no principal-level nondeterminism. As a con-
sequence, our notion of indistinguishability coincides with
the notion of trace-equivalence for simple non-probabilistic
protocols [19]. This is because in a simple, non-probabilistic

protocol, for each view o, there can be only one execution
with the view o.

Our last observation is a fixed-parameter complexity
result for the secrecy and the indistinguishability prob-
lems: if we fix the number of coin tosses but not the
number of protocol steps or the size of protocol terms,
the secrecy and indistinguishability problems are coNP-
complete. This generalizes the results for checking secrecy
of non-probabilistic security protocols, and for checking in-
distinguishability of simple non-probabilistic protocols [19],
which are protocols that fix the number of coin tosses to 0.

The rest of paper is organized as follows. The syntax
of the protocols is presented in Section 2 and the semantics
in Section 3. The upper bounds for complexity results are
presented in Section 4 and lower bounds in Section 5. We
conclude in Section 6.

Related Work. For (non-randomized) security protocols,
secrecy was shown to be undecidable in [25], [23], [17],
although decidability can be obtained for certain subclasses.
For bounded number of sessions, secrecy was shown to be
coNP-complete in [33], [23].

For indistinguishability (equivalence) properties of (non-
randomized) security protocols, undecidability is shown
in [29]. For bounded number of sessions, decidability is
established in [29], [4], [21], [35], [19], [13], [14], [15].
While [29], [35], [13], [14] allow only a limited set of
cryptographic primitives (symmetric and asymmetric en-
cryption and cryptographic hash), [21], [4], [35], [19], [15]
allow cryptographic primitives modeled as subterm con-
vergent rewrite systems [1]. Furthermore, if the protocols
are determinate then the decision problem is also coNP-
complete. Determinate protocols are a generalization of
simple protocols described above. [14] is the only decision
procedure to consider negative tests, i.e., else branches and
non-determinate processes. The complexity of the decision
problem for non-determinate protocols remain open.

There are a number of tools that check for security
in the non-randomized setting; examples include, Maude-
NPA [24], ProverIf [6], AVISPA [3], APTE [13], [14],
Scyther [20], Tamarin [31] and AKiSs [8].

2. Protocol syntax

We assume the reader is familiar with probability spaces.
The set of all discrete measures on a set S will be denoted
by Dist(S). The support of a measure µ ∈ Dist(S) is the
set {s ∈ S | µ(s) > 0}. We will assume that for each µ ∈
Dist(S) the support of µ is finite. As usual, the set of finite
sequences over A will be denoted by A∗.

2.1. Terms, substitutions and frames

Terms. We assume a countable set Pub of public names,
and a disjoint countable set Prv of private names that
will model secret nonces and secret keys that a protocol
participant may use. We assume that there is a countable
subset PrivKeys ⊂ Prv which will model private asymmetric



encryption keys. We assume that there is a countable set
PublicKeys ⊂ Pub which will model public asymmetric
encryption keys. Furthermore, we assume that there is a
bijection −1 : PublicKeys → PrivKeys which maps public
keys to their corresponding private decryption keys. We
use pk, pk1, . . . to range over public encryption keys. For
a public encryption key pk, the corresponding private key
will be denoted by pk−1. We also assume that the sets
Prv \PrivKeys and Pub \PublicKeys are countably infinite.

We assume two sets of function symbols; a set Fc of
constructor function symbols and a set Fd of destructor
function symbols. The set Fc consists of binary function
symbols senc, aenc and the pairing function [·, ·]. The set
Fd consists of binary function symbols sdec, adec and unary
function symbols proj1 and proj2. senc/sdec will model
symmetric encryption/decryption and aenc/adec will model
asymmetric encryption/decryption. We assume a countable
set of protocol variables X and a disjoint countable set
Xw of frame variables. X will be used as variables in
the protocol description, while Xw will be used to refer to
messages received by the adversary. We assume that there
is a fixed enumeration {w1, w2, . . . , } of variables in Xw.

Given a set of names N ⊆ Pub∪ Prv, a set of function
symbols F ⊆ Fc ∪Fd and a set of variables X ⊆ X ∪Xw,
the set of terms built using F,N and X is defined as usual.
The subterms of a term t are defined as usual. We will say
that a term t is well-formed if for each term t1, t2, whenever
aenc(t1, t2) is a subterm of t then t1 ∈ PublicKeys. The
set of well-formed terms built using F,N and X will be
denoted by T (F,N,X). As is the case in [33], for the rest
of the paper, we will assume that all terms are well-formed 1.
We use Sub(t) to denote the set of subterms of t and Sub(T )
to denote the set of subterms of a set of terms T . We will
write t v t′ if t is a subterm of t′ and t < t′ if t v
t′ and t 6= t′. The set of variables occurring in a term is
denoted by vars(t). The set of names occurring in a term
will be denoted by names(t). A ground term is one that
has no variables appearing in it. We identify the following
abbreviations for sets of terms:

• The set of all terms T (Fc∪Fd,Prv∪Pub,X ∪Xw)
will be denoted by Terms.

• The set T (Fc,Pub ∪ Prv,X ) of constructor terms
will be denoted by CTerms.

• The set T (Fc ∪ Fd,Pub,Xw) of recipes will be
denoted by Recipes.

Any term t can be viewed as a node-labeled and ordered
finite tree, with nodes labeled by either a function symbol, or
a name, or a variable. Leaves are labeled by either a name or
a variable. Internal nodes are labeled by function symbols,
with the number of children being determined by the arity
of the function symbol. The edges from an internal node to
its children are assumed to be numbered sequentially from

1. This definition of well-formed terms does not restrict the adversary’s
power. Protocol specifications in our formalism assume that each (sent
or received) message encrypted using asymmetric encryption is encrypted
with a public key. An attacker sending a message that will be received by
a protocol role can always use the expected public key.

left to right starting from one; these numbers are considered
as the labels of the edges. Now, the position of each node of
t can be uniquely represented by the sequence of the labels
of the edges on the path from the root to the node, with the
root node being represented by the empty sequence. We let
t|p denote the subterm of t represented by the subtree of t
rooted at position p. We also let positions(t) denote the set
of positions of nodes of t. By the height of a term, denoted
height(t), we mean the height of the tree representing t;
the height of a tree with one node being taken to be 0. Size
of a term t is defined to be the size of the tree representing
t, i.e., the number of nodes in the tree representing t.

Any term t can also be represented as a node-labeled
directed acyclic graph (dag) dag(t) [33], [1]. Each node of
t is labeled by either a function symbol or a name or a
variable. If a node is labeled by a name or a variable then
its out-degree is 0. If it is labeled by a function symbol f
then its out-degree is the arity of the function symbol f , and
its outgoing edges are assumed to be numbered sequentially
from 1 to the arity of the function symbol f . Every node n of
dag(t) represents a sub-term of t. If the node is labeled by
a name (variable respectively) then it represents this name
(variable respectively). If n is labeled by a function symbol
f of arity n then it represents the term f(t1, . . . , tn) where
ti is the term represented by the node ni such that the edge
from n to ni is numbered i. Furthermore, we assume that
the distinct nodes of dag(t) represent different subterms of
t. The dag-size of t is assumed to be the number of vertices
of dag(t) and is the number of distinct subterms of t.

We assume that cryptographic operations are modeled
via the means of a convergent rewriting system R on
Terms. The set R consists of

adec(pk−1, aenc(pk, y)) → y
sdec(x, senc(x, y)) → y
proj1([x, y]) → x
proj2([x, y]) → y.

For t ∈ Terms, nf(t) denotes the normal form obtained
by rewriting t using R. We write t1 =R t2 if nf(t1) =
nf(t2). We also say that a term t is valid, denoted valid(t),
if nf(u) ∈ CTerms for any subterm u of t.

Substitutions. A substitution σ is a function that maps vari-
ables to terms. The set dom(σ) = {x ∈ X ∪Xw |σ(x) 6= x}
is said to be the domain of the substitution σ. For the rest
of the paper, each substitution will have a finite domain. A
substitution σ with domain {x1, ..., xk} will be denoted as
{x1 7→ t1, ..., xk 7→ tk} if σ(xi) = ti. The set {t1, .., tk}
will be denoted by ran(σ). A substitution σ is said to be
ground if every term in ran(σ) is ground and valid if every
term in ran(σ) is valid. A substitution with empty domain
will be denoted as ∅. A substitution can be extended to
terms in the usual way. We write tσ for the term obtained
by applying the substitution σ to the term t.

Two terms t1, t2 are said to be unifiable if there exists
a substitution σ such that t1σ = t2σ; here σ is said to be
the unifier of t1 and t2. We write mgu(t1, t2) for the most
general unifier for t1, t2. For the rest of the paper, we assume



that substitutions are in normal form, i.e., for each x ∈
dom(σ), nf(σ(x)) = σ(x). Given two substitutions σ1 and
σ2 such that dom(σ1)∩ dom(σ2) = ∅, we write σ1 ∪ σ2 as
the unique substitution whose domain is dom(σ1)∪dom(σ2)
and σ(x) = σ1(x) if x ∈ dom(σ1) and σ(x) = σ2(x) if
x ∈ dom(σ2).

Frames. Intuitively, a frame represents the sequence of
messages obtained by the adversary. Formally, a frame ϕ
is a ground and valid substitution such that dom(ϕ) ⊆ Xw
and dom(ϕ) = {w1, w2, . . . , w|dom(ϕ)|}. The set of frames
will be denoted by Frames. ϕ(wi) denotes the ith message
received by the adversary. For a frame ϕ with dom(ϕ) =
{w1, w2, . . . , wn} and a ground term t in normal form, ϕ ] t
will denote the frame ϕ′ such that |dom(ϕ′)| = n+ 1 and

ϕ′(wi) =

{
ϕ(wi) if i ≤ n
t otherwise

.

Intuitively, a term t is deducible if the adversary can
compute it using the messages it has received and public
names. A valid ground term t in normal form is deducible
from a frame ϕ with a recipe r ∈ Recipes, denoted ϕ `r t
if vars(r) ⊆ dom(ϕ), valid(rϕ) and nf(rϕ) = t.

Intuitively, two frames are considered statically equiva-
lent if the adversary cannot distinguish them. An adversary
tries to distinguish two frames by performing tests. There
are two kinds of tests, one for validity of recipes and the
second for equality of recipes. Formally, two frames ϕ1, ϕ2

are said to be statically equivalent, denoted ϕ1 ∼ ϕ2, if

• dom(ϕ1) = dom(ϕ2),
• For each recipe r with vars(r) ⊆ dom(ϕ1),

valid(rϕ1) iff valid(rϕ2), and
• For each pair of recipes r, r′ such that

vars(r), vars(r′) ⊆ dom(ϕ1), valid(rϕ1),
valid(r′ϕ1), rϕ1 =R r

′ϕ1 iff rϕ2 =R r
′ϕ2.

Our definition is inspired from [2] and follows more recent
definitions, for example [16].
Example 2.1. Let k be a private name and let 0 and 1 be

two distinct public names. Consider the two frames ϕ =
{w1 7→ senc(k,0)} and ϕ′ = {w1 7→ senc(k,1)}. These
two frames are statically equivalent even though the
adversary has different terms. Intuitively, this is because
the adversary cannot decrypt the ciphertext. On the other
hand, the two frames ϕ1 = {w1 7→ senc(k,0), w2 7→ k}
and ϕ′1 = {w1 7→ senc(k,1), w2 7→ k} are not stati-
cally equivalent as sdec(w2, w1)ϕ1 =R 0 =R 0ϕ1 but
sdec(w2, w1)ϕ′1 =R 1 6=R 0ϕ′1.

2.2. Protocols

We define protocols as a finite set of communicating
roles. A role models the actions of one participant in one
instance of the protocol and all communication is assumed
to be mediated by the adversary. Each role performs a finite
number of actions. In each action of the protocol participant,
the participant receives a message, tosses coins and sends

out a message. We will assume that each protocol role itself
is deterministic. Before giving the formal definition, we give
an example of a protocol that will be used to illustrate the
protocol syntax and semantics.
Example 2.2. We model a simple electronic voting protocol

in our formalism. The electronic voting protocol will
have 2 voters A and B with public keys pkA and pkB
respectively and an election authority (EA) with public
key pkEA. The two voters will choose amongst two
candidates who will be modeled as public names 0 and
1 in the set Pub\PublicKeys. The protocol will proceed
as follows. Initially, the election authority will generate
two private tokens tkA and tkB and send them to A and
B encrypted under their respective public keys. These
tokens will be used by the voters as proofs of their
eligibility. A voter after receiving its token will send
its choice to the EA along with its proof of eligibility
encrypted under pkEA. The EA, after receiving both the
votes and checking their validity, tosses a fair coin. If
tails turns up then it outputs A’s vote first and then B′s
vote. The order is reversed if head turns up. The security
property that we are interested is that the protocol must
respect privacy of votes, i.e., an adversary should not be
able to deduce from the results how each voter voted.

Defintion 2.3. A protocol role R is a tuple (S, s0,≺,∆)
where

• S is a finite set of states,
• s0 is the initial state,
• ≺ is a strict partial order on S,
• ∆ ⊆ S ×CTerms×Dist(S ×CTerms) is a finite

set of transitions such that

– If (s, t, µ) ∈ ∆ then s ≺ s′ whenever
∃t′. µ((s′, t′)) > 0.

