
© 2016 Seyed Nematollah Ahmadyan



VALIDATION AND OPTIMIZATION OF ANALOG CIRCUITS USING
RANDOMIZED SEARCH ALGORITHMS

BY

SEYED NEMATOLLAH AHMADYAN

DISSERTATION

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Electrical and Computer Engineering

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2016

Urbana, Illinois

Doctoral Committee:

Associate Professor Shobha Vasudevan, Chair
Professor Thenkurussi Kesavadas
Associate Professor Xin Li
Associate Professor Sayan Mitra
Professor Rob Rutenbar
Professor Martin Wong



ABSTRACT

Analog circuits represent a large percentage of the chips used in mobile com-

puting, communication devices, electric vehicles, and portable medical equip-

ment today. Rapid scaling and shrinking chip geometrics introduce new

challenging problems in verification, validation, and optimization of analog

circuits. These problems include test generation and compression, runtime

monitoring and analyzing the worst-case behaviors. State of the art tech-

niques in Monte Carlo are unable to address these problems effectively. Con-

sequently, designing an efficient and scalable CAD algorithm to address such

problems is highly desirable.

In this thesis, we introduce Duplex, a methodology for search and opti-

mization. Duplex supports optimizing nonconvex nonlinear functions and

functionals. We use duplex to solve problems in analog validation and ma-

chine learning. Duplex uses random tree data structures. Duplex is based on

partitioning and separating the problem space into multiple smaller spaces

such as input, state and the function space. Duplex simultaneously controls,

biases and monitors the growth of the random trees in the partitioned spaces.

We have used the duplex framework to solve practical problems in analog and

mixed signal validation like directed input stimuli generation, compressing

analog stress tests, worst-case eye diagram analysis, performance optimiza-

tion, machine learning, and monitoring runtime behaviors of analog circuits.

We used Duplex for validation and optimization of analog circuits. Duplex

automatically generates input stimuli that expose bugs and improves cover-

age. Duplex automatically finds input corners that result in worst-case eye

diagrams. Duplex simultaneously explores the parameter and performance

spaces of analog circuits to optimize the circuit for best performance. We

monitored the random trees and circuit execution against the specification

properties described in formal languages. We formulated many challenging

problems in the analog circuits, such as test compression and eye diagram

ii



analysis, as functional optimization problems. We use Duplex to solve these

functional optimization problems.

We propose the Duplex algorithm as an optimization algorithm to posit the

framework to other domains. Duplex can address nonlinear and functional

optimization problems in continuous and discrete spaces such as design-space

exploration and supervised and unsupervised machine learning.

The advantages of the duplex framework are efficiency, scalability and

versatility. We consistently show orders of magnitude speedup improvements

over the state of the art while objectively improving the quality of results.

For generating input stimuli, duplex is the first technique that simultaneously

does directed input stimulus generation and increases test coverage. We

show over two orders of magnitude speedup over Monte Carlo simulations.

For runtime monitoring, we check a large scalable circuit against a very

expressive set of formal properties that were not possible to monitor before.

For generating worst-case eye diagram, we show at least 20× speedup and

better quality of results in comparison to the state of the art. Duplex is

the first work to provide transient test compression for analog circuits. We

compress stress tests up to 96%. We optimize analog circuits using Duplex

and we show speedup and improved results with respect to the state of the

art. We use Duplex to train supervised and unsupervised models and show

improved accuracy in all cases.

iii



ACKNOWLEDGMENTS

I would like to thank my adviser, Prof. Shobha Vasudevan, for her intellect,

experience, and advice. Of all people, I owe her the most for the completion

of this thesis.

I would like to thank my dissertation committee members, Prof. Rob

Rutenbar, Prof. Sayan Mitra, Prof. Martin Wong, Prof. Xin Li, and Prof.

Kesh Kesavadas, for their time, invaluable feedback and for agreeing to be

part of my Ph.D. exam process.

I would like to also thank my co-authors and collaborators, Dr. Jayanand

Asuk Kumar, Dr. Suriya Natarajan, Dr. Chenjie Gu, and Dr. Eli Chiprout,

for their work, experience, and feedback.

I would like to thank my parents, who supported me all these years, my sis-

ters, and friends Fardin Abdi, Hadi Hashemi, Mohammad Babaizadeh, Faraz

Faghri, Mohammad Nourbakhsh, Jalal and Rasoul Etesami, and many oth-

ers. Finally I would like to thank Samira Sheikhi, for her kindness, intellect,

support and intriguing conversations.

iv



TABLE OF CONTENTS

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

CHAPTER 1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . 1
1.1 Design automation for analog circuits . . . . . . . . . . . . . . 1
1.2 Duplex methodology . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Analog problems solved with Duplex . . . . . . . . . . . . . . 6
1.4 Thesis contributions . . . . . . . . . . . . . . . . . . . . . . . 12
1.5 Thesis organization . . . . . . . . . . . . . . . . . . . . . . . . 14

CHAPTER 2 PRELIMINARIES AND RELATIONSHIP TO EX-
ISTING WORK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.1 Modeling and simulation of nonlinear and mixed-signal

analog circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2 Reachability analysis and safety definition . . . . . . . . . . . 18
2.3 Variational bayesian inference . . . . . . . . . . . . . . . . . . 19
2.4 Established techniques for validation of analog circuits . . . . 22

CHAPTER 3 THE DUPLEX RANDOM TREE OPTIMIZATION . . 27
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.2 Background on Rapidly-exploring Random Trees (RRT) . . . 28
3.3 Adding direction to the random tree algorithm . . . . . . . . . 30
3.4 Duplex algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.5 Duplex principle: separation of spaces . . . . . . . . . . . . . . 32
3.6 Problems solved using the Duplex algorithm . . . . . . . . . . 33
3.7 Properties of the Duplex algorithm . . . . . . . . . . . . . . . 34
3.8 The Duplex optimization algorithm . . . . . . . . . . . . . . . 36
3.9 Online resources . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.10 Chapter summary . . . . . . . . . . . . . . . . . . . . . . . . . 45

CHAPTER 4 DIRECTED INPUT STIMULI GENERATION . . . . 46
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.2 Framework of our automated directed input stimulus gen-

eration algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 50

v



4.3 Proposed directed input stimulus generation algorithm: Multi-
Objective RRT . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.4 Experimental results . . . . . . . . . . . . . . . . . . . . . . . 57
4.5 Chapter summary . . . . . . . . . . . . . . . . . . . . . . . . . 76

CHAPTER 5 RUNTIME MONITORING OF RANDOM TREES . . 77
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.2 Analog property specification . . . . . . . . . . . . . . . . . . 80
5.3 TRRT-based runtime verification algorithm . . . . . . . . . . 83
5.4 Experimental results and discussion . . . . . . . . . . . . . . . 89
5.5 Chapter summary . . . . . . . . . . . . . . . . . . . . . . . . . 93

CHAPTER 6 REACHABILITY ANALYSIS . . . . . . . . . . . . . . 95
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
6.2 Iterative reachable set reduction algorithm . . . . . . . . . . . 97
6.3 Experimental results . . . . . . . . . . . . . . . . . . . . . . . 106
6.4 Chapter summary . . . . . . . . . . . . . . . . . . . . . . . . . 109

CHAPTER 7 WORST-CASE EYE DIAGRAM ANALYSIS . . . . . 110
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
7.2 The eye diagram . . . . . . . . . . . . . . . . . . . . . . . . . 112
7.3 Our approach for eye diagram analysis . . . . . . . . . . . . . 113
7.4 Geometric measurement of the eye diagram . . . . . . . . . . 114
7.5 Minimizing distortion functionals using random trees . . . . . 118
7.6 Experimental results and discussions . . . . . . . . . . . . . . 119
7.7 Chapter summary . . . . . . . . . . . . . . . . . . . . . . . . . 125

CHAPTER 8 TEST COMPRESSION . . . . . . . . . . . . . . . . . 126
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
8.2 Test compression as a flux functional optimization problem . . 130
8.3 Optimizing Functionals Using Random Trees . . . . . . . . . . 134
8.4 Test compression in the presence of process variation . . . . . 138
8.5 Parallel test compression . . . . . . . . . . . . . . . . . . . . . 141
8.6 Experimental results . . . . . . . . . . . . . . . . . . . . . . . 142
8.7 Chapter summary . . . . . . . . . . . . . . . . . . . . . . . . . 148

CHAPTER 9 CIRCUIT OPTIMIZATION . . . . . . . . . . . . . . . 149
9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
9.2 Optimization model . . . . . . . . . . . . . . . . . . . . . . . . 152
9.3 The Duplex random tree search algorithm . . . . . . . . . . . 153
9.4 Experimental results . . . . . . . . . . . . . . . . . . . . . . . 160
9.5 Chapter summary . . . . . . . . . . . . . . . . . . . . . . . . . 167

vi



CHAPTER 10 BEYOND ANALOG: APPLICATION OF DU-
PLEX IN MACHINE LEARNING . . . . . . . . . . . . . . . . . . 168
10.1 Supervised learning and classification . . . . . . . . . . . . . . 169
10.2 Unsupervised learning and clustering . . . . . . . . . . . . . . 171
10.3 Chapter summary . . . . . . . . . . . . . . . . . . . . . . . . . 173

CHAPTER 11 CONCLUSION . . . . . . . . . . . . . . . . . . . . . . 174

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

vii



LIST OF TABLES

1.1 Keystone problems in analog validation and optimization . . . 3

4.1 Performance comparison of MORRT vs M.C. . . . . . . . . . . 61

6.1 Space partitioning tree statistics. During the execution
of the iterative reachable set reduction algorithms, most
of the generated polytopes are at the boundaries of the
reachable set and they rapidly get smaller in volume. †
indicates that the number is a two-dimensional volume. . . . . 108

8.1 Parameters of the random tree . . . . . . . . . . . . . . . . . . 143

9.1 Performance specification for the opamp circuit and the
result of circuit optimization. Duplex determines the opti-
mum value for the parameters and performance metrics of
the circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

9.2 Result of Duplex optimization of the CP-PLL circuit. Du-
plex determines the optimum value for the parameters and
performance metrics of the circuit. . . . . . . . . . . . . . . . 167

viii



LIST OF FIGURES

1.1 The overview of the problems solved in analog design flow. . . 2
1.2 Duplex solves different types of optimization problems. . . . . 7

3.1 Growth of RRT through addition of a new node sampled
from the state space. . . . . . . . . . . . . . . . . . . . . . . . 28

3.2 The classic RRT algorithm does not have any direction or
bias and rapidly explores the entire reachable state space. . . . 29

3.3 The input and objective spaces in multi-objective optimization. 33
3.4 The convergence rate w.r.t. number of iterations for the

Duplex algorithm for nonconvex optimization. Our algo-
rithm converges very fast toward the optimum solution
from any initial state. Duplex is not sensitive to the choice
of initial state. . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.5 Growing random tree toward the goal region. . . . . . . . . . . 38
3.6 The Pareto frontier of the random tree. . . . . . . . . . . . . . 39
3.7 Using Duplex for optimizing a non-convex function. . . . . . . 42
3.8 Partitioning the spaces into state space and function (ob-

jective) spaces in Duplex. . . . . . . . . . . . . . . . . . . . . . 43
3.9 The result of the Dido optimization problem using Duplex

algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.1 Framework of our directed input stimulus generation tech-
nique (Section 4.2) . . . . . . . . . . . . . . . . . . . . . . . . 50

4.2 Detailed block diagram of the learning phase of the Multi-
Objective RRT algorithm. First, we identify the goal dis-
tribution (block 1 and 2). We grow the MORRT by sam-
pling states from the mixture distribution. We feed the
MORRT states back to the learning algorithm to update
the mixture distribution (blocks 6 and 3). Shaded regions
corresponds to the VBI algorithm. . . . . . . . . . . . . . . . . 52

