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ABSTRACT

Integrins are a family of transmembrane receptors that mediate cell-cell and cell-extra

cellular matrix (ECM) interaction and signaling. Inside-out activation of integrin recep-

tors often requires the binding of the cytoplasmic domain of the subunits by talin. This

interaction leads to separation of the integrin and transmembrane domain and significant

conformational changes in the extracellular domains, resulting in a dramatic increase in in-

tegrins affinity for ligands. Membrane bilayers containing anionic lipids are indispensable

for proper talin - integrin interaction, yet the detail picture of the interplay between protein

and membrane has remained elusive.

This thesis describe a series of fluorescence based assay for measuring talin-membrane

interactions with bilayers of controlled composition using Nanodiscs technology. Results

show that recruitment of talin head domain (THD) to the membrane surface is governed

by electrostatics in the absence of other adapter proteins. In addition, distance measure-

ments reveal that anionic lipids stimulate a conformational change in the talin head domain

allowing interaction of the F3 domain with the phospholipid bilayer. The magnitude of

this conformational change is regulated by the identity of the phospholipid headgroup, with

phosphatidylinositides promoting the largest change. This emphasizes the importance of

PIP2 in converting talin to a conformation optimized for interactions with integrin cyto-

plasmic tails. Moreover, a phenylalanine-rich region in F2 serves as a hidden hydrophobic

anchor was initially indicated by computational simulation and later observed experimen-

tally. It inserts into membrane after initial electrostatic contact providing a stabilizing force
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for membrane bound talin. Insertion of these phenylalanine may be critical for triggering

the F3 conformational change described above.

In the cytosol, talin adopts an auto-inhibited conformation, that C-terminal rod binds

the N-terminal head domain, preventing talin interactions with the membrane surface and

the integrin cytoplasmic domain. A Fluorescence Resonance Energy Transfer (FRET) based

binding assay reveals that R9 and R12R13 segments of the talin rod domain inhibit the

binding of the talin head to anionic lipid bilayers. In contrast, the binding of talin to

bilayers containing PIP2 is insensitive to the presence of the inhibitor domains thereby

directly implicating PIP2 as an effective activator of talin. The interaction of PIP2 with

talin head for activation was located at F2F3 domain.

The Nanodisc technology also offer an ideal platform for assembling unclustered integrin

transmembrane and cytoplasmic domain in lipid bilayer. Measurements of the THD binding

to integrin inserted Nanodiscs reveal that integrin provides most binding free energy of talin-

membrane recruitment. The conformational change of THD F3, which is critical for optimal

talin-integrin interactions, remains sensitive to lipid headgroup identity in the presence of

integrin tail and PIP2 promotes the largest change. Further investigation also demonstrates

that, with integrin inserted Nanodiscs, talin self-inhibitory rod domains impede THD binding

to PS membrane in different degrees. PIP2 membrane renders THD insensitive to inhibition

by talin R9 and R12R13. Results also implicates that talin R9 sterically blocks THD binding

integrin on F3 domain and R12R13 may hinder the membrane interaction on F2 domain.

Thus, this thesis work shows that PIP2 plays a central role in the regulation of the auto-

inhibited form of talin and stimulates recruitment of talin to the membrane and integrin,

which is essential for integrin inside-out activation.
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CHAPTER 1

INTRODUCTION

1.1 Overview

In multicellular organisms, tissues with diverse characteristics arise from the specific

interactions between cells and extracellular matrix (ECM). Cell shape change, cell adhesion,

and cell migration are tightly controlled by the communication of intracellular cytoskeleton

and ECM substrates in response to physiological and pathological signals. Integrins, identi-

fied almost three decades ago [1], are considered to be the major mediators for such cellular

reactions. Hence, they play a key role in many cell events, such as development regulation,

immunity, and hemostasis.

Integrins are a family of heterodimeric membrane receptors that consist of one α- sub-

unit and one β-subunit, which each comprise a huge ectodomain, a single transmembrane

domain and a commonly small cytosolic tail [2, 3]. The affinities of ECM ligands, such as

collagen, laminin, and fibronectin, to integrins are regulated by the cellular pathway named

inside-out signaling resulting in integrin activation. It governs changes of cell adhesion,

polarity of migrating cells, and the assembly of the ECM, thereby controlling platelet ag-

gregation, leukocyte transmigration, and tumor cell metastasis [4]. Due to the prospective

therapeutic and extensive biological significance of integrin activation, it has been and is

being studied intensely.

Talin [5, 6, 7, 8, 9], together with other many other protein, such as vinculin [10, 11, 12],

filamin [13, 14], kindlin [15, 16, 17], are known critical players for the linkage of integrin and
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cytoskeleton, which are able to simultaneously and directly bind to both integrin cytosolic

tails and actin. The rich protein-protein interplays within integrin-actin networks coalesce

to construct the distinct structures of focal adhesion site that serve as dynamic hubs of

adhesive and signaling activities [18, 19]. Protein-lipid interactions at the cytoplasmic face

of integrin are key elements in the activation mechanism yet largely uncharacterized despite

the well-known lack of efficient integrin activation in the absence of membrane [20].

The major obstacle that hampered detail interrogation of protein-lipid interactions is

due to the fact that many of the common experimental techniques are not able to provide

precisely controlled composition of lipid bilayer. In addition, result interpretation of in vitro

experiments, such as unilamellar vesicles, using mixed lipid, particularly with regard to

anionic phospholipids, suffer with strong tendency for lipid clustering and phase separation

[21].

This thesis describes an innovative experimental study of the critical question in in-

tegrin signaling, the effect of membrane lipid bilayer on inside-out integrin activation. By

using an novel experimental membrane mimetic known as Nanodiscs to deconvolute the

multiple interactions occurring at the phospholipid membrane of known composition on pu-

rified targets, an unprecedented level of structural details on the role of specific lipid-protein

interaction in talin mediated activation of integrin is provided.

1.2 Talin Cellular Distribution and Structure

As one of the most abundance proteins at cell adhesion sites, talin was identified

around three decades ago [22]. The talin gene and its orthologs are ubiquitously expressed

from single cell protists to vertebrates [23]. There are two isoforms of talin in mammalian

cells. Talin 1, being highly enriched in the heart and scared in the brain, can be traced in

most parts of body. In contrast, talin 2 is rare in the skeletal muscle, liver and lung but
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mostly abundant in the brain [24]. Even though talin 1 and talin 2 isoforms share a 74%

DNA sequence similarity, they do not functionally compensate for each other. It has been

shown that talin 1 level do not enhance to compensate the loss of talin 2 in deficient mice

model [25]. During epithelial embryogenesis and in muscle or heart specific knockout models,

talin 2 levels remain steady and do not compensate for the inactivated talin1 [26, 27, 25]. By

using various model organisms[24, 28, 29, 30] and tissue-specific knock down or knock out

of talin[26, 31, 32], the pivot role of talin in cell adhesion and integrin activation has been

well demonstrated.

Talin monomer is a 270 kDa cytoplasmic protein with 2541 amino acids. It is composed

of a globular N-terminal talin head domain (THD) of 433 amino acids and a much larger

C-terminal rod domain. The THD can be subsequently divided into four subdomains, F0,

F1, F2, and F3. F1-F3 is homologous to the domain found in band 4.1/ezrin/radixin/moesin

family of proteins (FERM domain). Additional ubiquitin-like F0 closely packs against F1

domain [33] and form an atypical linear conformation as opposed to traditional cloverleaf

arrangement in most other FERM domain proteins [34]. Moreover, there is a 30 amino acids

insert with F1 subdomain that is no visualized in the X-ray crystallography structure of THD

due to stability enhancement [34, 35]. Many functions of talin are exerted by F3 domain as

it binds to integrins [36], layilin [37], and phosphatidylinositol-4 phosphate 5 kinase gamma

90 (PIPKγ90) [38, 39, 40]. Focal adhesion kinase (FAK) is another implicated talin F2F3

binding partner [41, 42], although the biophysical evidence for such interaction is missing.

Early study show that the unstructured insert in F1 has a tendency to form helix upon

binding membrane and F2 domain provides anchor to lipid bilayer, which may facilitate F3

domain positioning to a preferable orientation for integrin engagement [43, 33, 44]. A large

unstructured region connects the talin head to the talin rod, and its fully extended form

may span about 20nm long [45].

Talin rod domain, which is a compilation of 62 amphipathic α-helixes that organized
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into 13 4-helix or 5-helix bundles. The C-terminus of rod domain is implicated as the dimer-

ization domain. Talin rod domain is a hub of various protein interaction sites for integrin

[46], RIAM [47, 48, 49], vinculin [50] as well as a C-terminal dimerization subdomain [50].

Also, three actin binding sites can be found in talin, one within THD and two at talin rod

domain. Structural study reveals that the dimerization sequence (2496-2529) is essential for

the talin’s C-terminus actin binding [51]. Although biophysical evidence and structural de-

tail of the crosslinking among the three sites and actin remodeling regulation remain unclear,

a recent study suggests a model that initial force acting vie talin C-terminal actin binding

site (ABS) and vinculin binding promote and lock talin into an actin-binding configuration

which stabilizes focal adhesions [10]. Different species and even specific tissues may possess

different overall organizations of talin, dimer versus monomer. At low concentration at phys-

iological ion strength, purified talin from chicken gizzard stays in monomeric state with a

filamentous and extended configuration. Lower ionic strength could induces a globular over-

all conformation of full-length chicken talin monomer [52, 53]. In contrast, talin extracted

from human platelets predominately shows as an antiparallel homodimer [54].

1.3 The Interplays of Membrane, Integrin, and Talin

The heterodimeric integrin associate α-subunit and β-subunit via an interaction be-

tween the transmembrane helices within the phospholipid bilayer [55, 56]. Studies of platelet

αIIbβ3 integrin transmembrane domain reveal that β3 integrin subunit forms a long helix,

whereas the αIIb integrin subunit adopts a shorter helix that allows a backbone reversal

and packs Phe992-Phe993 against the transmembrane helix. For α integrin subunits, the

conserved C-terminal Gly-Phe-Phe residues are embedded in membrane and ends the short

transmembrane helix which is perpendicular to the membrane surface. The β integrin trans-

membrane domain is tilted by about 25°to the plane of membrane to accommodate the
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corresponding hydrophobic residues to α Phe residues as well as the interactions of closely

packed glycine residues termed as the outer membrane clasp (OMC) [57, 58, 59]. The elec-

trostatic interaction between Arg995 in αIIb integrin and Asp723 in β3 integrin is essential

to stabilize the association of αβ integrin dimer and main low affinity integrin state. Muta-

tions that disrupt this electrostatic interactions lead to integrin tail separation and activation

[60, 61, 62, 63, 64].

Talin is unique for its abilities to bind and activate integrins among the identified

integrin tail binding proteins. Binding of THD to numbers of β integrin cytoplasmic tails

have been described although the reported affinities are widely dispersed [7, 36, 65, 66, 67, 68].

Measured by solution nuclear magnetic resonance (NMR), the dissociation constants (Kd)

of talin F3 domain to β tails is in the µM range with highest affinity for β1D followed by β7,

β3 and β1A cytoplasmic tails [36, 43, 69]. As one example, The dissociation constant of talin

F3 binding to integrin β3 tail is 273 µM measured by NMR. On the other hand, dissociation

constants estimated by surface plasmon resonance (SPR) are significantly lower, 91 nM and

12.5 nM for talin F2F3 binding to β3 and β2 cytoplasmic tails [8]. Moreover, the dissociation

constant of talin F2F3 for β1 is 67 nM estimated by pulldown assays [70]. The dispersedly

distributed affinities described above may arise from diverse measuring technologies, different

talin fragments, sequence variation of talins and β integrin tails, and sample preparation.

In the presence of phospholipids, the binding affinity of talin to β3 tail noticeably increases

[71, 72] indicating that membrane plays a critical role during the talin mediated integrin

activation. Conversely, the relatively low affinity of talin for integrin β cytoplasmic tails

could be explained by the hypothesis that the weak interaction proved a biological control

mechanism of integrin activation, so that, during cell adhesion or migration processes, the

activation state of integrin can be readily inte-converted. In some other scenarios, such

as those major integrins regulating platelet (αIIbβ3) and leukocyte (β2 and β7) functions,

speedy transition between inactivated and activated states is required. Furthermore, the
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ubiquitous expressed integrin β1 is found in a partially active form [2, 73]. Therefore, for

cases like β2, β3, and β7, the tighter association of the THD to integrin tails may be needed

to ensure efficient and timely integrin activation. It should be noted that same integrin tail

could exhibit different affinities to the two talin isoforms. For example, talin 1 has been

reported to bind integrin β1A and β3 stronger than the talin 2. Whereas, in myotendinous

junctions, it may be necessary to tightly couple talin 2 with muscle specific β1D integrin for

resisting the high mechanical stress of muscle contration [43, 74, 69]. On the other hand,

the association of talin and the α cytoplasmic tail of the platelet integrin αIIbβ3 has been

found yet further study is needed to elucidate the functional significance of such interaction

[75, 76, 77].

THD F3 domain possesses the major integrin binding sites which are able to recognize

two regions in integrin β cytoplasmic tail: a conserved peptide sequence NPxY/F motif [7, 78]

and the membrane proximal region where a salt bridge is form between integrin α subunit and

β subunit to maintain the rest state [9, 64, 79]. In current popular model of talin mediated

integrin activation, the membrane proximal interaction of talin disrupt the α/β integrin

inner membrane salt bridge thereby leading to the unlocking of the integrin cytoplasmic tail

complex. This mechanism is initially demonstrated for integrin αIIbβ and has been also

shown for other integrin heterodimers [80, 81, 82]. The unlocking motion of cytoplasmic face

of integrin transmits into the membrane causing separation of α/β transmembrane helixes

and eventually induces integrin extracellular domain conformational changes [56, 58, 55, 83].

Recently, it has been shown that talin binding to membrane and integrin β3 cytoplasmic tail

is able to change the β integrin transmembrane domain topology, which requires the presence

of anionic lipid bilayer and membrane binding residues on talin. This research provides

additional information on transmission of activation signal across the membrane and reach

the integrin extracellular domain [84]. Yet, the detail topology of the transmembrane helixes,

especially the interplay and dissociation of α and β subunits, still remain unclear [85]. A
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secondary integrin binding site is found on talin rod domain, termed as IBS-2, in addition

to the talin head integrin binding site, which is known as IBS-1. The 1974–2293 amino acids

fragment within talin rod domain was shown binding to integrin β3 and β1 cytoplasmic tails

with similar affinities as THD, although no implication of integrin activating regulation has

been identified in IBS-2 region [76, 86].

While the affinity modulation of integrin is believed to be primarily triggered by the

binding of talin and dissociation of integrin α/β subunits, the clustering of integrins is

also induced by talin to modulate integrin avidity. The formation of integrin-rich clusters

or microdomains in the plasma membrane results from the lateral movement of integrins.

It has been shown that clusters of integrin possess high avidity for ligands allowing for

multivalent adhesive linkages. Previous research suggests that, in Chinese hamster ovary

cells, the formation of integrin-abundant clusters is correlated with the agonist stimulation

or exogenous THD expression. Conversely, ligand binding to integrin in the clusters could

later induce extracellular domain conformational change to a higher affinity state [87, 88, 89,

90]. Above hypothesis is in a good agreement with the data from Drosophila integrin that

regulating clustering is the major function of talin rather than modulating integrin affinity to

ligands [28, 91]. Another key role of talin in Drosophila is to connect ECM bound integrins

to cytoskeleton and transduce mechanical forces. Studies of integrin αLβ2 implicate that

the clustering of integrin participates in its function [86, 92, 93, 94]. Intercellular Adhesion

Molecule 1 binds to T-lymphocytes where αLβ2 integrin enriched clusters can be found

on the membrane but not to dendritic cells which do not have the densely packed integrin

microdomains. Stabilizing αLβ2 integrin clusters in high affinity state by talin also has been

reported [95].

On immobilized ECM ligands, integrin activation and clustering depends on the release

of THD from talin rod domain, and it supports the idea that integrin clustering after affinity

modulation strengthen the linkage to the actin cytoskeleton. Talin recruitment was not found
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precede to the formation of integrin enriched clusters in Drosophila [96]. On the other hand,

talin plays a pivot role in the clustering of integrins in myotendinous junctions, supported

by the mice model with skeletal muscle specific talin 1 and talin 2 knocked out. [25]. The

mechanism of affinity and avidity modulation is vastly different, responding cells may require

overlapping these processes, and talin is involved with both signaling events. Certain cells,

tissues or developmental stage may utilize specific pathways to achieve integrin activation

[25, 27].

1.4 Talin Auto-Inhibition and Its Regulation

In resting state cells, talin is auto-inhibited and restricted from binding to integrin

[97, 98, 99] and membrane [100], and the distribution of talin is randomly diffused in cytosol

[101]. It has been shown that talin rod domain structurally masks the THD and inhibits the

interactions of the THD, the plasma membrane, and integrin. Auto-inhibited talin crystal

structure (pdb 4F7G) offers a detailed view of the interface of the THD F3 domain and

talin rod at the atomic level. In addition with the NMR binding data, a mechanism based

on steric clash and electrostatic interaction is proposed to explain the event of relieving

the auto-inhibited talin, named as “push-pull” mechanism. The membrane association to

talin head F2F3 domain is prevented by talin rod domain forming complex with talin F2F3.

Anionic phosphatidylserine lipid headgroups on membrane repel the negatively charges on

talin rod domain surface, while the enriched PIP2 with higher concentration of negatively

charge in focal adhesion would be able to attract the positively charged talin F2F3 domain,

at the same time, create a repulsion force to talin rod domain [99]. This push-pull motion

is likely to misalign the interface of talin rod and F3 domains, so that, overcome the auto-

inhibition and allow THD docking onto membrane for subsequent interactions with integrin

tails.
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A recent study proposes a structure of cytoplasmic talin in a compact “donut” shape

like homodimer with the THD filling the central “hole” and talin rod forming the ring. It is

based on the data combination of small angle X-ray scattering, electron microscopy, NMR,

and the known X-ray structures of talin fragments [102]. Large conformational change of

talin domains may be needed to allow optimal bindings of integrin and vinculin. Multi-

ple vinculin binding sites have been identified within talin rod domain [50, 103], and need

mechanical forces from actin cytoskeleton to allow the access of vinculin [104, 10]. Yet,

detail molecular mechanism and spatiotemporal of how vinculin participates talin mediated

integrin activation remain elusive.

Furthermore, Rap1A, Rap1-interacting adapter molecule (RIAM), Protein Kinase C

(PKC), calpain have been reported to promote the localization of talin to membrane and

activate auto-inhibited talin [89, 105, 47, 48, 106, 35]. It has been shown that several RIAM

molecules would competes with vinculin for ABSs, indicating RIAM may responsible for the

initial recruitment for talin to the focal adhesion site and a possible turnover mechanism that

a later replacement by vinculin would happen to facilitate focal adhesion formation [49]. The

calcium dependent protease, calpain, is able to cleave the peptide bond between talin Q433

and Q434 [107], thereby liberating THD to bind cell membrane and integrin cytoplasmic tail

with a significantly higher affinity compared to fulllength talin [106] and resulting in integrin

activation. The other calpain cleavage site in talin, K2493-K2494 in the rod domain, has

been linked to regulate the focal adhesion turnover [35, 45]. However, cleavage of talin by

calpain is not strictly required for talin activation and consequent integrin activation, and

evidences have been provided by the RIAM induced β3 integrin [89] and ionophore-mediated

αLβ2 integrin activation [108] in the absence of proteolysis of full-length talin by calpain.

Thus, further investigation are needed to probe precise mechanism and hierarchy of how

Rap1A, RIAM, PKC, and calpain are recruited and expose IBS in THD.