– If (s, t, µ) and (s, t1, µ1) are distinct elements
of ∆ then t and t1 are not unifiable.

– If (s, t, µ) ∈ ∆ then the support of µ is finite.

Remark: The condition that if (s, t, µ) and (s, t1, µ1) are
elements of ∆ then t and t1 are not unifiable ensures that
a role is deterministic.

Notation: For a transition tr = (s, t, µ) ∈ ∆ we de-
note t as lht(tr) (left-hand term of tr). If the support of
µ is (s1, t1), . . . , (sn, tn) and pi = µ((si, ti)) for each
i = 1, . . . , n, then we write tr as

s : t⇒ [s1 : t1]p1 ⊕ · · · ⊕ [sn : tn]pn .

If the pi = 1
n for each i, we will ignore the superscripts and

just write

s : t⇒ [s1 : t1]⊕ · · · ⊕ [sn : tn].

We use vars(tr) for vars(t)
⋃
∪1≤i≤nvars(ti). For the

role R, we write vars(R) = ∪tr∈∆ vars(tr). Similarly,
we use terms(tr) = {t, t1, . . . , tn} and terms(R) =
∪tr∈∆ terms(tr). We take span(tr) = n and span(R) =
maxtr∈∆ span(tr). The size of tr is the sum of the sizes of



each term t, ti ∈ terms(tr) and the sizes of the numerator
and denominator of each pi written in binary.

Example 2.4. We show how EA in Example 2.2 can be
specified as a role REA. REA will have 3 states s0 ≺
sw ≺ sf . s0 is the initial state of the protocol, sw is
the state in which EA has sent the eligibility token and
is waiting for the votes, and sf is the final state of the
protocol. There are two protocol transitions:

s0 : ok ⇒ [sw : [aenc(pkA, tkA), aenc(pkB, tkB)]]
sw : [aenc(pkEA, [tkA, [x, z1]]), aenc(pkEA, [tkB, [y, z2]]]

⇒ [sf : [x, y]]⊕ [sf : [y, x]]

Here ok is a public name, tkA, tkB are private names and
x, z1, y, z2 are variables. Intuitively, x and y are the votes
of A and B respectively, and z1 and z2 are the nonces
used by A and B when sending their votes to the EA.
The importance of these nonces will be explained later.

Defintion 2.5. A protocol P with n roles is a tu-
ple (ϕ0, R1, . . . , Rn) such that ϕ0 is a frame and
R1, . . . , Rn are roles such that vars(Ri)∩vars(Rj) = ∅
for i 6= j.

In a protocol P = (ϕ0, R1, . . . , Rn), ϕ0 models the
initial knowledge the adversary has and R1, . . . , Rn model
the different roles executing the protocol P.

Example 2.6. Consider the voting protocol given in Ex-
ample 2.2. We have already described the role REA in
Example 2.4. Now for a voter v ∈ {A,B} and a choice
vote ∈ {0,1}, Rv(vote) will denote the role in which
v votes for choice vote. We now describe the role RA0
when A votes for candidate 0. A has two states sA0 ≺ sA1 .
Intuitively sA0 is the initial state where A is waiting for
the token from EA and sA1 is the final state for A. There
is only one transition:

sA0 : aenc(pkA, tk)⇒ [sA1 : aenc(pkEA, [tk, [0, nA]]].

Here tk is a variable and nA is a private name used by
A. We can similarly define the roles RA1 , R

B
0 and RB1 .

We assume that the attacker has a private/public key
pair, skO/pkO. The scenario when A votes for vA and
B votes for vB can be described as a protocol PvA,vB =
({w1 7→ skO}, REA, RAvA , R

B
vB ) with three roles and the

initial frame containing the knowledge skO.

Remark: In order to model multiple sessions of the same
protocol, we will model a principal’s action in one session
as a separate role.

3. Protocol semantics

The semantics of a protocol will be defined using Par-
tially Observable Markov Decision Processes (POMDP)s.
We begin by recalling some standard notions from Markov
Chains and POMDPs.

3.1. Discrete-time Markov Chains (DTMCs)

A DTMC is used to model systems which exhibit prob-
abilistic behavior. Formally, a DTMC is a tuple M =
(Z, zs,∆) where Z is a countable set of states, zs the
initial state and ∆ : Z ↪→ Dist(Z) is a (partial) function
which is called the transition function and which maps
Z to a (discrete) probability distribution over Z. We say
that enabled(z) is true iff ∆(z) is defined. Informally, the
process modeled by M evolves as follows. The process
starts in the state zs. After i execution steps, if the process
is in the state z, the process moves to state z′ at execution
step (i+ 1) with probability ∆(z)(z′).

An execution ρ of M of length m is a sequence z0 −→
z1 −→ · · · −→ zm such that z0 = zs and for each i ≥ 0,
∆(zi)(zi+1) > 0. For an execution ρ, as given above, we
say last(ρ) = zm. The measure of the execution ρ is said to
be the product

∏m−1
i=0 ∆(zi)(zi+1). The set of all executions

ofM will be denoted by Exec(M). For each Markov chain
M that we will construct, there is a bound LM such that
the length of each execution in Exec(M) is ≤ LM.

An execution ρ1 is said to be a one-step extension of the
execution ρ = z0 −→ z1 −→ z2 · · · −→ zm if there exists zm+1

such that ρ1 = z0 −→ z1 −→ z2 · · · −→ zm −→ zm+1. In this
case, we say that ρ1 extends ρ by zm+1. We will say that
an execution ρ is maximal if ρ does not have any one-step
extension. Notice that the set of all executions of M forms
a labeled tree TM whose root node is zs. Each node in this
tree is an execution of M. For the tree TM, we take the
label of a node ρ to be last(ρ).

3.2. Partially Observable Markov Decision Pro-
cesses (POMDPs)

POMDPs are used to model processes which exhibit
both probabilistic and non-deterministic behavior, where the
states of the system are only partially observable. Formally,
a POMDP is a tupleM = (Z, zs, Act,∆,O, Obs) where Z
is a countable set of states, zs ∈ Z is the initial state, Act
is a (countable) set of actions, ∆ : Z ×Act ↪→ Dist(Z) is
a partial function called the probabilistic transition relation,
O is a set of observations and Obs : Z → O is a
function called the observation function that maps each state
to an observation. As a matter of notation, we will write
z

α−→ µ whenever ∆(z, α) = µ. Furthermore, we say that
enabled(z, α) is true iff ∆(z, α) is defined. A POMDP is
like a Markov Chain except that at each state z, there is
a choice amongst several possible probabilistic transitions.
The choice of which probabilistic transition to trigger is
resolved by an adversary. Informally, the process modeled
by M evolves as follows. The process starts in the state
zs. After i execution steps, if the process is in the state z,
then the adversary chooses an action α with probability pα
such that z α−→ µ and the process moves to state z′ at the
(i+ 1)-st execution step with probability µ(z′)pα.

An execution ρ of length m in the POMDP M is a
finite sequence z0

α0−→ z1 · · ·
αm−1−−−−→ zm such that z0 = zs,



and for each i ≥ 0, there exists µi+1 with zi
αi−→ µi+1 and

µi+1(zi+1) > 0; the length of an execution will be denoted
as length(ρ). The set of all finite executions of M will be
denoted by Exec(M). For ρ = z0

α0−→ z1
α1−→ z2 · · ·

αm−1−−−−→
zm, we write last(ρ) = zm and last action(ρ) = αm−1 if
m > 0. An execution ρ1 is said to be a one-step extension
of the execution ρ = z0

α0−→ z1
α1−→ z2 · · ·

αm−1−−−−→ zm if
there exists αm and zm+1 such that ρ1 = z0

α0−→ z1
α1−→

z2 · · ·
αm−1−−−−→ zm

αm−−→ zm+1. In this case, we say that ρ1

extends ρ by (αm, zm+1). In the rest of the paper we only
consider POMDPsM with the property that there is a bound
LM such that all executions in Exec(M) have length ≤
LM.

Given an execution ρ = z0
α0−→ z1

α1−→ z2 · · ·
αm−1−−−−→

zm, the view of ρ, written view(ρ), is the sequence
Obs(z0)α0Obs(z1)α1 · · ·αm−1Obs(zm). Let V be the set
(O · Act)∗ · O. Observe that view(ρ) is an element of V.
As discussed above, the choice of which transition to take
in an execution is resolved by an adversary. Formally, an
adversary is a function A : V → Dist(Act). An adversary
A resolves all non-determinism and the resulting behavior
can be described by a DTMC MA = (Exec(M) ∪ (Act×
{3}), zs,∆A) where 3 is a special symbol. ∆A((α,3)) is
undefined for each α ∈ Act. For each ρ ∈ Exec(M),∆A(ρ)
is the unique discrete distribution that satisfies the following:

• For each ρ1 ∈ Exec(M), z ∈ Z, α ∈ Act such
that z = last(ρ1) and ρ1 extends ρ by (α, z),
∆A(ρ)(ρ1) = A(view(ρ))(α) ·∆(last(ρ), α)(z),

• ∆A(ρ)((α,3)) = A(view(ρ))(α) if and only if
enabled(last(ρ), α) is false.

Observe that an execution κ = ζ0 → ζ1 → . . .→ ζm ∈
Exec(MA) is such that ζi ∈ Exec(M) for each i < m. ζm
is either an element in Exec(M) or a state (α,3) for some
α ∈ Act. Furthermore κ is maximal if and only if ζm is
(α,3) for some α ∈ Act.
State-Based Safety properties. Given a POMDP M =
(Z, zs, Act,∆,O, Obs), a set Ψ ⊆ Z is said to be a state-
based safety property. An execution ρ = z0

α0−→ z1
α1−→

z2 · · ·
αm−1−−−−→ zm of M is said to satisfy Ψ if zj ∈ Ψ for

all 0 ≤ j ≤ m. An execution κ = ζ0 → ζ1 → . . . → ζn ∈
Exec(MA) is said to satisfy Ψ, denoted κ |= Ψ, if whenever
ζi ∈ Exec(M) then ζi satisfies Ψ 2. We say M satisfies
Ψ with probability ≥ p against the adversary A (written
MA |=p Ψ) if the sum of the measures of executions in
the set {κ ∈ (Exec(MA)) | κ is maximal and κ |= Ψ} in
the DTMC MA is ≥ p. We say that M satisfies Ψ with
probability ≥ p (written M |=p Ψ) if for all adversaries A,
MA |=p Ψ.
Indistinguishability. Recall that κ = ζ0 → ζ1 → . . . →
ζm ∈ Exec(MA) is such that ζi ∈ Exec(M) for each
i < m. We will write that view(κ) is view(ζm) if
ζm ∈ Exec(M) and view(ζm−1) · ζm otherwise. Given
a POMDP M = (Z, zs, Act,∆,O, Obs), a sequence o ∈

2. This definition means that we are treating (α,3) as safe iff α is safe
for our purposes.

V∪(V·(Act×{3})) and an adversaryA, the probability ofA
observing o, written prM(o,A), is the sum of the measures
of executions in the set {κ ∈ (Exec(MA)) | view(κ) = o}.

Given two POMDPs M = (Z, zs, Act,∆,O, Obs) and
M′ = (Z ′, z′s, Act,∆

′,O, Obs′) with the same set of ac-
tions and observations, we say that M and M′ are distin-
guishable by an adversaryA if there is an o ∈ V∪(V ·(Act×
{3})) such that prM(o,A) 6= prM′(o,A). We say that M
andM′ are indistinguishable if they cannot be distinguished
by any attacker. The following proposition states that it
suffices to consider only o ∈ V for indistinguishability (see
Appendix B for the proof).
Proposition 3.1. Let M = (Z, zs, Act,∆,O, Obs), M′ =

(Z ′, z′s, Act,∆
′,O, Obs′) andA be an adversary. If there

is a o ∈ V · (Act × {3}) such that prM(o,A) 6=
prM′(o,A) then there is a o1 ∈ V such that
prM(o1,A) 6= prM′(o1,A).

Pure Adversaries. An adversary A : V → Dist(Act) is
said to be pure if for each o ∈ V, A(o)(α) is non-zero for
exactly one α ∈ Act. It turns out that it suffices to consider
only pure adversaries for safety and indistinguishability
properties. Intuitively, an adversary does not gain by tossing
coins as it can always choose to do the worst-possible action.
Proposition 3.2. If MA 6|=p Ψ then there is a pure ad-

versary A0 such that MA0 6|=p Ψ. If M and M′ are
distinguishable then they are distinguishable by a pure
adversary.

Remark: For a POMDP M and adversary A let MAalive
be the DTMC obtained from MA by removing the set of
states Act×{3}. Observe that if A is a pure adversary then
for any execution ρ, the transition probability of going from
ρ to a state (α,3) in MA is either 0 and 1. An execution
κ in Exec(MAalive) is maximal iff the execution κ · (α,3)
is maximal in Exec(MA) where α = A(view(last(κ))).
These facts imply that it suffices to considerMAalive for pure
adversaries A when considering the probability of satisfying
a safety property. Similarly, Proposition 3.1 implies that it
suffices to considerMAalive and (M′)Aalive when distinguish-
ing M and M′.