4.3 An example of the input stimuli generated for the Joseph-
son circuit (Section 4.4.1) from the MORRT. Generating
input stimulus for Josephson circuit is difficult using con-
ventional Monte Carlo methods. . . . . . . . . . . . . . . . . . 58

4.4 Josephson junction circuit. . . . . . . . . . . . . . . . . . . . . 59

ix



4.5 Exploring the state space of a Josephson junction circuit
using the classic RRT and MORRT. Figure 4.5a shows the
classic RRT algorithm; for the given number of iterations
(3,000), the algorithm did not converge. Figures 4.5b to
4.5g show the various MORRT results for different increas-
ing values of ζ. Finally, Figure 4.5h shows a trace extracted
from our algorithm. For the same number of iterations, the
MORRT algorithm will converge faster and provide more
coverage of the region around the equilibrium state (0,0). . . . 60

4.6 Effects of ζ on discrepancy and number of states in MORRT. . 63
4.7 Schematic of the opamp circuit. . . . . . . . . . . . . . . . . . 64
4.8 Generating tests for stressing the resister R1 . . . . . . . . . . 65
4.9 Combining different tests. The MO-RRT can learn the goal

regions from two given test sets and generate a combined
tests that simultaneously reaches both goal regions. . . . . . . 67

4.10 Combining different tests. The MO-RRT can learn the goal
regions from two given test sets and generate a combined
test that simultaneously reaches both goal regions. . . . . . . . 68

4.11 Schematic of the VCO circuit. . . . . . . . . . . . . . . . . . . 70
4.12 Generating input stimuli for VCO circuit. . . . . . . . . . . . 71
4.13 Tunnel-diode circuit. . . . . . . . . . . . . . . . . . . . . . . . 71
4.14 Effect of mixture weight ζ on the mixture Gaussian distri-

bution M. The mixture distribution converges toward the
distribution of the goal region G for goal-oriented MORRT
with higher ζ. On the other hand, a lower ζ with coverage-
driven objective ensures that M is closer the MORRT dis-
tribution H. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.15 Tunnel diode results for classic and MORRT algorithm.
While the classic RRT algorithm will generate a lot of sam-
ples to find its path towards two stable equilibrium points
(the boxed regions), the MORRT algorithm will rapidly
converge and will generate more traces in relevant regions
and explores more regions of the state space. Moreover,
the MORRT will provide a better coverage in the reach-
able state space (the enveloped region). . . . . . . . . . . . . . 72

4.16 Schematic of the ring modulator circuit. The ring mod-
ulator consists of four parts: the input stage, the carrier
stage, the output stage, and the diode ring. The circuit
modulates the input signal Vin with carrier signal VCarrier. . . . 73

4.17 The output of the carrier stage is relatively clean according
to the specification, because of the RC filter in the design.
Therefore, the output perturbation is propagated from the
input stage through the diode ring. The cause of the bug
in the circuit is the poor input stage filter design. . . . . . . . 75

x



4.18 Exploring the reachable state space using MORRT. For
each leaf node in the MORRT, we can extract the input
sequence that will generate that trace. The VBI algorithm
inferred the distribution at the origin as the goal region. As
a result, most of the traces are focused around the center
of the region. . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.1 Flowchart of TRRT-based runtime monitoring algorithm. . . . 84
5.2 Tunnel-diode oscillator circuit. . . . . . . . . . . . . . . . . . . 90
5.3 Random tree outputs for tunnel diode oscillator. . . . . . . . . 91
5.4 Phase-locked loop (PLL) circuit . . . . . . . . . . . . . . . . . 92
5.5 The TRRT trace of signal deviation for a loop filter. . . . . . . 93

6.1 Overview of the iterative reachable set reduction algorithm.
The exterior loop is the iterative reachable set reduction
algorithm. For each polytope, our algorithm partitions it.
Then, for each new partition, our algorithm decides on the
reachability of those partitions from the reachable set. The
parts of our algorithm that use SPT for computation are
marked with SPT labels. . . . . . . . . . . . . . . . . . . . . . 98

6.2 Partitioning a polytope based on state space trajectories. . . . 101
6.3 Determining existential positivity of the reachability deci-

sion function. Our algorithm rotates the function θ degrees
to align it to the axis. Therefore, other variables become
constant, and the reachability decision function becomes a
single-dimensional basis function. . . . . . . . . . . . . . . . . 103

6.4 State space partitioning using hyperplanes. The polytopes
are defined by the intersections of the hyperplanes in the
state-space. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

6.5 Reachable set for the Van der Pol oscillator using our itera-
tive reachable set reduction algorithm. The reachable set is
in grey and the unreachable states are in white. The poly-
topes at the boundaries of the reachable set shrink rapidly
in volume. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

7.1 Eye diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
7.2 The high-level description of our approach. We use the eye

diagram as a feedback in our approach and minimize the
distortion functionals using the random tree algorithm. . . . . 113

7.3 The distortion functionals. . . . . . . . . . . . . . . . . . . . . 115
7.4 The growth of the random tree algorithm. . . . . . . . . . . . 118
7.5 Schematic of CMOS inverter circuit. . . . . . . . . . . . . . . 120
7.6 The worst-case analysis of the eye diagram in Monte Carlo

vs. our algorithm. Given the same number of iterations,
our algorithm generates an eye diagram that is 47% smaller
than the eye diagram generated using Monte Carlo simulation. 121

xi



7.7 The convergence rate of random tree algorithm vs. Monte
Carlo for the eye diagram analysis. The random tree algo-
rithm converges much faster that Monte Carlo. . . . . . . . . . 122

7.8 The size of the eye diagrams for different maximum devia-
tions for simulation parameters. . . . . . . . . . . . . . . . . . 122

7.9 The scatter plot of the VDD inputs for generating the fron-
tier set s1. The left side figure shows the histogram of the
VDD inputs samples (we excluded the samples from the
ideal path). The right side is the scatter plot of input
stimuli drawn over time, which identifies three separate
component in the worst-case eye diagram. . . . . . . . . . . . 124

7.10 The eye diagram of ring oscillator circuit computed using
our technique. . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

8.1 Compressed test z with the optimal time among all func-
tionally equivalent tests {x, y, z}. . . . . . . . . . . . . . . . . 128

8.2 The modeling of the test compression problem. . . . . . . . . . 132
8.3 Contradiction test with minimum time but not minimum

flux functional. . . . . . . . . . . . . . . . . . . . . . . . . . . 133
8.4 Generalization of the proof to higher dimensions. . . . . . . . 133
8.5 Random tree algorithm to minimize flux functional. . . . . . . 135
8.6 We use the inverter circuit as an illustrative example for

test compression. . . . . . . . . . . . . . . . . . . . . . . . . . 137
8.7 The flowchart of the greedy algorithm for compress test in

the presence of process variation. . . . . . . . . . . . . . . . . 139
8.8 Parallel version of the random tree algorithm to minimize

flux functional. The SPICE simulations are executed con-
currently. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

8.9 Schematic of the operational amplifier circuit. . . . . . . . . . 143
8.10 Saturation test for the opamp circuit. . . . . . . . . . . . . . . 144
8.11 Using random trees to compress stress tests for circuit’s

components. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
8.12 Compression ratio for different tests. . . . . . . . . . . . . . . 145
8.13 Combining different tests. . . . . . . . . . . . . . . . . . . . . 146
8.14 Compressing tests for VCO circuit. Our technique com-

pressed VCO swing tests by 88%. . . . . . . . . . . . . . . . . 147
8.15 Process variation in the width of NMOS and PMOS tran-

sistors in the inverter circuit and worst-case corner. . . . . . . 147

9.1 Schematic of an inverter circuit that we use as an illustra-
tive example. We want to optimize the width of NMOS
and PMOS transistors to minimize dynamic power and delay. 153

9.2 The relation between constrained parameter space (left)
and the reachable performance space and the goal region
(right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

xii



9.3 Flowchart of the Duplex random tree search algorithm for
performance optimization. . . . . . . . . . . . . . . . . . . . . 154

9.4 Growing parameter and performance tree in the parameter
and performance space. . . . . . . . . . . . . . . . . . . . . . . 155

9.5 Schematic of a two-stage operational amplifier. . . . . . . . . . 161
9.6 Using Duplex for optimizing the bandwidth of the op-amp. . . 162
9.7 The convergence rate w.r.t. number of iterations for the

Duplex algorithm for the inverter case study. Our algo-
rithm converges very fast toward the optimum design from
any initial state. Duplex is not sensitive to the choice of
initial state. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

9.8 The sensitivity graph visualizing performance to parameter
sensitivity for opamp case-study.The Edges are annotated
with the sensitivity of a performance metric (a node in the
right side) to a particular parameter (a node on the left side). 164

9.9 Distribution of the optimal parameters for the opamp cir-
cuit. Duplex computes the Pareto set as a mixture Gaus-
sian distribution by inferring the distribution of the sam-
ples in the goal region. Pareto surface is computed from
the CDF of the pareto distribution. We use the mean of
the distribution as the optimum state. . . . . . . . . . . . . . 165

9.10 Schematic of a post-layout charge-pump PLL circuit. . . . . . 166

10.1 Duplex algorithm cluster samples together by minimizing
the distortion function. . . . . . . . . . . . . . . . . . . . . . . 170

10.2 Duplex algorithm cluster samples together by minimizing
the distortion function. . . . . . . . . . . . . . . . . . . . . . . 172

xiii



CHAPTER 1

INTRODUCTION

1.1 Design automation for analog circuits

Analog circuits represent a large percentage of the chips used in mobile com-

puting, communication devices, electric vehicles, and portable medical equip-

ment today [1]. This trend is projected to grow in the future [1], as analog

IPs become ubiquitous in SoC designs. The analog IP market is expected to

expand with the increasing demand for portable and wearable devices, smart-

phones, and low-power electronics [1]. Analog chips are increasingly being

used in medical devices and electric vehicles [1], where safety and reliability

are critical concerns.

Verification and validation of the behavior of these complex and safety crit-

ical circuits is a daunting challenge. The scale and complexity of the circuits

have increased significantly beyond those of the hand-crafted, isolated analog

circuits of the past. However, given the scale and complexity of the analog

components used in modern devices, traditional validation methodologies

based on Monte Carlo simulations are inefficient, expensive, error-prone, and

frequently misleading in predicting unknown behaviors, worst case corners

and stressing weak components of the circuit. It is critical to automate the

validation tasks for analog circuits to meet demands [2].

1.1.1 Fast and reliable circuits

Analog circuits are the drivers of the computer and electronics industry.

Circuits are manufactured at a very large scale at a very low margin. In this

competitive market, analog designers always strive to design reliable chips

with maximum performance. It is crucial to vigorously test against design

errors to ensure reliability, correctness, and safety.

The analog design process (Figure 1.1) is an iterative process that goes

1



Specification Design

Runtime monitoring

Reachability 
analysis

Directed input 
stimuli generation

Eye diagram 
analysis

Performance 
optimization

Test compression

Ch. 9

Ch. 4

Ch. 5

Ch. 6

Ch. 7

Ch. 8

Validation

Fo
rm

al
 m

et
h

o
d

s

Sa
m

p
li

n
g 

m
et

h
o

d
s

Figure 1.1: The overview of the problems solved in analog design flow.

through the cycle of specification → design → optimization → vali-

dation. Currently every task in analog validation is manual and ad-hoc. As

a result, the analog design process is error-prune, expensive and very time-

consuming. Our mission is to provide automation in analog design flow to

improve the quality and reliability of analog circuits. In particular, we focus

on optimization and validation of analog circuits.