The affinity of talin rod domain for integrin β3 cytoplasmic tail is reported as 34.5 nM
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[109], which is tighter than published affinity value of THD [106]. Based on the previous

observation, two inhibitory mechanisms may be involved in talin-integrin activation: firstly,

as described above, talin rod R9 domain (1654–2344 residues) structurally covers integrin β

tail binding site of talin FERM domain; Secondly, C-terminal talin rod segment (2300–2541

residues) inhibits IBS-2 (1974–2293 residues) binding to β cytoplasmic tail. THD activates

integrin by interacting with its cytoplasmic tail, and talin rod domain plays a vital role in

recruitment of other focal adhesion molecules [94]. Another proposed model is that IBS-1 is

responsible for integrin activation while IBS-2 is required for maintain integrin talin linkage,

then freeing talin head to bind other protein partners, for example PIPKγ90 [93].

1.5 Crosstalk between Talin and Other Integrin Partners

In addition to talin auto-inhibition, cells also employ many other mechanisms to

regulate the dynamics of talin mediated integrin activation, such as coactivator kindlins

[16, 110, 111], negative regulator filamin [14, 112], ICAP-1 [113], lipid binding [71, 114], and

β cytoplasmic tail phosphorylation [74, 115].

Over the past few years, ample evidences suggest that kindlins also play a key roles

in integrin activation and signaling [116, 117, 118, 119]. Much less structural information

is characterized for kindlins, comparing to talin, partially due its difficult expression. The

highly conserved sequences of three discovered kindlins show that they are also FERM do-

main containing protein with the atypical linear arrangement similar to talin [120]. Addi-

tional ubiquitin-like F0 domain and a large unstructured loop in F1 are also found in kindlin

head domain [121]. One unique feature in kindlin, unlike talin, is that kindlin F2 domain

implants a Pleckstrin homology (PH) domain [122, 123, 124] which specifically targets phos-

phatidylinositol lipids. Kindlin interacts with the membrane-distal NPxY motif in the β

integrin tail with a highly similar manner as THD binding to the membrane-proximal NPxY
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motif [111, 125]. Although, in purified systems, it is sufficient to activate membrane-inserted

αIIbβ3 by talin binding [5], knock out, knock down, or integrin binding defective mutations

of kindlin, either in mice [126, 127, 128] or human [129, 130, 131, 132], profoundly affect

integrin mediated cellular responses.

For optimal integrin activation, talin and kindlins need to work in cooperation. In vitro

studies have shown that THD, kindlin, and integrin β tail form a ternary complex [111, 125],

yet interaction with adjacent integrins or the sequential binding of these components are not

well understood [133]. There is no proof for direct interaction between talin and kindlin.

Previous studies also suggest that binding of kindlin to integrin neither facilitates talin

recruitment to inner membrane nor assists talin-integrin binding, which led to the hypothesis

that kindlin affects subsequent events after talin binding to integrin [119, 134]. Kindlin, by

binding to the distal NPxY motif in the integrin β tail and negatively charged membrane,

might stabilize the integrin tail separation caused by talin binding. It has been shown

that binding of kindlin F0 domain, F1 loop and the PH inserted in F2 domain to anionic

phospholipids is essential for fully co-activation of integrin αIIbβ3 [121, 122, 124, 135]. The

alternative mechanism, for kindlin talin cooperation, is that kindlin binding to integrin could

recruits additional activators or dislodge inhibitors that regulate the talin mediated integrin

activation. Consistent with this, ICAP-1 [113] and filamin [14], which are the known integrin

activation inhibitory protein, are structurally predicted to overlap the kindlin binding site

in β integrin tail, indicating that the binding of kindlin would displace these inhibitors.

On the other hand, talin also competes with ICAP-1 and filamin [136, 137, 138], which

have tighter affinity for integrin β talin comparing to talin. Competition from these proteins

at talin integrin binding site would further suppress integrin activation. In agreement with

this, deficiency of filamin expression [14]and presence of migfilin, which binds to filamin and

masks the integrin binding site on filamin [138, 139], enhance integrin activation. 14-3-3

proteins are able to bind Thr758 phosphorylated β2 integrin tails and inhibit the binding
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of filamin to β integrin [140, 141]. ICAP-1 is another well-investigated integrin inhibitor.

With a phosphate tyrosine binding (PTB) domain within ICAP-1, it binds to the membrane

distal NPxY motif, which interacts with kindlin, and also inhibits the binding of talin to

integrin [142]. The solved crystal structure of ICAP-1 integrin β1 complex [113] shows that

ICAP-1 is not perturbing the interface of talin and integrin, indicating that ICAP-1 is not

inhibiting talin mediated integrin activation via direct competition. In addition, expression

of Krev interaction trapped 1 (KRIT1) can displace ICAP-1 from integrin and enhance talin

mediated integrin activation [113].

Interestingly, the actin binding protein α-actinin has been shown to both positively and

negatively regulates talin binding to integrin, which may due to the overlapping binding sites

on β integrin cytoplasmic tail [143]. The binding competition between talin and α-actinin

is consistent with a recent study that αIIbβ3 integrin activation in platelet is suppressed by

α-actinin binding [144]. Conversely, α-actinin has been reported to facilitate talin binding to

integrin β1 tail. Although α-actinin is regarded as the regulator of talin mediated integrin

activation, the explanation of the opposite effect on different integrin tail still remains un-

clear. Other protein could also modulate integrin talin interaction by directly binding to talin

FERM domain. Overexpression of PIPKγ has been shown to suppress talin mediated integrin

by competing the talin F3 PTB domain. Furthermore, SHARPIN (SHANK-associated RH

domain-interacting protein), an inhibitor of integrin activation that binds to integrin α tail,

impedes talin and kindlin via an unidentified mechanism [142, 145]. The tyrosine residues in

the NPxY motif of integrin β tail can be phosphorylated by SRC family kinase (SFK) and

inhibit talin binding by favoring other binding partners, for example Dok1, which preferen-

tially attaches to phosphorylated β-tail [74, 115]. 30 phosphorylation sites in talin have been

identified by mass spectrometry [146]. Studies established that serines and threonines on

talin can be phosphorylated by PKC [147, 148], calyculin [149], and Cyclin-dependent kinase

5 (CdK5) [150]. The phosphorylation on talin is also linked to the intracellular turnover by
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Smurf1 ubiquitination [150]. However, it is not clear that whether the phosphorylation of

talin is involved in integrin related events. PKC mediated THD phosphorylation in thrombin

activated platelets is relevant with talin redistribution but independent of integrin binding

[151]. An early report implicates that talin phosphorylation by PKC may be related to focal

adhesion disassembly [152]. Thus, talin integrin interaction and integrin activation can be

modulated by various protein-protein interaction or post-translation modification.
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CHAPTER 2

RECRUITMENT OF TALIN BY ANIONIC BILAYER

2.1 Introduction

The protein-protein interactions of talin mediated integrin activation have been a

heated research field in recent years. lately, several studies have directed their attention

toward the functions of the membrane composition, particularly anionic lipids, during the

structural mechanism of integrin inside-out signaling [43, 20, 153]. The solved crystal struc-

ture of talin FERM domain revealed an atypical extended linear arrangement with a bipolar

charge distribution on the protein surface [34]. The positively charged regions are primarily

located on the F2 and F3 domains. The asymmetry arrangement of charge on talin is vital

for its recruitment to the inner membrane surface [44, 154].

The positively charged patch residing on the F2 domain have been termed as the mem-

brane orientation patch (MOP). It plays a key role in steering the THD toward negatively

charged membrane surface as well as position the talin F3 for efficient integrin interaction

[44]. Four positively charged residues, K256, K272, K274, and R277 on talin 1, make up the

MOP, and reverse charge mutations of these four residues have been shown to diminish talin

binding to anionic lipid vesicles in pull down assays. Intriguingly, single charge reversal at

any of these positions in the MOP remarkably impairs the ability of THD activating inte-

Reproduced in part with permission from Ye Xin, McLean A. Mark, and Sligar G. Stephen. Conforma-
tional equilibrium of talin is regulated by anionic lipids. Biochimica et Biophysica Acta-Biomembranes,
1858(8), 1833–1840, 2016. Copyright 2016 Elsevier. The published version may be found online at
http://doi.org/10.1016/j.bbamem.2016.05.005.
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grins [43]. These results suggest that the role of MOP in integrin activation extends beyond

providing a membrane-binding site and the exact details of this role are not well understood.

The F3 residues, K322 and K324, involved in the membrane interactions have been

named as the F3 Association Patch (FAP). Early study demonstrated that K324 is critical

for integrin activation due to the potential formation of a salt bridge with D723 in β3

integrin, which would disrupt the inner membrane clasp (IMC) of integrin α/β subunits

[71, 98, 56]. It has been also shown that the unstructured loop in talin F1 domain contains

a high proportion of positively charged residues, and these residues are located in the region

that has a strong propensity to from an α-helix revealed by NMR. Based on the above data,

Goult et al. suggest a “fly-casting” model of talin F0F1 interacting with membrane. Upon

contacting with negatively charged lipid phospholipids, the favored helical state of the F1

loop draws the talin FERM domain towards the membrane [33].

The affinity of talin for inner membrane surface seems to be largely modulated by

the overall membrane charge. In vesicle cosedimentation assays, talin 1 F2F3 domain binds

to negatively charged phosphatidylserine (PS) vesicle but remains in unbound fraction in

the presence of neutral phosphatidylcholine (PC) vesicle [43]. Moore et al. measured the

dissociation constants (Kds) of talin-membrane interaction at sub-micromolar level by using

SPR and immobilizing phospholipid bilayers on a hydrophobically modified BIacore L1 SPR

chip [72]. However, many in vitro membrane experiments with mixed phospholipids are

often hampered by the strong tendency of lipid clustering and phase separation [155, 156],

making it difficult to interrogate protein–membrane interaction with imprecise control of

lipid composition in them membrane.

Nanodiscs, pioneered in Sligar laboratory, provide a powerful tool to resemble a native

membrane environment with controlled lipid compositions. Nanodiscs are nanoscale dis-

coidal lipid bilayers stabilized by two membrane scaffold proteins (MSP), which is derived

from ApoAI protein. The N-terminal globular domain is truncated, and the protein is en-
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gineered for optimal expression in Escherichia Coli (E. Coli). The self-assembly process of

Nanodiscs is initial by removing detergent from the cholate solubilized phospholipids and

MSPs. Measurement of atomic force microscopy and small angle X-ray scattering charac-

terized a diameter of 10 nm and a thickness of 5-6 nm of Nanosics[157, 158]. Monodisperse

and homogeneous Nanodiscs can often be obtained by titrating lipids to find optimal lipid

to MSP ratios. Furthermore, larger size of Nanodiscs, up to 17 nm diameters, can be repro-

duced by adding extra copies of a 22 amino acid helix to increase MSP length or fusing two

MSP sequences together [158, 159]. Incorporation of membrane proteins into the Nanodiscs

is usually achieved by mixing detergent solubilized membrane protein with lipid and MSP

before detergent removal [160, 161, 162].

Nanodiscs display a number of potential advantages over other membrane mimetic

techniques. Firstly, Nanodiscs offer a native membrane in a soluble and detergent-free en-

vironment to avoid detrimental effect of detergents on membrane protein, which may lead

to improper folding or alter function mechanism. Previous studies have demonstrated that

detergents could alter substrate binding of cytochrome P450 3A4 (CYP3A4), and epidermal

growth factor receptor shows enhanced stability in Nanodiscs compared to detergent micelles

[161, 163]. Secondly, Nanodiscs can be used to isolate specific oligomeric states of membrane

protein by adjusting the stoichiometry of protein to MSP with large excess MSP in the

process of Nanodiscs assembly, such as the investigation of various oligomerization states

affecting rhodopsin activity [164]. In addition, both sides of the Nanodiscs-embedded mem-

brane are accessible, which is extremely useful for studying transmembrane signaling, such

as integrin bidirectional signaling [5]. This is a key advantages of the Nanodisc technology

over vesicle preparations which has no mean of knowing the fraction of receptors that are

presenting the extracellular domain on the surface of the vesicle as oppose to being pointed

inside. Thirdly, the lipid composition of Nanodiscs bilayer can be finely tuned by mixing

desired phospholipids during self-assembly, thus provide a controlled membrane system to
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investigate protein-lipid interaction. For instances, Nanodiscs were used to probe how lipid

membrane content changes can modulate the redox potentials of membrane-embedded cy-

tochromes P450s and show the lipid composition can regulate the interactions between G

proteins and G protein-coupled receptors (GPCR) [165, 166]. Finally, the MSP provides

a convenient site for various of tag modification, allowing easy interfacing with monitoring

and hybridization technologies. MSP sequence has been previously engineered with polyhis-

tidine, FLAG, and other genetically programmed tags. A single cysteine residue mutation in

MSP also provides a way for chemically modification with various thiol-reactive labels, thus

the Nanodisc could be easily modified for various system and analysis techniques due to such

wide range of tagging strategies. One excellent example would be the detail investigation of

strategies for anchoring Nanodiscs to SPR surface when the popular Nickel-nitrilotriacetic

acid (Ni-NTA) attachment was not ideal [167].

This chapter describes the first comprehensive study in order to elucidate the mech-

anism of talin interactions with native like membrane bilayers. To investigate influences

of the lipid headgroups on THD/bilayer interactions, a solution assay has been developed

based on fluorescence resonance energy transfer and using Nanodisc to provide precisely con-

trolled membrane bilayer. The dissociation constants of full-length or subdomains of THD

to various anionic membrane surfaces were measured by this novel binding assay. The ini-

tial interpretation was that higher percentage of negatively charged phospholipids leads to

tighter association of THD/Nanodisc complex. Further study and analysis suggest an addi-

tional preference of lipid headgroup identity that contributes to the optimal THD-membrane

recruitment.
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2.2 Experimental Methods

2.2.1 Materials

1,2-dimyristoyl-sn-glycero-3-phosphate (DMPA), 1,2-dimyristoyl-sn-glycero-3-phosph-

ocholine (DMPC), 1,2-dimyristoyl-sn-glycero-3-phospho-(1’-rac-glycerol) (DMPG), 1,2-dim-

yristoyl-sn-glycero-3-phospho-L-serine (DMPS), porcine brain L-α-phosphatidylinositol-4-

phosphate (PI4P), and porcine brain L-α-phosphatidylinositol-4,5-bisphosphate (PIP2) were

purchased from Avanti Polar Lipids (Alabaster, AL). Escherichia coli (E.coli) BL21 DE3

and E.coli BL21 DE3 gold were purchased from Stratagene (San Diego, CA). Compe-

tent cells of NEB Turbo E.coli were obtained from New England Biolabs (Ipswich, MA).

Tetramethylrhodamine-5 (and -6) C2 maleimide (TAMRA) was obtained from Anaspec (Fre-

mont, CA). iProof polymerase kit was purchased from BioRad (Hercules, CA). Uniblue A

(UA), Amberlite XAD-2 beads, and sodium cholate obtained from Sigma-Aldrich (St. Louis,

MO). pET30A-THD for expression of talin 1 head domain was a generous gift from Dr. Mark

Ginsberg in University of California at San Diego (San Diego, CA).

2.2.2 Cloning and mutagenesis of THD

To reproduce pure pET30A-THD plasmid, it was transformed into NEB Turbo com-

petent cells following manufacturer’s protocol. Three colonies on kanamycin Luria broth

(LB) agar plate after overnight growth at 37°C were selected and seeded into 5 mL LB liquid

medium with kanamycin. Plasmids from overnight grown culture were exacted with QIAprep

Spin Miniprep Kit (QIAGEN, Valencia, CA) following manufacturer’s protocol. The DNA

product was electrophoresed in a 1% agarose, 1x Tris/Borate/EDTA (TBE) gel and visual-

ized under ultraviolet light by ethidium bromide.THD I398C mutant were generate by using

pET30A-THD as the template plasmid for the polymerase chain reaction (PCR). Primers
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were designed using the SerialCloner software package and purchased from Integrated DNA

Technologies (Coralville, IA). An EcoRV restricted digestion site was eliminated with silent

mutation for subsequent screening (I398C Forward: 5’-GCC GGC TAC ATC GAT TGC

ATC CTG AAG AAG -3’; I398C Reverse: 5’- CTT CTT CAG GAT GCA ATC GAT GTA

GCC GGC-3’). The PCR mixture was constituted, according to manufacturer’s recommen-

dation, and incubated at 98°C for 5 minutes, followed by 18 cycles of melting at 98 °C for 1

minute, annealing at 55 °C for 45 seconds, and extending at 72 °C for 3 minutes 30 seconds.

Additional final extension step at 72 °C for 10 minutes was integrated in PCR to reduce

partial amplified sequences. The PCR products were then digested by DpnI to specifically

eradicate template plasmid. Purified pET30-THD-I398C plasmids were prepared by trans-

forming digested products into NEB Turbo competent cells, and then isolated from overnight

culture as described above. Positive clones were screened by digesting with EcoRV restricted

enzyme at 37 °C for 1 hour and electrophoresis. Plasmid samples with no effect from EcoRV

digestion were sent for DNA sequencing by ACGT (Northbrook, IL) using a T7 promoter

primer.

In order to generate expression construct of talin head F0F1 and F2F3 domain into

the pET30A backbone, NdeI and XhoI digestion sites were engineered onto the 5’ and 3’

ends of each gene sequence (THD Forward: 5’- CG CG CG CAT ATG ATG GTT GCA

CTT TCA CTG AAG -3’; F1 Reverse: 5’- CTC GAG CCT CCG CAG CAG CAG CGT

CTC AT AT AT -3’; F2 Forward: 5’- CGC GCG CAT ATG AAG TTC TTT TAC TCA

GAC CAG -3’; THD Reverse: 5’- GTG CTC GAG CTG CAG GAC TGT TGA CTT TTT

-3’). iProof polymerase, again, was used for PCR to amplified the THD F0F1 and F2F3

sequences using pET30A-THD-I398C as plasmid template. The reaction setup was adapted

from the previous PCR parameters with 1 minute extension time due to the shorter target

DNA sequence. The PCR products were electrophoresed and purified by QIAquick Gel

Extraction Kit (QIAGEN, Valencia, CA) to eliminate template DNA. The XhoI and NdeI
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digested fragments of THD were subsequently cloned into pET30A with same sticky ends.

The ligations were exerted at an ratio of 3 to 1 for inserts versus vectors with T4 ligase.

The recombinant plasmid was transformed into NEB Turbo E. coli competent cells and

then incubated on kanamycin LB agar plate at 37 °C overnight and extracted as previously

described. The positive clones were confirmed by sequence analysis. Additional mutagenesis

PCR was performed to introduce N123C (F1 N123C Forward: 5’- GCC CGC ATT GGC

ATC ACG TGC CAT GAT GAA TAT TC -3’; F1 N123C Reverse: 5’- GAA TAT TCA TGG

CAC GTG ATG CCA ATG CGG GC -3’) into THD F0F1 domain using pET30A-F0F1 as

reaction template. Detail protocol can be referred to the THD I398C mutagenesis section.

2.2.3 Expression and purification of THD

All cloned expression constructs of THD were transformed into the expression host,

E. coli BL21 (DE3) gold. Single colony of an expression strain was isolated by spreading

cell culture on LB kanamycin agar plate for overnight at 37 °C incubation, and inoculated

into 50 mL LB kanamycin liquid media. The starting culture was shake at 250 round per

minute (RPM) 37 °C till optical density (OD) at 600 nm reached 0.6 to 0.8. 10 mL of

starting culture were seeded into 1 L of LB media containing 50 µg/L kanamycin in a 4 L

flask and incubated at 37 °C with shaking at 250 RPM. To induce expression of protein,

isopropyl-β-D-thiogalactopyranoside (IPTG) was added to a final concentration of 1 mM

when OD 600 nm reached 0.8, and the cells were continued to grow at 37 °C and 230 RPM

for an additional 4 to 6 hours. Cells were collected by centrifugation at 8,000 RPM for 10

minutes at 4 °C. The pellet of bacterial was stored at -80 °C for subsequent use.