For the rest of the paper, we will assume that all of
our adversaries are pure and we will confuse MA by
MAalive. Note that a pure adversary A can also be uniquely
identified by the function Apure from V to Act such that
for each o, Apure(o) = α where α is the action such that
A(o)(α) = 1. Thus, in the rest of the paper, we will consider
a pure adversary to be a function from V to Act. Also
observe that as defined above, the measure of an execution
κ ∈ Exec(MA) is exactly the measure of the execution
last(κ) ∈ Exec(M) where the measure of the execution
ρ = z0

α0−→ z1
α1−→ z2 · · ·

αm−1−−−−→ zm is said to be the
product

∏m−1
i=0 ∆(zi, αi)(zi+1).

3.3. Semantics

The semantics of the protocol P is given in terms of
a POMDP MP . A state of the POMDP MP consists of



a state si of each role, a ground substitution σ that maps
variables in the protocol to ground terms, the frame ϕ
that models the messages that have been received by the
adversary, the message received from the adversary before
the current state was entered, and the message sent out by
the protocol role just before transitioning to the current state.
The actions of the POMDP MP model the actions of the
adversary. In an action, the adversary chooses which role
will move next and also constructs (using its frame) the
message that is sent to that role. The role accepts a message
from the adversary only if the message is valid and matches
one of the left hand sides of one of its rules.
Defintion 3.3. The semantics of the protocol P =

(ϕ0, R1, R2, . . . Rn) with s0
i as the initial state of

Ri is given in terms of a POMDP MP =
(Z, zs, Act,∆, F rames/ ∼, Obs) where

• Z = {((s1, s2, . . . sn), σ, ϕ, `) | si is a state of Ri, σ
a ground substitution, ϕ a frame and ` is an element
in the set {?} ∪ (CTerms× CTerms)}.

• Act = {1, 2, . . . , n} ×Recipes.
• zs = ((s0

1, s
0
2, . . . , s

0
n), ∅, ϕ0, ?).

• For a state z = ((s1, s2, . . . sn), σ, ϕ, `) ∈ Z and
an action α = (i, r), the transition ∆(z, (i, r)) is
defined iff there is a transition tr given as

si : ti ⇒ [s′1 : t′1]p1 ⊕ · · · ⊕ [s′n : t′n]pn

of Ri and a ground term t such that

– vars(tr) \ vars(lht(tr)) ⊆ dom(σ),
– ϕ `r t and
– t is valid and unifiable with tiσ.

If defined, let tr be the unique transition as given
above (uniqueness follows from the fact that Ri is
deterministic) and t be the term as given above. Let
σ′ = σ ∪mgu(t, tiσ).
∆(z, α) is the unique probability dis-
tribution such that for a state z′ =
((s1, s2, . . . , si−1, s

′
j , si+1, . . . sn), σ′, ϕ ]

nf(t′jσ
′), (ti, t

′
j)), (where [s′j : t′j ] is one of

the options on the right hand side of tr)
∆(z, α)(z′) = pj (where pj is the probability for
option [s′j : t′j ] in tr).

• The set of observations is Frames/∼, the set of
equivalence classes of the set of frames under static
equivalence.

• Obs(((s1, s2, . . . sn), σ, ϕ, `)) = ϕ/∼.

Remark: Since all our substitutions are in normal form and
t is a valid ground term, it follows that σ′ is also a valid
substitution in the above definition.

We now define the secrecy and indistinguishability decision
problems. For a protocol P with n roles, the size of P is
defined to be the sum of sizes of each term in the initial
frame, the number of states in each role and the sizes of
each transition tr of P .
Defintion 3.4. Given a protocol P, a name sec ∈ Prv and

a state z = ((s1, s2, . . . sn), σ, ϕ, `) of MP , consider

the state-based secrecy property Secret(sec) defined as
follows: z |= Secret(sec) iff there is no recipe r such
that ϕ `r sec.
Given a rational threshold p, a protocol P, a name
sec ∈ Prv, P keeps sec secret with probability at least
p (written P |=p Secret(sec)) if MP |=p Secret(sec).
The secrecy problem is, given a protocol P , a secret
sec ∈ Prv and a probability value p, determine if
MP |=p Secret(sec).

Defintion 3.5. Given protocols P and P ′ with n roles each,
P and P ′ are said to be indistinguishable if the POMDPs
MP and MP ′ are indistinguishable.
The indistinguishability problem is, given two proto-
col P and P ′, determine if P and P ′ are indistinguish-
able.

Example 3.6. We continue Example 2.6 on Page 5. Pri-
vacy of votes can be modeled as an indistinguishability
property [22] as follows. The protocol satisfies privacy
of votes if the adversary cannot distinguish the scenario
in which A votes for 0 and B votes for 1 from the
scenario in which A votes for 1 and B votes for 0, i.e.,
P (0,1) is indistinguishable from P (1,0). This property
is true for the electronic voting protocol in Example 2.6.
Privacy can also be modeled as secrecy property (see
Appendix A). We highlight two things.
First, observe that if the result of coin tosses was
made public then P (0,1) will be distinguishable from
P (1,0). Essentially, if the coin toss had resulted in tails
then the attacker will distinguish the two protocols by
test whether the first vote output is 0. This test will
succeed in the protocol P (0,1) and fail in the protocol
P (1,0), revealing A’s vote.
Second, attaching secret names to votes protects vote
privacy even if the eligibility tokens are made public
after the protocol finishes. For example, if the adversary
learns tkA and votes did not have nonces then the ad-
versary will be able to check whether aenc(pkA, [tkA,0])
matches the vote sent by A to reveal the vote of A.

3.4. Simple adversaries

In order to establish the decidability results, we show
that if a protocol is not secure then there is an attack of
bounded size. The bounded attack that we construct is going
to be a simple attack, which is an adaptation of the notion
of simple attacks in non-randomized protocols [18] to our
formalism. In order to define a simple attack, we first define
simple executions. An execution is simple if for each term
t, the adversary always uses the same recipe whenever it
has to construct t.
Defintion 3.7. Given a protocol P and an execution ρ =

(g0, σ0, ϕ0, `0)
(i0,r0)−−−−→ (g1, σ1, ϕ1, `1) · · · (im−1,rm−1)−−−−−−−−→

(gm, σm, ϕm, `m) of the POMDPMP , we say that ρ is
simple if for any two recipes r and r′ such that r is a
subterm of ri for some 0 ≤ i ≤ m−1 and r′ is a subterm
of rj for some 0 ≤ j ≤ m− 1, rϕi =R r

′ϕj ⇒ r = r′.



An adversary A is simple if every reachable state of the
DTMC MAP is a simple execution.
Defintion 3.8. An adversary A for a protocol P is said to

be a simple adversary if for each execution ρ1ρ2 . . . ρm
of the DTMC MAP , ρi is simple for each 0 ≤ i ≤ m.
We have the following:

Proposition 3.9. For a protocol P , a name sec ∈ Prv and a
number p, if there is an adversary A such that MAP 6|=p

Secret(sec) then there is simple adversary B such that
MBP 6|=p Secret(sec).
Furthermore, if P and P ′ are two protocols such that P
and P ′ are distinguishable then there is an adversary A,
simple for both P and P ′, such that the POMDPs MP

and MP ′ are distinguishable by A.

4. Decidability proof

We now establish that the secrecy and indistinguisha-
bility problems are decidable in coNEXPTIME. We
start by showing that the secrecy problem is decidable in
coNEXPTIME by proving that the non-secrecy problem
is in NEXPTIME; the non-secrecy problem is the one
where one needs to determine that P does not keep the
secret sec with probability at least p. This is done showing
the boundedness property: if P does not keep the secret with
probability at least p then there is a bound b, exponential
in the size of the protocol, and a simple adversary A such
that MAP 6|=p sec and A only uses recipes whose dag-size
is bounded by b.

Proof strategy. We recall the strategy used in [33] to prove
that the non-secrecy problem in non-randomized protocols
is decidable in NP. The proof proceeds by bounding the
size of the smallest attack, if one exists. In case of a non-
randomized protocol P , the tree TMAP for an adversary A
has a single branch. Thus, there is at most one value assigned
to each variable x in TMAP . Let σ denote the substitution that
maps each variable to the value assigned to it. We say that t
is a subterm of P if it occurs either in the initial frame or the
lefthand side or the right hand side of a transition or if it is a
public name. The proof in [33] relies on the key observation
that in the smallest attack, for each variable x there is a t ∈
CTerms\X which is a subterm of P such that σ(x) = tσ.
As the number of subterms of a protocol P is polynomial,
this implies that the messages sent by the adversary and the
recipes used by the adversary to construct those messages
have a polynomial dag-size. Thus, the whole attack can be
represented by the tree TMAP which is polynomial in the size
of the protocol. The NP procedure then guesses this attack.

A natural extension of this strategy for randomized
protocols would be to show that the value of a variable
x at some node of TMAP is the same as the value of a non-
variable subterm t of P at some other node (note that values
of variables and terms can be different in different branches).
We show that this observation fails for randomized protocols
due to the fact that the adversary has to use the same recipe
in executions that have the same view.

Example 4.1. Consider a protocol P which has one role
R. The role R itself has 4 states s0, s1, s2, s3 and the
following 3 transitions.

s0 : m0 ⇒ [s1 : senc(key,m1)]⊕ [s2 : senc(key,m2)]
s1 : [senc(key, x), senc(key,m1)]⇒ [s3 : sec]
s2 : z ⇒ [s3 : sec].

Here m0,m1 and m2 are pairwise distinct public names
and key, sec are private names. There is a (unique)
attack on P that reveals the secret sec with probability
1. The attack initially sends the public name m0. As
a result, the role R may land in two different states
each with probability 1

2 . Note that these two states are
indistinguishable. Hence the adversary has to use the
same recipe in both branches to send the next message.
The adversary uses the recipe [w1, w1] to send the next
message. The secret sec is now revealed with probability
1, x gets the value m1 in one branch and z gets the
value [senc(key,m2), senc(key,m2)] in the other branch.
Observe that the value of the variable z is not the value
of a non-variable subterm of P .

In our strategy for randomized protocols detailed below,
we show that there is a simple attack such that if the
adversary uses a recipe r to send a message in an execution
ρ then for any r1 < r such that r1 is not a public name or
a variable, there must be an execution ρ′ in which the term
deduced by r1 matches the value of a term t ∈ CTerms\X
of the protocol in some branch of the attack tree. This is
achieved by showing that if there is a recipe r1 which does
not satisfy this property then we can replace r1 with a fresh
public name new and get a new attack. A combinatorial
argument is then used to establish that this implies that the
dag-size of r must be exponentially bounded.

Boundedness Result. We first define the notion of a recipe
size of an adversary A.
Defintion 4.2. The recipe-size of a recipe r, denoted

rsize(r), is the dag-size of r. Given a protocol P and
adversary A for P, we say that a recipe r is used by A
if there is an execution ρ of the DTMC MAP such that
last action(last(ρ)) = (i, r) for some role name i. The
recipe-size of A, rsize(A) is defined to be the quantity
max {rsize(r) | r is used by A}.

Theorem 4.3. Let P = (ϕ0, R1, R2, . . . Rn) and let sec ∈
Prv. Let λ be the total number of transitions in the proto-
col. Let γ be the total number of transitions in the proto-
col whose span is > 1. Let η = max {span(Ri)|1 ≤ i ≤
n}. Let θ be the cardinality of the set subterms(P ) =
Sub(ran(ϕ)) ∪ (∪1≤i≤nSub(terms(Ri))). If P 6|=p

Secret(sec) then there is a simple adversary A such that
MAP 6|=p Secret(sec) and such that rsize(A) ≤ 3θλη2γ .

Proof: Recall that the POMDP MP denotes the
semantics of the protocol P . For a given adversary A, the
behavior of the protocol P with respect to the adversary
is given by the DTMC MAP . The actions of the adversary
A are pairs of the form (i, r) where 1 ≤ i ≤ n is a role



name and r is a recipe. The nodes/states of the DTMC are
executions ofMP and its transitions are one-step extensions
obtained by using the action specified by the A. Every
transition advances the state of a role. So a transition cannot
be triggered twice in the same execution. As a consequence,
the DTMC is a finite tree whose height is bounded by, λ,
the total number of transitions in the protocol. Any path in
the tree has at most γ nodes who have more than one child.
Furthermore, each such node has at most η children where
η be the maximum of spans of each role Ri. Thus, the total
number of branches in the tree is bounded by ηγ and hence
the size of the tree is bounded by ληγ .

Assume now that P does not keep sec secret with prob-
ability at least p. Let MP = (Z, zs, Act,∆,O, Obs) where
its components Z, zs, Act,∆,O, Obs are as given in Sec-
tion 2. This means that there is a simple adversary A such
thatMAP 6|=p sec. Now consider the DTMCMAP . Recall that
each state ofMAP is a simple execution ρ ofMP which is a
finite sequence z0

α0−→ z1 · · ·
αm−1−−−−→ zm such that z0 = zs,

and for each j ≥ 0, zj
αj−→ µj and µj(zj+1) > 0; here,

αj = A(view(ρj)) where ρj = z0
α1−→ z1 · · ·

αj−1−−−→ zj and
µj = ∆(zj , αj). We view MAP as a finite tree TMAP where
each node is uniquely labeled by a simple execution ofMP .
For a node n labeled by ρ, as given above, its children are
all labeled one step extensions z0

α0−→ z1 · · ·
αm−−→ zm+1

of ρ such that αm = A(view(ρ)). Observe that ρm = ρ.
Furthermore, we will say prev(ρ) is the execution ρm−1.
Observe that the execution prev(ρ) is the label of the parent
of n. Also, recall that, for ρ as given above, last(ρ) is
defined as the state zm.