Validation: We define the validation problem in analog circuits as ensur-

ing the circuit is behaving correctly according to its specification. An analog

circuit is a nonlinear system with input and output signals. For validating

such regime, two categories of problems arise. Firstly, how to excite the in-

put; how to generate meaningful input stimuli to test the circuit. We wish

to generate tests that trigger failures, bugs, or worst-case responses in the

circuits. Secondly, how to monitor the output response, check for violations,

and ensure the safety of the circuit.

The goal of exciting the inputs to identify input stimuli and corners that

can cause failure in the circuit. Failures can be viewed as having a failed

state (such as signal cut-off, unstable output, failure to lock, etc.) or noisy

output (jitter, weak signal, low noise margin, etc.). Then we can analyze the

generated input stimuli to discover bugs in the design and improve the circuit.

2



Table 1.1: Keystone problems in analog validation and optimization

Type Chapter Problem
Validation 4 Directed input stimuli generation
Validation 5 Runtime monitoring and property checking
Validation 7 Worst-case eye diagram and signal-integrity analysis
Optimization 8 Test compression
Optimization 9 Performance optimization of analog circuits
Validation 6 Reachability analysis and safety verification

Finally, During test and after finding the test stimuli, we can optimize it such

that the test would be executed faster on the circuit in order to save time

(Chapter 8).

For ensuring the safety and correctness of the circuit, we can take either

a universal or existential approach. In the universal approach, we have to

prove the circuit is correct by verifying every possible execution meets the

specification. One universal tool for verifying safety properties is reachability

analysis (Chapter 6). On the other hand, the existential method looks for

circuit traces that violate the specification and cause failures. In order to

implement the existential technique we need techniques that actively search

for violating stimuli (Chapter 4 and 7) and monitor the executions (Chap-

ter 5). The analog circuits exhibit complex nonlinear dynamics and have a

large scale with hundreds of dimensions. Any method for validating analog

circuits has to be scalable and faithful to the nonlinearities of the circuit.

Optimization: The circuit’s performance metrics include power, band-

width, gain, etc. The goal of the optimization step is to improve the per-

formance without changing the functionality of the circuit. We optimize the

circuit’s parameters, such as transistor width and length, to improve the

performance (Chapter 9).

In this thesis, we address all of the above issues in analog validation and

optimization by solving six keystone problems as shown in Table 1.1. To

address these significant problems in analog EDA, we need a new scalable,

efficient, versatile, mathematically sound and unified methodology to replace

the old techniques.

3



1.2 Duplex methodology

We introduce Duplex, an optimization methodology to solve non-convex and

functional optimization problems. We use Duplex to solve validation and

optimization problems in analog. Our methodology is based on formulating

analog problems as optimization problems, then using Duplex to optimize

the objective function and determine the optimum solution. The optimum

solutions depend on the problem and range from the input stimuli that will

cause the circuit to fail, to the worst-case eye diagram, to the optimum

parameters for optimizing the circuit.

Duplex can solve three types of optimization problems: i) state-based

search, ii) non-convex optimization, and iii) functional optimization. Au-

tomated input stimuli generation is formulated as a state-based search prob-

lem. Performance optimization is formulated as a non-convex optimization

problem. Finally, eye diagram analysis and test compression problems are

formulated as functional optimization problems. The overview of the Duplex

methodology is shown in Figure 1.2.

The Duplex idea is centered around growing random tree structure in the

space model of the problem. Depending on the problem type, Duplex algo-

rithm partitions the problem space into the input space, the output space,

and the function space. We simultaneously search and grow multiple mir-

rored random trees in these spaces to meet the boundary conditions and

optimize the objectives.

The principle of Duplex is different from other known optimization algo-

rithms like simulated annealing [3], gradient descent [4], etc., used in opti-

mization. Duplex simultaneously analyzes and partitions the problem space

into smaller spaces such as input (feature), output (objective) and function

spaces. Global decisions are made in the objective space and actions are

taken locally in the input space. In every iteration, Duplex identifies the

best strategy to get closer to the goal region (the optimum solution) and

takes the appropriate action within the input space. The algorithm then

passes the control back to the objective space, where the next such strategic

decision is made. To the best of our knowledge, this is the first algorithm

to simultaneously keep track of an objective/goal and use it to guide local

steps.

Duplex maintains the full history of all the visited states in the space.

4



Duplex provides valuable feedback to the user by looking at and analyzing

the grown tree in the state space. Duplex uses the random tree to determine

the Pareto frontier and the optimum solutions. Furthermore, Duplex avoids

getting stuck in the local minima. We utilize these properties of Duplex

to generate a Pareto optimal set of the circuit’s parameters in circuit opti-

mization problem and analyze the distribution of worst-case samples in eye

diagram analysis.

1.2.1 Advantages of the Duplex methodology

Duplex algorithm provides the following advantages over traditional opti-

mization methods such as gradient descent and Newton optimization:

• Convergence guarantees toward global optimum: Optimization

algorithms traverse the state space locally. They walk in the state

space linearly along the direction of the gradient. Therefore, they have

no notion of the solution, or where it might lie. They are prone to

getting stuck in local minima and saddle points where the gradient

is zero. However, Duplex performs an open ended search only in the

objective space. In the objective space, it uses the basic random tree

search to find the globally optimal design or the goal region. In the

state space, it decides which parameter needs to change to get closer to

the goal region. This decision is made using a noisy gradient descent

algorithm in combination with reinforcement learning that evaluates

the history of previous changes to the parameters in the parameter

tree based on a reward function. There is no open ended search in the

parameter modification phase (local step) of the algorithm. Duplex

grows multiple different branches toward the goal state. If one of those

branches gets stuck in local minima, the algorithm can branch from

another state and make forward progress toward the goal. Due to the

probabilistic completeness property of random trees, Duplex does not

get stuck in local minima. This is in contrast to random walk based

methods like simulated annealing or gradient descent. The guidance in

every step from the global search towards the local step decision helps

in converging quickly to the optimal goal region.

5



• Performance Efficiency: A search based optimization algorithm like

Duplex has a benefit over classical optimization algorithms in being able

to keep track of the global picture (goal states) and react with local

actions. Random trees are shown to consistently outperform random

walk based search methods such as Monte Carlo simulations for search

applications. The improvement in efficiency is partly due to the tree

data structure maintained by the random tree algorithm during the

simulation. While growing, it samples a new state in the goal region

(desired solution set), and then determines which state is closest (in

L2-norm sense) to that sampled goal state among all of the previously

visited states in the tree. It simulates a path between the closest state

and the newly sampled state and adds the new state to the tree. This

is in contrast to the memory-less sampling of points in the Monte Carlo

based methods. The branching to any previously visited state makes

convergence to the solution set quicker than memory-less methods due

to the versatility in paths traversed.

• Scalability: A tradeoff in search based algorithms comes from the

step where they search for their nearest neighbors. Searching for the

nearest neighbors in the state space (which scales) can be very expen-

sive. Duplex addresses this issue by separating the objective functions

from the state space and limiting the search for nearest neighbors only

to the objective functions. The space of objective functions is much

smaller than the state space, helping the scale and efficiency of Duplex

significantly.

1.3 Analog problems solved with Duplex

We achieve our mission by using Duplex methodology for verification, vali-

dation and optimization of analog circuits. We use the Duplex methodology

to automate keystone problems in analog optimization and validation. Fig-

ure 1.2 shows the flowchart of analog design flow using the Duplex method-

ology. We solved select challenging problems in analog design flow.

Specifically, we use Duplex for state search, non-convex and functional op-

timization in order to address problems in directed input stimuli generation

(Chapter 4), worst-case eye diagram analysis (Chapter 7) and test compres-

6



Duplex Algorithm

State optimization
Non-convex 
optimization

Functional 
optimization

Eye diagram 
analysis

Test 
compression

Performance 
optimization

Machine 
learning

Directed 
input stimuli 
generation

Runtime 
monitoring

Reachability 
analysis

Ch. 9Ch. 4Ch. 5Ch. 6 Ch. 7Ch. 8Ch. 10

Figure 1.2: Duplex solves different types of optimization problems.

sion (Chapter 8). We use Duplex for design-space exploration of analog

circuits to determine the optimum configuration and optimize the circuit’s

performance (Chapter 9). We monitor the growth of random trees to falsify

logical properties (Chapter 5) or verify safety properties by reachability anal-

ysis (Chapter 6). Beyond analog, we use Duplex in machine learning to solve

problems in classification and clustering where we use Duplex to optimize

the loss/cost/error/energy function (Chapter 10).

1.3.1 Validating analog circuits by generating directed input
stimuli

Directed input stimuli generation

Validating nonlinear analog circuits is a major challenge and an ongoing

topic of intensive research. Simulation-based verification is performed using

several test cases for the circuit. Each test case is a sequence of values that

is applied to the circuit inputs. For each test case, the circuit is simulated by

applying the corresponding sequence of values to the inputs. The behavior

induced by these sequences is then analyzed. If an erroneous or illegal set of

circuit states (i.e., a ”bad” region) is known, it is desirable to check whether

there is a legal sequence of input values that takes the circuit from an ini-

tial state to the bad region. Simulation-based verification is non-exhaustive

and therefore checks only a subset of all possible behaviors. The quality of

simulation-based verification is determined by the choice of test cases.

We use Duplex for directed input stimuli generation for analog circuits.

We use a learning-based approach to guide the Duplex algorithm towards a

goal region. Duplex can search the state space for multiple objectives such

7



as reaching a goal region and improving the coverage of the state space.

We present the first technique for directed input stimuli generation for

analog circuits. Duplex can generate tests with multiple objectives such as

reaching a goal region and improving the coverage of the state space. Duplex

can find input stimuli that trigger failures two orders of magnitude faster

than Monte Carlo.

Worst-case eye diagram generation In many RF applications and

driver circuits the signal integrity is crucial for the performance of the cir-

cuit. Signal integrity is the major bottleneck to the system’s performance

in a high speed CMOS circuit. Eye diagrams [5] are the main diagnostic

technique for evaluating the signal integrity. Important signal properties

such as noise margin and jitter can be measured from the eye diagram us-

ing Monte Carlo transient simulations [6], statistical methods [7],[8], and

analytical convolution-based techniques [9],[10].

The worst-case eye diagram is a geometric product of the distortion in the

transient response of the circuit. Using Duplex, we optimize the distortion in

circuit’s response my controlling the circuit’s inputs and finding the worst-

case input.

We verify the signal integrity of analog circuits by analyzing the eye dia-

grams. We generate worst-case eye diagrams using Duplex. Duplex is 20×
faster than Monte Carlo based simulation and provides reasoning why the

circuits is under-performing as a feedback for the user.

Optimizing input stimuli for compressing analog tests:

With the movement towards system-on-chip (SoC) ICs, the number and di-

versity of mixed-signal circuits on a die has increased significantly in the form

of different high-speed IOs, sensors, power, and clocking circuitry. Among

these, analog components are tested using specification-based functional tests

with some design-for-test (DFT) features built in.

The steps in manufacturing test are broadly categorized into wafer/sort

testing, packaged part class test (using functional and structural tests) which

includes stress testing/burn-in, and system testing [11]. These steps need to

be performed on every part that is shipped, resulting in a high volume of

parts to be tested. To achieve fast product ramp to customers, the test time

per part should be small, to the order of a few seconds. Although short test

times can be achieved by increasing the test equipment, this is not a preferred

choice due to the sharp increase in capital cost that accompanies it. Instead,

8



it is cost effective to abbreviate each step in the testing of parts [11] so that

the test time is reduced for each part. While the steps themselves cannot be

eliminated due to the coverage they provide, reduction of time in each step is

the best resort. Since every step usually provides some incremental coverage,

reduction of time in each step is usually resorted to, rather than eliminating

a step itself.