For purification, the E. coli pellets containing THD protein were suspended in loading

buffer (20 mM Tris buffer at pH 7.4 with 500 mM NaCl and 20 mM Imidazole) at the

ratio of 5 mL buffer to 1 g pellet. DNAse and phenylmethylsulfonyl fluoride (PMSF) were

added to final concentrations of 20 µg/mL, and 0.5 mM, respectively. The mixture was
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gently stirred at 4 °C for 45 minutes or until no chunk of cell pellet can be observed. The

cell suspension was sonicated for 5 rounds of 1 minute using a duty cycle of 50% and a

power setting at 6 (Branson sonifier 450) on ice with 5-minute intervals to allow DNA

digestion. The cell debris and membrane were removed by ultracentrifugation (BECKMAN

L8-M Ultracentrifuge) at 30,000 RPM 4 °C for 45 minutes. Cell supernatant was immediately

loaded onto a column (2.5 × 10 cm) with 35 mL Ni (II) chelating Sepharose fast flow (GE

Healthcare Life Science, Pittsburgh, PA) equilibrated with loading buffer. The loading flow

rate is 1 mL/ min, and the flow through of cell supernatant was collected for later analysis.

Then the column was washed by washing buffer (20mM Tris buffer at pH 7.4 with 500 mM

NaCl and 50 mM Imidazole) with 10 times bed volumes. The THD proteins were eluted

with elution buffer (20mM Tris buffer at pH 7.4 with 500 mM NaCl and 300 mM Imidazole)

in fractions of 4 mL. 10 µL of each fractions were mixed with 150 µL of Coomassie Plus

(Bradford) Assay Reagent (Thermo Fisher Scientific, Waltham, MA) and incubated for 3

min at room temperature. Elution fractions that turned bright blue were pooled together

and dialysis against 8,000,000 volumes of labeling buffer (20 mM Tris, 150 mM KCl at

pH 7.0). The final products and purification process were exanimated by sodium dodecyl

sulfate polyacrylamide gel electrophoresis (SDS-PAGE). The concentrations of protein were

determined by ultraviolet spectroscopy (HP/Agilent 8453 UV-Vis Spectrophotometer) and

calculated using ε 280 nm = 42 mM -1 for full-length THD, ε 280 nm = 18 mM-1 for THD F0F1

domain, and ε280 nm = 23.4 mM-1 for THD F2F3 domain.

2.2.4 Preparation of Uniblue A labeled THD

The concentrations of THD I398C, THD F0F1 N123C, and THD F2F3 I398C were

adjusted to around 100 µM by centrifugation with Amicon Ultra 15 mL centrifugal filter

(EMD Millipore, Billerica, MA) in order to prevent protein aggregation during labeling. Four

equivalents of tris (2-carboxyethyl) phosphine (TCEP) pH 7.4 were added to the protein stock
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in 20 mM Tris pH 7.0, 150 mM NaCl. After 10-minute incubation at room temperature, two

equivalents of UA dissolved in DMSO were mixed with the sample dropwise and continue

incubation at room temperature. 100 µL aliquots were collected every 15 minutes and

purified by 2 mL of Sephadex G25 column (GE Healthcare Life Science, Pittsburgh, PA) to

remove excess dye. The absorbance at 280 nm and 595 nm were measured to calculate the

dye to protein ratio using below equation.

E =
Abs595nm/ε595nm

(Abs280nm − Abs595nm ∗ 1.45) /ε280nm
(2.1)

Here E represents labeling efficiency; ε280 nm equals extinction coefficient for THD, THD

F0F1, or THD F2F3; ε595 nm extinction coefficient for UA, which is 11 mM-1; The correction

factor for 280 nm from UA dye is 1.45.

The reaction was allowed to proceed until the labeling efficiency was larger than 95%

after which the reaction was blocked by addition of dithiothreitol (DTT) to a final concen-

tration of 10 mM. The usual reaction time to achieve complete labeling is around 45 minutes

at room temperature. Free dye was removed by loading the labeling mixture into a G25

column equilibrated in 20 mM HEPES pH 7.2, 4 mM KH2PO4, 125 mM KCl, 14 mM NaCl,

1 mM MgCl2, 0.02 mM EGTA. The first blue fraction was captured for further labeling

efficiency calculation. The final dye to protein ratios were larger than 95%.

2.2.5 Preparation of TAMRA labeled MSP

MSP variant MSP1 D37C, which is a version of MSP1D1 with a cysteine engineered

in 73 position for thiol-reactive labeling, was expressed and purified as previously described

[157, 158]. MSP stock was prepared at a concentration around 100 µM and incubated with

two equivalents TCEP in 20 mM Tris, pH 7.4, 150 mM NaCl, 10 mM Sodium Cholate for 10

minutes to inhibit potential formation of disulfide bounds. In the mean time, the sample was
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stirred and purged with pure argon gas to remove oxygen. 10-fold molar excess of TAMRA

dissolved in DMSO was added dropwise to the protein. The labeling reactions were allowed

to incubated at room temperature for 4 hours, followed by overnight incubation at 4 °C.

The removal of excess dye was initiated by adding equivalent volume of Amberlite XAD

hydrophobic beads and followed by passage over a Sephadex G25 column equilibrated in 20

mM Tris, pH 7.4, 150 mM NaCl. The labeling efficiency (E) was calculated using ε280 nm =

21.4 mM-1 for MSP, and ε557 nm = 60 mM-1 for TAMRA with equation showed as below.

E =
Abs557nm/ε557nm

(Abs280nm − Abs557nm ∗ 0.34) /ε280nm
(2.2)

An Abs280 nm correction factor of 0.34 was used to subtract the absorbance of the dye

at 280 nm. Final dye to protein ratios were larger than 60%.

2.2.6 Assembly of Nanodiscs

The TAMRA labeled MSP stock was prepared at a concentration around 100 µM.

Phospholipid mixtures were dissolved in chloroform, dried under gentle stream of pure nitro-

gen gas in disposable glass culture tubes, and placed in a vacuum desiccator at least 4 hours

or overnight to eliminate any residual chloroform. Dried lipids were then suspended in 100

mM sodium cholate to a final lipid concentration of 50 mM. Samples were sonicated in warm

water (45 °C) for 15 minutes to facilitate solubilization. The final lipid solution should be

clear. TAMRA labeled MSP were added to achieve a 100:1 lipid to MSP ratio. The recon-

stitution mixtures were incubated at 25 °C for 20-30 minutes followed by the addition of 0.8

g Amberlite XAD hydrophobic beads for each mL of solution to remove the detergent and

initiate Nanodisc self-assembly. The samples were vigorously shaken at room temperature

for at least 4 hours or overnight. Amberlite beads were removed, and the Nanodiscs were

purified by passing over an Superdex 200 increase size exclusion column (GE Healthcare Life
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Science, Pittsburgh, PA) equilibrated in 20 mM HEPES pH 7.2, 4 mM KH2PO4, 125 mM

KCl, 14 mM NaCl, 1mM MgCl2, 0.02 mM EGTA at flow rate 0.75 mL/minute. Only the

middle fractions of Nanodisc were collected, and the final concentrations were between 10

and 20 µM. The final products were stored at 4 °C dark room up to 4 weeks.

2.2.7 FRET based THD binding assay

The FRET based THD binding assay was adopted from that of Bayburt et al. [164].

Fluorescence quenching experiments were performed in a Hitachi 3010 fluorometer attached

with a circulating water bath for temperature control at 20 °C. All experiments were exerted

with an excitation wavelength of 557 nm, an emission wavelength of 580 nm, 5 nm bandwidth

for excitation, 10 nm bandwidth for emission. Typically, total 5 µM of UA labeled THD

was titrated stepwise into 100 nM TAMRA labeled Nanodiscs solutions in 20 mM HEPES

pH 7.2, 4 mM KH2PO4, 125 mM KCl, 14 mM NaCl, 1 mM MgCl2, 0.02 mM EGTA to

mimic cytoplasmic environment. At each THD addition, samples were thoroughly mixed

and allowed to equilibrate until the fluorescence signal were stabilized, commonly after 3-5

minutes. The stable fluorescence intensities were recorded and the FRET efficiencies were

calculated using the equation below:

F = 1 − F

F0

(2.3)

F0 is the starting fluorescence intensity of TAMRA labeled Nanodiscs in the absence of

UA labeled THD and F represents fluorescence level at each titration point; E is the symbol

for FRET efficiency.

Titration data was imported into Matlab software (the Mathworks, Natick, MA) and

fit to a single binding site model in Curve Fitting Toolbox using the following equation:
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F =

Fmax

[
(x+ND +Kd) −

√
(x+ND +Kd)

2 − 4 ∗ND ∗ x
]

2 ∗ND
(2.4)

F is the measured FRET efficiency, Fmax is the FRET efficiency of the bound complex,

x is the total THD concentration, ND is twice the Nanodisc concentration assuming one

THD bound to each leaflets of Nanodisc. Statistical fitting of the data is then used to derive

Fmax and dissociation constant.

2.3 Results and Discussion

2.3.1 THD expression and purification

The desired THD DNA segments were cloned into pET30A backbone between restricted

digesting site NdeI and XhoI with a C-terminal ployhistidine tag to generate expression

vectors. E.coli was chosen as the expression strain because it is an excellent bacterial system

for molecular cloning and high-level overexpression of exogenous eukaryotic protein. In E.coli

BL21 Gold (DE3) transformed with THD expression vectors, maximum expression level of

THD or its variants was measured in the cell lysate at 4 hours after 1 mM IPTG induction.

In typical expression condition, 1 L cell culture yields around 5 g of bacterial pellet. Figure

2.1 lane 2 is the total cell lyse on SDS-PAGE showing the most dominant protein expressed

in cell is THD.

One step purification of THD protein over a Ni2+ chelating Sepharose fast flow column

effectively produce a homogeneous final product. The initial loading flow rate was adjusted

to 1 mL/min allowing effective protein/resin binding. 20 mM imidazole was used during

loading to prevent non-specific binding of non-target protein (Figure 2.1 lane 4 and 5). In

the purification, 500 mM NaCl provides a high ion strength allowing potential self-aggregated

protein to disassociate. Then the protein bound Ni2+ resin was washed with 50 mM imidazole
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buffer to further reduce impurities. The purified protein was eluted with 500 mM imidazole

and analysis by SDS-PAGE (Figure 2.1) and Superdex 200 increase size exclusion column

(Figure 2.2). Analysis of both methods revealed that the purity of THD protein is sufficient

for subsequent FRET based THD binding assay.

2.3.2 Nanodisc assembly and characterization

MSP1D1 D37C was labeled with 10-fold molar excess TAMRA-maleimide, which is

specifically thiol-reactive under pH 7.5. Addition of 4 equivalents of TECP prior to labeling

dye allowed reducing the possible disulfide bonds existed among MSPs. 10 mM sodium

cholate were also mixed with MSPs to inhibit protein aggregation. Samples were flushed with

and kept in argon during labeling to exclude oxygen and prevent disulfide bond formation.

Maximal labeling efficiency was detected after 4-hour room temperature incubation followed

by 4 °C overnight. The mixture of MSP and dye can be easily purified by adding equal

volume of Amberlite hydrophobic beads and passing over a Sepharose G25 size exclusion

column. The first red color fraction was collected and analysis by UV-vis spectroscopy. In

the typical spectrum of purified labeled MSP (data not shown), the small peak in front of the

main 557 nm TAMRA peak represents the absorbance of TAMRA dimmer. Adding extra

cholate promotes the dissociation of the dimmer and increases the TAMRA absorbance at

557nm.

Due to the inconsistent reported extinction coefficiencies of TAMRA, the concentration

of labeled MSP and labeling efficiency were roughly calculated. Therefore, a pilot lipid

titration was performed to determine optimal lipid:MSP ratio for Nanodiscs assembly. Figure

2.3 shows that 125:1 of DMPC to TAMRA labeled MSP ratio, instead of 80:1 in unlabeled

MSP, allows ideal formation of Nanodiscs and leads to most symmetrical chromatography

peak without severe over lipidation. Then arrays of various phospholipids were used for

Nanodiscs. 0, 10, 30, and 50% of PS, PA and PG as well as 2.5%, 5% and 10% PIP2
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Nanodiscs were prepare. Figure 2.4 shows the chromatography spectra of DMPS Nanodiscs

in Superdex 200 increase column. One interesting observation is that higher anionic lipid

composition slightly shortens the retention time of Nanodiscs in size exclusion column. It may

be explained by the repulsion between anionic lipid surface and slightly negatively charged

column matrix composed by cross-linked agarose and dextran in running pH condition.

2.3.3 THD binds to anionic lipid bilayers

It has been shown that talin interacts with anionic bilayers. A study of vesicle cosedi-

mentation assay revealed that THD preferably associate with PS containing liposomes but

neutral PC vesicles [43]. Moore et al. reported a sub-micromolar dissociation constant range

of THD binding to phospholipid bilayers measured by steady state SPR [72]. However, it

is still not clear that whether there is a preference for a specific negatively charged lipid

headgroup. Also the functional role of the headgroup identity remains elusive.

Here, Nanodiscs were used to precisely control the phospholipid composition to eluci-

date the mechanism of talin interactions with the membrane surface. The precise dissociation

constants of talin binding to negatively charged phospholipids were measured by the FRET

based binding assay. Figure 2.5 demonstrates a molecular model of talin docking on the

surface of a 10 nm Nanodiscs to provide sufficient contact interface. In this system, the

MSP belt of the Nanodisc is labeled with TAMRA at position 73 and talin is labeled with

UA at position 398 in the F3 domain or position 123 in the F1 domain. TAMRA labeled

Nanodiscs encompassing 0, 10, 30, and 50% PS, PA and PG as well as 2.5%, 5% and 10%

PIP2 were prepared and used to perform FRET binding assay with THD. Figure 2.6 shows a

representative binding isotherm for the interaction of THD labeled at position 398 with UA

(THD-398-UA) with TAMRA labeled Nanodiscs containing 50% DMPS/50% DMPC and

100% DMPC. The binding isotherms fit well to a single binding site model assuming one

talin binds per Nanodsics leaflet. 50% DMPS membrane clearly induces tighter dissociation
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constant than neutral lipid bilayer.

Figure 2.7 summarizes the dissociation constants for all lipids tested in this study. As

expected, there exists a clear trend of increased affinity with increasing anionic lipid content.

The weakest interaction is between pure DMPC bilayers with a dissociation constant of 3.3

µM and the tightest being interactions with membranes containing 10% PIP2 displaying a

dissociation constant of 0.25 µM. The dissociation constant decreases 5 to 10 fold when in

the presence of 50% DMPS, DMPA or DMPG compared to pure DMPC membrane. These

results well reconciles with the previously reported dissociation constants of THD binding

to lipid surface [72].

The weak interaction of THD to pure neutral DMPC membrane may due to the zwitte-

rionic charge distribution on PC headgroup where the negative charged phosphate promotes

THD binding, but strongly countered by the positive choline group. Comparing identical

mole % anionic lipids, the dissociation constant differs by no more than a factor of 3 for

PS, PA and PG while 5% PIP2 affinities are comparable to 50% PS, PG, and PA. This

difference is presumably due to the multiple charges present on the PIP2 headgroups and a

specific headgroup interaction. Although the importance of PIP2 in the activation of auto-

inhibited talin has been suggested [99], it is still unclear if this preference is based solely on

the differences in the charge of the membrane bilayer or if the structure of the headgroup

is providing some specificity. Interestingly, in the binding of talin to Nanodiscs containing

PIP2 or PI4P, only 2.5% is needed to reach a 3-fold increase in affinity. DMPC Nanodiscs

contain 77 phospholipids per leaflet, thus approximately two PIP2 headgroups per bilayer

results in a dramatic increase in membrane affinity. This clearly points to specificity towards

PIP2 as the anionic phospholipid component.

For a more direct comparison, free energies of association versus formal bilayer charge

of the Nanodisc samples was plotted (Figure 2.8). Since the titrations are performed at pH

7.2 to mimic the cytosol environment, the charge of each phospholipid headgroups is -1 for
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PS, PA, and PG, -3 for PI4P, and -4 for PIP2. So that, formal charge of bilayer is calculated

by multiplying the headgroup charge by the mole percentage of anionic lipids in Nanodiscs.

An obvious linear grouping of the free energies of PG, PI4P, and PIP2 was observed on a

line which is about 0.5 kcal/mol lower in free energy of association that the line formed by

PS and PA lipid headgroups. The differences here could be explained by the identity of

the charged moiety on the headgroup. Those that have the lower free energy of association

possess a negatively charged phosphate group and a headgroup containing alcohol groups

(Figure 2.9). This points to a subtle free energy preference to headgroups providing potential

hydrogen bond donors in addition to the main electrostatic driving force. While on PS, the

zwitterionic serine on prohibits such hydrogen bond formation, and on PA, the negatively

charged phosphate may be masked by the bulky PC headgroup inhibiting the access of THD.

2.3.4 Interactions of THD subdomains with anionic membrane

The structural study of THD revealed an uncanonical linear arrangement with addi-

tional ubiquitin like F0 preceding F1 [34]. The exact functional role of F0F1 subdomain is

not fully understand, although pioneer study suggests that several basic residues on the F1

inserted loop are required for THD binding to acidic phospholipids and facilitating subse-

quent talin mediated integrin activation [33]. Here, FRET based binding assay was used to

directly measure the dissociation constants of UA labeled THD F0F1 and F2F3 subdomains.

Table 2.1 summarizes the result of measured dissociation constants. On 10% PIP2 mem-

brane surface, the dissociation constant for F0F1 is 0.86 µM, almost 4 fold larger than the

dissociation constant for F2F3 of 0.18 µM, whereas the dissociation constant for full-length

THD is 0.27 µM. This result is in a great agreement with a previous study[72] that uses

SPR binding assay and report tighter affinity of F2F3 compared to both F0F1 and F0F3.

Intriguingly, F0F1 binds to 50% DMPS Nanodiscs with a dissociation constant of 0.45 µM,

comparable to the dissociation constant of full-length THD of 0.58 µM, but significantly
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lower than the 1.24 µM dissociation constant of F2F3 (Table 2.1). The similar affinities of

talin FERM subdomains and the intact THD with PS membrane surface suggest that there

is little cooperativity between F0F1 and F2F3. In comparison, the clear preferential binding

of PIP2 to talin F2F3 over F0F1 is consistent with the previous NMR study that the binding

interface between PIP2 and talin resides in the F2F3 subdomain.

2.4 Conclusions

This chapter described the analysis of the lipid composition effect on talin membrane

recruitment during integrin signaling. To accurately measure the affinity of THD to vari-

ous phospholipid bilayers, a solution assay based on FRET and Nanodisc technology was

developed allowing precise control of membrane compositions.

Result confirms that the overall formal charge on membrane governs the THD asso-

ciation. Higher anionic lipid percentage in Nanodiscs promotes tighter binding of THD in

the range of sub-micromolar. Although, the detected difference of affinities between neu-

tral membrane (DMPC) and highly negatively charged membrane (PIP2) is less than 10

fold, seem relatively small compared to a change of enzymatic reaction. The signal could

be amplified by the downstream events that induced dramatic change of cell activity. In-

triguingly, data suggests that THD possess a subtle preference for phospholipid headgroups.

Small amount of phosphoinositides, such as 5% PIP2, supports the same THD affinity as

50% DMPS, which strongly suggests the specificity of PIP2 to THD. Furthermore, affinity

measurement on THD subdomains also shows that F2F3 favors binding to PIP2 over PS.