For the execution ρ as given above, let αi = (ki, ri)
for each 0 ≤ i ≤ m − 1. We say that Recipes(ρ) = {ri |
0 ≤ i ≤ m − 1}. We will say that a recipe r originates
at ρ if r v rm−1 and r 6v ri for any 0 ≤ i < m − 1.
Observe that if r originates at ρ then it does not originate at a
state that labels a proper ancestor or proper descendant of n.
Furthermore, if r originates at ρ then it also originates at any
execution ρ′ such that view(prev(ρ′)) = view(prev(ρ))
and ρ′ labels some node in the tree TMAP .

Consider the execution ρ labeling node n as above
and let r be a recipe originating at ρ. Given a term
t ∈ subterms(P )\X and executions ρ1, ρ2 such that ρ1 and
ρ2 label some nodes in TMAP , view(prev(ρ)) = view(ρ1),

enabled(ρ1, αm−1) and last(ρj) = (gj , σj , ϕj , (tjin, t
j
out))

for j = 1, 2, we say that the recipe r is a (ρ1, t, ρ2)-match
if r is not a public name or recipe variable, ie, r 6∈ Pub∪Xw
and one of the following hold:

1) ρ2 is the initial state of MAP , t is a subterm of
ran(ϕ0) and nf(rϕ1) = nf(tσ2). In this case,
nf(tσ2) = t as t is a subterm of initial frame.

2) ρ2 is not the initial state of MAP , t is a subterm of
either t2in or t2out and nf(rϕ1) = nf(tσ2).

We say that the execution ρ is an A-match if for every recipe
r originating at ρ, either r ∈ Pub ∪Xw or there is a term t
and executions ρ1, ρ2 such that r is a (ρ1, t, ρ2)-match. We
say that a simple adversary A is small if every execution ρ

labeling a node in TMAP , is an A-match. The following is
proved in Appendix D.1.
Lemma 4.4. If a simple adversary A is small then

rsize(A) ≤ 3θλη2γ .

Essentially, the proof of the Lemma constructs a one-to-
one function that maps a recipe r used in the protocol
to a triple (ρ1, t, ρ2) such that r is (ρ1, t, ρ2)-match. A
straightforward counting argument is then used to count the
number of elements in the co-domain of this function. Thus,
the Theorem will follow if we can establish that there is a
small adversary.
Lemma 4.5. For a protocol P , a name sec ∈ Prv and a

number p, if there is a simple adversary A such that
MAP 6|=p Secret(sec) then there is a small adversary B
such that MBP 6|=p Secret(sec).

Proof: For recipes r, r1, r2, let r[r1 7→ r2] be the
recipe obtained by replacing every occurrence of the recipe
r1 as a subterm in r by r2. For a substitution σ and terms
t, t2 ∈ CTerms, let σ[t 7→ t2] be the substitution obtained
by replacing every occurrence of t as subterm in ran(σ) by
t2.

LetA be a simple adversary which is not small. Consider
the tree TMAP . For a node n of this tree labeled ρ, we define
nsize of n to be 0 if n is the root and the size of the recipe
r such that last action(ρ) = (k, r) for some k otherwise.
The nsize of the tree will be defined as the sum of sizes of
all nodes.

Since A is not small, there must be a non-atomic
recipe r0, an execution ρ0 labeling a node n0 in
the tree TMAP such that r0 originates at ρ0 and is
not a (ρ, t, ρ′)-match for any ρ, ρ′, t. Fix r0, n0 and
ρ0. Let ρ1 be prev(ρ0) and let S be the set {ρ′ |
view(ρ′) = view(ρ1) and ρ′ labels a node of TMAP }. Let
S = {ρ1, ρ2, . . . , ρN}. Let Nodes(S) be the sets of
nodes labeled by an execution in S. For 1 ≤ j ≤ N,
let last(ρj) = (gj , σj , ϕj , `j) and tj = nf(r0ϕ

j). Let
new ∈ Pub \ PublicKeys be a fresh public name that does
not occur anywhere in the tree TMAP .

Now, we will construct a new tree T new by relabeling
the nodes of the tree TMAP as follows. Consider a node n
of the tree TMAP and let this be labeled by the execution ρ.
The new label of the n in T new will be denoted as ρnew and
is constructed as follows.

• If n is not a descendant of a node in the set
Nodes(S) then ρnew = ρ.

• Otherwise let ρ be the execution (z0
α0−→

z1 · · ·
αm−1−−−−→ zm) and let ρ extend an execution

ρj ∈ S. For each 0 < i ≤ m, let zi = (gi, σi, ϕi, `i)
and let αi−1 = (ki−1, ri−1). ρnew is the execution

(znew0

αnew
0−−→ znew1 · · ·

αnew
m−1−−−−→ znewm ) where

– αnew
i = αi for each i < length(ρj) and is

(ki, ri[r0 7→ new]) otherwise.
– znewi = zi for each i ≤ length(ρj) and is

(gi, σi[t
j 7→ new], ϕi[t

j 7→ new], `i) other-
wise.



We have the following claim which is proved in the
Appendix D.2.
Claim 1. For each execution ρ labeling a node of TMAP ,

ρnew is a simple execution of the POMDP MP . The
measure of the execution ρnew is the measure of the
execution ρ. Furthermore, if ρ is either an execution in
S or a descendant of an execution in ρj ∈ S then for
each recipe r, if enabled(ρnew, (k, r[r0 7→ new])) then
enabled(ρ, (k, r)) also. Furthermore, ρ 6|= Secret(sec)
iff ρnew 6|= Secret(sec).

We also have the following claim which says that two
distinguishable executions continue to remain distinguish-
able in the new tree. The claim is proved in the Appendix D.
Claim 2. If ρ1 and ρ2 are two executions labeling

nodes of TMAP such that view(ρ1) 6= view(ρ2) then
view(ρnew1 ) 6= view(ρnew2 ).

Consider the partial function Anew that maps an execu-
tion prev(ρnew) in T new to the action last action(ρnew).
The above two claims imply that Anew can be extended to
the set of all executions such that Anew is a simple adversary,
the attack tree of Anew is T new andMAnew

P 6|=p Secret(sec).
Observe that the nsize of the tree T new is strictly less than
the nsize of the tree TMAP . Now, if Anew is small then
we are done. Otherwise, we can construct another simple
adversary A′ such that the size of the tree TMA′P

is strictly
less than the size of the tree T new. Since the size of the tree
is TMAP is finite, repeating this process eventually leads to
a small adversary.
This completes the proof of the Theorem.

Using similar ideas, we can show that we need to only
consider bounded size recipes for indistinguishability (see
Appendix E for the proof).
Theorem 4.6. Let P and P ′ be two protocols with n roles.

Let λ be the total number of transitions in P and P ′

and γ be the total number of transitions in P and P ′

whose span is > 1. Let η be the maximum span of the
transitions of P and P ′ and θ be the total number of
subterms of P and P ′. If P and P ′ are distinguishable
then there is a simple adversary A such that MP and
MP ′ are distinguishable by A and such that rsize(A) ≤
12θλη2γ .

Complexity results. Thanks to the boundedness prop-
erty and the fact that static equivalence and deducibil-
ity can be checked in polynomial time [1], [15], we get
that the secrecy and indistinguishability problems are in
coNEXPTIME for randomized protocols. Essentially,
the coNEXPTIME decision procedure guesses a simple
attack of bounded size, and checks that this attack violates
secrecy/indistiguishability. The proof of the following theo-
rem can be found in Appendix F.
Theorem 4.7. Secrecy and Indistinguishability problems

are in coNEXPTIME.

We say that a protocol P has bounded randomness k if
there are at most k transitions of P whose span is greater

than one. For each constant k, we define Secrecy(k) to be
the decision problem that given a protocol P with bounded
randomness k, secret sec and rational number p checks
if P |=p Secret(sec). Similarly, Indistinguishability(k)
problem is the decision problem that given two protocols P
and P ′ with bounded randomness k each checks if P and
P ′ are indistinguishable. Observe that for each constant k,
the number of branches in an attack tree TMAP for a protocol
P with bounded randomness k is bounded by a polynomial
ηk and hence the number of nodes of TMAP is polynomial
in the size of P. Theorems 4.3 and 4.3 then imply that the
adversary only need to use recipes of polynomial size. This
yields the following:
Corollary 4.8. For each constant k, Secrecy(k) and

Indistinguishability(k) are in coNP.

5. Lower Bound for Secrecy

One of the key ideas used in establishing the complexity
of non-probabilistic protocols, is the observation that if there
is an attack that breaches security, then there is one where
the adversary is only required to send messages whose size
is bounded by a polynomial in the size of the protocol.
However, this observation no longer holds for randomized
protocols. We illustrate this through the next example.
Example 5.1. Consider a protocol P with one role R =

(S, s0,≺, δ), with the states S = {s0, s1, s2, s>} and
ordering s0 ≺ s1 ≺ s2 ≺ s>. We assume that the initial
frame ϕ0 is ∅. We assume that k1, k2 ∈ Prv are secret
keys unknown to the adversary, and sec ∈ Prv is the
secret message that the adversary is trying to discover.
We assume that 0,1 ∈ Pub are public names. The
transitions in δ are as follows.

s0 : [y0, y1] ⇒ [s1 : senc(k1, [y0,0])]⊕
[s1 : senc(k1, [y1,1])]

s1 : senc(k1, [[x
1
0, x

1
1], g]) ⇒

[s2 : senc(k2, [x
1
0, [g,0]])]⊕

[s2 : senc(k2, [x
1
1, [g,1]])]

s2 : senc(k2, [z, z]) ⇒ [s> : sec]

In order for the adversary to get the secret message sec
with probability > 3

4 (which will imply that P 6|= 1
4

Secret(sec)), in the first step, the adversary has to send
the message

[[[0,0], [0,1]], [[1,0], [1,1]]].

In this case the adversary succeeds with probability 1.
Notice that this message is nothing but a full binary tree
of height 2, where each leaf contains a different pair of
the public names 0,1. Thus, the size of this message
(even in a dag representation) is the size of the binary
tree.
The above example can be generalized to force the
adversary to send a full binary tree of height linear
in the size of the protocol. Once again the protocol
has only one role R = (S, s0,≺, δ), where S =
{s0, s1, . . . sn, s>} with the ordering si ≺ sj if i < j



and si ≺ s> for all i ∈ {0, 1, . . . n}. We assume
k1, . . . kn ∈ Prv are secret keys, and transitions are given
as follows.
s0 : [y0, y1]⇒ [s1 : senc(k1, [y0,0])]⊕

[s1 : senc(k1, [y1,1])]
si : senc(ki, [[x

i
0, x

i
1], g])⇒

[si+1 : senc(ki+1, [x
i
0, [g,0]])]⊕

[si+1 : senc(ki+1, [x
i
1, [g,1]])] for 1 ≤ i < n

sn : senc(kn, [z, z])⇒ [s> : sec]

The secret sec is revealed with probability 1 if and only
if the adversary sends, as the first message, a full binary
tree of height n, where each leaf has different strings
(over 0,1). The size of this message as a dag is 2n,
which is exponential in the size of the protocol.
Before concluding this example, we would like to ob-
serve that even though the protocol (as described above)
keeps its coin tosses private, this is not essential to
ensure the need for exponential sized messages. The
same initial message would need to be sent even if we
considered a modified protocol where in each step the
protocol reveals the result of its coin toss in plaintext to
the adversary.

We will show that the problem of checking if the security
of a randomized protocol can be breached with probability
greater than some threshold p, is NEXPTIME-hard. The
hardness proof is shown by reducing the satisfiability prob-
lem of first-order logic with monadic predicates [30]. Before
presenting the reduction, we first introduce the logic.
Defintion 5.2. A monadic signature τ is a set of rela-

tion symbols of arity one. First order formulas over a
monadic signature τ is given by the grammar

ϕ ::= Rx | ¬ϕ | ϕ ∨ ϕ | ϕ ∧ ϕ | ∃x.ϕ | ∀x.ϕ

where R is a relation symbol in τ and x is a first-order
variable.

Notice that = is not allowed in this logic and there are
no constant symbols. The satisfiability problem for this logic
is known to be NEXPTIME-complete [30] 3. We will
reduce the satisfiability problem of this logic to the non-
secrecy problem as follows.
Theorem 5.3. The secrecy problem is coNEXPTIME-

hard.

Proof: It suffices to show that given a protocol P ,
secret sec ∈ Prv, p > 0, the problem of checking if P 6|=p

Secret(sec) is NEXPTIME-hard.
There are 3 key ideas that play a role in establishing

this result. The first is an observation due to Rusinowitch
and Turuani [33] that shows how the satisfiability of propo-
sitional logic can be reduced to protocol insecurity. Given a
3CNF formula ϕ, Rusinowitch-Turuani construct a protocol
that proceeds in two phases. First, the adversary guesses a
satisfying truth assignment, and sends this to the protocol.

3. Strictly speaking, [30] shows that the satisfiability problem is NE-
complete, where NE = ∪cNTIME(2cn). From the results of [28], it
also follows that satisfiability is NEXP-complete.

The protocol ensures the commitment of the adversary to
this assignment for the rest of the execution by encrypting
the assignment using a key that is secret. After this phase,
the adversary demonstrates the satisfaction of each clause
by revealing a relevant portion of the assignment that (s)he
committed to in the first step. If all clauses are satisfied, the
secret is revealed.