Reducing the cost of production test has been a topic of intense research in

analog testing [11]. There are three approaches to reduce test time: i) optimal

ordering of the tests, where the most failed tests are strategically placed first

in order to reduce the total test time [12, 13], ii) selecting the subset of the

tests to achieve the same coverage [14, 15], iii) automated development of

better and more efficient tests that provide more coverage [16]-[17] and, iv)

reducing the communication time by compressing tests on-chip [18, 19]. To

the best of our knowledge, no previous work in analog domain has addressed

the problem of reducing each individual test’s time.

We formulate the test compression problem as an optimization problem.

We use Duplex for optimizing the test’s execution time in order to compress

the test. We use Duplex algorithm for compressing stress tests for nonlinear

analog circuits. We compress tests for an opamp, VCO and a charge-pump

PLL circuit. We show that we can consistently achieve on average 93%

reduction in test length for multiple functional and burn-in stress tests for

the op-amp.

1.3.2 Ensuring correctness and safety of analog circuits

Formal verification of analog circuits is a lofty, but highly desirable goal.

Some strides have been taken in analog verification research. However, since

many of these techniques linearize and discretize analog circuit behavior,

their practical applicability remains limited. A major challenge in formal

analog verification is proving the safety properties of the system. Safety is

an indication that the system’s operation would always remain inside the

safe regions within the state space.

Runtime monitoring of Duplex execution In industry, the traditional

method to verify analog designs was manual, by the designer of the circuit.

Correspondingly, their verification graduated to Monte Carlo [20] simula-

tions. Formal methods have as yet not penetrated the practical analog de-

9



signer’s environment. Formal methods typically make linearization or dis-

cretization assumptions to tackle the issue of scale. Analog designers find

these assumptions limiting, as compared to the simulation semantics that

closely model the circuit’s physical behavior.

A way to bridge the gap between the popular circuit simulation techniques

and formal analysis is through runtime monitoring of formally specified prop-

erties. Such a dynamic verification strategy handles the nonlinear, continu-

ous behavior, while introducing formal reasoning tools. Although it does not

provide guarantees of correctness, it can falsify (disprove) properties along

traces. The simulation traces along which a property fails can assist the de-

bugging process in these circuits. We use a runtime monitoring algorithm

to check the tree data structure in the Duplex algorithm. Our algorithm

can detect whenever the specification property is violated in the circuit’s

response.

We propose a runtime monitoring algorithm to incrementally monitor the

execution of analog circuits using Duplex algorithm. We propose an analog

specification language to describe the specification properties. We use our

algorithm to monitor complex behaviors of tunnel diode circuit and a PLL

circuit.

Reachability analysis of analog circuits

Reachability analysis is a solution to the safety verification problem. Reach-

ability analysis focuses on computing the reachable set of the system. The

reachable set is the union of all possible trajectories generated by the system

from every initial state for all input signals. To prove safety, we must show

that the reachable set of the system does not intersect with any unsafe set.

Generally, computing the reachable set of the nonlinear analog circuit is com-

putationally undecidable [21]. Over the last decade, many researchers have

been investigating the reachability problem [22]-[23]. A common problem in

previous works toward reachability analysis is memory explosion due to the

inefficiency of the data structure involved in modeling the state space [24].

Importantly, these methods do not directly handle nonlinear systems, but

use linearization or interval arithmetic to model nonlinearities. Both these

modeling techniques result in introduction of large and often unrealistic ap-

proximation errors.

Although computation of the exact reachable set is undecidable [21], it is

possible to prove the safety of a system by computing an over-approximation

10



of the reachable set [25]. Therefore, in a safe system, there is a feasible

trajectory from the initial set of states to an erroneous or undesirable set

of states (specified by the user). If the over-approximated reachable set is

safe, we can conclude that the exact reachable set is safe as well. However,

if the over-approximated reachable set intersects with the unsafe regions, we

cannot determine the safety of the system. Over-approximation introduces

its own errors to the analysis. Hence, minimizing the approximation error

while maintaining computational efficiency is a challenge.

We propose a technique for computing a reachable set of nonlinear systems

in near real-time. We compute the reachable set of the Van der Pol oscillator

by iteratively removing the unreachable regions from the state space.

1.3.3 Optimizing the performance of analog circuits

In the traditional analog/RF IC design flow, designers would manually calcu-

late optimal assignments to a circuit’s parameters to ensure that the design

meets the performance specification requirements [3, 26, 27]. In modern

designs, analog and mixed signal ICs are ubiquitous due to their desirable

flexibility in power, performance, etc. This coupled with shrinking transis-

tor sizes, circuit complexity and new challenges in fabrication processes has

made manual calculations infeasible [26, 28, 29].

Recent pioneering research has developed automatic optimization algo-

rithms for analog design [28]-[30]. Despite this, some challenges still remain.

Firstly, analog/RF circuits tend to have a complex state space with local

minima and saddle points. State-of-the-art optimization algorithms [31] can

get stuck in local minima, resulting in a non-optimal design. Secondly, quan-

titatively explaining the decisions made by the optimization algorithm is

important for designer interpretability during design optimization. Current

optimization algorithms provide no such feedback to the user.

We use Duplex for optimizing the analog circuits. We demonstrate that

Duplex has 81% (up to 5×) more speedup as compared to state-of-the-art

results and finds the global optimum for a design whose previously published

result was a local optimum. We show our algorithm’s scalability by optimizing

a system-level post-layout charged-pump PLL circuit.

11



1.3.4 Supervised and unsupervised learning algorithm

Machine learning has become an integral part of modern data science. En-

gineers tend to increase the complexity of models to address challenging

problems and larger data size. Training complex learners is very challenging

because their loss function (which has to minimize) is nonconvex and has

many local minima and saddle points. The Duplex algorithm can optimize

the loss function and train the learner. As a proof-of-concept, we used Du-

plex to train two most common models in machine learning: classification

using logistic regression, and clustering using k-mean clustering.

Our logistic regression model achieves an accuracy of 91% whereas the

same model, trained with gradient descent algorithm, achieves 89% accuracy.

Our duplex-based clustering algorithm can cluster our synthetic dataset sim-

ilarly to k-mean clustering algorithm and achieve the same accuracy without

getting stuck in local minima. In comparison to the gradient descent based

optimizers, training with Duplex takes a longer time, but achieves a better

accuracy.

We demonstrate that Duplex can optimize nonconvex loss/energy func-

tions. We use Duplex for training supervised and unsupervised learners to

solve classification and clustering problems. We show that learning with Du-

plex results in better accuracy than gradient descent.

1.4 Thesis contributions

In this thesis, our contributions are two-fold:

1. Algorithmic contribution— Duplex optimization algorithm:

We introduce Duplex, a novel general optimization algorithm. The

Duplex algorithm is a generalization of the Rapidly-exploring Random

Tree (RRT) algorithm used in robotic motion planning. We introduce

direction and space-separation to the Duplex algorithm. We utilize

Duplex for solving directed search problems, non-convex optimization,

and functional optimization. We present the detailed analysis of Duplex

methodology in Section 1.2.

2. Domain contributions— Problems solved in analog: We apply

Duplex to solve practical problems in analog validation and machine

12



learning. We formulate problems in analog validation as an optimiza-

tion problem. Then we use Duplex to solve the problem and compute

the optimum solution. Furthermore, we use Duplex in machine learn-

ing to solve problems in supervised and unsupervised learning. Duplex

can learn from the data samples, train the models and infer relations

between data by performing regression, classification, and clustering.

The Duplex algorithm is different from other walk-based optimization

methods such as gradient descent or hill-climbing optimization. Duplex grows

random trees and maintains the history. Duplex divides the state space of

the problem into input, output and function spaces (principle of separation).

The Duplex algorithm makes decisions in the function space depending on

how close it is to the optimum solution. The Duplex algorithm avoids getting

stuck in local minima and converges toward the optimum solution. Therefore,

Duplex can be used to solve non-convex and functional optimization prob-

lems where the well-known optimization methods, such as gradient descent,

are ineffective and will not produce optimum solutions.

Our second contribution is in the application domain. Traditionally, many

analog validation problems are solved using Monte Carlo simulation. Monte

Carlo simulation is a random walk and is not directed. Hence, the validation

algorithms are very inefficient and take a long time. In this thesis, we for-

mulate analog validation problems as optimization problems. We automated

6 keystone problems in analog validation and optimization (Table 1.1). The

optimization objectives include finding the failure regions, maximizing dis-

tortions in the signal, minimizing functionals, and optimizing the design. We

use the Duplex algorithm to optimize the objectives and solve the keystone

problem.

To the best of our knowledge, we propose the first methodology for directed

input stimuli generation with coverage and test compression algorithm. For

optimizing analog circuits and eye diagram analysis, we improve the perfor-

mance of the state of the art by factor of 5× and 20×, respectively, and also

provide global optimum solution and valuable feedbacks to the user.

13



1.5 Thesis organization

The remainder of this thesis is organized as follows. In Chapter 2, we cover

the background materials and previous works that are closely related to the

contributions of this thesis.

In Chapter 3, we describe the Duplex algorithm. We provide the back-

ground on Rapidly-exploring Random Trees (RRT). We describe our contri-

butions over the RRT algorithm. We explain why Duplex algorithm is more

efficient and applicable toward optimization problems. We define three types

of optimization problems and describe how we solve them using the Duplex

algorithm.

In Chapter 4, we apply Duplex for directed input stimuli generation for

nonlinear analog circuits. Duplex utilizes random trees to explore the state

space of analog circuits. We adapt duplex to include multiple objectives such

as goal-oriented stimuli generation and increasing the test coverage. Duplex

will automatically infer the goal regions and generate input stimuli directed

toward the goal region while increasing the test coverage. We demonstrate

that duplex is capable of generating significant, hard-to-find input stimuli and

provides over two orders of magnitude speedup over Monte Carlo methods.

We illustrate our technique by generating tests for an operational amplifier,

voltage controlled oscillator (VCO), and ring modulator circuits.

In Chapter 5, we present a runtime monitoring algorithm for Duplex to

verify design properties of nonlinear analog circuits. We use time-augmented

random trees to simulate the analog circuits. The proposed runtime ver-

ification methodology consists of i) incremental construction of the time-

augmented trees to explore the state-time space and ii) use of an incremental

online monitoring algorithm to check whether or not the incremented ran-

dom tree satisfies or violates specification properties at each iteration. In

comparison to the Monte Carlo simulations, for providing the same state-

space coverage, we utilize a logarithmic order of memory and time. We use

a tunnel diode and a PLL circuit as case studies.

In Chapter 7, we present an efficient technique for analyzing eye diagrams

of high-speed CMOS circuits in the presence of non-idealities like noise and

jitter. Our method involves geometric manipulations of the eye diagram

topology to find the area within the eye contours. We introduce random tree

based simulations as an approach to computing the desired area. We use

14



a high-speed CMOS inverter as a case study for generating worst-case eye

diagram. We typically show 20× speedup in generating the eye diagram as

compared to the state-of-the-art Monte Carlo simulation based eye diagram

analysis. For the same number of samples, Monte Carlo produces an eye

diagram that is 8.51% smaller than the ideal eye diagram. We generate

an eye diagram that is 53.52% smaller than the ideal eye, showing a 47%

improvement in quality.

In Chapter 8, we utilize Duplex for test compression. We introduce a

methodology for automated test compression during electrical stress testing

of analog and mixed signal circuits. This methodology optimally extracts

only portions of a functional test that electrically stress the nets and devices

of an analog circuit. We model test compression as a problem of optimiz-

ing functionals of the transient response. We present a random tree based

approach to find optimal solutions for these computationally hard integrals.

We demonstrate with an op-amp, VCO and CMOS inverter that the method

consistently reduces the length of each test by 93%. We demonstrate our

technique by compressing tests for VCO circuit, an opamp circuit and a

CMOS inverter circuit in presence of process variations. We also provide a

parallel version of the Duplex algorithm.