The comparison of association free energy versus formal charge across all the phospholipids

tested indicates an additional hydrogen bond donor on PG, PI4P, and PIP2 beside the main

electrostatic driving force.
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2.5 Figures and Table

Figure 2.1: Purified THD analysis in SDS-PAGE. From left to right, Lane 1–All range
Precision protein standards; Lane 2–total cell lysate; Lane 3–cell lysate supernatant; Lane
4–cell lysate debris; Lane 5–column loading flow through; Lane 6–column wash; Lane 7,8,9–
column elution fractions.
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Figure 2.2: The sample size exclusion column chromatography of purified THD.
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Figure 2.3: Lipid titration of TAMRA labeled MSP for Nanodiscs assembly. Blue trace–1:95
ratio; Orange trace–1:110 ratio; Dark grey–1:125 ratio; Yellow trace–1:140 ratio.
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Figure 2.4: Purification of DMPS Nanodiscs.Blue trace–DMPC; Orange trace–10% DMPS;
Dark grey–30% DMPS; Yellow trace–50% DMPS.
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Figure 2.5: Talin Head Domain docked on the surface of a Nanodisc. THD colors: F0-gray,
F1-green, F2-pink, F3-blue. The Nanodisc labeling sites are shown in red and the talin
labeling sites in blue. The positively charged amino acids that make up the MOP and FAP
are shown in yellow. For clarity, the binding of talin to the opposite bilayer was omitted.
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Figure 2.6: FRET based THD binding isotherms on DMPS (A), DMPG (B), DMPA (C),
PI4P (D), and PIP2 (E) Nanodiscs.
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Figure 2.7: Dissociation constants of THD binding to bilayers composed of mixtures of
DMPC and anionic lipids.Error bars represent the standard deviation calculated from a
minimum of three trials.
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Figure 2.8: Free energy of association vs. bilayer formal charge. DMPS and DMPA grouped
together blue triangles; DMPG, PI4P, and PIP2 grouped together green asterisks.
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Figure 2.9: Structures of DMPC, DMPS, DMPG, DMPA, brain PI4P, and brain PIP2.
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Table 2.1: Dissociation constant of THD subdomains on Nanodiscs

F0F1 Kd (µM) F2F3 Kd (µM) F0F3 Kd (µM)

50% DMPS 0.45 ± 0.05 1.24 ± 0.17 0.58 ± 0.04

10% PIP2 0.86 ± 0.02 0.18 ± 0.01 0.27 ± 0.01
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CHAPTER 3

CONFORMATIONAL DYNAMICS OF TALIN
REGULATED BY ANIONIC LIPIDS

3.1 Introduction

The overall membrane charge has been previously shown to control the affinity of talin

head domain (THD) for the bilayer surface. Many suggest that PIP2 plays a critical role

in talin mediated integrin activation by activating the auto-inhibited talin and promoting

conformational change [20, 34, 99]. However, the detail picture of talin interacting with

membrane and integrin tails is lacking, especially how the F3 domain binds membrane and

modifies the integrin β tail tilting angle.

Martel et al. first described the evidence for a lipid induced conformational change,

which showed a differential sensitivity to proteolysis upon binding to phosphatidylinositides

[20]. Recently, the advance of Molecular Dynamics (MD) simulations has allowed investiga-

tors to further study this problem. Kalli et al. showed that interaction of talin with the lipid

bilayer converts the linear arrangement of the F0-F3 domains to a “V” shape conformation

having an angle of 60 degrees between F0F1 and F2F3 [168]. This conformation is shown to

optimize membrane contacts and increase the number of hydrogen bonds upon binding to

β-tails.

In yet another MD simulation, Arcario et al. used a Highly Mobile Membrane Mimetic

Reproduced in part with permission from Ye Xin, McLean A. Mark, and Sligar G. Stephen. Conforma-
tional equilibrium of talin is regulated by anionic lipids. Biochimica et Biophysica Acta-Biomembranes,
1858(8), 1833–1840, 2016. Copyright 2016 Elsevier. The published version may be found online at
http://doi.org/10.1016/j.bbamem.2016.05.005.
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(HMMM) to capture snapshots of the interaction of the F2F3 domain and an anionic mem-

brane surface [44]. The study suggests the important function of the MOP region of F2

domain in steering the THD toward the membrane in an orientation conducive to inter-

action with integrin tails. The simulations also identified an initially buried phenylalanine

rich area that opens up and allows the embedding of phenylalanine residues 261 and 283

(F259 and F280 in talin 1). They may serve as a pair of membrane anchor that stabilize

the THD/membrane complex. In the simulation, such conformational changes seem to be

triggered by the snorkeling of the basic lysine residues in the MOP upon binding with anionic

lipids. Most interestingly, the motions described above also promotes a large conformational

change in the F3 domain, bringing K325 and K327 (K322 and K324 in talin 1) to the mem-

brane surface in a preferable conformation for interaction with integrin tails. The F3 residues

involved in the membrane interactions have been termed as the F3 Association Patch (FAP).

Although the simulation results are in a great agreement with many previous in vivo

study that K322 and K324 are crucial for optimal integrin activation [9, 98]. There is no

direct biochemistry or biophysics evidence of the F3 conformational change, to my best of

knowledge. To further study and properly measure the protein-membrane binding topology,

fluorescence resonance energy transfer (FRET) was chosen as the major technique due to

the fact that FRET occurs between two proper fluorophores only when the distance between

them is less than 10 nm [169, 170]. This is well suited to study the binding geometry

change occurring on a comparable spatial scale. When FRET takes place in a sufficiently

close proximity, energy of the fluorophore is coupled through the fluorescent dipoles rather

than transferring by emitting a photon from the donor then absorbing by the acceptor.

One particular useful phenomenon of the FRET is that the FRET efficiency changes as the

sixth order of the distance between the FRET pair and their Förster distance where the

FRET efficiency is 50% [171]. Researcher have widely applied this technique to study the

protein conformational change [80, 172], protein-protein interaction [173, 174], biophysical
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characteristic of membrane [175], and protein-membrane interaction [176].

This chapter describes the first evidence of anionic lipids regulating the conformational

equilibrium of talin. To correctly probe the conformational change of talin during membrane

binding, the Förster distance of FRET pair used in FRET THD binding assay. Data analysis

suggests that talin F3 domain undergoes a large conformational change on highly negatively

charged membrane surface as suggested in previous MD simulation. PIP2 induces the largest

change. Mutagenesis studies of talin also implicates that several lysine and phenylalanine

residues are important trigger residues for such binding topology alteration.

3.2 Experimental Methods

3.2.1 Materials

DMPC, DMPS, DMPG, DMPA, PI4P, and PIP2 were purchased from Avanti Polar

Lipids (Alabaster, AL). E.coli BL21 DE3 and E.coli BL21 DE3 gold were purchased from

Stratagene (San Diego, CA). Competent cells of NEB Turbo E.coli were obtained from New

England Biolabs (Ipswich, MA). Tetramethylrhodamine-5 (and -6) C2 maleimide (TAMRA)

was obtained from Anaspec (Fremont, CA). iProof polymerase kit was purchased from Bio-

Rad (Hercules, CA). Uniblue A (UA), Amberlite XAD-2 beads, and sodium cholate were

obtained from Sigma-Aldrich (St. Louis, MO). pET30A-THD plasmid DNA for expression of

talin 1 head domain was a generous gift from Dr. Mark Ginsberg in University of California

at San Diego (San Diego, CA).

3.2.2 Talin head domain (THD) mutagenesis

THD D201C was generated by using pET30A-THD as the template and designed

primers for the aspartate to cysteine mutation (THD D201C Forward: 5’- GTT CTT TTA
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CTC ATG CCA GAA TGT GGA TTC C -3’; THD D201C Reverse: 5’- GGA ATC CAC

ATT CTG GCA TGA GTA AAA GAA C -3’). Expression plasmids of THD K274E, K322E,

K324E, and F259A/F280A mutants were produced by using pET30A-THD I398C as the

template and specific primers for each mutant (THD K274E Forward: 5’- CTG CCC AAG

GAG TAC GTA AAG CAG GAA GGA GAG CGT AAG ATC -3’; THD K274E Reverse:

5’- GAT CTT ACG CTC TCC TTC CTG CTT TAC GTA CTC CTT GGG CAG -3’; THD

K322E Forward: 5’- GGA AAA AAT GAA AGG GGA GAA CAA GCT TGT GCC CAG

GCT TCT G -3’; THD K322E Reverse: 5’- CAG AAG CCT GGG CAC AAG CTT GTT

CTC CCC TTT CAT TTT TTC C -3’; THD K324E Forward: 5’- GAA AGG GAA GAA

CGA GCT CGT GCC CAG GCT TCT G -3’; THD K324E Reverse: 5’- CAG AAG CCT

GGG CAC GAG CTC GTT CTT CCC TTT C -3’; THD F259A Forward: 5’- GCA CAA

GGC TGG CGC ACT TGA CCT CAA GGA CTT CCT GCC -3’; THD F259A Reverse: 5’-

GGC AGG AAG TCC TTG AGG TCA AGT GCG CCA GCC TTG TGC -3’; THD F280A

Forward: 5’- GAA GGG AGA GCG TAA GAT AGC CCA GGC ACA CAA GAA TTG

-3’; THD F280A Reverse: 5’- CAA TTC TTG TGT GCC TGG GCT ATC TTA CGC TCT

CCC TTC -3’). The PCR reaction parameters and setup were adopted from the protocol

described in chapter 2 except 3 minutes 30 seconds extension time. All PCR products were

digested with DpnI and then purified by QIAquick PCR purification kit (QIAGEN, Valencia,

CA). The recombinant plasmid constructs were amplified by transferring into NEB turbo

competent cell and then send for DNA sequence validation by ACGT (Northbrook, IL) using

a T7 promoter primer.

3.2.3 Expression, purification and labeling of THD mutants

The protocol for THD mutant purification and labeling was adapted from chapter 2.

In brief, the expression vectors were transferred into the E. coli BL21 Gold (DE3). 50 mL

starting culture was prepared for each mutant and then inoculated to 1 L in a ratio of 1:100.
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Typically, 2 L of cell culture for each THD mutant were cultivated at 37 °C with shaking

at 250 RPM followed by IPTG induction and additional 4-hour incubation. Cell pellet was

harvested by centrifugation at 8,000 RPM for 10 minutes at 4 °C.

Purification started with preparation of cell lyse supernatant by suspension, sonication,

and ultracentrifugation at 30,000 RPM 4 °C for 45 minutes. Then the cell supernatant was

purified by loading onto a Ni2+ chelating Sepharose fast flow column. The THD proteins

were eluted by 500 mM imidazole and dialysised against 8,000,000 volumes of labeling buffer

(20 mM Tris, 150 mM KCl at pH 7.0).

To label the protein, four equivalents of TCEP (pH 7.4) were added added to THD

D201C or other THD mutants in cytoplasmic mimetic buffer followed by 10-minute incu-

bation at room temperature. Two-fold of UA in dry DMSO were added to the sample

dropwisely and continue incubation for another 45 minutes. The excess dye was removed by

gel filtration on an 80 mL Sephadex G25 column. The purity and labeling efficiency were

examined as described in chapter 2.

3.2.4 Determination of TAMRA labeled MSP quantum yield and Förster
distance

To precisely report the fluorophore pair distance measured by FRET binding assay, the

quantum yield of TAMRA and the Föster distance of UA and TAMRA were determined.

The quantum yield of the TAMRA labeled Nanodiscs was determined by comparing the

fluorescence intensity to that of a quantum yield standard using the following equation:

Q = QR · I
IR

· ODR

OD
· n

2

n2
R

(3.1)

Here, QR is the quantum yield of rhodamine B in water (0.31). I, IR, n, nR are the

intensities and indices of refraction of the sample and reference respectively. In the case of
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TAMRA, the refraction indices are equal for sample and reference. Five samples of TAMRA

labeled Nanodiscs and rhodamine B, prepared having optical densities ranging from 0.005

to 0.01 at 540 nm, were used to ensure a more accurate measurement for the quantum yield.

Emission spectra of TAMRA samples and rhodamine B reference were collected scanning

from 560 nm to 650 nm using 540 nm excitation. The integrated fluorescence intensity versus

optical density was fit to a gradient function (Grad). The following equation was used to

calculate the quantum yield:

Q = QR ·
(
Grad

GradR

)
· n

2

n2
R

(3.2)

The Föster distance (R0) for the fluorophore donor-acceptor pair of TAMRA and UA

was calculated using the equation below:

R0 = 0.211

[
κ2ΦDJ (λ)

n2

]
(3.3)

Where κ2 is a constant related to the orientation of the transition dipoles of the donor

and acceptor. Under normal circumstance, it is assumed to be 2/3. ΦD is the quantum yield

of the donor, n is the index of refraction of the solution, and J (λ) is the overlap integral of

the donor’s emission spectrum, and the acceptor’s absorbance spectrum and is equal to:

J (λ) =

∫ ∞
0

εA (λ)λ4FD(λ)dλ (3.4)

where εA(λ) is the absorption spectrum of the acceptor in the unites of M−1cm−1.

FD(λ) is the emission spectrum of the donor normalized to unit area. Using 540 nm exci-

tation wavelength, the emission spectra of TAMRA labeled MSP was measured and then

normalized to an area of 1. The absorbance spectra of UA labeled THD was measured and

normalized to an extinction of 11,000 M−1cm−1 at 595 nm. The a/e-V-Vis-IR Spectral Soft-

ware (www.fluortools.com) was used to calculate the overlap integral from the normalized

spectra. Utilizing the above equations yielded an R0 of 41 Å for the TAMRA-UA fluorophore
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pair.

3.2.5 FRET based binding assay

The FRET based binding assay was using the same method described in chapter 1.

Briefly, 5 µM of UA labeled THD or THD mutants were titrated into around 100 nM

TAMRA labeled Nanodisc in cytoplasmic mimetic buffer at 20 °C. Samples were thoroughly

mixed by gentle pipetting and allowed to equilibrate until the fluorescence intensities were

stabilized for recording. FRET efficiency was calculated using the equation 2.3. Data was

fit to equation 2.4 to derive Fmax and dissociation constant assuming one THD bound per

leaflet of Nanodisc. Lastly, Fmax was used to calculated the saturated dye pair distance in

following equation:

EFRET =
1

1 + (r/R0)
6 (3.5)

Where EFRET is the calculated maximum FRET efficiency. R0 is the determined Föster

distance of TAMRA and UA, which is 41 Å.

3.3 Results and Discussion

In last chapter, a FRET based THD binding assay was developed to measure the affinity

of THD-Nanodisc complexes, where the TAMRA is specifically labeled on MSP D73C and

a dark quencher UA is engineered on THD I398C site to avoid potential interference of the

MOP and FAP region. Thus, by nature of FRET, the average donor-acceptor distances can

be easily measured from the FRET efficiencies. The Föster distance of the TAMRA-UA

pair was determined to be 41 Å. Figure 3.1 shows the calculated relation plot of the FRET

efficiencies and dye pair distances of TAMRA-UA where the FRET efficiency is expected
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to be greater than 10% for 60 Å and smaller than 95% for 30 Å making this dye pair

ideal for measuring donor acceptor distances of the THD-Nanodisc binding geometries. The

measured dye separation distances represent the spacing between the labeled residue on talin

and position 73 on the MSP belt (Figure 2.5). Here, THD is assumed binding to both sides

of the Nanodisc in any azimuthal orientation and thus the measured distance represents the

average of all orientations in the complex.

3.3.1 Measurements of THD-Nanodisc binding geometry by FRET

Figure 3.2 summarizes the donor acceptor distances for all the phospholipids tested

where the UA is labeled in position 398 of THD F3 domain. On bilayers with higher anionic

lipid content, the donor acceptor distances become shorter. Due to the labeling position

of the dye, the distance changes on different phospholipid bilayers suggest that increased

anionic lipid composition induce a geometry of the complex in which the THD F3 domain

is closer to the bilayer. Intriguingly, PIP2 favors this geometry at just 5% mole fraction in

Nanodisc.

Although there is an obvious general trend of decreasing dye separation with increasing

anionic lipids, the degree of the change differs with different anionic lipid headgroups. Com-

paring DMPS, DMPA, and DMPA membrane which all have identical formal charges, F3

domain is 5–8 Å closer on 50% DMPS than on 50% DMPA or 50% DMPG bilayers. Com-

parably, on 5% and 10% PI4P and PIP2 bilayers, the distances between THD F3 domain

and Nanodiscs are 10 Å closer than that on 50% DMPA and 50% DMPG membranes.

The significant difference here between 50% DMPS, PI4P, PIP2 bilayers and 50%

DMPG and 50% DMPA could be attributed to two main reasons. First is the charge local-

ization on the lipid headgroups. PA and PG membranes carry the charge on the glycerophos-

phate, while PS, PI4P, and PIP2 membranes carry the negative charge on the headgroup

residue. The bulky zwitterionic head group of the background DMPC may render the PA
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and PG charge inaccessible to the protein. In the contrast, the charge of PS, PI4P, and PIP2

are more expose to the outer solvent environment. Secondly, PI4P and PIP2 lipids have a

charge of -3 and -4 creating a much higher charge density in the binding site. Taken as a

whole, there is a requirement for a high charge density and that the charge must be localized

distal to the glycerol backbone to promote the proposed conformational change. 50% PS,

5% PI4P, 10% PI4P, 5% PIP2 and 10% PIP2 all fall in this category.

These results also provide experimental support for MD simulations that predict a

significant conformational change in the THD upon engaging a negatively charged bilayer

[44]. In the model, 5–10 Å downward movement of the F3 domain was observed after initiral

docking of the MOP and promoted the interaction of K325 and K327 (K322 abd K324 in

talin 1) with the surface of the membrane. Such conformational change could be crucial for

optimal interaction with integrin tails.

It seems that when a bilayer has a high change density, either local or in bulk, and that

the headgroup possess the negative charge, the THD F3 domain binds in a topology nearly

10 Å than when the charge is localized on the glycerolphosphate. In the case of DMPS, only

50% PS bilayers present a local charge density comparable to that of PI4P and PIP2 thus

inducing the large change of THD F3 domain. It is interesting to note that the magnitude

of the conformational change on 50% PS membranes is smaller than that seen on 10% PIP2.

This data is in a great agreement with the hypothesis suggested by the MD simulation that

the F3 conformational change were performed on pure PS membranes therefore presenting

a much higher charge density than the tasted 50% PS membrane and may better represent

the local charge density of PIP2.

To understand if these key differences are purely due to bilayer charge or if PIP2 is

preferentially promoting a change in binding geometry, we have plotted the dye separation

distance versus formal bilayer charge (Figure 3.3). Clearly, just 5% phosphatidylinositides

presented in bilayer are more effective at altering the equilibrium of THD conformation
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than PS, PA, or PG at the same degree of formal charge. This observation impicates the

regulatory role of PIP2 in integrin activation. Although the physiological concentration of

PIP2 in cell membrane is 1–2%, it is known that talin can bind, activate and recruit PIPKIγ

to the sites of focal adhesion and potentially giving rise to an increase in the local PIP2

concentration [38, 39]. 50% PS may be physiologically irrelevant, the PIP2 concentrations

used are directly applicable. It has been shown that roughly 80 phospholipids occupy one

leaflet in a DMPC Nanodisc, 5% represents just four PIP2 lipids per leaflet. Therefore,

THD is quite sensitive to the local concentration of PIP2. A modest elevaion of PIP2 at the

sites of Focal Adhesions (FAs) can trigger this change in binding geometry. Our results are

consistent the importance of the interaction of talin with PIPKIγ and production of PIP2

at the site of adhesion.

In order to validate that the FRET based binding assay is indeed probing a large

conformational change in the F3 domain, another labeling site was engineered in position 201

(THD-201-UA) located on the opposite site of MOP residues of THD F2 domain. Inspection

of the fluorophore separation distances by the FRET based binding assay shows that, when

the F2 domain is labeled, the distances between the dye pair are greater than 55 Å on either

PS or PIP2 membrane surface (Figure 3.4). This confirm the previous interpretation that the

THD F2 domain provides the anchor point after initial contact and would remain at a nearly

fixed distance from the bilayer surface, while the F3 domain starts with a further position

and later recruits toward anionic lipid bilayer by PIP2. Actually, the small decreased dye

separation distance seen on THD-201-UA binding to PIP2 can be interpreted as the burying

of the MOP membrane anchor, a step that may be critical in triggering the F3 conformational

change.