The second observation is that randomization can be
used to simulate quantifier alternation, with the adver-
sary making existential choices, and the protocol mak-
ing universal choices by probabilistic steps. Before pre-
senting the NEXPTIME-hardness result, we show a
PSPACE-hardness result that shows how these two ob-
servations can be combined to reduce QSAT to proto-
col insecurity of randomized protocols. Consider a QBF
ϕ = Q1x1. Q2x2. . . . Qnxn. ψ, where Qi ∈ {∃,∀}, xi is a
propositional variable and ψ = ∧mj=1Cj is a 3CNF formula
with clauses Cj . The satisfiability of ϕ can be reduced to
the insecurity of a protocol P with only one role R. We
assume that >,⊥ are public names in Pub standing for
true and false, respectively. Keys {k1, . . . kn} (one for each
propositional variable) are secret names in Prv. For each
variable xi, the protocol P has a state gi and for each
clause Cj , P has a state cj . P has one additional state
s>. P proceeds in phases. First, a truth assignment for the
variables is chosen. The value for variable xi is picked in
state gi; if xi is existentially quantified then the adversary
picks the value for xi, and if xi is universally quantified
then the protocol picks the value for xi. The transition rules
capturing these steps are as follows (with the understanding
that gn+1 = c1).

gi : t⇒ [gi+1 : senc(ki, t)] if Qi = ∃
gi : > ⇒ [gi+1 : [senc(ki,⊥),⊥]]⊕

[gi+1 : [senc(ki,>),>]] if Qi = ∀

Notice, that when the value of a universally quantified
variable is picked, the result of the coin toss is made public
so that the adversary’s choice for future existential variables
may depend on this value. Also, the variables are chosen
in the order in which they are quantified in ϕ by the use
of states gi. After all variables have been assigned truth
values, the clauses in ψ are evaluated in sequence, using
states {c1, . . . cm}. In each state cj , the adversary sends a
(encrypted) truth value of a variable that makes one of the
literals in Cj true. The rules capturing these steps are as
follows (with the understanding that cm+1 = sT ).

cj : senc(ki,⊥)⇒ [cj+1 : >] if ¬xi ∈ Cj
cj : senc(ki,>)⇒ [cj+1 : >] if xi ∈ Cj

Observe that the only way the protocol can reach state
cm is if all clause C1 . . . Cm−1 are satisfied by the truth
assignment picked initially. In the state cm, if the adversary
sends a truth value that satisfies a literal in Cm, the protocol
moves to state r (“reveal”). Here the secret message sec is
revealed, moving to the terminal state s>.

r : > ⇒ [s> : sec]



TABLE 1. COMPLEXITY OF VERIFYING SECURITY PROTOCOLS. WE ONLY CONSIDER SIMPLE PROTOCOLS. THERE IS NO DIFFERENCE IN
COMPLEXITY FOR PUBLIC AND PRIVATE COIN TOSSES WHEN THE NUMBER OF COIN TOSSES ARE FIXED.

Non-randomized Protocols Coin tosses are private Coin tosses are public Fixed number of coin tosses
Secrecy coNP-complete ([33], [23]) coNEXPTIME-complete coNEXPTIME-complete coNP-complete

Indistinguishability coNP-complete ([19]) coNEXPTIME coNP-complete coNP-complete

Observe that, under the assumption that the keys {ki}i are
not known to the adversary, ϕ is satisfiable iff sec is obtained
with probability 1. If ϕ is not satisfiable then the protocol
keeps sec secret with probability at least 1

2n1
where n1 is

the number of universal quantifications.
The last ingredient needed in order to prove

NEXPTIME-hardness, is the ability of a randomized
protocol to “examine” the contents of an exponential sized
message. This is accomplished using ideas in the protocol
described in Example 5.1. Details of how we combine all
these ideas to reduce the satisfaction problem of monadic
first-order formulas to the insecurity problem of randomized
protocols is given in Appendix G. One particular feature of
the proof is that all coin tosses in the reduction are public.
Thus, the NEXPTIME-hardness result holds even for
checking the insecurity of randomized protocols where all
coin tosses are public.

6. Conclusions

We have shown that the problem of checking secrecy
of randomized security protocols is coNEXPTIME-
complete, and the problem of checking indistinguisha-
bility of two randomized security protocols is in
coNEXPTIME. The hardness results for secrecy hold
even if we assume that the results of the coin tosses are
public. In contrast, it can be shown that for public coin
tosses, the indistinguishability problem is coNP-complete.
Our results also show that, when the number of coin tosses
are bounded, i.e., the number of probabilistic transitions are
bounded, both secrecy and indistinguishability are coNP-
complete. Our results are summarized in Table 1. The model
of protocols we considered, allow the cryptographic prim-
itives corresponding to symmetric as well as asymmetric
encryption and decryption. It can easily be shown that our
results extend to the case when digital signatures and hash
functions are also allowed in the protocols. Obtaining tight
bounds for the indistinguishability problem needs to be
explored as part of future work. The decidability and com-
plexity of the above problems also needs to be investigated
for the case when we allow conditional statements in the
protocols and for other cryptographic primitives that can be
modeled as subterm convergent rewrite systems.
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Appendix A.
Privacy of votes as secrecy property

We modeled privacy of votes as an indistinguishability
property in Example 2.6. The same property can modeled
as secrecy. We explain the modeling informally here. Essen-
tially, in the modeling, the two voters A and B first toss a
fair coin each to decide which candidate. After EA publishes
the votes, the adversary sends a message to A which is its
guess of the candidate chosen by A. If the guess is correct
then A outputs a secret sec . Now, privacy of votes can be
modeled as secrecy of the secret sec . Observe that if both
A and B choose the same candidate (which happens with
probability 1

2 ), the attacker knows how A voted and hence
can get sec . If A and B both choose different candidates
then thanks to the mixing of the votes by EA, the best the
attacker can do is to guess randomly. Thus, the protocol will
keep the votes private if sec is kept secret with probability
at least 1

4 . The modeling of privacy as secrecy allows us
to model and reason about deviations from ideal behavior.
If the coin tosses used by the protocol are biased then the
protocol will only be able to guarantee probable privacy,
namely, that sec is kept secret with probability > 0.

Appendix B.
Proof of Proposition 3.1

Fix o ∈ V · (Act × {3}) such that prM(o,A) 6=
prM′(o,A). Let o = o0 · (α,3). It can be shown that

prM(o0,A)A(o0)(α) = prM(o,A)+
∑
o∈O

prM(o0 ·α ·o,A)

and

prM′(o0,A)A(o0)(α) = prM′(o,A)+
∑
o∈O

prM′(o0·α·o,A).

As prM(o,A) 6= prM′(o,A), the above two equations
imply that either prM(o0,A) 6= prM′(o0,A) or there is
an o ∈ O such that prM(o0 ·α · o,A) 6= prM′(o0 ·α · o,A).

Appendix C.
Proof of proposition 3.2

Let M = (Z, zs, Act,∆,O, Obs) be a POMDP and
Ψ ⊆ Z a safety property.. Fix an adversary A : V →
Dist(Act). We will say that o ∈ V is A-interesting for
M if prM(o,A) > 0 and the set {α | A(o)(α > 0)}
has at least two elements. Let Interesting(M,A) = {o |
o is A-interesting for M}. Note that Interesting(M,A) is
finite. For an execution κ ∈ Exec(MA), we will write
prM(κ,A) to be the measure of the execution κ. If κ is not
an execution but a sequence of states of Exec(MA) then
we will write prM(κ,A) = 0. For a set W ⊆ Exec(MA),
we will write prM(W,A) for

∑
κ∈W prM(κ,A).

We first consider consider safety properties. It suffices
to show that the following claim:



Claim 3. For each adversary A, if MA 6|=p Ψ then there is
an A′ such that Interesting(M,A′) = ∅ and MA′ 6|=p

Ψ.

Proof: The proof is by induction on the cardinality
of the set Interesting(M,A). The claim is trivially true if
the cardinality is 0. Now, suppose that the claim is true for
all adversaries A such that Interesting(M,A) has at most
k elements.

Now, consider an adversary A0 such that
Interesting(M,A0) has k + 1 elements and such
that MA0 6|=p Ψ. Fix o ∈ Interesting(M,A0). Fix
an enumeration α1, α2, . . . , αm of actions α such
A0(o)(α) > 0. For each 1 ≤ i ≤ m, let pi = A0(o)(αi)
and Ai : V → Dist(Act) to be the adversary such that
Ai(o)(αi) = 1 and Ai(o′) = A(o′) for o′ 6= o. It is easy
to see Interesting(M,Ai) has at most k elements for each
1 ≤ i ≤ m.

Now, let W be the set {κ |
κ is a maximal execution of MA and κ 6|= Ψ}. Now,
we have that

prM(W,A) > 1− p.

Let Wo be the set {κ ∈W | o is a prefix of view(κ)}.
It is easy to see that

prM(W,A0) = prM(W\Wo,A0)+
∑

1≤i≤m

pi·prM(Wo,Ai))

and that

prM(W \Wo,A0) = prM(W \Wo,Ai)

for each 1 ≤ i ≤ m. Now, since
∑

1≤i≤m pi = 1, the above
two observations imply that

prM(W,A0) =
∑

1≤i≤m pi · (prM(W \Wo,A0)
+prM(Wo,Ai))

=
∑

1≤i≤m pi · (prM(W \Wo,Ai)
+prM(Wo,Ai))

=
∑

1≤i≤m pi · prM(W,Ai).

The above equation implies that there must an i such that
probM(W,Ai) ≥ prM(W,A0) > 1 − p. This implies that
there must be an i such thatMAi 6|=p Ψ. The claim follows.

The proof for indistinguishability properties is similar.
Claim 4. If M and M′ are POMDPs with the same set

of actions and observations, then M and M′ are dis-
tinguishable by an adversary A, then an A′ such that
Interesting(M,A′) = Interesting(M′,A′) = ∅ and M
and M′ are distinguishable by an adversary A′.

Proof: The proof is by induction on the cardinality
of the set Interesting(M,A) ∪ Interesting(M′,A). The
claim is trivially true if the cardinality is 0. Now, sup-
pose that the claim is true for all adversaries A such
that Interesting(M,A) ∪ Interesting(M′,A) has at most k
elements.

Now, consider an adversary A0 such that
Interesting(M,A0) ∪ Interesting(M′,A) has k + 1

elements and A0 distinguishes M and M′. Fix
o ∈ Interesting(M,A0) ∪ Interesting(M′,A). Fix
o1 ∈ V such that prM(o1,A0) 6= prM′(o1,A0). We haver
two possible cases.

1) The first case is that o is a strict prefix of
o1. Thus, o1 = o1αo0 for some α ∈ Act
and o0 ∈ V. As either prM(o1,A0) 6= 0 or
prM′(o1,A0) 6= 0, it means that A0(o)(α) 6= 0.
Consider the adversary Aα such that Aα(o)(α) =
1 and Aα(o2) = A0(o2) for each o2 6= o.
Clearly, Interesting(M,A0) ∪ Interesting(M′,A)
has at most k elements. It is easy to see that
prM(o1,A0) = A0(o)(α) · prM(o1,Aα) and
that prM′(o1,A0) = A0(o)(α) · prM′(o1,Aα).
Since prM(o1,A0) 6= prM′(o1,A0), we get that
prM(o1,Aα) 6= prM′(o1,Aα). The claim follows
in this case.

2) The second case is when o is not a strict prefix
of o1. Fix α such that A0(o)(α) > 0. Consider
the adversary Aα such that Aα(o)(α) = 1
and Aα(o2) = A0(o2) for each o2 6= o.
Clearly, Interesting(M,A0) ∪ Interesting(M′,A)
has at most k elements. It is easy to see
that prM(o1,Aα) = prM(o1,A0) and
that prM′(o1,Aα) = prM′(o1,A0). Since
prM(o1,A0) 6= prM′(o1,A0), we get that
prM(o1,Aα) 6= prM′(o1,Aα). The claim follows
in this case also.

Appendix D.
Proof of Theorem 4.3

D.1. Proof of Lemma 4.4

Let n be a node of the tree TMAP . Let ρ = z0
α0−→

z1 · · ·
αm−1−−−−→ zm be the label of n and let αi = (ki, ri) for

each 0 ≤ i < m. It suffices to show that rsize(rm−1) ≤
3θη2γλ. In order to establish the latter, it suffices to show
that the cardinality of the set SR(rm−1) = {r1 |r1 6∈ Pub∪
Xw, r1 v rm−1} is less than or equal to θη2γλ. This is
because every node in the dag-representation of rm−1 has
at most 2 outgoing edges. If SR(rm−1) ≤ θη2γλ then there
are at most θη2γλ nodes which have outgoing edges, and
thus, the total number of nodes is bounded by 3θη2γλ.

Pick r ∈ SR(rm−1). Observe that either r originates in
ρ or in an execution labeling some ancestor of n. Let ρr
be ρ if r originates in ρ else ρr is the execution labeling
the ancestor of n such that r originates in ρr. Since A
is a small attack, there must be executions ρ1, ρ2 and a
term t such that r is a (ρ1, t, ρ2)-match. Observe that
view(prev(ρr)) = view(ρ1). Let Nodes be the set of
nodes of the tree TMAP . Thus, we can define a function
map : SR(rm−1)→ Nodes×terms(P )×Nodes such that
if map(r) = (n1, t, n2) then r is a (ρ1, t, ρ2)-match where ρi



is the execution labeling the node ni for i ∈ {1, 2}. As ob-
served above, there are at most ηγλ nodes in the tree TMAP .
Thus, the cardinality of the set Nodes×terms(P )×Nodes
is less than or equal to θη2γλ. Thus, the result will follow
if we can show that map is a one-to-one function.