In Chapter 9, we use Duplex for optimizing the performance of analog

circuits. Duplex determines the optimal design, the Pareto set and the sen-

sitivity of circuit’s performance metrics to its parameters. We optimize the

performance of an opamp circuit and a charge-pump PLL circuit as case

studies.

In Chapter 10 as a proof-of-concept, we demonstrate that the Duplex algo-

rithm can be used for nonconvex optimization and training machine learning

models in both supervised and unsupervised learning applications. We use

Duplex to train a logistic regression model for solving binary classification

problems. We achieve a very high-degree of accuracy for the given model.

Secondly, we use Duplex for clustering unlabeled data. The Duplex algorithm

can provide clustering without getting stuck in local minima.

In Chapter 6, we propose a methodology for reachability analysis of non-

linear analog circuits to verify safety properties. Our iterative reachable set

reduction algorithm initially considers the entire state space as reachable.

Our algorithm iteratively determines which regions in the state space are un-

reachable and removes those unreachable regions from the over-approximated

15



reachable set. We use the State Partitioning Tree (SPT) algorithm to recur-

sively partition the reachable set into convex polytopes. We determine the

reachability of adjacent neighbor polytopes by analyzing the direction of state

space trajectories at the common faces between two adjacent polytopes. We

model the direction of the trajectories as a reachability decision function

that we solve using a sound root counting method. We are faithful to the

nonlinearities of the system. We demonstrate the memory efficiency of our

algorithm through computation of the reachable set of Van der Pol oscillation

circuit.

Finally Chapter 11 presents a summary of the work and concludes this

thesis.

16



CHAPTER 2

PRELIMINARIES AND RELATIONSHIP
TO EXISTING WORK

In this chapter, we present the definitions and background on the techniques

used in this thesis. We first study the model for nonlinear systems that we

use in this thesis in Section 2.1. Finally, we survey the established techniques

for verification and validation of analog circuits.

2.1 Modeling and simulation of nonlinear and

mixed-signal analog circuits

A nonlinear time-variant circuit is modeled as a differential algebraic equa-

tions (DAEs) through modified nodal analysis (MNA) [32] of the circuit’s

netlist. Let f and g denote the piecewise continuous time-variant nonlinear

function governing the dynamics of the circuit, and t ∈ [0,∞). Let S ⊆ Rn

denote the continuous state space of the circuit. Let h be the piecewise con-

tinuous small perturbation function that results from modeling errors, aging,

or uncertainties and disturbances. Let U ⊆ Rm denote the input space of

the circuit. x denotes the state variables, and u denotes the input variables

of the circuit. u(t) is a piecewise continuous input signal. x(t) denotes the

state of the circuit at time t. The initial state of the circuit is x(0). The

initial state should be explicitly defined by the user; otherwise, it will be

determined through DC operating point analysis [32]. A nonlinear analog

circuit is described by an n-dimensional differential algebraic equation:1

ẋ = f(x(t),u(t), t) + h(x(t), t)

0 = g(x,u(t), t)

1In this thesis, we use a bold character v for vectors and italic characters vi for variables.

17



We consider that system as a perturbation of this nominal system:

F (ẋ(t),x(t),u(t), t) = 0 (2.1)

A solution of the circuit in the time interval [t1; t2] is the path taken by

the circuit from state x(t1) to state x(t2). For a given state x(t1) and input

u(t1), the differential constraints in Equation 2.1 determine the trajectory of

the circuit in the interval t ∈ [t1 t2]. The solution of the circuit derived from

an action trajectory for the initial state x(ti) at time t = ti is defined as an

initial value problem (IVP) by:

x(t) = x(ti) +

∫ t

ti

f(x(t′),u(t′))dt′ (2.2)

For nonlinear analog circuits, since f is constructed from a netlist of analog

circuits, f and its partial derivatives are continuously differentiable. In prac-

tice, g is usually unknown, but some information about it is known, such as

its upper and lower bounds and piecewise continuity. Hence it is presented

as an external term in the DAE model. For practical circuits, the solution

of nonlinear analog circuits can be computed using a numerical ODE/DAE

solver such as MATLAB or SPICE. Piecewise continuous input u(t) mod-

els a wide variety of inputs like continuous inputs (in analog circuits) and

piecewise continuous inputs (like analog interfaces such as DAC circuits).

Equation 2.1 models transient parameter variations that are due to changes

in input u(t) and small perturbations in the circuit that result in changes in

h in Equation 2.1.

2.2 Reachability analysis and safety definition

The reachable set is the set of all states that are reachable from the initial set

of states for all possible solutions (Equation 2.2) (paths), for all admissible

input signals U .

Rx(0)(U) =
⋃

x∈x(0)

⋃
u∈U

⋃
t∈[0,+∞)

R(x, u, t) (2.3)

where R(x, u, t) is the state trajectory from state x. Rx(0) denotes the reach-

able set from the initial set x(0) for all u ∈ U.

18



The over-approximated reachable set Rx(0) is defined as a set that satisfies

Rx(0) ⊆ Rx(0) ⊂ S. Given the state space of an analog circuit S, we want

to verify safety properties. We define safety properties by specified sets of

unsafe regions in the state space Runsafe. A safety property is satisfied if

there is no possible trajectory from any of the initial states toward Runsafe.

We conclude that the safety property has been satisfied when

Rx(0) ∩Runsafe = ∅ (2.4)

On the other hand, Rx(0) ∩ Runsafe 6= ∅ is not necessarily an indication of

safety violation. This is an implication that we cannot yet determine the

safety of the circuit.

2.3 Variational bayesian inference

In this section, we describe the variational Bayesian inference (VBI) algo-

rithm [4]. We use the VBI algorithm to infer a mixture distribution of the

given set of samples in Chapter 4. Let {x1, . . .xn} denote a set of samples

from an N -dimensional sample space. We assume the samples are from an

independent and identically distributed Gaussian mixture distribution with

unknown mean and variance. A mixture distribution is a distribution whose

density is the sum of a set of components. We want to compute the mean,

variance and the weight of the components in the mixture distribution. The

VBI algorithm infers the distribution of samples xi as a mixture Gaussian

distribution of the form

K∑
i=1

πi N (µi,Λ
−1
i ) (2.5)

where K represents the number of Gaussian components N in the mixture

distribution with mean µi, and variance Λ−1
i (Λi is the precision), and πi

denotes the weight of each component in the mixture.

An overview of the VBI algorithm is as follows. Variational Bayes fits

the samples to a mixture Gaussian distribution (Equation 2.5) by iteratively

computing and updating the parameters µi, Λ−1i , and πi for each of the K

components in the mixture. Let (latent variable) zij indicate whether a cor-

responding sample xi belongs to component j in the mixture. Let zi denote a

19



vector of znk for k = 1 . . . K. Each row j in zi corresponds to the probability

that this sample belongs to component j. So the zi is a one-of-K vector where

one of the elements, say j, is 1 (i.e. the sample zij probably belongs to com-

ponent j) and all other K − 1 elements are 0. Finally, let Z = {z1, . . . , zn}.
The variational Bayes models the variable Z and the parameters mean µ,

precision Λ, and mixture weight π as random variables (where the mean

follows a Gaussian distribution, the precision follows a Wishart distribution,

and the mixture weight follows a Dirichlet distribution). We refer our readers

to [4] to drive the equations necessary to compute the mean µ, precision Λ,

and mixture weight π.

The conditional distribution of Z, given the mixture weights π, is

p(Z|π) =
n∏
i=1

K∏
j=1

π
zij
j (2.6)

Additionally, the conditional distribution of the sampled state given the

latent variables is

p(X|Z, µ,Λ) =
n∏
i=1

K∏
j=1

N (xi|µj,Λ−1
j )zij (2.7)

where µ = {µk} are the means of the components of the distribution and

Λ = {Λk} are the precisions. The covariance matrix will be computed by

inverting the precision matrix Λ.

We assume a Dirichlet[4] distribution for mixture weights π:

p(π) = Dir(π|α0) = C(α0)
K∏
i=1

πα0−1
i (2.8)

where C(α0) is the normalization constant for Dirichlet distribution [4]. For

mean and precision, we assume a Gaussian-Wishart [4] prior distribution, as

follows:

p(µ,Λ) = p(µ|Λ)p(Λ) (2.9)

=
K∏
i=1

N (µi|m0, (β0Λi)
−1)W(Λi|W0, v0) (2.10)

In [4], the responsibilities rnk are modeled and computed as the expecta-

20



tions of the random variable znk. Therefore, computing the exact solution

is difficult. The algorithm assumes that the variational distribution can be

factorized between the variable Z and the parameters mean µ, precision Λ,

and mixture weight π and approximates the mixture distribution. The joint

distribution of all random variables is

p(X,Z, π, µ,Λ) = p(X|Z, µ,Λ)p(Z|π)p(π)p(µ|Λ)p(Λ) (2.11)

where X is the set of samples and Z is the latent variable. We assume that

variational distribution factorizes between the latent variables and parame-

ters such that

q(Z, π, µ,Λ) = q(Z)q(π, µ,Λ) (2.12)

In order to compute the mean vector and precision vector of the mix-

ture distribution, the algorithm iteratively alternates between two steps: i)

computing the responsibility (expectations) of each cluster in explaining the

samples, and ii) using the responsibilities to update the distribution param-

eters in order to maximize expectations. The algorithm iterates between the

two steps until the distribution converges. The output of the algorithm is

the mean µ, the precision Λ, and the weight mixture π of the mixture distri-

bution (Equation 2.5). Further details of this technique can be found in [4].

Variational Bayes computes the mixture weights as πi = 1
n

∑n
j=1 rji where

rij are responsibilities of each sample with respect to each component in the

distribution [4]. The responsibilities and weight coefficients of components

that provide inadequate explanation of the samples will converge to zero.

Therefore, after convergence, components with negligible mixture weights

are discarded. As a result, the technique does not require prior information

that specifies the exact number of components in the mixture distribution.

In [4], this feature is referred to as automatic relevance determination.

An advantage of VBI over other clustering or inference algorithms is that

the number of components K does not need to be known a priori. The

VBI algorithm computes the number of components K automatically. Fur-

thermore, the algorithm does not require prior information and uses conju-

gate priors to approximate the prior distribution using its parameters. The

VBI approximates the computationally expensive integral that arises in the

Bayesian inference by factorizing the prior distribution; therefore, the VBI

algorithm is very fast. Although the VBI is very fast, the inference results

21



are as accurate as those of other Monte Carlo Markov chain methods, such

as Gibbs sampling for Bayesian networks [4]. Finally, the VBI algorithm can

be implemented online. As a result, the algorithm can compute and update

the sample distribution incrementally [33].

2.4 Established techniques for validation of analog

circuits

We briefly describe our contributions in this thesis in the context of related

work.

2.4.1 Analog test

We refer our readers to [11] for an introductory tutorial and to [34] for a re-

view of the classic works. Researchers have focused on generating post-silicon

tests for nonparametric testing [35, 36, 17], and parametric fault models [37].

Some techniques use learning algorithms to identify bad regions [38, 37].

Recently, researchers investigated generation of pre-silicon tests for analog

circuits. That problem is closely related to that of runtime monitoring and

falsification of analog and hybrid systems [20, 39, 40, 41, 42].

The RRT algorithm was originally developed in robotic motion planning

[43]. In the classic RRT, the growth of RRTs is locally, but not globally,

optimal. Several techniques have tried to address that issue [40, 42, 44]. In

[39], the authors propose to introduce LTL properties into RRT to verify

safety properties of hybrid systems for falsification. Dang and Nahhal [42]

use RRT to generate counter-examples in analog and hybrid systems.