On examination of previous FRET results, the measured distance alterations on differ-

ent lipid headgroups might also due to a shift in the docking of the THD on Nanodiscs. The

favored interaction of F0 or F1 domain with certain type of bilayer surface may result in the
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F3 domain hanging off the edge of the Nanodisc causing closer dye separation distance. To

confirm that the measured changes are localized to F2F3 domain, same FRET based binding

experiments on isolated F2F3 domain labeled at position 398 were performed. Figure 3.5

shows that the distance measurements on the full-length THD and truncated THD F2F3

domain are nearly identical under all condition tested. The removal of the F0F1 domain

does not notably change the overall docking location of the THD F2F3 domain , which is

consistent with hypothesis that the changes in FRET distances are a result in a change in

the F2F3 binding topology instead of a docking position shift.

3.3.2 Mutagenesis investigation of THD MOP and FAP

A long-time unresolved question in talin mediated integrin activation is that how does

a single point mutation in the F2 domain strongly prohibit the ability of THD to activate

integrin? Previous simulation results have identified key residues in the F2 MOP and the

F3 FAP that are important in triggering the conformational change. Closer examination

of the simulation shows that the lysine residues on the F2 domain are proposed to snorkel

into the anionic lipid bilayer, exposing a phenylalanine rich pocket that provides further

stabilization of the bound complex as membrane anchors. The formation of the membrane

anchor induces a large conformation change in the F3 domain, bringing it to the membrane

surface. Early studies also show that single charge reversal mutations in the MOP or in the

FAP significantly weaken the talin mediated integrin activation in vivo [6, 43, 98].

In order to investigate the functional role of the MOP and FAP residues, the charge

reversal mutants of K274E in the F2 domain and K322E and K324E in the F3 domain were

generated to ascertain the effects on the measured dy separation distances. In the FRET

based binding assay, the affinities of THD-membrane binding were not significantly affected

by the single charge reversal mutations (less than a factor of two, WT = 0.6 µM, K324E

= 1.2 µM, K322E = 0.4 µM, K274E = 0.9 µM, and F259A/F280A = 0.7 µM), consistent
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with membrane recruitment being driven by the overall electrostatics of the bilayer surfaces.

However, measurements of the dye separation distance of the THD mutants labeled in the F3

domain are 10–15 Å greater than the WT THD/membrane complex (Figure 3.6). It points

to a considerable conformational change of the mutants compared to wild type. Recent MD

simulation, mentioned above, have suggested that the interactions of the F2 lysines with the

membrane induce the exposure of a pair of membrane anchor formed by residue F259 and

F280. To further test this hypothesis, the proposed membrane anchor residues F259 and

F280 were mutated to Alanine (F259A, F280A) and performed FRET based binding assay.

Once again, the mutations in the F2 domain resulted in a longer donoracceptor distance in

the bound complex.

All of the MOP and FAP mutants exert only a modest change in dissociation constant,

increasing by no more than a factor of two. This result indicates that the remaining positive

charges provide a significant portion of the overall free energy of association. Although the

affinities are minimally affected, the lysine to glutamate mutations at positions 322, 324,

and 274 significantly alter the conformation of the THD bilayer complex. This phenomenon

can be explained in two ways. Firstly, the clash of the negatively charged glutamates at

position 322 and 324 with the negatively charged bilayer does not allow the close association

of the F3 domain. Secondly, K274E plays a pivot role in the snorkeling that is required

to open up the membrane anchor pocket. Mutation at this position inhibits the trigger of

the large conformational change. Similarly, alanine mutations of the phenylalanine residues

implicated in the formation of the membrane anchor, once again, fail to trigger the change

of binding geometry, and the F3 domain remains 10 Å further from the bilayer surface. It

is important to note that the F259A/F280A mutant presumably has the same electrostatic

interactions as the wild-type yet, the conformational change is inhibited. The correlation

of the measured complex geometry and the ability of the mutant THD to activate integrin

provide evidence that the conformational dynamics of the THD may play a significant role
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in integrin activation.

3.4 Conclusions

In this chapter, measurements of the dye separation distance of the THD Nanodiscs

complex were performed. Results suggest a rich interplay between electrostatics and confor-

mational equilibrium during the talin FERM domain binding to phospholipid bilayers. THD

binds to anionic bilayers with relative high affinity regardless of the identity of anionic lipid

headgroup providing the charge. It is only when the bilayer provides a high charge density

and the charge is localized on the headgroup does the F3 domain approach the bilayer surface

in a confirmation conducive interacting with integrin cytoplasmic tails. Phosphatidylinosi-

tides provide the perfect scaffold for promoting the proposed conformational change, thus

potentially implicating PIP2 and THD conformational dynamics in a regulatory role during

talin mediated integrin activation. THD F3 undergoes a large conformational change in the

process of talin recruitment, triggered by MOP residues and a pair of phenylalanine mem-

brane anchors in F2 domain. Figure 3.7 depicts a schematic representation of the mechanism

of this lipid headgroup induced change of binding topology.
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3.5 Figures
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Figure 3.1: The plot shows the theoretical FRET distance calculation from a dye pair that
has a Föster distance of 41 Å.
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Figure 3.2: Dye separation distances of I398C labeled talin binding to bilayers containing
anionic lipids. Distances are calculated from the Fmax determined from the fitting of the
binding isotherms. The error bars represent the standard deviation of a minimum of three
trials.
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Figure 3.3: Dye separation distance of THD bound to DMPS, DMPG, DMPA, PI4P and
PIP2 versus formal bilayer charge.
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Figure 3.4: Comparison the dye separation distances of THD I398C and D201C labeling
sites. The error bars represent the standard deviation of a minimum of three trials.

Figure 3.5: Comparison of the dye separation distances of THD F2F3 and full-length THD
on Nanodiscs. The error bars represent the standard deviation of a minimum of three trials.
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Figure 3.6: Effect of FAP and MOP mutants on the dye separation distances. Error bars
represent the standard deviation of a minimum of three trials.

F3F0F1
F2

F3 F0F1
F2F3

PIP2 PIP2

Figure 3.7: Regulation of THD conformation by PIP2. The presence of PIP2 in a bilayer pro-
motes the conformational change that allows simultaneous interaction of F2 and F3 domains
with the membrane surface.
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CHAPTER 4

CHARACTERIZATION OF TALIN HEAD
MEMBRANE ANCHOR

4.1 Introduction

For many membrane peripheral proteins, the insertion of hydrophobic anchors into

the membrane’s acyl chain core offers a crucial stabilization force for the membrane bound

forms [177, 178]. Even though the electrostatic attractions provide the overall free energy of

peripheral proteins binding to the membrane, water and metal ions in cytoplasmic solution

can readily displace such electrostatic interactions. Thus, insertion of hydrophobic membrane

anchor and general electrostatic engagements often work in orchestra for complete strong

binding of peripheral proteins to the membrane.

Early experimental studies have predicted the existence of the hydrophobic anchor

in talin [179, 180, 181]. However, the detail description and mechanism of the membrane

anchor, which could be important to understanding the talin membrane recruitment and

integrin signaling, has remain elusive to both biochemical and structural studies. The ma-

jor hurdle is the difficulties in fully interrogating a membrane bound protein in its native

environment. Another main reason that hampers further study of the membrane anchor

is no apparent membrane anchor observed in the crystallographically determined structure

of talin F2F3. Large conformational change may require to uncover the suggested hidden

membrane anchors. Opposing to that, many other peripheral proteins, such as Ras family

proteins and blood coagulation factors, possess obviously exposed hydrophobic anchors or

lapidated domains that readily insert into the membrane [182, 183, 184].
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A recent Molecular Dynamic (MD) simulation performed by Arcario et al. utilizes

highly mobile membrane mimetic (HMMM) model to expedite the diffusion of lipid molecules

[44]. In HMMM simulation, the full-length lipid bilayers are replaced by short tail lipids at

the interface of an aqueous-organic biphasic system that allow shorter simulation time to

observe lipid reorganization and protein insertion compared to conventional lipid setting.

The simulation identified two connected conformational changes of talin FERM domain that

contribute to membrane anchoring when THD approaches the surface of the membrane.

First is the snorkeling of lysine residues of F2 domain (MOP) that drags the protein deeper

into membrane. The protein local side chain rearrangement allows the secondary insertion of

a phenylalanine rich membrane anchor which is originally buried within the protein and flips

down into the membrane core. The snorkeling basic residues in the F2 domain may offer

some stabilization to the membrane bound talin FERM. The inserted phenylalanine pair

(F259 and F280 in talin 1) is expected to provide the majority of hydrophobic stabilization.

Although another recent simulation fails to observe the same membrane anchor insertion

[168].

In this chapter, MSP was engineered to remove all tryptophan residues in order to

avoid fluorescence interference. The “dark” Nanodisc was assembled to provide precise

lipid composition control and native membrane environment. Thus, mutagenesis study at

proposed membrane anchor sites allow the visualization of side chain insertion upon binding

of the Nanodisc by observing the emission spectrum shift of protein native tryptophan, which

is sensitive to its polar environment. The result here shows the first experimental evidence

of the existence of membrane anchor in talin FERM domain that inserts into membrane

hydrophobic core.
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4.2 Experimental Methods

4.2.1 Materials

DMPC, DMPS, and PIP2 were purchased from Avanti Polar Lipids (Alabaster, AL).

E.coli BL21 DE3 and E.coli BL21 DE3 gold were purchased from Stratagene (San Diego,

CA). Competent cells of NEB Turbo E.coli and Gibson assembly master mix were obtained

from New England Biolabs (Ipswich, MA). iProof polymerase kit was purchased from BioRad

(Hercules, CA). Uniblue A (UA), Amberlite XAD-2 beads, and sodium cholate obtained from

Sigma-Aldrich (St. Louis, MO). Tetramethylrhodamine-5 (and -6) C2 maleimide (TAMRA)

was obtained from Anaspec (Fremont, CA).

4.2.2 Preparation of dark Nanodiscs

The expression vector of non-tryptophan MSP was generated by DNA synthesis and

Gibson assembly method. The DNA fragments were designed to contain about 10-15 base

pair overlap with adjacent DNA sequence. Before the assembly reaction, plasmid backbone

pET28A were digested by restricted enzyme NcoI and HindIII and purified by QIAquick

PCR purification kit (QIAGEN, Valencia, CA) to create the sticky ends. To start the Gibson

assembly, the digested pET28a plasmid and designed MSP DNA segments were mixed with

a cocktail of three enzymes, including exonuclease, polymerase, DNA ligase, and other buffer

components provided by the commercial available kit (New England Biolabs, Ipswich, MA).

The exonuclease is responsible for creating 3’ overhangs that allow the annealing of segments

shared with complementarity overlap regions. Then the polymerase incorporates nucleotides

to fill in the gaps between any annealed fragments. The DNA ligase removes any nicks in

the assembled DNA.

The assembled DNA product was transferred into NEB turbo competent cells for am-
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plification and purification. DNA sequence validation was performed by by ACGT (North-

brook, IL) using a T7 promoter primer. The expression and purification protocol of MSP

was previously described [158, 159]. Concentration of the protein was determined using ex-

tinction coefficient 10.94 mM-1cm-1 at 276 nm wavelength. The Nanodiscs reconstitution

was performed as described in chapter 2.

4.2.3 THD membrane anchor mutagenesis and preparation

THD F2F3 F259W, THD F2F3 F280W, THD F2F3 F259W I398C, THD F2F3 F280W

I398C, and THD F2F3 F259W F280W with or without I398C mutation were generated by

using pET30A-F2F3 or pET30-F2F3 I398C as the PCR template and designed primers for

the phenylalanine to tryptophan mutation (F259W Forward: 5’- GCA CAA GGC TGG

CGC ACT TGA CCT CAA GGA CTT CCT GCC -3’; F259W Reverse: 5’- GGC AGG

AAG TCC TTG AGG TCA AGT GCG CCA GCC TTG TGC -3’; F280W Forward: 5’-

GAA GGG AGA GCG TAA GAT ATG GCA GGC ACA CAA GAA TTG -3’; F280W

Reverse: 5’- CAA TTC TTG TGT GCC TGC CAT ATC TTA CGC TCT CCC TTC -

3’). Silent mutations were engineered in the primers to eliminate XmnI and BglII restricted

digestion sites from F259W and F280W reaction for subsequent examination.

The detailed PCR reaction settings and parameters can be referred to chapter 2. All

PCR products were digested with DpnI for 4 hours at room temperature. NEB turbo

competent cells were used to amplify and extract recombinant plasmid. All miniprep samples

were subject to digestion by XmnI or BglII and visualize by agarose electrophoresis. Samples,

that were not cleaved by restricted enzyme, were sent for DNA sequence validation by ACGT

(Northbrook, IL) using a T7 promoter primer.
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4.2.4 FRET based binding assay

The UA labeled THD and TAMRA labeled Nanodiscs were prepared as described in

previous chapter. Detail protocol of the fluorescence titration can be found in chapter 2.

4.2.5 Label free tryptophan fluorescence binding assay

The label free tryptophan fluorescence assay was developed to visualize the hydrophobic

change of tryptophan environment. The fluorescence binding experiments were performed

in a ISS K2 multi-frequency cross correlation phase and modulation fluorometer connected

with a circulating water bath for temperature control at 20 °C. An excitation wavelength of

295 nm and 8 nm bandwidth for both excitation and emission were used for all experiments.

The binding assays started by adding 5 µM dark Nanodiscs in a 1 mL solution con-

taining 20 mM HEPES pH 7.2, 4 mM KH2PO4, 125 mM KCl, 14 mM NaCl, 1mM MgCl2,

0.02 mM EGTA to mimic cytoplasmic environment. The Nanodiscs containing buffer was

equally split into two fluorescence cuvettes followed by adding 5 µM THD F2F3 wild type

or mutants into one cuvette and same volume of cytoplasmic buffer into the other one as the

reference. Then the binding samples and blanks were incubated at 20 °C for 10 minutes with

gentle stirring. The final emission spectra were obtained by scanning from 310 nm to 410

nm in 1 nm/second rate. The data were imported into Vinci software to perform spectrum

manipulations for blank subtraction and normalization.

4.3 Results and Discussion

4.3.1 Tryptophan mutations do not perturb THD membrane binding

To visualize the membrane anchor insertion, F280 and F259 were mutated into tryp-

tophan for two rationales. Firstly, the structures of the two amino acids are very similar
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that both possess an aromatic residue allowing hydrophobic interactions with lipid bilayer,

although the tryptophan side chain is slightly less hydrophobic than phenylalanine. The

second reason is that tryptophan fluorescence is sensitive to its polar environment. Using

the tryptophan fluorescence maximum information, a tryptophan can be assigned as buried

and in a hydrophobic environment if the peak of emission is near 330 nm; A tryptophan in

more polar environment can induce a longer maximum wavelength, which is commonly used

to imply side chain solvent exposure in protein.

In chapter 3, alanine mutations at F259 and F280 in the talin F2 significantly impede

the F3 domain conformational change to the membrane in a preferable geometry for integrin

interaction. In order to assess the effects of mutating phenylalanine to tryptophan on talin

FERM domain functions, FRET based binding assay was performed with UA labeled F2F3

phenylalanine mutants on 5% PIP2 and 50% DMPS Nanodiscs. Figure 4.1 shows the results

of the FRET titration experiments on 5% PIP2 Nanodisc. Only modest effects on dissocia-

tion constant were detected. The biggest change observed with F2F3 F259W is less than a

factor of two compared to wild type THD and the dissociation constant remains at a disso-

ciation constant of 0.89 µM in a tight binding range. Similar results were also obtained with

50% DMPS Nanodiscs (Data not show). Substitutions of phenylalanine with tryptophan do

not noticeably alter the affinity between THD F2F3 and anionic membrane surfaces. This

result fits to the previously suggested model that the general electrostatic attraction governs

the talin FERM binding to membrane and the lysine residues in F2 MOP and FAP are the

major interface.

Moreover, calculation of the FRET donor-acceptor distance reveal a unchanged dye

separation of THD F2F3 phenylalanine mutants binding to lipid bilayers containing PIP2

(Figure 4.1 bottom panel). The F2F3 F280W mutant gives rise to the biggest increase

of FRET pair distance, which is less than 0.2 nm longer than that of wild type F2F3.

The phenylalanine mutations at F280 and F259 do not perturb the MOP residues inducing
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the subsequent large F3 conformational change. Thus, the mutants are suitable to further

investigate the membrane anchor insertion.

4.3.2 F259W inserts into lipid bilayer upon talin membrane binding

The original membrane scaffold protein (MSP) used in previous chapter for FRET

based binding assay contains two native tryptophan that may interfere the detection of

membrane anchor insertion. Figure 4.2 shows that MSP structure and each MSP possess two

tryptophan, four tyrosine, and four phenylalanine. To exclusively measure the environmental

change of talin tryptophan, all MSP tryptophan were mutated into phenylalanine by Gibson

assembly method with designed MSP DNA segments containing desire mutated codons.

Figure 4.3 presents the comparison of the size exclusion chromatography traces from

Nanodiscs prepared by regular MSP or tryptophan mutated MSP. The identical retention

time of the absorbance peak at 280 nm indicates that homogeneous Nanodiscs were produced

by both versions of MSP. Thus, alanine mutations at tryptophan sites in MSP do not perturb

the assembly process of the Nanodiscs.

In order to determine the solvent exposure of the tryptophan in THD wild type and

mutants, 5 µM protein were dissolved in cytoplasmic mimic environment and excited with 295

nm wavelength. The 295 nm excitation wavelength was selected to minimize the fluorescence

from tyrosine due to the fact that its significantly absorbsance from 250 to 295 nm and

emission from 280 to 350 nm.

Figure 4.4 is the crystallographic structure of talin F2F3 generated from the previously

reported linear talin FERM domain structure (PDB: 3IVF). Two tryptophan residues can be

found and are buried in talin F3 domain. This is in a great agreement with the normalized

emission scanning results (Figure 4.5), where the maximum emission is detected at 330 nm.

Mutating phenylalanine into tryptophan induces a slightly red shift of the emission spectra,

and double mutation further promote a larger peak wavelength at about 350 nm. The result
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here implicates that F259 and F280 are semi-exposed to the solvent environment, that allow

them to readily flip down and insert into lipid bilayer.

To investigate the membrane anchor insertion upon binding to membrane, 5 µM THD

F2F3 mutants, which is roughly ten times more than the determined dissociation constant

to ensure completed binding, were incubated with 5 µM neutral or negatively charged Nan-

odiscs. Interestingly, the emission spectrum of F259W binding to 50% DMPS noticeably

shifts to 330 nm maximum compared to protein alone. On the other hand, interactions of

F280W and anionic lipid membrane yields a slightly red shifted emission spectrum (Figure

4.6). It should be noted that both THD mutants bind to the 50% DMPS with similar disso-

ciation constants (Figure 4.1) and thus the shift is specific to side chain membrane insertion

rather than the difference in binding strength.

A closer exanimate on the simulation result of Arcario et al. may provide a plausible

explanation to the difference between the two sites. In their simulation, although both F259

(F261 in talin 2) and F280 (F281 in talin 2), induced by the lysine snorkeling and local side

chain rearrangement, insert into the membrane but the depths of insertion are distinctive.