We now establish that map is a one-to-one function.
We proceed by contradiction. Fix r, r′ ∈ SR(rm−1) such
that r 6= r′ and map(r) = map(r′) = (n1, t, n2). Let
ρr, ρr′ be the executions in which r and r′ originate as
given above. For i ∈ {1, 2}, let ρi be the execution la-
beling the node ni. Either ρr = ρr′ or one of ρr, ρr′
labels a node which is an ancestor of a node labeling
the other. In particular, it means that either ρr = ρr′ or
view(prev(ρr)) 6= view(prev(ρr′)). In the latter case, we
immediately get a contradiction as map(r) = map(r′) im-
plies that view(prev(ρr)) = view(ρ1) = view(prev(ρr′))
by definition of map. Hence it must be the case that
ρr = ρr′ . Let last(ρi) = (gi, σi, ϕi, `i) for i ∈ {1, 2}.
By definition of map, we have that nf(rϕ1) = nf(tσ2) and
nf(r′ϕ1) = nf(tσ2). Hence nf(rϕ1) = nf(r′ϕ1). Since A
is a simple adversary, we have r = r′. This contradicts our
assumption that r 6= r′.

D.2. Proof of Lemma 4.5

We say that a recipe r is a constructive recipe if the
root of r is a constructor function symbol. We say that r is
a destructive recipe if the root of r is a destructor function
symbol. We say that the recipe r is (r1, ϕ)-simple for a
frame ϕ and a recipe r1 if vars(r), vars(r1) ⊆ dom(ϕ),
valid(rϕ), valid(r1ϕ), and for every recipe r2 v r and
recipe r3 v r1 such that r2ϕ=R r3ϕ, we have that r2 = r3.
Observe that if r is (r1, ϕ)-simple then so is every subterm
of r. We say that the recipe r is ϕ-simple for a frame ϕ
if r is (r, ϕ)-simple. When the frame ϕ is clear from the
context, we will abuse terminology and say that “recipe r is
simple” to mean “recipe r is ϕ-simple”. Observe that every
recipe used by a simple adversary is simple and that every
subterm of a simple recipe is simple. We say that a term
t is away from a public name new ∈ Pub \ PublicKeys if
new /∈ Sub(t). We say that a substitution σ is away from a
public name new if new /∈ Sub(ran(σ)).

We first show that if a recipe is simple and destructive,
then it computes a subterm of the frame.
Proposition D.1. Given a destructive recipe r, a frame ϕ

such that r is ϕ-simple, nf(rϕ) ∈ Sub(ran(ϕ)).

Proof: Proof is by induction on the height of r. The
proposition is trivially true for a recipe of height 0 as r
cannot be destructive. Assume now that the proposition is
true for every ϕ-recipe r′ such that the height of r′ is
≤ k. Now fix a recipe r of height k + 1. The root of r
must be in the set {proj1, proj2, sdec, adec}. We show that
nf(rϕ) must be a subterm of ran(ϕ) for the case that the
root of r is sdec. The other cases are similar. Assume that
r = sdec(r1, r2). As r such that valid(rϕ), it follows that
r2 is either a variable wj ∈ dom(ϕ) or is a destructive
recipe or is a encrypted recipe senc(r′1, r

′
2). If r2 is a

variable wj ∈ dom(ϕ), the proposition follows immediately
from definition. If r2 is a destructive recipe, the proposition
follows from inductive hypothesis. If r2 is senc(r′1, r

′
2) then

as valid(rϕ), rϕ=R r
′
2ϕ. This contradicts the fact that r is

ϕ-simple. The proposition follows in this case as well.
The above proposition immediately implies that if r is

a ϕ-simple recipe and t is a subterm of nf(rϕ) then either
t is a subterm of ran(ϕ) or t is constructed explicitly by r
using a constructive recipe.
Proposition D.2. Given a recipe r, a frame ϕ such that r is

ϕ-simple, and a term t such that t /∈ Sub(ran(ϕ)). If
nf(rϕ) contains t as a subterm then there is a construc-
tive r′ v r such that nf(r′ϕ) = t.

If a recipe r is simple then a constructive recipe is never
destructed in r. This intuition is captured in the following
proposition.
Proposition D.3. Let r, r′ be recipes and ϕ be a frame

such that valid(rϕ), r′ is a constructive recipe and
r is (r′, ϕ)-simple. Let new be a public name such
that r, r′, ϕ are away from new. Let t = nf(rϕ) and
t′ = nf(r′ϕ). Then

• valid(rnewϕnew) , and
• nf(rnewϕnew) = tnew where

rnew = r[r′ 7→ new], tnew = t[t′ 7→ new] and ϕnew = ϕ[t′ 7→
new].

Proof: Proof is by induction on r. The proposition
is trivially true if r is a public name. If r is a variable
wj ∈ dom(ϕ) then wj is not the recipe r′ as the latter is
a constructive recipe. Hence the proposition is trivially true
in this case also.

Now, suppose r is constructive. Thus, the root of r is a
function symbol in the set {[·, ·], aenc, senc}. We consider
the case when the root of r is the function symbol [·, ·].
The other cases are similar. Thus, r = [r1, r2] for some
r1, r2. Now, either r = r′ or r 6= r′. In the former case, the
proposition follows trivially since rnew = new and tnew =
new. In the latter case, the proposition is immediate from
induction hypothesis.

Now, suppose r is a destructive. Thus, the root of r is
a function symbol in the set {proj1, proj2, sdec, aenc}. We
consider the case when the root of r is the function symbol
sdec. The other cases are similar. Thus, r = sdec(r1, r2)
for some r1, r2. Now, r cannot be the recipe r′ as r′ is
a constructive recipe. Thus rnew = sdec(rnew1 , rnew2 ). By
induction hypothesis we have that valid(rnew1 ϕnew) and
valid(rnew2 ϕnew). Thus, we will have that valid(rnewϕnew) if
we can show that the term sdec(rnew1 , rnew2 )ϕnew ∈ CTerms.
Observe also that since valid(rϕ), r2 must be a variable or
a destructive recipe or an encryption recipe senc(r3, r4) for
some r3, r4.

If r2 is a variable wj or a destructive recipe, then
nf(r2ϕ) = senc(t1, t2), nf(r1ϕ) = t1 and nf(rϕ) = t2
for some t1, t2 ∈ CTerms. Furthermore, as r is (r′, ϕ)-
simple and r′ is constructive, it follows that r2 6= r′

and that nf(r2ϕ) 6= t′. Thus, by inductive hypothesis,



nf(rnew2 ϕnew) = senc(tnew1 , tnew2 ) where tnewi = ti[t
′ 7→ new]

for each i = 1, 2. By induction hypothesis, we have that
nf(rnew1 ϕnew) = tnew1 . Since t1 is a constructor term, so is
tnew1 . Thus, the proposition follows in this case.

Now, suppose that r2 is senc(r3, r4) for some r3, r4.
As valid(rϕ), nf(rϕ) = t4, nf(r1ϕ) = nf(r3ϕ) = t1 and
nf(r4ϕ) = t4 for some t1, t4 ∈ CTerms. Thus, we have
that rϕ=Rr4ϕ and hence r4 cannot be a subterm of r′ since
r is (r′, ϕ)-simple. Thus r2 6= r′, and by induction hypoth-
esis valid(nf(rnew2 ϕnew)), nf(rnew2 ϕnew) = senc(tnew1 , tnew4 ).
We also have that valid(rnew1 ϕnew) and nf(rnew1 ϕnew) = tnew1

by induction hypothesis. As r is different from r′, we get
that rnew = sdec(rnew1 , rnew2 ). Thus, rnewϕnew = tnew4 . As t4
is a constructor term, so is tnew4 . The proposition follows.
The following proposition can also be proved using induc-
tion.

Proposition D.4. Let r, r′ be recipes and ϕ be a frame such
that vars(r), vars(r′) ⊆ dom(ϕ), valid(r′ϕ) and r′, ϕ
are away from new. Let ϕnew = ϕ[nf(r′ϕ) 7→ new]. If
valid(rϕnew) and nf(rϕnew) = t then valid(r[new 7→
r′]ϕ) and nf(r[new 7→ r′]ϕ) = t[new 7→ nf(r′ϕ)].

Proof of Claim 1. Now going back to the proof of the
lemma, let ρ be an execution which is a descendant of some
execution ρj in the set S. Let ρ be the execution z0

α0−→
z1 · · ·

αm−1−−−−→ zm where each 1 ≤ i ≤ m, zi = (gi, σi, ϕi, `i)
and αi = (ki, ri). Let m0 = length(ρj). Recall that tj =
nf(r0ϕm0

). We first show that tj does not occur in ρj .

Proposition D.5. For each 0 ≤ i ≤ m0, tj 6v ran(σi) ∪
ran(ϕi).

Proof: The proof is by induction on i. Since the
recipe r0 originating at ρ0 is not a (ρ′, t, ρ′′)-match for any
ρ′, t, ρ′′, it follows that tj is not a subterm of any term in
the initial frame ϕ0. Thus, the proposition is true for i = 0.

Now, assume that the proposition has been proved for all
i ≤ i′. Now, we first claim that tj 6v nf(riϕi) for each i ≤ i′.
Indeed, if tj v nf(riϕi) then thanks to Proposition D.2
above and induction hypothesis, it follows that there is a sub-
recipe r′ v ri such that tj = nf(r′ϕi). Since ρ is simple,
this means that r′ = r0. But this contradicts the fact that r0
originates in the execution ρ0. Therefore tj 6v nf(riϕi).

Now, let `i′+1 = (tin, tout). By definition of the se-
mantics, we have that nf(riϕi) = tinσi′+1. Since tj is not
a subterm of nf(riϕi), we get immediately that ran(σi′+1)
cannot contain tj as a subterm. Also, ϕi′+1 = ϕi]toutσi′+1.
By induction hypothesis, we have that tj is not a subterm of
ran(ϕi). Observe also that we have already shown that tj is
not a subterm of ran(σi′+1). Therefore if tj is a subterm of
toutσi′+1 then it must be the case that there is a subterm t′ of
tout such that t′ is not a variable and tj = t′σi′+1. Now this
contradicts the fact that r0 is not a (ρ′, t, ρ′′)-match for any
ρ′, t, ρ′′. Thus, tj 6v ran(ϕi′+1) as well. The proposition
follows.

We get as a consequence of Proposition D.5 that r0 is a
constructive recipe.

Corollary D.6. r0 is a constructive recipe.

Proof: Observe that Proposition D.5 implies that
tj = nf(r0ϕm0) is not a subterm of ϕm0 . Proposition D.1
immediately implies that r0 cannot be a destructor recipe
or a subterm of a destructive recipe. Thus, r0 must be a
constructive recipe.

For, 1 ≤ i ≤ m, let ρ[0 : i] be the execution z0
α0−→

z1 · · ·
αi−1−−−→ zi and ρnew[0 : i] be znew0

αnew
0−−→ znew1 · · ·

αnew
i−1−−−→

znewi .

Proposition D.7. For each 0 < i ≤ m, αnew
i−1 is enabled in

znewi−1, ρnew[0 : i] is a simple execution of MP and the
measure of the execution ρnew is the same as the measure
of execution ρ. Furthermore, ρ[0 : i] 6|= Secret(sec) iff
ρnew[0 : i] 6|= Secret(sec).

Proof: We first show that ρnew[0 : i] is an execution
of MP and the measure of the execution ρnew is the same
as the measure of execution ρ. It suffices to show that

znewi−1

αnew
i−1−−−→ µnew

i and µnew
i (znewi ) = µi(zi) where µi is such

that zi−1
αi−1−−−→ µi.

Fix m0 < i ≤ m and let `i = (tin, tout). Note that
r0 is a constructive recipe. Since ρ is a simple execution,
ri−1 is also (r0, ϕi−1)-simple. Proposition D.3 implies that
valid(rnewi−1ϕ

new
i−1). Furthermore, if ti−1 = nf(ri−1ϕi−1) then

rnewi−1ϕ
new
i−1 = ti−1[tj 7→ new].

Now, by definition, we also have that ri−1ϕi−1 = tinσi.
Consider the term tin as a tree. Let V positions(tin) ⊆
positions(tin) be the set {p | (tin|p) ∈ X}. Observe that
the tree representation of tinσi is the obtained from tin by
replacing the variable x at position p ∈ V positions(tin)
by σi(x). Now, it is easy to see that if tj is a subterm of
tinσi then tj cannot be a term at a position position(tin) \
V positions(tin) as r0 is not a (ρ′′, t, ρ′′)-match for any
ρ′′, t, ρ′′. Thus, it is easy to see that (tinσi)[t

j 7→ new] =
tin(σi[t

j 7→ new]) = tinσ
new
i . Thus, rnewi−1ϕ

new
i−1 = tinσ

new
i .

Hence, αnew
i−1 is enabled in znewi−1.