2.4.2 Runtime monitoring

Zaki et al. [20] survey recent literature on runtime monitoring and verification

of analog and mixed-signal (AMS) designs. Researchers have employed a

variety of techniques to analyze the transient behaviors of circuits in either

an on-line or off-line fashion. Examples of such approaches include using

interval arithmetic to validate the behavior of the circuit [45], using linear

22



hybrid automation as a template monitor for online monitoring [46], and

generating observers from PSL properties to monitor the simulation [47, 48].

The specification language we used in our work was first developed in

[49, 50]. The tool described in those papers, AMT, synthesizes a timed

automaton that monitors simulation traces for property violations. AMT

has been used to verify some properties of DDR2 memory specification [51].

In other work, [52] propose use repeated SPICE simulation to explore the

state-space of analog circuits for all possible discrete values.

In [39], the authors propose to introduce LTL properties into RRT to verify

safety properties of hybrid systems for falsification. In a similar approach,

[42] and [53] use RRT to generate counter-examples in analog and hybrid

systems. Recently [54], used µ-calculus to reason about RRT in discrete-

time control systems.

2.4.3 Reachability Analysis

Asarin et al.[55] provide an introduction and formal definition for reachabil-

ity analysis. Most of reachability analysis techniques construct the reachable

set from the initial set using forward reachability analysis [24]. Several tech-

niques have investigated the usage of polytopes [24, 56, 57], zonotopes [58],

or support functions [23]. Some reachability techniques are based on state

space discretization methods [59, 60, 61, 62]. Another technique in control

theory for verifying safety without actually computing the reachable set is

using barrier certificates [63, 64].

Another related technique to ours is the backward reasoning technique

[22]. Alur et al. [25] propose a technique for reachability analysis of linear

hybrid systems using predicate abstraction. They propose to improve reach-

ability analysis through vector field analysis and binary space partitioning

to optimize predicate abstraction. Ratschan and She [65] propose recur-

sive backward reasoning for hyper-boxes. In comparison to their work, we

provide a more efficient partitioning algorithm using polytopes and a sound

method for computing reachability decisions between adjacent polytopes for

nonlinear analog systems.

23



2.4.4 Eye diagram analysis

There are three techniques to analyze the eye diagram: i) Monte Carlo sim-

ulations, ii) convolution-based analytical methods [9, 10], and iii) statistical

methods [7, 8]. The de facto method for computing the eye diagrams is the

Monte Carlo transient simulations [6, 32, 66, 67]. However Monte Carlo is

too time-consuming and does not properly cover the simulation corners with

high deviations. Researchers have worked on replacing transient simulations

with convolution-based analytical methods [10, 9]. Analytical methods pro-

vide deterministic eye diagram, but are only applicable to the linear time-

invariant systems. In [68], the authors construct the output waveforms using

multiple edge responses. Statistical eye diagram analysis tools use statistical

techniques to determine the eye diagram [7, 8, 69, 70, 71].

Recently, some efforts have been put into developing better models for

worst-case eye diagrams. In [72], the authors use the step responses of pull-up

and pull-downs to predict the worst-case analysis of eye-diagram of the high-

speed channels. The authors construct the output waveforms using rising

and falling transition responses [72]. In [68], the authors construct the output

waveforms using multiple edge responses. Most of these techniques require

applying a very long, often pseudo-random, bit sequence to the circuit. In

practice, the length of the input bit sequence is limited, resulting in a larger

eye diagram than the worst-case.

2.4.5 Test compression

Optimal ordering of analog tests is important to identify redundant tests and

reduce total test time [73] [12]. Most failed tests can be strategically placed

at the beginning of the test sequence in order to reduce the total test time

[74]. A technique for optimal test ordering based on data from a small set

of functional circuits is proposed in [13, 75]. A method for designing tests

for parametric tests is proposed in [76]. Furthermore, efficient analog fault

modeling can be used to lower production test time [11].

The total test time can be lowered by minimizing the total number of the

tests in the batch [77]. Many researchers focused on selecting the subset

of the tests to achieve the same coverage [14, 15]. The redundant tests

can be identified by studying performance data from the simulation [77].

Recently, researchers used learning methods such as binary decision trees

24



[78] and test signatures [79] to identify redundant tests. Test signatures are

used to predict performance metrics of the circuit and to identify redundant

tests. Test signatures were initially proposed as a low-cost method by [79]

to evaluate tests for RF circuits. Test signatures are used by [80] to identify

redundant tests using regression methods. For SoCs, Golomb codes are used

for on-chip compression of the test sequence [18]. Recently, a compressive-

sensing testing method for 3D TSV was proposed in [19] where they use the

sparsity of the testing data to design an on-chip test compressor and off-chip

data recovery.

Automatic test generation tools [16, 81, 82, 83, 17, 84] are used to generate

efficient tests, improve coverage, avoid redundant tests and lower the total

test costs. The early literature on analog test generation is reviewed in [34].

Techniques for selecting the best test points in the analog circuit are studied

in [85] and [86]. A technique for generating tests with minimum test time

using a divide and conquer algorithm is proposed in [87]. Random trees

areused to automatically generate tests for analog circuits with goal-oriented

testing [88], with multiple objectives such as goal and coverage [89], and

analyzing worst-case eye-diagrams [90].

2.4.6 Circuit optimization

Analog circuit optimization has been extensively studied in the past [3, 26,

30, 91]. Classic techniques relied on generic optimization techniques (such as

simulated annealing) to optimize the circuit’s performance [3, 26, 28, 91].

Recently, researchers used computational intelligence techniques to speed

up circuit optimization [92, 93, 94]. [31] and [30] optimize the circuit by

discretizing and exploring the state space. In [31], the authors optimize

an operational amplifier, which we used in Section 9.4. Other specialized

optimization techniques have been employed to address circuit optimization

[95] with added objectives, such as yield [28, 31] or technology migration [94].

2.4.7 Optimization methods in machine learning

Optimization algorithms have a long research history in computer science,

control, finance and many other disciplines. Classical optimization tech-

niques are surveyed in [96]. Optimization problems in the continuous domain

25



include convex [97], non-convex, functional (infinite dimension) optimization

[98] and heuristic techniques [99] among others. Convex optimization tech-

niques are reviewed in [97]. There are two approaches to address non-convex

optimization problems: first order methods and second order techniques.

First order methods, including stochastic gradient descent [100], Nesterov

Momentum [101], AdaGrad [102], RMSProp [103, 104, 105], and Adam [106]

rely on the gradient information to navigate toward the optimal solution.

Second order techniques, based on Newton’s methods, such as the SFO al-

gorithm [107], use the Hessian information to compute the optimal solution.

Many techniques combine first and second order methods, such as [108] from

Google’s brain team that uses L-BFGS algorithm. Heuristic optimization

techniques are very effective at quickly finding approximate solutions when

classical techniques fail to converge. Heuristic methods are based on simu-

lated annealing [109, 110, 99] and genetic algorithms [111, 112, 113, 114].

2.4.8 Optimal control and motion planning

Optimization objectives often need to be optimized in dynamic contexts,

i.e., over time. Techniques from optimal control theory are used to optimize

an integral of the output of the dynamic system. This is also known as

functional optimization or infinite dimension optimization [98]. The most

popular approaches toward solving the optimal control problems are using

Euler-Lagrange [98, 115, 116] and Hamilton-Jacobi-Bellman equations [98,

117, 118]. Optimal motion planning techniques have been researched for

autonomous robots [119] and agricultural robotics [120, 121, 122].

Classical robot motion planning algorithms have been surveyed in [43]

and [123]. Popular sampling-based motion planning techniques are Rapidly-

exploring Random Trees (RRT) [124, 43] and Probabilistic RoadMaps (PRM)

[125, 126]. Optimal variations of the motion planning algorithms [127], such

as RRT* [128], have been proposed to find the shortest-paths in the state

space. Energy-optimal motion planning techniques based on optimal control

are proposed in [129, 130, 131].

26



CHAPTER 3

THE DUPLEX RANDOM TREE
OPTIMIZATION

3.1 Introduction

We propose Duplex, a random-tree based optimization algorithm for optimiz-

ing nonconvex functions and functionals. The Duplex algorithm is derived

from the Rapidly-exploring Random Tree (RRT) algorithm in robotic mo-

tion planning. We describe the RRT algorithm in Section 3.2. To adapt the

RRT algorithm for optimization application, we add direction to the random

tree algorithm. We describe our contribution over the RRT algorithm in

Section 3.3.

The Duplex algorithm has many advantages over traditional optimization

algorithms based on gradient descent. The Duplex algorithm, similar to RRT,

is probabilistically complete; hence it does not get stuck in local minima.

Furthermore, the Duplex algorithm provides valuable feedback to the user,

provides multiple candidate solutions by determining the Pareto frontier, and

is also highly performance efficient, versatile and scalable. We describe and

prove Duplex’s properties in Section 3.7.

Duplex is very versatile and can address different optimization problems,

including directed search in dynamic systems, nonconvex optimization, and

functional optimization. Duplex differentiates and formulates different prob-

lem types by dividing the problem space into multiple smaller spaces (such as

input, output, function). Then Duplex simultaneously grows multiple ran-

dom trees in such spaces. We explain the Duplex principle of separation of

spaces in Section 3.5. We cover the different problem types and their for-

mulation in Duplex in Section 3.8. We formulate many problems in analog

validation and machine learning into Duplex formulation and use Duplex to

solve those problems.

27



q near

q     sample

qnew

q root

Figure 3.1: Growth of RRT through addition of a new node sampled from
the state space.

3.2 Background on Rapidly-exploring Random Trees

(RRT)

The Duplex algorithm is derived from the RRT algorithm. We briefly de-

scribe the RRT algorithm presented in [43]. The RRT algorithm was devel-

oped as a motion planning algorithm for robots. The objective of the RRT

algorithm is to find a viable motion (path) from the robot’s initial configu-

ration of the robot to its destination. So the robot can move and get to its

destination by executing the motion.

The RRT is a tree data structure. The tree is initialized through fixing

of its root at a specified state1 in the state space S. The tree is then grown

incrementally through the addition of edges between existing nodes and the

new state selected from the state space. The selection of the new states

determines the manner in which the tree grows in the state space. Typically,

the new states are selected at random through uniform sampling of the

state space.

Let G be the RRT data structure. Each node of G corresponds to a state

in S, i.e., a unique set of values assigned to the state variables x. Each

edge represents a solution of the system from initial condition x for a given

assignment of values to the input variables u.

Algorithm 1 describes the growth of the tree G in the classic RRT algo-

rithm [43]. At every iteration, the RRT algorithm generates a random state

1Throughout this thesis, point denotes a vector in Rn. The state is a physical man-
ifestation of the point in the state space S ⊂ Rn (with corresponding scales and units).
The region is a connected subset of the state space S. Finally, a node is the state in the
tree data structure (augmented with input u(t), time annotation t, and possible pointers
to other nodes).

28



Algorithm 1 RRT algorithm using uniform sampling

1: G.init (x(0))
2: for i = 1→MAX − ITER do
3: qsample ← UniformSampling(S)
4: qnear ← FindNearestNodeInTree(S, qsample)
5: qnew ← FindOptimumTrajectory(qnear, qsample)
6: G.expand(qnew)
7: end for

−0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

(a) The RRT after 1000 iterations.

−0.4 −0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

(b) The RRT after 10000 iterations.