The F259 residue penetrate deeper into the hydrophobic acyl chain layer comparing to the

charged lipid headgroup where the F280 stays. It is also possible that only F259 exerts as the

membrane anchor and inserts into membrane, and the local conformational change provides

larger solvent exposure for F280. Another observation for membrane anchor insertion is the

require of negatively charged membrane surface. Neither of the mutants show significant

shift on the neutral DMPC Nanodisc. This could be explained by the lack of MOP lysine

snorkeling, which requires high formal negatively charge and is prerequisite for subsequent

local side chain reorganization. And those motions are critical to trigger buried phenylalanine

flipping down and provide stabilization force for membrane bound talin FERM domain.
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4.4 Conclusions

To summarize this chapter, a label free fluorescence assay was developed to probe

the hydrophobic environment of protein tryptophan. To eliminate the interference from

Nanodisc, the membrane scaffold protein used for assembly was engineered to contain no

tryptophan residues. Previous proposed membrane anchor sites in talin F2 domain were

mutated into tryptophan to further investigate the insertion of those side chains. The result

of FRET based binding assay suggests that those mutations do not perturb the talin mem-

brane interactions and F3 conformational change. The emission spectra scan for talin F2F3

Nanodisc complexes indicates that the initial buried F259 flips down into the membrane. It

is still not clear whether F280 would provide stabilizing force by inserting into membrane

or remain in protein hydrophobic pocket. It is nevertheless that talin could interplay with

lipid bilayer by additional hydrophobic force but solely rely on electrostatic attraction.
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4.5 Figures
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Figure 4.1: Comparisons of THD and THD mutants binding to 5% PIP2 Nanodiscs in
dissociation constants and FRET pair distance.
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Figure 4.2: The structure of MSP. Each MSP contains two tryptophan (pink), four tryosine
(green), and four phenylalanine (orange).

Figure 4.3: The structure of MSP. Each MSP contains two tryptophan (pink), four tryosine
(green), and four phenylalanine (orange).
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Figure 4.4: The structure of talin F2F3 domain. THD F2 domain is labeled in pink. The F3
is depicted in cyan. The yellow side chains are MOP and FAP residues. Native tryptophan
residues are buried in F3 domain and labeled in navy. F259W and F280W are labled in
green and red, respectively.
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Figure 4.5: The normalized emission spectra of THD F2F3 wild type and tryptophan mu-
tants. Tryptophan mutation of F259 and F280 induce a red shift.
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Figure 4.6: The normalized emission spectra of THD F2F3 Nanodisc complexes.
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CHAPTER 5

TALIN AUTO-INHIBITION AND ACTIVATION BY
PIP2

5.1 Introduction

Talin adopts an auto-inhibited conformation, where the talin rod packs against the

talin FERM domain and inhibits its approach to the phospholipid bilayers [97, 98, 100, 102].

Figure 5.1 shows that the talin rod domain consists of 13 helical bundles, R1-R13, and an

N-terminal dimerization sequence [102]. Some of the subdomains of talin rod have identified

as the binding site of many other cytoplasmic proteins, such as vinculin and actin, making a

central hub of protein-protein interaction between transmembrane receptors and cytoskeleton

[10, 50, 51, 54]. Previous structural and NMR studies indicates that segments R1R2, R9, and

R12R13 are the subdomains in the talin rod that bind to the FERM domain (Figure 5.2),

masking the PTB binding site within the F2F3 subdomains [97, 98, 99, 102]. In addition,

Goult et al. report that full-length talin exists as a “donut” shape dimer structure where rod

helical bundles encircle the FERM domain as the auto-inhibited conformation [102]. Several

pathways have been identified to disrupt the talin head-rod interactions. Major routes

include the interaction of complexes of Rap1-RIAM [47, 49], talin linker specific cleavage by

calpain [35, 45, 106], and binding of PIPKIγ [40, 38, 154], which subsequently gnereates PIP2

form PI4P [185]. The protein-protein interactions of talin activation have been extensively

explored, yet the detail lipid-protein interactions of the process remain elusive.

In the plasma membrane, PIP2 only comprises a small fraction (1-2%) of the total

phospholipid and is evenly distributed throughout the membrane [186]. PIP2 has been

71



recognized as an indispensable messenger molecule and plays an important role in focal

adhesion assembly [187, 188]. Multiple allosteric regulation mechanisms have been shown

to relied on the presence of PIP2. For instance, vinculin is expressed in a closed, inactive

conformation in the cytosol. PIP2 binding to the regulatory site of the vinculin tail domain

opens up the self-inhibitory form [12]. PIP2 is also crucial for FAK regulation through

interactions with the positive charge patch in the F2 subdomain of the FAK FERM domain,

resulting in release of the auto-inhibited conformation [189].

In previous chapters as well as early study, it has been shown that the affinity of THD

for lipid bilayers is mainly controlled by overall formal membrane charge [72], the presence

of PIP2 facilitates talin membrane localization [20]. Recent studies show that talin binds to

various phosphatidylinositides and hypothesis that PIP2 plays a role in disrupting the head to

rod domain interactions that are important in maintaining talin auto-inhibited conformation

[72, 99]. Furthermore, PIP2 was found playing a role in the talin mediated integrin activation

and clustering [154]. The recruitment of PIPKIγ is responsible for converting PI4P into

PIP2 and well correlate with the enrichment of local concentration of PIP2 at focal adhesion

site [185]. Specific deletion of PIPKIγ in focal adhesion could remarkably reduce the talin

localization to membrane and adhesion sites. Other biophysics measurements, such as SPR

and NMR, demonstrate that several residues in talin F2F3 domain binds to PIP2, and soluble

C4- or C8-PIP2 disrupts the THD/R9 interactions. A recent research hypothesis a push-pull

mechanism model for talin activation as the high charge density of PIP2 headgroup pulling

THD to the bilayer surface, in the meanwhile pushing away talin R9 domain [99].

In this chapter, affinities of the THD towards various phospholipid bilayers were exam-

ined utilizing Nanodisc technology to provide native membrane environment. To investigate

the role of PIP2 during the activation process of the auto-inhibited talin, FRET based bind-

ing assay was used to measure the inhibition of THD-Nanodisc association in the presence

of purified rod domain segments. Results show that THD is insensitive to the inhibitory
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effect by talin rod subdomains, which strongly inhibit THD binding to other anionic lipid

bilayers. In addition, the interface of activating auto-inhibited talin between PIP2 and THD

is located within talin F2F3 domain.

5.2 Experimental Methods

5.2.1 Materials

DMPC, DMPS, DMPG, DMPA, PI4P, and PIP2 were purchased from Avanti Polar

Lipids (Alabaster, AL). E.coli BL21 DE3 and E.coli BL21 DE3 gold were purchased from

Stratagene. Competent cells of NEB Turbo E.coli were obtained from New England Biolabs

(Ipswich, MA). Tetramethylrhodamine-5 (and -6) C2 maleimide (TAMRA) was obtained

from Anaspec (Fremont, CA). iProof polymerase kit was purchased from BioRad (Hercules,

CA). Uniblue A (UA), Amberlite XAD-2 beads, and sodium cholate obtained from Sigma-

Aldrich (St. Louis, MO).

5.2.2 Preparation of talin rod subdomains

THD R1R2 (482-786), R9 (1654-1848), and R12R13 (2225-2234) was generated by

using pET28A full-length talin as the template and designed primers for the truncated talin

rod domains (R9 Forward: 5’- AGA CAT ATG GCT CCA GGG CAG CTG GAG -3’; R9

Reverse: 5’- GCC TCG AGA CCT TCT GGT TCA CCC ATT G -3’; R12R13 Forward:

5’- GCG CAT ATG CAC CCA GAA GTG G -3’; R12R13 Reverse: 5’- GCA CTC GAG

CTG CTC CTC AAA GTT C -3’; R1R2 Forward: 5’- AT AT AT CAT ATG CGA GGA

CAC ATG CCT CCT CTG -3’; R1R2 Reverse: 5’- AT AT AT CTC GAG TTT CAC

ATG CTG CAG CAG CTC -3’.). The PCR reaction parameter and setup are similar as

described in Chapter 1using iProof polymerase and 60 seconds for extension. All PCR
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products were visualized by agarose gel electrophoresis and then purified by QIAquick gel

extraction kit (QIAGEN, Valencia, CA) followed by digestion of Xho I and Nde I for 4 hours

at room temperature. The digested produce was purified by QIAquick PCR purification kit

(QIAGEN, Valencia, CA) and mixed with pET30A backbone in the ratio of 3:1 of insert to

vector. The ligation reaction was performed at room temperature over night with T4 ligase

(New England Biolabs, Ipswich, MA). The ligation product was enriched by transforming

into NEB turbo competent cells and plasmid extraction. The recombinant plasmid constructs

were send for DNA sequence validation by ACGT (Northbrook, IL) using a T7 promoter

primer.

The protocol for THD rod purification is adapted from chapter 2. In brief, the seqeuce

verified expression vectors were transformed into the E. coli BL21 Gold (DE3). 50 mL

starting culture was prepared for each rod subdomains and then inoculated to 1 L in a ratio

of 1:100. Typically, 4 L of cell culture for each talin rod subdomains were cultivated at 37

°C with shaking at 250 RPM followed by IPTG induction and additional 4-hour incubation.

Cell pellet was harvested by centrifugation at 8,000 RPM for 10 minutes at 4 °C.

Purification started with preparation of cell supernatant by suspension, sonication,

and ultracentrifugation at 30,000 RPM 4 °C for 45 minutes. Then the cell supernatant was

purified by loading onto a Ni (II)-chelating Sepharose fast flow column. The talin rod proteins

were eluted by 500 mM imidazole and dialysised against 8,000,000 volumes of cytoplasmic

mimetic buffer (20 mM HEPES pH 7.2, 4 mM KH2PO4, 125 mM KCl, 14 mM NaCl, 1mM

MgCl2, 0.02 mM EGTA).

5.2.3 FRET based binding assay

The TAMRA labeled Nanodiscs and UA labeled THD were prepared as described

in chapter 2. To start the FRET based titration, designated concentrations of talin rod

subdomains were mixed with 100 nM Nanodisc in order to evaluate the inhibitory effect on
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THD-membrane interactions. Other detailed parameters and setup of FRET based binding

assay can be found in the method section of chapter 2.

5.3 Results and Discussion

5.3.1 Talin rod subdomains inhibit THD binding to anionic lipid bilayers

In order to understand the interplay of protein-protein and membrane-protein interac-

tions in the regulation of talin auto-inhibition, Nanodiscs is used to provide a defined lipid

composition membrane. Goksoy et al. first identified a middle segment of talin rod, spanning

from 1654 to 2344 residues, masks the integrin tail binding site in the talin FERM domain

[97]. It has been further narrowed down by a later study that indeed talin R9 (1655-1822)

binds to F3 of the THD and compete with the β3-integrin cytoplasmic tail for interaction

of THD. Vesicles consisting of a mixture PC and PIP2 disturb such interaction [98]. Talin

R12R13 (2225-2344) is also recognized as a potential THD inhibitory rod subdomain albeit

with a weaker affinity to talin F3 domain compared to R9. In this work, the inhibitory

effects of talin rod domain on THD binding to anionic lipid bilayer were directly measured

using the FRET based binding assay.

Figure 5.3 shows the binding isotherms of labeled THD titrating into TMARA labeled

Nanodiscs containing 50% DMPC in the presence of talin R9 and R12R13. Table 5.1 sum-

marizes the dissociation constants obtained from further data analysis in Matlab software.

In the presence of 0.5 µM talin rod subdomains, THD binds to 50% DMPS Nanodiscs with

a dissociation constant of 1.6 µM, which increases three fold compared to the titration in the

absence of any inhibitory domains. The dissociation constants further increase with higher

concentrations of talin R9 and R12R13. At 32 µM of talin inhibitory domains, the interac-

tions of THD with Nanodiscs are nearly abrogated. A cell membrane typically contains only
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about 20% PS and it is the most abundant anionic lipid headgroup, yet no talin activation

effect on 50% PS Nanodiscs was observed. The local concentration of the rod domains is

expected to be much higher than what is tested here. The volume of the full-length talin

dimer calculated from a previously reported structure is approximately 1300 nm3, which

represents roughly 2 mM inter-domain concentration considering the dimer contains two rod

domains.In cellular environment, the local concentration of inter-domain interaction could be

much higher than 32 µM tested here, thus both subdomains of talin rod are strong inhibitory

segments that regulate the membrane recruitment of THD.

The FRET efficiency can be used to calculate the distance of fluorescence donor-

acceptor. It is interestingly to note that the maximum FRET efficiency obtained from

isotherm fitting is not affected by the presence of both THD inhibitory subdomains (data

not show). Here, Lineweaver-Burk plots of the titrations at increasing concentration of talin

inhibitory domains were used for better visualization (figure 5.4). The shared Y axis intercept

in the plot for different titrations implicates that both talin R9 and R12R13 are canonical

competitive inhibitors of the interaction between THD and DMPS membrane surface. The

topology of THD Nanodisc complex is similar in the presence and absence of the inhibitory

rod subdomains. These results are in a great agreement with previous NMR studies that

the R9 and R12R13 are directly binding to the MOP region in F2F3 domain [98, 102, 99]

and not altering the overall geometry of THD Nanodisc complex. Thus, the association of

THD and membrane is tightly regulated by R9 and R12R13 masking the membrane and/or

integrin binding sites on THD.

Gingras et al. identified a second integrin binding site (IBS2: 1974-2293) in talin rod

domain, which is a pair of helical bundles encompassed by R9 and R12R13 [76]. It has been

linked to maintain integrin clustering and stabilize focal adhesion site [94, 86, 109]. Another

important feature of talin rod is connecting actin cytoskeleton to membrane receptors for

mechanic force transduction and signaling. One of two recognized actin binding within talin
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rod is located in R13 subdomain [76]. Several vinculin binding site also have been identified

in talin R1-R3, R6-R8, R10-R11 subdomains [50]. Thus, the duel-inhibition of R9 and

R12R13 to THD may, conversely, covers the binding sites and interfaces of other proteins in

talin rod, regulating many talin functions, such as integrin clustering, actin binding, vinculin

engagement.

A recent structural study proposed a novel “donut” shape dimer of talin auto-inhibited

conformation, where the R1R2 rod subdomain covers the FERM domain and provides addi-

tional inhibitory effect [102]. In the FRET based binding assay, only modest effect of R1R2

on talin FERM domain binding to membrane was observed (Table 5.1), displaying only a

factor of 4 increase in dissociation constant, which is remarkably weaker than R9 an R12R13.

This is consistent with other NMR studies that talin R1 fails to promote noticable chemical

shifts, suggesting that binding of talin R1 to THD F2F3 appears to be non-specific and weak

[100]. The data presented here fits to a model that the association of THD to membrane

is inhibited by the covering of the FERM domain by rod segments R9 and R12R13, Talin

R1R2, on the other hand, has a closely packed arrangement with R3R4 and does not play a

role in talin auto-inhibition. It has been implicated that the first five helical bundles exist

in a compact form occluding vinculin binding sites of the rod domain in the absence of force

[104].

5.3.2 PIP2 activates inhibited THD

A major unresolved question in talin mediated integrin activation is the mechanism of

releasing the compact auto-inhibited form of full-length talin, especially the role of protein-

membrane interactions. It has been shown that the recruitment of PIPKIγ promotes the

synthesis of PIP2 from PI4P at the sites of focal adhesion [20]. Studies of NMR and SPR

demonstrated an unique bivalent mode of PIP2 interacting with THD, revealing that F2

membrane orientation patch and F3 residues K322-K324 (FAP) are the key interfaces. In
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chapter 3, result shows that charge reversal mutation in the MOP or K322-K324 positions

prevent the closer membrane binding geometry of F3 domain, which may be preferable for

integrin interactions.

To directly quantify the effects of PIP2 on auto-inhibited talin, affinities of THD to 10%

PIP2 Nanodiscs was measured in the presence of talin rod inhibitory subdomains. Figure 5.5

panel A and B show the binding isotherms of the titration of THD into 10% PIP2 Nanodiscs

and R9 or R12R13 segments. Lineweaver-Burk plots of the titrations unveil that both R9 and

R12R13 have very little effect on THD-PIP2 interactions (Figure 5.5 C and D). 50% DMPS

membrane surface is used as a convenient comparison to 10% PIP2 owing to a similar overall

formal change since the charge on PIP2 headgroup at 7.2 is between -4 and -5, depending on

the counter ions and the local environment [186]. PIP2 supports THD tight binding in the

presence of the inhibitory subdomains. Only 4-fold increase in the dissociation constants,

at or below 1 µM, were detected at highest concentration of talin rod subdomains tested,

which is in a sharp contrast to the inhibition seen on DMPS Nanodiscs (Figure 5.5 E and

F).

10 % PI4P, 50 % DMPG, and 50% DMPA Nanodiscs were prepared for FRET based

binding assay for the purpose of further investigating the activation effects of lipid headgroup

specificity. Previously in chapter 2, it has shown that talin FERM domain binds to DMPG,

DMPA, and PI4P at around 0.5 µM dissociation constant similar to DMPS and PIP2. As

expected, neither DMPG and DMPA are able to support tight binding of THD in the presence

of talin rod subdomains R9 and R12R13 (Figure 5.6). This can be explained by the charges

on DMPG and DMPA are located at the glycerol phosphate, which could be less accessible

to talin FERM due to bulkiness of background PC headgroup. Intriguingly, PI4P also fail

to support the high affinity binding of THD in the presence of the talin inhibitory segments

despite the fact that molecular structure of PI4P differ only by a single phosphate group from

PIP2 (Figure 2.9). These findings is consistent with the hypothesis that high charge density
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on lipid head group but not the overall formal charge of the membrane surface is critical

for unmasking the talin rod inhibitory domains and subsequently talin functions. Therefore,

this finding demostrates that the presence of PIP2 at the protein membrane interface is a key

player in dislodging talin rod inhibitory domains and activating talin. At the focal adhesion

site, the presence of PIPKIγ, which is responsible for converting PI4P to PIP2, might be

indispensable for talin activation.

5.3.3 PIP2 specifically interacts with THD F2F3 domain

In order to further understand the role of the THD subdomains in the process of talin

activation, the binding of isolated F0F1 and F2F3 to DMPS and PIP2 in the presence of

talin rod inhibitory subdomains were measured with the FRET based binding assay (Table

5.2). In chapter 2, it has been described that F0F1 does not discriminate between anionic

lipids, while F2F3 has a strong preference for PIP2 over DMPS, almost 6-fold increase of

affinity. Adding talin rod inhibitory segments induces almost 10-fold higher dissociation on

F2F3 binding to 50% DMPS, similar to full-length talin FERM domain, but fail to impede

F2F3 binding to 10% PIP2 with a tight dissociation constant of 0.36 µM. In striking contrast,

the presence of both R9 and R12R13 prohibit F0F1 binding to 10% PIP2 by a factor of 10

higher dissociation constants and complete abrogates interacting to 50% DMPS.

A unique feature of talin head FERM domain is the large unstructured polypeptide

loop (around 30 amino acids) within F1 domain. It has a propensity to form a α-helix

when encounter with anionic lipids. The helix formation is considered to be important to

talin-membrane interaction and talin activation due to the fact that no other talin head to

rod interaction has been identified in F0F1 domain. In addition, deletion of this F1 loop has

been shown to substantially inhibit talin mediated integrin activation in vivo, but does not

affect the affinity of talin head to integrin tails [33].

The FRET binding assay of truncated talin FERM domains deconvolute the mechanism
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of talin activation by PIP2. Clearly, F2F3 has a strong binding preference of PIP2 over

PS while F0F1 shows similar dissociation constants on both membrane surfaces. Result

suggests that there is no cooperativity between F0F1 and F2F3 regarding interaction with

overall charge. Both talin R9 and R12R13 are able to impede F0F1 and F2F3 binding to

PS membrane, yet it is not clear how F0F1 interacts with talin rod inhibitory subdomains.

One possible explanation could be the electrostatic interaction between the F0F1 positively

charged loop and the extensively negatively charged surface on talin R9 [99]. Surprisingly,

F2F3 is insensitive to the inhibitory effect by both talin R9 and R12R13 yet the binding

of F0F1 to PIP2 membrane is significantly inhibited by the presence of talin rod segments.