As in the case of tin above, we can show that
(toutσi)[t

j 7→ new] = tout(σi[t
j 7→ new]). Thus ϕnew

i−1 ]
tout(σi[t

j 7→ new]ϕnew
i−1) = ϕnew

i . Observe that this implies

that znewi−1

αnew
i−1−−−→ µnew

i .
If ρ[0 : i] 6|= Secret(sec) then there is a recipe r such

that rϕi ` sec. Without loss of generality, we can assume
that r is away from new and that r is (r0, ϕi)-simple.
Proposition D.3 implies that rnewϕnew

i ` sec.
If ρnew[0 : i] 6|= Secret(sec) then there is a recipe r

such that rϕnew
i ` sec. Using Proposition D.4, we have

that valid(r[new 7→ r0]ϕi) and that nf(r[new 7→ r0]ϕi) =
nf(rϕnew

i )[new 7→ tj ] = sec.
The fact that ρnew[0 : i] is simple can be easily shown

from the fact that A is simple. The proposition follows. This
completes the proof of Claim 1.
Proof of Claim 2. It suffices to consider ρ1 and ρ2 such
that ρ1 and ρ2 label nodes that are descendants of nodes
labeling ρj1 and ρj2 respectively for some ρj1 , ρj2 ∈ S. We
proceed by contradiction.

Fix ρ1, ρ2, ρ
j1 , ρj2 which contradict the claim. So,

we have that view(ρ1) 6= view(ρ2) but view(ρnew1 ) =



view(ρnew2 ). Thus, the lengths of ρ1, ρ2, ρ
new
1 , ρnew2 must

be equal. Let last(ρi) = (gi, σi, ϕi, `i) for i ∈ {1, 2}
and let last(ρnewi ) = (gi, σ

new
i , ϕnew

i , `i). Let last(ρji) =
(gi, σi, ϕi, `i) for i ∈ {1, 2}. Recall that tji = nf(r0ϕ

ji) for
i ∈ {1, 2}. For the rest of the proof, for each recipe r, by
rnew we mean the recipe r[r0 → new].

Claim 5. For each recipe r, rsub and i ∈ {1, 2} such that r is
away from new and rsub v r0 if valid(rϕi) and rϕi=R
rsubϕi then valid(rϕ3−i) and rϕ3−i =R rsubϕ3−i.

Proof: The proof is by induction on the height of
the recipe r. The base case when r is a public name is
immediate from definition.

If r is a variable w then r cannot be r0 as r0 is a
constructive recipe. Thus we have that rnew = w and
hence valid(rnewϕnew

i ) for each i ∈ {1, 2}. Fix i and
rsub v r0. Assume that valid(rϕi) and rϕi =R rsubϕi. Let
t = wϕi = rϕi = rsubϕi. By definition, we have that
rnewϕnew

i = wϕnew
i = t[tji 7→ new]. We also have rsub

is (r0, ϕi)-simple. Hence by Proposition D.3, rnewsubϕ
new
i =

t[tji 7→ new]. Thus, we get that rnewϕnew
i = rnewsubϕ

new
i .

Thanks to the assumption that view(ρnew1 ) = view(ρnew2 )
we get that rnewϕnew

3−i =R rnewsubϕ
new
3−i also. Now, rnewsub is new

(if rsub = r0) or rsub (if rsub < r0). In the latter case, r0
not occur as a subterm of r0. Thus, by Proposition D.4, we
have that rϕ3−i =R rsubϕ3−i.

Now, assume that for each r′ such that height of r′ is
≤ j, each rsub such that rsub v r0 and for each i ∈ {1, 2},
valid(r′ϕi), r

′ϕi =R rsubϕi ⇒ valid(r′ϕ3−i), r
′ϕ3−i =R

rsubϕ3−i.
Now consider a recipe r whose height is j + 1.

The root of the tree representing r must be in the set
{[·, ·], senc, aenc, proj1, proj2, sdec, adec}. We show that the
inductive step holds when the root is [·, ·] or sdec. The other
cases are similar.

1) Assume that r = [r1, r2]. Let P1 be the
set of positions p of r1 different from the
root such that there is a recipe rsub v r0
and either valid((r1|p)ϕ1), (r1|p)ϕ1 =R rsubϕ1 or
valid((r2|p)ϕ2), (r2|p)ϕ2 =R rsubϕ2. Now let Pfix

be the subset of positions of P1 such that if p ∈ Pfix

then no strict prefix of p is in P1. Let rfix1 be
the recipe obtained from r1 by replacing the term
r1|p by rpsub for each position p ∈ Pfix where
rpsub v r0 is the (unique) recipe such that either
(r1|p)ϕ1 =R rpsubϕ1 or (r2|p)ϕ2 =R rsubϕ2. The
uniqueness of rpsub follows from induction hypoth-
esis.
Thanks to induction hypothesis, for each p ∈
Pfix, if r′ = r1|p then valid(r′ϕ1), r′ϕ1 =R
rpsubϕ1, valid(r′ϕ2) and r′ϕ2=Rrpsubϕ2. Therefore,
for each i ∈ {1, 2} valid(rfix1ϕi) ⇔ valid(r1ϕi)
and rfix1ϕi =R r1ϕi ⇔ rfix1ϕ3−i =R r1ϕ3−i. We
can define rfix2 similarly. Let rfix = [rfix1, rfix2].
By construction, we have that for each i ∈ {1, 2},
valid(rfixϕi)⇔ valid(rϕi) and rfixϕi =R rϕi ⇔
rfixϕ3−i =R rϕ3−i.

Fix i. Assume that valid(r ϕi) and r ϕi =R rsub ϕ
for some rsub v r0. Then we have valid(rfixϕi)
and rfixϕi=R rsubϕi. Observe that the construction
of rfix1, rfix2 also imply that rfix1, rfix2 are (r0, ϕi)-
simple. We have two cases. Either rsub < r0 or
rsub = r0.
First assume that rsub < r0. If t1 = nf(r1ϕi)
and t2 = nf(r2ϕi), it follows that nf(rfixϕi) =
[t1, t2] = nf(rsubϕi). Note that as rsub only con-
tains frame variables in dom(ϕji), we get that
[t1, t2] = nf(rsubϕ

ji). Now, we already established
in the proof of Claim 1 that tji is not a subterm of
ran(ϕji) (see Proposition D.5). Thanks to Propo-
sition D.2, the only way that tji is a subterm of
t1 or t2 is if rsub has a sub-recipe r′sub such that
r′subϕi = tji . This contradicts the fact that r0 is a
simple recipe. It follows that tj1 6v t1, t2.
Thus, t1[tj1 7→ new] = t1 and t2[tj2 7→
new] = t2. Observe that rfix 6= r0 and hence
rfixnew = [rfixnew1 , rfixnew2 ]. Thus, rfixnewϕnew

i =
[rfixnew1 ϕnew

i , rfixnew2 ϕnew
i ]. Since rfix1 and rfix2 are

(r0, ϕi)-simple, we get by Proposition D.3 that
nf(rfixnew1 ϕnew

i ) = t1[tji 7→ new] = t1 and
nf(rfixnew2 ϕnew

i ) = t2[tji 7→ new] = t2. Thus,
nf(rfixnewϕnew

i ) = [t1, t2] = nf(rsubϕi). Since
rsub only contains frame variables in dom(ϕj1),
it follows that nf(rfixnewϕnew

i ) = nf(rsubϕ
new
i ).

As, we have that view(ρnew1 ) = view(ρnew2 ), we
get that valid(rfixnewϕnew

3−i) and nf(rfixnewϕnew
3−i) =

nf(rsubϕ
new
3−i). The proposition now follows from

Proposition D.4.
Now assume that rsub = r0. Now,
as r0 is a constructive recipe and
nf(r0ϕi) = [nf(r1ϕi), nf(r2ϕi)], it follows that
r0 = [r1

0, r
2
0] for some recipes r1

0, r
2
0. Furthermore,

nf(r1ϕi) = nf(r1
0ϕi) and nf(r2ϕi) = nf(r2

0ϕi).
Observe that r1

0, r
2
0 are subrecipes of r0. Hence, the

proposition immediately follows from induction
hypothesis in this case.

2) Now assume that r = sdec(r1, r2). Now, as in
the case of pairing above, construct rfix, rfix1, rfix2.
Fix i and rsub v r0. Suppose now that valid(rϕi)
and rϕi =R rsubϕi. Thanks to the construction of
rfix, we have that valid(rfixϕi) and rfixϕi =R
rsubϕi. Thanks to the construction of rfix, it suf-
fices to show that valid(rfixϕ3−i) and rfixϕ3−i=R
rsubϕ3−i. Observe also that rfix1, rfix2 are (r0, ϕi)-
simple recipes.
Observe that as valid(rfixϕi), rfix2 can be either a
constructor recipe or a frame variable or a destruc-
tive recipe.
If rfix2 is a constructive recipe, it must be
the case rfix2 = senc(r3, r4) where r3 and
r4 are recipes such that rfix1ϕi =R r3ϕi and
rfixϕi =R r4ϕi =R rsubϕi. By construction
of rfix2, r4 must be rsub. Furthermore, as
rfix1ϕi = r3ϕi and rfix1, r3, rsub are (r0, ϕi)-
simple recipes, we get using Proposition D.3 that



valid(rfixnew1 ϕnew
i ), valid(rnew3 ϕnew

i ), valid(rnewsubϕ
new
i )

and that rfixnew1 ϕnew
i = rnew3 ϕnew

i . Let
rfinal = sdec(rfixnew1 , senc(rnew3 , rnewsub)).
We have that valid(rfinalϕ

new
i ) and that

nf(rfinalϕ
new
i ) = nf(rnewsubϕ

new
i ). Since

view(ϕnew
1 ) = view(ϕnew

2 ), we get that
valid(rfinalϕ

new
3−i) and that nf(rfinalϕ

new
3−i) =

nf(rnewsubϕ
new
3−i). Proposition D.4 implies that

valid(rfixϕ3−i) and that nf(rfixϕ3−i = rsubϕ3−i).
If rfix2 is a frame variable or a destructive recipe
then rfix2 cannot be r0 as r0 is a constructive recipe.
By construction of rfix2, we have that nf(rfix2ϕi) 6=
tji . Now as valid(rfixϕi), we get that nf(rfix1ϕi) =
t1, nf(rfix2ϕi) = senc(t1, t2) and that rfixϕi =
rsubϕi = t2 for some t1, t2 ∈ CTerms. As,
rfix1, rfix2 are (r0, ϕi)-simple recipes, we get by
Proposition D.3 that nf(rfixnew1 ϕnew

i ) = t1[tji 7→
new] and that nf(rfixnew2 ϕnew

i ) = senc(t1[tji 7→
new], t2[tji 7→ new]). From this it is easy to
see that the recipe valid(sdec(rfixnew1 , rfixnew2 )ϕnew

i )
and that nf(sdec(rfixnew1 , rfixnew2 )ϕnew

i ) = t2[tji 7→
new]). Now, thanks to Proposition D.3 again, we
have that valid(rnewsubϕ

new
i ) and that nf(rnewsubϕ

new
i ) =

t2[tji 7→ new] = nf(sdec(rfixnew1 , rfixnew2 )ϕnew
i ).

Now we can conclude that valid(rfixϕ3−i) and
that nf(rfixϕ3−i) = nf(rsubϕ3−i) as in the above
case. Therefore, nf(rϕ3−i) = nf(rsubϕ3−i), and the
proposition follows.

Claim 6. For any i ∈ {1, 2} and recipe r away from new,
if valid(rϕ) then valid(rϕ3−i).

Proof: First consider the case when r is (r0, ϕi)-
simple. Now, r0 is a constructive recipe. Thanks
to Proposition D.3, we have that valid((r[r0 7→
new])ϕnew

i ). Since view(ρnew1 ) = view(ρnew2 ), we get that
valid((r[r0 7→ new])ϕnew

3−i) as well. Proposition D.4 implies
that valid(rϕ3−i).

Now suppose r is not (r0, ϕi)-simple. Let P1 be
the set of positions p of r such that there is a recipe
rsub v r0 and either valid((r|p)ϕ1), (r|p)ϕ1 =R rsubϕ1 or
valid((r|p)ϕ2), (r|p)ϕ2 =R rsubϕ2. Let Pfix be the largest
subset of positions of P1 such that if p ∈ Pfix then no
strict prefix of p is in P1. Let rfix be the recipe obtained
from r by replacing the term r|p by rpsub for each position
p ∈ Pfix where rpsub v r0 is the (unique) recipe such
that either (r1|p)ϕ1 =R rpsubϕ1 or (r2|p)ϕ2 =R rsubϕ2. The
uniqueness follows from the fact that r0 is simple and
Claim 5. It is easy to see by Claim 5 that rfix is (r0, ϕi)-
simple and that valid(rϕj) iff valid(rfixϕj) for j ∈ {1, 2}.
The above case implies that valid(rfixϕ3−i) if valid(rϕi).
Hence, valid(rϕ3−i) as well.
Claim 7. For any i ∈ {1, 2} and recipes r, r′ away from

new such that valid(rϕi), valid(r′ϕi), if rϕi =R r
′ϕi

then rϕ3−i =R r
′ϕ3−i also.

Proof: As in the proof of Claim 6, it suffices to con-
sider the case when r, r′ are (r0, ϕj)-simple for j ∈ {1, 2}.

Now, r0 is a constructive recipe. Thanks to Proposition D.3,
we have that (r[r0 7→ new])ϕnew

i =R (r′[r0 7→ new])ϕnew
i .