Figure 3.2: The classic RRT algorithm does not have any direction or bias
and rapidly explores the entire reachable state space.

qsample uniformly distributed in the state space. For every new generated

state qsample, the RRT algorithm will find the nearest state, qnear, and will

determine which solution for any u ∈ U will bring node qnear closer to the

sampled state. The RRT determines the closest state by simulating different

circuit trajectories and selecting the optimum one [42, 40] based on Euclidean

distance. That process is called shooting. From the initial state qnear, the

algorithm will randomly sample the input space U and generate the corre-

sponding trajectory by shooting for a short time (∆t). The algorithm will

then select the optimal trajectory as the trajectory that would result in the

final state closest (based on Euclidean distance) to the qsample. When the

path is determined, the tree will expand from qnear toward qnew through the

addition of the edge enew to the tree. The algorithm stores the state q, time

t, and trajectory u for each node in the tree, so later an input stimulus can

be reproduced using that information. Figure 3.1 shows the growth of the

RRT tree toward a given sample node. The RRT algorithm will terminate

after a fixed number of iterations MAX − ITER.

29



3.2.1 Properties of the RRT algorithm

The RRT grows rapidly and quickly visits unexplored regions of the state

space [43]. The RRT algorithm is probabilistically complete; i.e., as the num-

ber of samples approaches infinity, the RRT covers the entire state space

[43]. The RRT algorithm has an implicit Voronoi bias and therefore rapidly

explores the total reachable state space, as shown in Figure 3.2. The RRT

algorithm does not exhibit any bias toward the destination. In optimization

problems, the goal is to reach the minimum of the function, not to explore

the state space. As a result, the RRT algorithm is very inefficient for solving

directed search or optimization problems that arise in analog circuit valida-

tion.

3.2.2 Comparison of the random tree algorithm and linear
search

Traditional optimization methods are based on non-branching linear search

algorithms such as gradient descent, simulated annealing, random walk, and

hill climbing algorithms. The linear search starts from a randomly selected

state and walks in the state space without branching to reach the optimum

state.

The linear search algorithms do not branch the simulation and do not

maintain the history of the previously visited states. If they get stuck in

local minima, they have to backtrack which results in poor performance.

Many algorithms avoid backtracking; these algorithms can get stuck in local

minima and do not converge to the optimum solution in non-convex problems.

Furthermore, they only consider one path per run, and cannot produce the

Pareto frontier without multiple reruns. Random tree algorithm can address

both of these issues.

3.3 Adding direction to the random tree algorithm

In search and optimization, the objective is not to explore the state space,

but to reach the goal region and find a path to the optimum solution. The

RRT algorithm, due to its uniform sampling of the state space, will generate

many samples in the unreachable region and grows the random tree toward

30



the boundaries of the reachable state space. In systems, a goal region can

denote the set of states where the system would fail. Similarly, for a function,

a goal region would be where the function would take the minimum value. In

these cases, if we know the destination we do not need to explore the entire

state space.

We improve the efficiency of the random tree algorithm by adding bias to

the algorithm’s growth. We direct the growth of the random tree toward

the goal region by sampling from a biased distribution, centered in the goal

region, instead of uniform sampling of the entire state space. As a result, the

algorithm is more goal-driven and spends fewer iterations on exploring the

unreachable regions in the space.

To the best of our knowledge, this is the first work that uses random trees

for optimization by adding direction bias to the random tree algorithms. The

random trees inherit the positive properties of the RRT algorithm such as

probabilistic completeness and generating the Pareto frontier. Furthermore,

adding direction will improve the efficiency of the algorithm and make it

applicable to optimization problems. Finally, we introduce the Duplex prin-

ciple which allows for solving different types of optimization problems such

as nonconvex and functional optimization.

3.4 Duplex algorithm

The Duplex algorithm is an optimization algorithm that uses random trees

to find the optimum solution. Duplex uses random tree search, a tree based

simulation algorithm that also maintains the tree data structure as a record

of the state space traversed. It maintains and simultaneously grows multiple

homomorphic (mirrored) random trees: one in the state space and the other

in the objective space. In the objective space, it uses the basic random tree

search to find the globally optimal design or the goal region. In the state

space, it decides which parameter needs to change to get closer to the goal

region. This decision is made using a noisy gradient descent algorithm in

combination with reinforcement learning [132] that evaluates the history of

previous changes to the parameters in the parameter tree based on a reward

function. There is no open ended search in the parameter modification phase

(local step) of the algorithm.

31



Due to the probabilistic completeness property of random trees [43], Du-

plex does not get stuck in local minima. This is in contrast to random walk

based methods like simulated annealing or gradient descent. The guidance

in every step from the global search towards the local step decision helps in

converging quickly to the optimal goal region.

3.4.1 Equivalence of search and optimization algorithms

The traditional random tree is a search algorithm. As a result, the objective

of the algorithm is to find a path from the initial state to the goal state. Every

search problem can be mapped to an optimization problem and vice versa (by

defining the cost function as a distance to the optimum state). Therefore,

a random tree search algorithm can also be used for optimization. The

random tree search-turned-optimization algorithm would enjoy the benefits

of random tree search, such as probabilistic completeness and generating

Pareto frontier, although the algorithm would have a very poor performance

due to lack of direction toward minimum.

Random trees are shown to consistently outperform random walk based

search methods such as Monte Carlo simulations for search applications

[89, 133, 134]. Efficiency improvement can be credited to the data struc-

ture maintained by the random tree algorithm during the simulation. While

growing, it samples a new state in the goal region (desired solution set), and

then determines which state is closest (in L2-norm sense) to that sampled

goal state among all of the previously visited states in the tree. It simulates

a path between the closest state and the newly sampled state and adds the

new state to the tree. This is in contrast to the memory-less sampling of

points in the Monte Carlo based methods.

3.5 Duplex principle: separation of spaces

The Duplex algorithm optimizes different optimization problems such as

search, nonconvex optimization and functional optimization. The key in

solving totally different problems with the same algorithm is in how we for-

mulate these problems using Duplex’s principle of separation of spaces.

Two important aspects of the Duplex algorithm are as follows. Firstly, Du-

32



Parameter Space Objective Space

Initial state

Mapping

Goal region

x0 y0
F (x0)

Figure 3.3: The input and objective spaces in multi-objective optimization.

plex partitions the objective functions into multiple spaces. Figure 3.3 shows

the principle of space separation in Duplex. Secondly, it performs an efficient

search in these multiple spaces using random trees. Duplex simultaneously

constructs and maintains multiple different, but mirrored (homomorphic),

random trees in the state, function and functional spaces. Intuitively, the

output tree is the mirror of the input tree in the function space.

These trees represent different relationships. An edge in the input tree

indicates that the two input states connected to that edge differ in exactly one

variable. An edge in the output tree between indicates that the corresponding

nodes in the input tree are connected. For each node p in the input tree,

there exists a corresponding node in the output tree, and vice versa. The

corresponding node in the output tree is computed by objective function with

the given input.

3.6 Problems solved using the Duplex algorithm

We applied Duplex optimization to different problems in analog validation

and machine learning. In each case, we formulate the problem as an opti-

mization problem with specific auxiliary objectives. Then we use Duplex to

optimize the objective and determine the optimum solution. In all of these

cases, the objective function is non-traditional, non-convex or functional and

there is no known algorithm to optimize this objective function efficiently.

We use Duplex for directed search in the space of nonlinear dynamic sys-

tems. The aim is to determine a path from the initial configuration to the

final configuration. We use directed search for automatically generating in-

put stimuli for checking circuits failure and improving test coverage. We

develop a language for specifying and validating analog properties over the

Duplex’s tree data structure. We provide a technique to monitor logic prop-

erties during the execution of the Duplex algorithm.

33



We use Duplex for optimizing the transient response of the circuits. Specif-

ically, Duplex can generate worst-case eye diagrams by maximizing signal

distortion and can compress tests to execute them faster by generating time-

optimal tests. The transient response of the circuit is an integral of the

circuit’s dynamic. Thus, optimizing the transient response is an instance of

functional optimization for nonlinear systems.

Many different types of machine learning problems are optimizing an er-

ror/loss/energy of the current inferred hypothesis from the ideal answer.

Therefore, optimization is the core of machine learning. We consider su-

pervised learning using logistic regression with adaptive regularization and

unsupervised learning based on the K-mean clustering algorithm. In su-

pervised learning, we have the labeled data. We use the Duplex algorithm

to minimize the squared error of the logistic regression hypothesis function.

In the case of unsupervised learning, where we do not have labeled data, we

model the distortion of each cluster as an energy function, and we use Duplex

to minimize the distortion function.

3.7 Properties of the Duplex algorithm

3.7.1 Probabilistic completeness

The Duplex algorithm in finite dimension spaces is probabilistically complete.

As the number of iterations goes toward infinity, the probability that the

algorithm will find the optimum solution converges toward one.

We prove the probabilistic completeness by using a similar proof for the

RRT algorithm [43, 135]. We show that the distribution of the samples in

the random tree converges to the sampling distribution.

Let C denote the state space of the problem. If we have multiple spaces

C1, . . . , Ck, we can combine them to form C. Assume C is nonconvex,

bounded, open, and reachable. Let n denote the number of nodes in the

random tree. Let d(x) denote the random variable whose value is the dis-

tance of x to the nearest node in the random tree. For any x ∈ C and positive

real number ε > 0, we have

lim
n→∞

P [dn(x) < ε] = 1. (3.1)

34



Figure 3.4: The convergence rate w.r.t. number of iterations for the Duplex
algorithm for nonconvex optimization. Our algorithm converges very fast
toward the optimum solution from any initial state. Duplex is not sensitive
to the choice of initial state.

As the number of iterations n goes toward infinity, the probability that a

node in the random tree is sampled arbitrarily close to the state x converges

to one.

Proof: Let x denote any arbitrary state in state space C. Let x0 denote

the root of the random tree. Let B(x) denote a ball of radius ε centered on x.

The ballB(x) has a strictly positive volume. Initially, we have d1(x) = |x, x0|.
At each iteration, the probability that the new sampled node will be inside

B(x) is strictly positive. If all random tree nodes lie outside of B(x), then

E[dk] − E[dk+1| > b for some positive real number b > 0. This implies that

limn→∞ P [dn(x) < ε] = 1.

3.7.2 Rate of convergence

The Duplex algorithm quickly converges to the optimal solution. We empir-

ically observed the Duplex algorithm has a sub-linear convergence rate for

non-convex optimization. However, we could not mathematically prove this

property of the Duplex algorithm for non-convex nonlinear systems.

Figure 3.4 shows the visually weighted regression plot for convergence rate

for the Duplex algorithm for optimizing an inverter circuit using nonconvex

optimization (Chapter 9). We measure error as the minimum distance from

every node in the random tree toward the optimum solution. We execute

Duplex for 100 independent runs with a random initial state and draw the

overlapping convergence plots in the visually weighted regression plot. We

35



Algorithm 2 Abstract duplex algorithm

1: initialize the algorithm
2: while not converged() do
3: qfrom = pick a node from database . Global step
4: qnew = update qfrom . Local step
5: Evaluate qnew

6: Add qnew to the database.
7: end while

also draw the average of all the convergence plot as the expected convergence

rate. As shown in the convergence figure, Duplex quickly converges toward

the goal region in the performance space. Figure 3.4 highlights two facts

about the Duplex algorithm: 1) Duplex converges sub-linearly fast toward

the goal region and 2) Duplex is very stable with respect to the choice of the

initial state

In our experiment, we uniformly sampled the initial (root) state, so the

variance at the beginning is very high. On the other hand, toward the end

of the algorithm the variance in error is low because Duplex converges to the

optimum results regardless of the choice of the initial state.

3.8 The Duplex optimization algorithm

3.8.1 Abstract Duplex Algorithm

The Duplex algorithm grows random trees in the state space in a directed

manner. Every node in the random tree is a vector in the state space of

the problem. The algorithm grows the random tree iteratively by adding

nodes to the tree. At every iteration, the algorithm repeatedly makes two

decisions: i) which node to branch the random tree from, and ii) where to

go from the branched state. Each of these decisions impacts how Duplex is

directed toward the goal region and avoids local minima.