Although many researchers suggest that the unstructured loop of F1 could be a potential site

to activate talin by forming helix upon contacting anionic membrane [135, 190]. However,

in this work, the results are not consistent with this hypothesis. The rod domains inhibit

F2F3 by a tight specific interaction that is efficiently disrupted by the high density charge

headgroup of PIP2, while the talin rod segments may mask membrane-binding sites of F0F1

through general electrostatic interaction by competing with anionic phospholipid bilayers

with negatively charged rod domain surface.

5.4 Conclusions

This chapter described a unique role of the membrane in regulating talin mediated

integrin transmembrane signaling. Figure 5.7 depicts a schematic representation of the lipid

dependent mechanism of talin activation through a complex interplay of protein-protein

and protein-membrane interactions. PIP2 promotes the dislodging of talin rod inhibitory

subdomains on talin FERM domain through a process that is extremely sensitive to the

lipid headgroup identity. Enhanced PIP2 local concentration from converting PI4P at the

membrane induce the unraveling of the auto-inhibited talin, allowing optimal talin membrane
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engagement and effective communication with integrin cytoplasmic tails. This leads to a

suggestion for a role of other effector proteins in talin activation, particularly PIPKIγ. One

likely scenario is that the interplay between PIPKIγ and talin at the site of focal adhesion

results in the amplification of talin activation through the production of PIP2 from PI4P.

Clearly, among common phospholipid head groups, PIP2 seems to be a key player in an

orchestra involving many other adaptor protein partners, such as Rap1-RIAM, calpain, and

the aforementioned PIPKIγ, that promotes efficient talin mediated integrin activation.
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5.5 Figures and Tables
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Figure 5.1: The schematic representation of full-length talin protein structure. The talin
FERM domain is colored in pink. The talin rod subdomains are depicts as squares in
various color. The previous suggested THD inhibitory domains are labeled in purple and
green.
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Figure 5.2: The schematic representation of full-length talin auto-inhibited conformation in
cytosol. R9 covers the THD F3 domain inhibiting subsequent binding of membrane and
integrin β tails.
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(A)

(B)

Figure 5.3: Binding isotherms of THD on DMPS with talin R9 and R12R13. (A and B)
Data for 32 µM, 2 µM, 0.5 µM, and 0 µM of talin R9 or R12R13 subdomains, are shown in
pink, blue, red, and black, respectively.
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Table 5.1: Inhibitory effects of talin rod subdomains on Nanodiscs

Rod domain Dissociation constant (µM) Fold increase

None 0.58 ± 0.04 NA

0.5 µM R9 1.6 ± 0.1 2.8

2 µM R9 2.6 ± 0.5 4.6

32 µM R9 18 ± 19 30

0.5 µM R12R13 2.2 ± 0.2 3.8

2 µM R12R13 4.4 ± 0.5 7.5

32 µM R12R13 180 ± 40 300

0.5 µM R1R2 0.43 ± 0.01 0.7

2 µM R1R2 0.65 ± 0.06 1.1

32 µM R1R2 2.4 ± 0.2 4.2
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Figure 5.4: Linweaver-Burk Plot of fluorescence titrations in the presence of talin Rod sub-
domains. (A and B) 32 µM, 2 µM, 0.5 µM, and 0 µM of talin R9 or R12R13 subdomains
are shown in black, red, blue, and grey, respectively.
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Figure 5.5: PIP2 activates inhibited THD in the presence of R9 and R12R13. (A and
B) Binding isotherms of THD binding to 10% PIP2 Nanodiscs. 32 µM, 2 µM, 0.5 µM,
and 0 µM of talin R9 or R12R13 subdomains are shown in black, red, blue, and pink,
respectively. (C and D) Linweaver-Burk Plot of fluorescence titrations in the presence of
talin Rod subdomains on PIP2. (E and F) Comparisons of affinities of THD on DMPS and
PIP2 in the presence of talin rod.
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Figure 5.6: Binding isotherms of THD on DMPA, DMPG, and PI4P in the presence of talin
rod domains.
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Table 5.2: Inhibitory effects

F0F1 F2F3

Rod domain 50% DMPS 10% PIP2 50% DMPS 10% PIP2

None 0.45 ± 0.09 0.86 ± 0.25 1.2 ± 0.3 0.18 ± 0.01

32 µM R9 No Binding 14 ± 1 11 ± 2 0.36 ± 0.03

32 µM R12R13 No Binding 9 ± 4 10 ± 3 0.36 ± 0.03
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Figure 5.7: Regulation of talin activation by PIP2. PIP5K promotes local synthesis of PIP2
form PI4P. The presence of PIP2 in a bilayer promotes the dissociation of talin R9 and
R12R13.
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CHAPTER 6

INTERACTION OF TALIN AND INTEGRIN TAIL

6.1 Introduction

The final regulation step of integrin inside out signaling is the disruption of integrin

cytoplasmic subunits mediated by talin integrin interaction. Significant efforts have spent

on understand the protein-protein interactions in this process. Structural studies reveal that

the talin F3 domain recognizes two interface sites in β tail.

First is on the membrane proximal NPxY/F sequence motif [7, 78]. Mutagenesis study

of the interaction between talin F3 W359 and Y747 of the integrin β tail mid portion is

specific and strongly resembles a Phospho-tyrosine binding (PTB) domain interactions with

peptide ligands. Alanine substitutions in either position fail to support talin/integrin com-

plex forming and subsequent integrin activation [78].

Second is the conserved membrane proximal region of integrin cytoplasmic tail en-

compassing the inner membrane clasp and salt bridge (αR995-βD723) that are critical for

maintaining integrin inactive state. It has been shown that talin FERM domain interactions

with the membrane proximal region of integrin β tail cause disruption of α/β heterodimer

promoting the conformational change of integrin extracellular domains [64]. Another flu-

orescence research elegantly shows that binding of talin alters the topology of integrin β

transmembrane domain. This tilting angel change is pivotal for transducing the activation

signal across membrane [84].

Early studies emphasized the protein interactions, yet the interplays of talin, membrane
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composition, and integrin tail are poorly studied. The affinities of talin FERM domain for

integrin β tails measured by solution NMR and SPR are ranging from 100 nM to hundreds

of µM [7, 36, 65, 66, 67, 68]. The difference could be correlated with the integrins various

subcellular distributions and major responses.

It is interesting to note that talin FERM domain and integrin β3 cytoplasmic tail

do not interact noticeably. But in mark contrast, the dissociation constant rises to 860

nM measured by isothermal titration calorimetry in the presence of anionic lipids [71, 72].

Previous study also indicate that the binding of talin to negatively charge membrane is

pre-requisite for altering integrin transmembrane topology and following activation [5, 19].

Results of recent MD simulations and previous chapter also suggest that the lipid bilayer

may play a crucial role in forming a stable complex with talin FERM domain and steering

the talin head into a preferable geometry to interact with integrin cytoplasmic tails[44].

In this chapter, a novel protocol was developed to assembly unclustered integrin β3

tails into anionic lipid bilayer utilizing Nanodiscs technology. To ensure single insertion of

integrin, the protein was engineered and expressed as a fusion with maltose binding protein.

This method allows researcher to precisely tailor membrane environment and dissect the free

energy contribution from membrane and integrin tail during the talin membrane recruiting

process. The FRET based binding assay result shows that talin interactions with integrin

tail provide the majority of the free energy for forming the trimeric complex. The FAP

residues of THD mediate the membrane engagement of talin F3 domain. Talin rod inhibitory

subdomain R9 and R12R13 may employ different interface on the FERM domain, in which,

the R9 sterically blocks the binding site of integrin on THD F3.
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6.2 Experimental Methods

6.2.1 Materials

DMPC, DMPS, and PIP2 were purchased from Avanti Polar Lipids (Alabaster, AL).

E.coli BL21 DE3 (gold) was purchased from Stratagene. pMAL-c2e expression vector and

competent cells of NEB Turbo E.coli were obtained from New England Biolabs (Ipswich,

MA). iProof polymerase kit was purchased from BioRad (Hercules, CA). Uniblue A (UA),

Amberlite XAD-2 beads, and sodium cholate obtained from Sigma-Aldrich (St. Louis, MO).

Tetramethylrhodamine-5 (and -6) C2 maleimide (TAMRA) was obtained from Anaspec (Fre-

mont, CA). Integrin DNA G-block sequence was purchased from Integrated DNA Technolo-

gies (Coralville, IA).

6.2.2 MBP-β3 TM/tail pMAL vector construction

To reconstitute the expression vector of MBP-β3 TM/tail, the sequence of integrin β3

TM/tail (residues 685-762) was engineered with a AvrII site on 5’-terminal and a XbaI site

on 3’-terminal for subsequent digestion and ligation. In addition, a poly-histidine sequence

and a Tobacco Etch Virus (TEV) was designed preceding to integrin sequence for later

purification and Nanodisc assembly (Integrin 5’- GCG GAA ACC CTA GGT CAT CAT

CAT CAT CAT CAT CAT GAT TAT GAT ATT CCG ACC ACC GAA AAT CTG TAT

TTT CAG GGA TCC CCG GAA TGT CCG AAA GGT CCG GAT ATT CTG GTT GTT

CTG CTG AGC GTT ATG GGT GCA ATT CTG CTG ATT GGT CTG GCA GCA CTG

CTG ATT TGG AAA CTG CTG ATT ACC ATT CAT GAT CGT AAA GAA TTT GCA

AAA TTT GAA GAA GAA CGT GCA CGT GCA AAA TGG GAT ACC GCA AAT AAT

CCG CTG TAT AAA GAA GCA ACC AGC ACC TTT ACC AAT ATT ACC TAT CGT

GGT ACC TAA TAA TCT AGA TAT ACG -3’).
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The blunt-ended DNA fragments were synthesis by Integrated DNA Technologies Inc.

and cut with XbaI and AvrII to create sticky ends. The linearized vector which possesses

marching restricted digestion sites was incubated with the integrin DNA fragments in a mole

ratio of 1 to 3. T4 ligase was used to ligate the insert and backbone. The reconstructed

plasmid was enriched by transforming into competent NEB turbo E. Coli cell follow by

plasmid extraction using Miniprep spin column kit (NEB, Ipswich, MA). DNA sequence

confirmation was performed by ACGT (Northbrook, IL) using M13 promoter primers.

6.2.3 Expression and purification of MBP-β3 TM/tail pMAL

E. Coli. BL21 DE3 (gold) was chosen for expression in the reason of fast growing

rate and compatibility with lactose induction. 0.5 µL expression vector was transform into

competent BL21 DE3 (gold) E. Coli. cell. One colony of cells containing the fusion plasmid

was inoculated into 50 mL rich broth with glucose and ampicillin (per liter borth: 10 g

tryptone, 5 g yeast extract, 5 g NaCl, 2 g glucose autoclave; add sterile ampicillin to 100

g/ml). The starting culture was grow to OD600 0.6 at 37 °C, 250 RPM. 1 L culture broth

was inoculated with 10 mL of the starting culture and incubated in the same condition. A

typical expression scale is 4 liters. Upon the cell density reach OD600 0.5, IPTG was added

to a final concentration of 0.3 mM for expression induction. The cell culture was continued

to incubate for 2 hours after IPTG induction. Cell pellets were harvested by centrifugation

at 8000 RPM for 10 minutes and discard the supernatant. For long term storage, cells were

frozen and stored at -80 °C.

The purification started with resuspend cell pellets in 5 volume excess column buffer

(20 mM Tris-HCl pH 7.4, 200 mM NaCl, 1mM EDTA, 0.5% Triton X-100, 1mM DTT).

Protease inhibitor cocktail tablets (1 tablets per 10 g of cell pellet) and DNase (1 mg per

5 g of cell pellet) were used to prevent target degradation and facilitate lysis. After 45

minutes stirring at 4°C for completed suspension, sample was placed on ice and incubated
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with 0.25 mg/mL lysozyme over night with gentle stirring. The cell lysate was centrifuged

at 30,000 RPM for 30 minutes to obtain the cell supernatant and discard the cell debris.

Then the crude extraction was loaded into the amylose affinity column equilibrated with

column buffer. The maximum flow rate of loading should not exceed 5 mL/min. Then the

column was washed with 10 column volumes of column buffer at a flow rate no more than

10 mL/min. The fusion protein was eluted with column buffer containing additional 10 mM

maltose. 20 fractions of 1/5 column volume each were collected. The protein usually starts

to elute within the first 5 fractions and can be easily detected by the Bradford protein assay

(Thermo Fisher, Waltham, MA). The protein fractions were pooled together and dialyzed

against column buffer with no detergent. The final product was exanimated by SDS-PAGE

and electro-spray Mass spectrometry.

6.2.4 Assembly integrin β3 TM/tail into Nanodisc

To ensure single integrin insertion, large excess Nanodiscs were used for assembly. The

typical stoichiometry of lipid, TAMRA MSP, and protein is 525:5:1. The purified MBP-

integrin β3 TM/tail protein was concentrated in 10,000 Da centrifugal concentrator (EMD

Millipore, Billerica, MA) to 50 µM. The protein stock was incubated with 6 M urea for

1 hour at room temperature. The lipid stock in chloroform was dried under steady flow

of nitrogen gas followed by overnight incubation in vacuum desiccator. The dried lipid

powder was resuspend with 100 mM sodium cholate to a final concentration of 50 mM. The

designated amount of TAMRA labeled MSP were mixed with lipid and denatured integrin β3

TM/tail. The mixture was incubated at room temperature for 45 minutes. The self-assembly

process started with removing detergent and urea by buffer exchange with 8,000,000 volumes

standard Nanodisc buffer (20 mM Tris-HCl pH7.4, 150 mM NaCl) at room temperature.

The dialyzed Nanodisc sample was further purified by amylose resin , which is an

affinity matrix used for isolating MBP, in a batch incubation method. In brief, around
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500 µL amylose resin equilibrated with standard Nanodisc buffer were mixed with crude

Nanodiscs sample and gently rotated at 4 °C for 90 minutes. Then sample was centrifuged

at 6,400 RPM for 90 seconds. The supernatant was removed and kept at 4 °C for later

test. The precipitated resin was washed by 5 bed volumes of standard Nanodisc buffer to

eliminate residual empty Nanodiscs. The integrin containing Nanodiscs were eluted with 10

mM maltose. Normally, protein elutes within first 2 bed volumes. The Nanodisc fractions

were pooled and digested by TEV protease (100:1 protein to protease ratio) overnight at 4

°C. A 2 mL amylose column was used to eliminate residual cleaved MBP. The flow through

and wash fractions of the column were concentrated to a volume smaller than 400 µL. The

concentrated product was further purified by size exclusion and injected into the Superdex

200 increase column connected to Water HPLC system and equilibrated with cytoplasmic

mimetic buffer (20 mM HEPES pH 7.2, 4 mM KH2PO4, 125 mM KCl, 14 mM NaCl, 1mM

MgCl2, 0.02 mM EGTA). The fractions of Nanodiscs containing integrin should elute slightly

earlier than the plain membrane Nanodiscs. Samples of every purification steps were collected

and analyzed by SDS-PAGE.

6.2.5 FRET based binding assay

The FRET based binding assay was adapted from the experimental methods described

in chapter 1 and 5.

6.3 Results and Discussion

6.3.1 Reconstitute unclustered integrin β3 TM/tail in Nanodiscs

Early studies of talin interactions with integrin often adopt lipid vesicle to incorporate

integrin tails. However, it is difficult to resolve the inserting direction and clustering state
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which might hamper the understanding of protein-protein interactions. Also in liposomes,

anionic lipids have strong tendency of aggregation which does not fully represent the na-

tive membrane environment. To overcome these obstacles, here Nanodiscs were utilized to

ensure single protein insertion and provide precisely controlled membrane surface. Integrin

β3 TM/tail was first cloned and expressed in a fusion form with Maltose binding protein

(MBP) in order to improve solubility. Figure 6.1 illustrate the cloning strategy and cartoon

representation of the fusion protein. A TEV digestion site was engineered in between of

MBP and integrin allowing subsequent digestion in later Nanodisc assembly.

Preliminary expression and purification of MBP-integrin β3 TM/tail with amylose

affinity column yielded the protein polymers that cannot be dissociated by SDS-PAGE.

Incubation with 10 mM DTT at 99 °C fully reverse the polymers back to monomers (data not

show). Thus, 1% Triton X100 were added to all the buffers during cell pellet resuspension and

purification to mitigate aggregation formation. One possible explanation of this phenomenon

is that the highly soluble MBP connecting with a more hydrophobic integrin β3 TM/tail

resembles the structure of a lipid molecule where MBP is the polar headgroup and integrin

tail is the hydrophobic chain. The fusion proteins are likely to aggregate in the manner

of lipid forming liposomes. The purified fusion protein was digested by TEV protease and

exanimated by electro-spray mass spectrometry. Result shows a main 8.9 kDa peak which

is correspond to the molecular weight of integrin β3 TM/tail.

To breakdown the soluble aggregation of MBP-integrin fusion protein, 6 M urea was

used to completely denature the protein. This denaturing step enhance the insertion rate

by a factor of 3 in comparison of using only detergents. The Nanodiscs assembly starts

with mixing 5 molar excess MSP to the integrin β3 TM/tail in order to provide suitable

stoichiometry ratio for single insertion. The top panel of figure 6.2 shows the size exclusion

chromatography of the purification process. The flow through fraction of the first amylose

affinity column contains mostly empty Nanodiscs without integrin insertion. Second amylose
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column targets cleaved MBP and the flow through fraction includes mostly integrin embed-

ded Nanodiscs and residual free MBP (20-minute retention fraction). SDS-PAGE analysis

(Figure 6.2 bottom) revealed that 15-minute SEC fraction contains only MSP and integrin

β3 tail, thus integrin β3 TM/tail successfully assembles into Nanodiscs. The final integrin

to MSP ration is roughly 1:1 based on the calculation from absorbance spectra, in another

work, one Nanodisc leaflet possesses one integrin β3 tail.

6.3.2 Binding of talin to integrin β3 tail in concert with membrane

To investigate the mechanism of talin membrane recruitment in the presence of integrin

β3 TM/tail, FRET based binding assay was performed with TAMRA labeled Nanodiscs with

single inserted integrin tail. Figure 6.3 summaries the fitting results of UA labeled wild type

THD or THD mutants titrating into integrin tail containing Nanodiscs. Wild type THD

binds to β3 tail DMPC Nanodisc with a dissociation constant of 0.74 µM. Compared to the

plain DMPC membrane surface, the mere presence of integrin tail promotes the affinity of

THD by a factor of 5. Introducing anionic lipid, on 50% DMPS membrane, further induce

a two-fold increased affinity of THD binding to integrin tail Nanodiscs. Intriguingly, on 5%

PIP2 membrane surface, adding integrin β3 tail only results in a minimal tighter binding,

from 0.72 µM on plain membrane to 0.58 µM with integrin tail. Thus, although anionic

membrane facilitates the talin recruitment, the integrin β tails provide the majority of the

binding free energy of forming the talin-integrin-membrane trimer.

In chapter 3, it has been shown that the binding geometry of talin F3 subdomain is

sensitive to the lipid headgroup identity. Higher charge density of the lipid headgroup, like

phosphatidylinositols, gives rise to a closer binding distance. Interestingly, the presence of

integrin β3 tail on membrane leads to a noticeable further distance between the fluorescence

dye pairs, from 5.3 Å to 6.1 Å on DMPC bilayer and 4.9 Å to 5.5 Å on 50% DMPS

membrane. This observation may be explained by two-fold. Firstly, integrin tails contain two
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NPxY motifs targeted by the PTB domain of talin in addition to the inner membrane clasp.

Although talin preferably binds to the membrane proximal NPxY motifs, it is possible that

talin also interacts with the distal one and results in a longer FRET pair distance. Secondly,

the insertion of integrin tail in Nanodiscs could occupy certain area on the membrane surface

obstructing talin F3 domain access lipid bilayer in an optimal conformation. It should be

noted that 5% PIP2 Nanodisc promotes similar FRET pair distances, around 5 nm, with or

without the presence of integrin β tail. Comparing to the dye separation on integrin inserted

PC and PS Nanodiscs, it is significantly shorter on PIP2 containing integrin Nanodiscs. This

result, combining the previous data, directly points to the specificity of PIP2 to talin as well

as its ability of facilitating talin to position into a preferable geometry for disrupting the

clasp between α and β integrin subunits.