Since view(ρnew1 ) = view(ρnew2 ), we get that (r[r0 7→
new])ϕnew

3−i=R (r′[r0 7→ new])ϕnew
3−i. Proposition D.4 implies

that rϕ3−i = r′ϕ3−i.
Claim 6 and Claim 7 contradict the fact that view(ρ1) 6=

view(ρ2). This completes the proof of the claim.

Appendix E.
Proof of Theorem 4.6

The proof of the theorem is similar to the proof of
Theorem 4.3. Let A be a simple adversary that distinguishes
MP andMP ′ . As in the case of the proof of Theorem 4.3,
we can view the DTMCs MAP and MAP ′ as trees TMAP and
TMA

P ′
respectively. The nodes of TMAP and TMA

P ′
are labeled

by executions of MP and MP ′ respectively. Observe that
the total number of nodes in either of these two trees is
≤ ληγ .

As in the case of proof of Theorem 4.3, we can
again define the notion of a recipe r originating at an
execution labeling a node of TMAP or TMA

P ′
. Analogous

to the notion of a match defined in the proof of Theo-
rem 4.3, we can also define the notion of a small ad-
versary. Consider a recipe r originating at execution ρ.
Given a term t ∈ subterms(P, P ′) \ X and executions
ρ1, ρ2 such that ρ1 and ρ2 label some nodes in TMAP or
in TMA

P ′
, view(prev(ρ)) = view(ρ1), enabled(ρ1, αm−1)

and last(ρj) = (gj , σj , ϕj , (tjin, t
j
out)) for j = 1, 2, we say

that the recipe r is a (ρ1, t, ρ2)-match if r is not a public
name or recipe variable, ie, r 6∈ Pub ∪ Xw and one of the
following hold:

1) ρ2 is the initial state of MAP or of MAP ′ , t is a
subterm of ran(ϕ0) and nf(rϕ1) = nf(tσ2).

2) ρ2 is not the initial state of MAP or of MAP ′ , t
is a subterm of either t2in or t2out and nf(rϕ1) =
nf(tσ2).

We say that the execution ρ is an A-match if for every recipe
r originating at ρ, either r ∈ Pub ∪Xw or there is a term t
and executions ρ1, ρ2 such that r is a (ρ1, t, ρ2)-match. We
say that a simple adversary A is small if every execution ρ
labeling a node in TMAP or a node in TMA

P ′
, is an A-match.

An argument similar to the proof of Lemma 4.4 then
shows that if a simple adversary A is small then rsize(A) ≤
12θλη2γ . A factor of 4 arises because the total number of
nodes in the two trees is at most 2ληγ .

We proceed once again as in the proof of Theorem 4.3 by
showing that if P and P ′ are distinguishable by an adversary
A then they are distinguishable by a small adversary as
follows.

Fix a simple adversaryA that distinguishes P and P ′. As
in the proof of Lemma 4.5, if A is not small then we can
construct a new adversary Asmall by iteratively replacing
recipes that witness the fact A is not small by fresh public
names. The main obligation that we have to show is that
Asmall distinguishes P and P ′.



Let E be the set of executions of the DTMCs MAP and
MAP ′ . Let Esmall be the set of executions of the DTMCs
MAsmall

P and MAsmall

P ′ . The proof of Lemma 4.5 implies
that there is a bijection sm : E → Esmall such that

1) The measure of execution κ ∈ E is exactly the
measure of the execution sm(κ).

2) If view(last(κ)) 6= view(last(κ′) for κ, κ′ ∈ E
then view(last(sm(κ))) 6= view(last(sm(κ′))).

As A distinguishes P and P ′ there must be a se-
quence o ∈ (Frames/ ∼)∗ × ({1, 2, . . . , n} × Recipes)
such that prMP

(o,A) 6= prMP ′ (o,A). Fix o. Let Eo be
the set {κ | view(last(κ)) = o}. Let Osmall be the set
{osm | osm = view(last(sm(κ))) for some κ ∈ Eo}. The
above two conditions imply that

prMP
(o,A) =

∑
osm∈Osmall

prMP
(osm,Asmall)

and

prMP ′ (o,A) =
∑

osm∈Osmall

prMP ′ (osm,Asmall).

Since prMP
(o,A) 6= prMP ′ (o,A), we get immediately that

there must be an osm ∈ Osmall such that

prMP
(osm,Asmall) 6= prMP ′ (osm,Asmall).

Thus, Asmall also distinguishes P and P ′. The theorem
follows.

Appendix F.
Proof of Theorem 4.7

We first consider the secrecy problem and show that
the non-secrecy problem can be decided in NEXPTIME.
The NEXPTIME time procedure for deciding the non-
secrecy problem non-deterministically constructs the tree
TMAP which corresponds to a simple adversary A such that
rsize(A) ≤ 3θλη2γ where θ, η, γ, and λ are as defined in
the statement of Theorem 4.3. The tree TMAP is constructed
incrementally. Initially all children of the root are guessed
by guessing the initial recipe used by the adversary, the role
the first message is sent to and the transition of the role
that is triggered. The recipe is guessed in its dag form and
is of size ≤ 3θλη2γ . The procedure checks that the recipe
chosen is valid, message computed by the recipe chosen
unifies with the left-hand size of the transition chosen and
computes the unifier. These steps can be performed in time
polynomial in the size of the recipe. Then the children of
the root are computed, making sure that the terms in the
labels of the children are also kept in dag form. We also
label the edge from the root to its child by the probability
of making that transition. The procedure then guesses the
children of each of nodes at level 1 in a similar fashion
except that the adversary has to perform some additional
tests. These tests are done to make sure that if the adversary
uses different recipes for two executions at level 1 then

these two executions are distinguishable. In order to check
if two executions are distinguishable, the procedure checks
that the last states in the executions of these two nodes are
distinguishable. The latter is achieved by guessing the test
which distinguishes the frames at these states. The results
of [1], [15] imply that this test must be of size polynomial
in the size of the frames. The subsequent levels of the tree
are guessed incrementally in a similar fashion. The resulting
tree has most ληγ nodes. It is easy to show that the dag-
size of terms in each state is exponential in the size of the
protocol. After guessing the tree, the procedure marks the
leaf nodes such that the secret sec is revealed in the last state
of executions labeling these nodes. Finally, the procedure
checks that the measure of the paths from the root to the
marked nodes is > p.

Now, indistinguishability of two protocols can be shown
to be in coNEXPTIME along similar lines using Theo-
rem 4.6.

Appendix G.
Proof of Theorem 5.3

Before proving the hardness result, we state the precise
pair of results about the monadic logic in Definition 5.2 that
we will exploit in our proof.
Theorem G.1 (Theorem 5.1 in [30]). Given a monadic

formula ϕ, ϕ is satisfiable if and only if ϕ has a model
of size ≤ 2k, where k is the number of monadic relation
symbols appearing in ϕ.

Theorem G.2 (Theorem 4.1 in [30]). Let ϕ be a monadic
formula of the form

∃z.F1(z) ∧ ∀y∃x.F2(y, x) ∧ ∀y1∀y2.F3(y1, y2),

where F1, F2, and F3 are quantifier-free 3-CNF for-
mulas. The problem of checking if ϕ is satisfiable is
NEXPTIME-hard.

We are now ready to prove Theorem 5.3. Given a
monadic formula ϕ, we will construct (in polynomial time)
a protocol P such that the secret is revealed in P with
probability 1 iff ϕ is satisfiable. First, recall that from The-
orem G.2, we can assume that ϕ is of the form ∃z.F1(z)∧
∀y∃x.F2(y, x) ∧ ∀y1∀y2.F3(y1, y2), where F1, F2, and F3

are quantifier-free 3-CNF formulas. Second, we know that
if ϕ is satisfiable, it has a model of size at most 2k,
where k is the number of predicate symbols appearing
in ϕ (Theorem G.1). In fact, without loss of generality,
we can take the model to have size exactly 2k. This is
because we can construct a formula T (ϕ) with one ad-
ditional monadic predicate inUniv such that T (ϕ) has a
model of size 2k iff ϕ is satisfiable. In T (ϕ), inUniv
determines if an element of the universe is a “valid” el-
ement of the universe. The formula T (ϕ) is constructed
inductively, with T (∃x.ψ) = ∃x.inUniv(x) ∧ T (ψ) and
T (∀x.ψ) = ∀x.inUniv(x) → T (ψ). Notice, T (ϕ) has the
same pattern of quantifiers as ϕ, and hence is of the same
“form” as ϕ.



The protocol P will have one role R and proceeds as
follows. In the first step, the adversary guesses a model for
the formula ϕ and sends this to the protocol. In order to
ensure that the adversary cannot change this model at a
later step, this model is encrypted by the protocol using
a secret key. This very much like what happens in the
reduction from 3SAT [33] or QSAT. From Theorem G.1 and
the observations in the previous paragraph, we can assume
that the size of the model constructed by the adversary is 2k

where k is the number of predicate symbols in ϕ; we will
assume that the k predicate symbols in ϕ are {P0, . . . Pk−1}.
The protocol assumes that the model sent by the adversary
is encoded as a full binary tree of height k, with leaves of
the tree corresponding to the elements of the universe. Each
leaf in the tree is labeled by a tuple of size k of the form
[b1, [b2, · · · [bk−1, bk]]], where bi ∈ {>,⊥} encodes if the
ith predicate is true at this element. Thus, the first step in
the protocol is a rule as follows.

s0 : m⇒ [gz0 : senc(M,m)]

Here s0 is the initial state, M is a secret key, and gz0 is the
state in the next phase of the protocol where the variable z
(see format of ϕ) is assigned an element of the universe.

The next phase of the protocol is one where the variables
in the formula are instantiated to a specific element in
the model. Like in the QSAT case, existential variables
are chosen by the adversary, and universal variables are
picked stochastically by the protocol. Picking the value of
a variable takes k steps of the protocol, where in each
step you walk through the binary tree representation of
the model until a leaf (i.e., an element of the universe)
is reached. After this, the protocol takes another k steps
to send to the adversary the truth of each predicate at the
chosen element, in an encrypted form; encryption is again
used so that the adversary does not cheat during the formula
evaluation phase. Here we show the rules that are used for
∀y∃x; the other variables are handled similarly. Here gy0

is the state where the first bit of y is picked, and the keys
{yi | i ≤ 2k}∪ {xi | i ≤ 2k}∪ {Pi(y) | i ≤ k}∪ {Pi(x) | i ≤
k} ⊆ Prv are assumed to be unknown to the adversary. We
begin with the rules for picking y.

gy0 : senc(M, [u0
0, u

0
1])⇒ [gy1 : [senc(y1, u0

0),0]]⊕
[gy1 : [senc(y1, u0

1),1]]
gyi : senc(yi, [ui0, u

i
1])⇒

[gy(i+1) : [senc(yi+1, ui+1
0 ),0]]⊕

[gy(i+1) : [senc(yi+1, ui+1
1 ),1]] for 1 ≤ i < k

gyj : senc(yj , [tyj , r
y
j ])⇒

[gy(j+1) : [senc(Pj−k(y), tyj ), senc(yj , ryj )]]
for k ≤ j < 2k − 2

gy(2k−2) : senc(y2k−2, [ty2k−2, t
y
2k−1])⇒

[gx0 : [senc(Pk−2(y), ty2k−2), senc(Pk−1(y), ty2k−1)]]

Notice that the coin tosses in the first k steps (choosing the
bits of y) are made public. Also at the end, the adversary has
messages of the form senc(Pi(y), bi) where bi is the truth
of predicate Pi at the chosen y in the model. The steps for

∃x are similar, except that the adversary chooses the bits of
x.
gx0 : [senc(M, [v0

0 , v
0
1 ]),0]⇒ [gx1 : senc(x1, v0

0)]
gx0 : [senc(M, [v0

0 , v
0
1 ]),1]⇒ [gx1 : senc(x1, v0

1)]
gxi : [senc(xi, [vi0, v

i
1]),0]⇒ [gx(i+1) : senc(xi+1, vi0)]

for 1 ≤ i < k
gxi : [senc(xi, [vi0, v

i
1]),1]⇒ [gx(i+1) : senc(xi+1, vi1)]

for 1 ≤ i < k
gxj : senc(xj , [txj , r

x
j ])⇒ [gx(j+1) : [senc(Pj−k(x), txj ),

senc(xj , rxj )]]
for k ≤ j < 2k − 2

gx(2k−2) : senc(x2k−2, [tx2k−2, t
x
2k−1])⇒ [gy10 :

[senc(Pk−2(x), tx2k−2), senc(Pk−1(x), tx2k−1)]]

After all the variables are chosen, the adversary has
encrypted values of the truth of each predicate symbol
at each of the values chosen. The protocol now moves
to the phase where the 3CNF formulas F1(z), F2(y, x),
and F3(y1, y2) are evaluated. The rules for this are very
similar to the evaluation of QSAT formulas after the truth
assignment is picked. We, therefore, skip describing these
rules. Like in the QSAT case, it is easy to see that sec is
revealed with probability 1 if and only if ϕ is satisfiable.
The protocol keeps sec secret with probability at least 1
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if ϕ is not satisfiable.
We conclude the proof by observing that all coin tosses

in the above reduction are public. Thus, the NEXPTIME-
hardness result holds even for checking the insecurity of
randomized protocols where all coin tosses are public.