It has been shown that K322 and K324 residues in F3 FAP region are critical for

talin membrane engagement and subsequent integrin activation. Reverse charge mutation on

these sites abrogate talin mediated integrin activation in vivo and impede talin F3 subdomain

conformational change (Figure 3.2). Here, UA labeled talin K322E and K324E were prepared

and used for titration with integrin inserted Nanodiscs. Figure 6.3 compares the titration

fitting results of wild type and FAP mutants. The glutamate substitution does not affect

the overall affinity of talin to integrin inserted Nanodiscs. This result is compatible with the

previous suggested model that MOP residues in F2 domain mediate the major electrostatic

contact with anionic lipid bilayer and PTB domain in F3 domain act as the primary binding

interface of integrin β tail. The FAP reverse charge mutations result in a significantly

increased fluorescence dye separation as seen on plain membrane Nanodiscs. This supports

the hypothesis that a large conformational change of talin F3 domain, which may allow FAP

residues access the α-β salt bridge, is required for optimal integrin activation.
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6.3.3 Talin activation in the presence of integrin β tail

To further investigate the talin auto-inhibition, in particular the difference of identified

talin rod inhibitory domain, series of FRET based binding assays were performed with

integrin tail inserted Nanodiscs in the presence of talin rod inhibitory domains. 50% DMPS

and 5% PIP2 membrane surface were selected for direct comparison as they provide similar

affinities toward THD, and have been previously shown that PIP2 is the specific activator

for R9 or R12R13 inhibited THD while no activation was observed on PS lipid bilayer.

Figure 6.4 (top panels) show the binding isotherms of the FRET titrations. 32 µM

talin R9 subdomain completely inhibits the interactions of THD with 50% DMPS mem-

brane and integrin tail. The maximum fluorescence change is within 1%. One other hand,

the dissociation constants are minimally affected by adding same concentration of the talin

R12R13 segments and the maximum FRET efficiency is reduced to 5% from 13% without

the presence of rod subdomains. On 5% PIP2 Nanodisc, THD engages the membrane and

integrin β3 tail with a similar affinity as seen on 50% DMPS membrane, besides a slightly

increased maximum FRET efficiency at 18%. The presence of both talin inhibitory sub-

domains leads to comparable dissociation affinities and around 10% decrease in maximum

FRET efficiencies compared to titrations excluding inhibitory domains. It is interesting to

note that the differences of FRET efficiencies with R9 and R12R13 on PIP2 membrane are

not as distinctive as that on PS membrane.

Figure 6.4 (bottom) summarizes distance calculations from the measured maximum

FRET efficiencies. 5% PIP2 Nanodiscs promote a closer binding geometry than it found on

50% DMPS. Particularly in the presence of talin R9 inhibitory subdomains, adding THD

yields undetectable change on 50% DMPS membrane while 5% PIP2 Nanodiscs still give

rise to sub-micromolar dissociation constant and a dye separation distance of 6 nm. The

inhibitory effect of R12R13 on THD binding topology is weaker on both integrin inserted PS

and PIP2 membranes with unchanged dissociation constant and moderately increased FRET
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pair distance. The data shown here indicates that the interfaces of THD, integrin tail and PS

membrane, namely the FAP residues and PTB domain, may be sterically blocked by talin R9

but not R12R13. This is distinctive from what previously observed in chapter 3 where both

talin inhibitory subdomains are classic competitive inhibitors of DMPS Nanodiscs to THD.

The R12R13 might inhibit the talin membrane recruitment by covering the F2 MOP region

to impede THD membrane binding, yet the NPxY motif on integrin tail is still accessible for

THD. Thus integrin tail could still arrest THD but with a further binding topology due to the

lack of MOP interactions to trigger F3 conformational change. The result also reassures the

activator role of PIP2 during talin membrane engagement due to the fact that the presence

of 5% PIP2 on lipid bilayer partially promotes high affinities and closer binding geometry of

the rod subdomains inhibited THD compared to PS membrane. It should be note that the

formal charge of 5% PIP2 roughly equals to 20-30% DMPS, thus the high charge density

on PIP2 lipid headgroup may be critical for encouraging the disruptions of THD and talin

rod inhibitory domains. However the PIP2 alone does not fully rescue talin activation, other

protein partners, such as RIAM-RAP1, PIPKγ, and calpain, may need to work in orchestra

with PIP2 for complete talin activation and optimal integrin activation.

6.4 Conclusions

This chapter detailed the development and optimization of assembling single integrin

β3 tail inserted Nanodiscs. This represents the first application of combining Nanodisc

technology to provide native membrane environment for unclustered integrin cytoplasmic

domain in order to investigate talin interaction and activation. The FRET titration results

shown in this chapter suggest that the interaction between integrin β tail and talin offer

the majority of binding free energy for talin membrane recruitment. However, the binding

geometry of the complex remains sensitive to the lipid head group identity in the presence
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of integrin cytoplasmic domain. High local charge density lipids, such as PIP2, may be

required in triggering the conformational change of F3 domain for disrupting integrin α/β

salt bridge and integrin activation. Furthermore, the date indicates the distinctive interfaces

of different talin rod inhibitory domains, where R9 may directly mask the binding site of

integrin tail on talin F3 while R12R13 may block the MOP residues in F2 domain to inhibit

talin engagement. It should be noted that PIP2 remains a key activator of auto inhibited

talin in the presence of integrin tail. However, it may work in concert with other identified

talin activation pathway to achieve fully activation.

102



6.5 Figures
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Figure 6.1: Schematic representation of the MBP-β3 tail construct. The top panel shows the
graphical description of MBP-β3 tail expression vector in pMAL-c2e backbone. The bottom
panel shows a cartoon of the protein structure. A TEV digestion site is engineered between
MBP and β-tail.
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Figure 6.2: Nanodiscs containing integrin β3 TM/tail. Size exclusion chromatography (top)
shows the purification process. Flow through fraction of the first amylose column is in blue
trace, the second amylose column flow through is in red trace, the light green shade encircles
the fraction of 10 nm elutent. The SDS-PAGE analysis (bottom) reveals the insertion of
integrin β3 TM/tail and the a complete TEV digestion.
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Figure 6.3: Results of FRET based binding assay with integrin inserted Nanodiscs. The
top panel summarizes the dissociation constants of THD WT and THD mutants binding
to Nanodiscs with or without integrin β3 tail. The bottom panel compares the fluorophore
separation distances.
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Figure 6.4: Titrations of THD into integrin inserted Nanodiscs in the presence of talin rod
inhibitory subdomains. The top two panels show the binding isotherms of 50% DMPS and
5% PIP2. The bottom panel summarizes fluorophore distance analysis of the titrations.
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CHAPTER 7

DISCUSSIONS AND FUTURE DIRECTIONS

Integrin plays an undisputed role in cell-cell and cell-ECM interactions that closely

relate to many cell events. The activation and function of integrin are tightly regulated

by the protein-protein and protein-membrane interactions of talin. It is therefore critical

to study and understand the complex biochemical reactions that occur on the lipid bilayer

surface. Early researches have employed heterogeneous and ill-defined membrane system,

such as surface tethered lipid monolayers and liposomes, to investigate membrane proteins

and their functions. In comparison, Nanodiscs offer a homogeneous, well-defined, native-like

lipid bilayer for solubilizing membrane protein and characterizing membrane related events

in vitro.

Chapter 2 described a novel Nanodisc based titration assay to probe the talin FERM

domain binding to a membrane with precisely controlled composition utilizing specific la-

beling and FRET. This technique allows researcher fine tuning the membrane lipid identity,

charge density and lipid mobility in order to differentiate any lipid preference. The talin

membrane recruitment is mainly governed by the electrostatic interaction between the posi-

tively charged patch on THD and anionic lipid surface. The measured dissociation constants

with different flavors of phospholipids are in the range of sub-micromolar in exception of pure

DMPC membrane. Further association free energy analysis demonstrates a linear grouping

of PG, PI4P, and PIP2, which is subtly lower than PS and PA. The common features of nega-

tively charged phosphate group and additional alcohol group are hypothesized to potentially

form hydrogen bonds with THD contributing to the binding preference.
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Measurements of FRET efficiency enable the calculation of fluorescence dye separa-

tions that hold great potential to shed light on the detail binding topology of talin and

membrane. Chapter 3 compares the FRET pair distances of talin FERM binding to various

phospholipid bilayers. THD F3 undergoes a large conformational change, that brings FAP

residues K322 and K324 to a closer proximity to integrin IMC, upon binding to membrane.

This conformational equilibrium is highly sensitive to the charge density of lipid headgroup

and PIP2 promotes the largest protein topology alteration. Mutagenesis investigations also

demonstrate that K274, and F259/F280 residues in talin 1 are the key triggering position

for the F3 downward motion, which is compatible with the result of previous computational

simulation [44]. This work creates a paradigm for future studies of the protein-membrane

interaction in vitro.

Besides electrostatic binding, membrane or peripheral membrane protein often employ

hydrophobic interaction, such as transmembrane domain or membrane anchor, to stabilize

the membrane-protein complex. Chapter 4 developed a Nanodisc based label free assay

to probe the hydrophobicity of intrinsic tryptophan in protein. The observation of the

tryptophan emission spectra identified a potential membrane anchor F259 in talin F2 domain.

The F259W mutant exhibits significant red shifted emission spectrum upon binding anionic

lipid bilayer indicating a local conformational flip down and insertion into the hydrophobic

core of membrane.

Talin is self-regulated by adopting a compact homodimer conformation and interac-

tions between FERM domain and rod inhibitory subdomains. To allow THD accessing the

cell inner membrane and integrin tail, the talin rod domain must be dislodged. Chapter

5 depicts the distinctive role of the membrane composition in talin activation. Talin R9

and R12R13 inhibitory subdomains exhibit a classic competitive inhibition of THD binding

DMPS, DMPG, DMPA, and PI4P lipid bilayer. The mere presence of PIP2 renders THD

insensitive to both rod segments and promotes tight talin-membrane interaction. The lipid
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headgroup identity is extremely important to membrane induced THD activation. The fail-

ure of PI4P activating inhibited THD indicates the recruitment of PIPKIγ converting PI4P

to PIP2 may be a prerequisite mechanism for talin engagement and integrin activation.

Early investigations using lipid vesicle inserted or surface tethered integrins fail to

characterize the assembly direction or clustering status that may hinder precise measure-

ments of talin binding. Nanodisc technology provides an ideal platform to reconstitute

transmembrane or membrane anchored proteins demonstrated by several previous studies

[162, 191, 192]. Chapter 6 utilizes Nanodisc to assembly single unclustered integrin β3

transmembrane and cytoplasmic domains with controlled lipid bilayers. The major free en-

ergy of forming membrane/talin/integrin complex is provided by integrin THD interaction.

PIP2 facilitates positioning THD into an optimal geometry for disrupting integrin α/β clasp

and alter β integrin tansmembrane topology, which are critical for activating integrin in rest

state. The presence of integrin tail allows differentiating the interfaces of two identified talin

rod inhibitory subdomains. R9 sterically block the integrin binding sites of THD, which are

located at F3 subdomain. On the other hand, R12R13 might impede THD recruitment by

masking the MOP residues in F2 domain that are key for membrane binding. Although PIP2

remains important to dislodge the inhibitory domains, other activation pathways, such as

RAP1-RIAM, calpain, and PIPKγ, may need to work in concert with membrane to achieve

fully THD activation.

There are several interesting future directions for studying talin mediated integrin path-

way in Nanodisc system. One is assembly the Nanodiscs with full-length αIIbβ3 integrin. It

would allow researchers to access both extracellular and cellular side of this transmembrane

receptor, so that the integrin activation can be determined by measuring integrin binding

to ligands or monitoring integrin extracellular conformational change in vitro. The com-

plexity of this Nanodisc based assay can be increased by introducing other protein partners,

like RIAM and PIPKγ, to deconvolute the contribution and define the hierarchy of each
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component during the talin mediated integrin activation.

In this thesis, the utility of Nanodiscs is extended to study the detailed molecular

mechanism of talin mediated integrin activation through development of in vitro assay using

fluorescence. This assay is amendable to measure protein-membrane binding, protein inser-

tion, and protein-protein interaction in conjugation with lipid bilayers. It creates a paradigm

of for future studies of membrane related signaling pathways that are vital to understand

many sever diseases.
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Isenberg. Native talin Is a dumbbell-shaped homodimer when it interacts with actin.
Journal of Structural Biology, 112(1):3–10, jan 1994.

[55] Chungho Kim, T.-L. Tong-Lay Lau, Tobias S Ulmer, and Mark H Ginsberg. Interac-
tions of platelet integrin alphaIIb and beta3 transmembrane domains in mammalian
cell membranes and their role in integrin activation. Blood, 113(19):4747–53, may 2009.

[56] Jun Yang, Y.-Q. Ma, Richard C Page, Saurav Misra, Edward F Plow, and Jun Qin.
Structure of an integrin alphaIIb beta3 transmembrane-cytoplasmic heterocomplex
provides insight into integrin activation. Proceedings of the National Academy of Sci-
ences, 106(42):17729–17734, oct 2009.

[57] Tong-Lay Lau, Varun Dua, and Tobias S. Ulmer. Structure of the integrin alphaIIb
transmembrane segment. The Journal of biological chemistry, 283(23):16162–8, jun
2008.

[58] Tong-Lay Lau, Chungho Kim, Mark H Ginsberg, and Tobias S Ulmer. The struc-
ture of the integrin αIIbβ3 transmembrane complex explains integrin transmembrane
signalling. The EMBO Journal, 28(9):1351–1361, may 2009.

[59] Tong-Lay Lau, Anthony W. Partridge, Mark H. Ginsberg, and Tobias S. Ulmer. Struc-
ture of the integrin β3 transmembrane segment in phospholipid bicelles and detergent
micelles. Biochemistry, 47(13):4008–4016, apr 2008.

[60] Federico Diaz-Gonzalez. Breaking the Integrin Hinge. Journal of Biological Chemistry,
271(12):6571–6574, mar 1996.

[61] Wei Li, Douglas G Metcalf, Roman Gorelik, Renhao Li, Neal Mitra, Vikas Nanda,
Peter B Law, James D Lear, William F Degrado, and Joel S Bennett. A push-pull
mechanism for regulating integrin function. Proceedings of the National Academy of
Sciences of the United States of America, 102(5):1424–9, feb 2005.

116



[62] Bing-Hao Luo, Christopher V Carman, Junichi Takagi, and Timothy a Springer. Dis-
rupting integrin transmembrane domain heterodimerization increases ligand binding
affinity, not valency or clustering. Proceedings of the National Academy of Sciences of
the United States of America, 102(10):3679–84, mar 2005.

[63] Anthony W. Partridge, Shouchun Liu, Sanguk Kim, James U. Bowie, and Mark H.
Ginsberg. Transmembrane domain helix packing stabilizes integrin αIIbβ3 in the low
affinity state. Journal of Biological Chemistry, 280(8):7294–7300, feb 2005.

[64] Olga Vinogradova, Algirdas Velyvis, Asta Velyviene, Bin Hu, Thomas A. Haas, Ed-
ward F. Plow, and Jun Qin. A atructural mechanism of integrin αIIbβ3 Inside-Out
activation as regulated by its cytoplasmic face. Cell, 110(5):587–597, sep 2002.

[65] Sonali Patil, Arom Jedsadayanmata, June D. Wencel-Drake, Wei Wang, Irina Kneze-
vic, and S. C.-T. Lam. Identification of a talin-binding site in the integrin β3 subunit
distinct from the NPLY Regulatory Motif of post-ligand binding functions: The talin
N-terminal head domain interacts with the membrane-proximal region of the β3 cyto-
plasmic tail. Journal of Biological Chemistry, 274(40):28575–28583, oct 1999.

[66] Martin Pfaff, Shouchun Liu, David J. Erle, and Mark H. Ginsberg. Integrin beta
cytoplasmic domains differentially bind to cytoskeletal proteins. Journal of Biological
Chemistry, 273(11):6104–6109, mar 1998.

[67] Rangarajan Sampath. Cytoskeletal interactions with the leukocyte integrin beta 2
Cytoplasmic Tail. activation-dependent regulation of associations with talin and alpha-
actin. Journal of Biological Chemistry, 273(50):33588–33594, dec 1998.

[68] Sukhwinder Singh, Veera D’mello, Paul van Bergen en Henegouwen, and Raymond B
Birge. A NPxY-independent β5 integrin activation signal regulates phagocytosis of
apoptotic cells. Biochemical and Biophysical Research Communications, 364(3):540–
548, dec 2007.

[69] Nicholas J. Anthis, Kate L. Wegener, David R. Critchley, and Iain D. Campbell. Struc-
tural diversity in integrin/talin interactions. Structure, 18(12):1654–1666, 2010.

[70] Mohamed Bouaouina, Yatish Lad, and David A. Calderwood. The N-terminal domains
of talin cooperate with the phosphotyrosine binding-like domain to activate 1 and 3
integrins. Journal of Biological Chemistry, 283(10):6118–6125, jan 2008.

[71] Antreas C. Kalli, Kate L. Wegener, Benjamin T. Goult, Nicholas J. Anthis, Iain D.
Campbell, and Mark S. P. Sansom. The structure of the talin/integrin complex at a
lipid bilayer: An NMR and MD simulation study. Structure, 18(10):1280–1288, oct
2010.

117



[72] David T Moore, Patrik Nygren, Hyunil Jo, Kathleen Boesze-Battaglia, Joel S Bennett,
and William F DeGrado. Affinity of talin-1 for the 3-integrin cytosolic domain is mod-
ulated by its phospholipid bilayer environment. Proceedings of the National Academy
of Sciences, 109(3):793–798, jan 2012.

[73] Takaaki Hato, Jun Yamanouchi, Tatsushiro Tamura, Yoshihiro Yakushijin, Ikuya
Sakai, and Masaki Yasukawa. Cooperative role of the membrane-proximal and -distal
residues of the integrin beta3 cytoplasmic domain in regulation of talin-mediated alpha
IIb beta3 activation. The Journal of biological chemistry, 283(9):5662–8, feb 2008.

[74] Nicholas J. Anthis, Jacob R. Haling, Camilla L. Oxley, Massimiliano Memo, Kate L.
Wegener, Chinten J. Lim, Mark H. Ginsberg, and Iain D. Campbell. β Integrin Ty-
rosine Phosphorylation Is a conserved mechanism for regulating talin-induced integrin
activation. Journal of Biological Chemistry, 284(52):36700–36710, dec 2009.

[75] I Knezevic, T. M. Leisner, and S. C.-T. Lam. Direct binding of the platelet Integrin
αIIb β3 (GPIIb-IIIa) to talin: Evidence that interaction is mediated through the cyto-
plasmic domains of both αIIb and β3. Journal of Biological Chemistry, 271(27):16416–
16421, jul 1996.

[76] Alexandre R. Gingras, Wolfgang H. Ziegler, Andrey A. Bobkov, M. Gordon Joyce,
Domenico Fasci, Mirko Himmel, Sven Rothemund, Anett Ritter, J. Günter Grossmann,
Bipin Patel, Neil Bate, Benjamin T. Goult, Jonas Emsley, Igor L. Barsukov, Gordon
C K Roberts, Robert C. Liddington, Mark H. Ginsberg, and David R. Critchley.
Structural determinants of integrin binding to the talin rod. The Journal of biological
chemistry, 284(13):8866–76, mar 2009.

[77] Markus Raab, Heide Daxecker, Richard J. Edwards, Achim Treumann, Derek Murphy,
and Niamh Moran. Protein interactions with the platelet integrin αIIb regulatory
motif. Proteomics, 10(15):2790–2800, jul 2010.
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