The overview of Duplex is shown in Algorithm 2. In the beginning, the

algorithm will initialize the random tree by constructing the root node. Then

duplex iteratively adds nodes to the tree until convergence criteria are satis-

fied. At every iteration, the algorithm picks a node from the tree. How the

algorithm selects qfrom depends on the problem. Next, the algorithm will

36



generate a new input qnext by modifying the node qfrom. How the algorithm

will update qnext also depends on the problem type. Finally, the algorithm

evaluates the qnext according to the update rule and adds the new node qnew

to the tree.

If we avoid branching the tree, the random tree becomes a random walk in

the space. The duplex algorithm is a generalization of the gradient descent

algorithm. The global step is set to pick the most recent node as the next

node. Furthermore, the local step is to take the step in the direction of the

gradient. The local update rule for gradient descent is shown in Equation 3.2

where f is the function that the algorithm is optimizing, γ is the learning

rate and β is the white noise.

qnew = qfrom − γ 5 f(qfrom) + β (3.2)

We use Duplex algorithm to solve three class of optimization problems.

We classify these problems according to the dimension of the problem space

and type of objective functions into the following categories:

1. Type-I: Search in nonlinear systems

2. Type-II: Non-convex optimization in finite dimensions

3. Type-III: Functional optimization

In type-I problems we use Duplex to find a path from the initial state to

the goal state in the state space of a nonlinear dynamic system. In type-II

problems, we extend the duplex framework to optimize non-convex objective

functions and find the minimum in finite dimensions. Finally, in type-III

problems, we extend the algorithm to optimize functionals in infinite dimen-

sional space. Sections 3.8.3-3.8.4 will describe these problems in detail. In

each case, we formulate the problem in Duplex’s formulation and use the

Duplex algorithm to optimize the objective function.

3.8.2 Type-I: Search problems in finite dimensions

We define type-I problems as search problems in the state space of dynamic

systems. The goal is to find a path from the initial state to the goal region

if such path exists.

37



The goal
region

xfrom

xsample

x1

x2

x3

x4
x0

u

Figure 3.5: Growing random tree toward the goal region.

Algorithm 3 Duplex optimization for Type-I search

1: Set root of the tree at x0.
2: while x∗ is not reached do
3: qsample = Generate a sample in the goal region
4: qfrom = find the nearest node in the tree to qsample . Global step
5: u = choose a trajectory from qfrom toward qsample. . Local step

6: qnew = qfrom +
∫ t+∆t

t
f(x, u, t)dt. . Evaluate

7: Add qnew to the database.
8: end while

Problem Definition Given a nonlinear system f , a continuous space Rn,

an initial state x0 ∈ Rn and the boundary state x∗ ∈ Rn, find an input

sequence u(t) such that

x∗ = x0 +

∫ T

t=0

f(x,u, t)dt (3.3)

The Duplex algorithm solves type-I problems by growing a random tree in

the space Rn from the initial state x0 toward the goal region x∗. The tree is

directed to grow toward the goal region. Figure 3.5 shows how the Duplex

algorithm grows the random tree toward the goal region.

Algorithm 3 demonstrates how Duplex works. The algorithm will itera-

tively pick where to branch the random tree from (qfrom) according to the

global step. Then it will choose the optimum trajectory from the qfrom using

local steps. The algorithm iteratively repeats global and local steps until we

find a sufficient number of samples in the goal region.

Global steps in the Duplex algorithm

At every iteration, we have multiple candidates to branch the simulation

from because the state space has n dimensions, and we have multiple nodes

38



Pareto Frontier Set

Figure 3.6: The Pareto frontier of the random tree.

in the random tree. Ideally, we wish to pick a node in the Pareto front

of all nodes in the random tree (Figure 3.6). Pareto front is the set of all

potential candidates in the random tree. Formally, Pareto frontier is defined

as a relation between nodes. A node x is dominated by node y if

1. e(xi) ≤ e(yi) for all 1 ≤ i ≤ n.

2. e(xj) < e(yj) for at least one j ∈ {1, . . . , n}.

The ei function is the projection of the distance to the optimal solution in the

ith dimension. Pareto frontier is the set of all nodes that is not dominated

by any other node.

To compute the exact Pareto set, we need to calculate the convex hull

of all the nodes in the random tree, which is computationally very expen-

sive. Instead, we choose an alternative method to sample the Pareto frontier

which is computationally cheaper. At every iteration, we generate a sample

qsample inside the goal region. Our goal is to direct the random tree toward

qsample. We pick the nearest node qfrom from the qsample in the random tree.

qsample is in the Pareto frontier. We branch the simulation from the node

qfrom. The computational cost of each nearest neighbor query is O(log n),

and the nearest neighbor search implementations are scalable regarding both

the dimensions and number of samples. We use KD-tree data structure as

a database for storing the nodes in the random tree and performing nearest

neighbor queries.

Local steps in the Duplex algorithm

For the local steps, we have to determine what is the best input trajectory

that can take us from qfrom to the new sample qsample in the goal region.

39



Duplex uses two strategies for determining the optimum trajectory depending

on the availability of the gradient information.

Taking the local steps along the gradient If we have the gradient

information available, the optimum trajectory is given by the Jacobian of

the function f . We also add white noise η to the gradient to improve the

performance of the algorithm around the saddle points. Finally, we add

momentum to the trajectory to improve performance.

Learning the optimum local steps If the gradient information is not

available, we use reinforcement learning to determine the optimum trajectory.

We train a Q-function Q(x, u) where x is the states in the state space and u

is the trajectories (actions). Next time for the given state x and trajectory

u, we evaluate u using the Q function.

The Duplex algorithm for type-I problems is very similar to the RRT

algorithm for motion planning. However, there are important differences

between the two algorithms: i) Duplex is directed to grow toward the goal

region. Hence, the algorithm is more efficient that the classic RRT. ii) The

Duplex algorithm can optimize other objectives while growing the random

tree such as improving coverage. An example of a type-I problem in analog

validation is automated stimulus generation for nonlinear analog circuits.

The test generation problem involves finding an input sequence (test stimuli)

from the reset state of the circuit to its failure region. We formulate the

stimuli generation problem as a type-I problem and use the Duplex algorithm

to solve it in Chapter 4.

3.8.3 Type-II: Optimization problems in finite dimensions

Most practical problems have several (possibly conflicting) objectives that

need to be satisfied. Multi-objective optimization is the problem of finding a

vector of parameters which satisfies constraints and optimizes a vector func-

tion. We use duplex for multi-objective optimization of nonconvex nonlinear

functions in finite dimensional spaces.

40



The multi-objective optimization problem is defined as follows:

min y = F (x) = [f1(x), f2(x), . . . , fm(x)] (3.4)

subject to G(x) = [g1(x), g2(x), . . . , gk(x)] ≥ 0 (3.5)

x
(L)
i ≤ xi ≤ x

(U)
i , 1 ≤ i ≤ n (3.6)

Vector x = (x1, . . . , xn) is the parameter state. Let y = F (x) denote the

objective vector. We want to optimize objective function F with respect to

m non-convex nonlinear objective functions f1, . . . , fm. The goal region is

defined according to k inequalities g1, . . . , gk. Furthermore, we have n lower

and upper [x
(L)
i , x

(U)
i ] bounds for each parameter xi.

Duplex maintains two disjoint spaces, namely the parameter (input) space

X and the objective (function) space Y. We generate an initial state x0 by

sampling the parameter space. Then we simultaneously grow two random

trees, namely the parameter tree and the objective tree in the parameter and

objective space, respectively. The Duplex algorithm takes the global and

local step similar to standard Duplex algorithm presented in Section 3.8.3.

At every iteration, the algorithm generates a sample, say ysample, toward

the goal region in the objective space. Then it searches the objective tree

in the objective space for the nearest node toward ysample, say ynear. Next,

we find the corresponding parameter state xnear to ynear in the parameter

space. Duplex branches from the nearest node xnear in the parameter tree.

The algorithm selects the optimum input choice according to the noisy gra-

dient descent algorithm combined with reinforcement learning to get closer

to ysample. Eventually, the algorithm converges toward the goal region in the

objective space.

Figure 3.7 shows how Duplex can optimize the egg-holder function. The

egg-holder function is a very nonconvex function and has multiple local min-

ima in its domain. The surface plot of the egg-holder function is shown in

Figure 3.7. The Duplex algorithm creates two disjoint spaces: the parameter

space (x1, x2), and the objective space f(x1, x2). The algorithm then searches

for the minimum of f in the objective space. As a result, the Duplex grows

multiple branches toward the minimum. Although a few branches get stuck

in local minima, finally the algorithm converges toward the global minimum,

as shown in Figure 3.7. Figure 3.7.b shows the parameter tree rendered from

the state space.

41



(a) The landscape of the egg-holder
function with multiple local minima.

(b) Duplex converges to the global
minimum without getting stuck in
local minima.

Figure 3.7: Using Duplex for optimizing a non-convex function.

Type-II problems are generalizations of type-I problem. A type-I problem

can also be formulated as a type-II problem by defining an error function

e(x) = |x0 − x∗| and minimizing the error function e.

3.8.4 Type-III: Functional optimization in infinite
dimensional space

Consider the nonlinear system that is expressed in the usual state space form

as

ẋ = f(x, u, t) (3.7)

y = h(x, u) (3.8)

in which x, u and y denote system state, input and output, respectively. To

characterize the performance of such systems, we consider optimality criteria

that can be expressed as a performance functional of the form

J(x, u, y) =

∫ t1

t0

l(x, u, y)dt+M(x(t1), y(t1)) (3.9)

in which l denotes the running cost at time t and M denotes a terminal

cost. Note that we have expressed performance as a function of both state

and output, for the sake of generality (even though, strictly speaking, this

generality is redundant).

In many optimization problems, the goal is not just to reach the optimum

42



y0
x0

State Space Function Space Functional Space

J0

J ⇤
Simulation Goal Objective

y1

y2

y3

x1

x2

x3

J1

J2

J3

Figure 3.8: Partitioning the spaces into state space and function (objective)
spaces in Duplex.

state, but to minimize a functional over the path to get there. For example,

optimizing energy is a functional optimization, whereas minimizing power is

a case of non-convex optimization. Functional optimization problems appear

across a variety of disciplines from automated motion planning for driverless

cars with objectives such as fuel efficiency and arriving time to optimizing

for worst-case eye diagrams in analog circuits.

Previously, the functional optimization problems have been studied using

optimal control technique. The most popular approach toward solving the

optimal control problems was using Euler-Lagrange (E-L) [98] and Hamilton-

Jacobi-Bellman (HJB) equations [98]. The E-L and HJB equations find the

optimal solution, but they are very limited in scope and only apply to very

simple systems.

The Duplex algorithm solves the functional optimization problem by aug-

menting its space model with functional spaces as shown in Figure 3.8. Then,

the search is performed in three spaces simultaneously: i) the state space, ii)

the function space, and iii) the functional space. Duplex uses the function

space to enforce the boundary conditions. For every node in the function

space, the Duplex algorithm evaluates the value of the functional from that

node to the root of the tree and stores the final result as a node in the

functional tree.

At every iteration, the algorithm generates two sample nodes qsample in the

function and functional space. The algorithm grows the tree toward these

nodes to simultaneously enforce boundary conditions and minimize the value

of the objective functional. It picks the nearest node qnear in the functional

space to the qsample and branches the simulation from the nearest node. The

algorithm samples a new input in the state space, then computes the objective

function and updates the random trees in the function and functional space

43



accordingly.

In comparison to the previous work, Duplex relies on numerical compu-

tation and has virtually no limitation on what types of dynamics can be

modeled. More complex objective functions can be easily formulated in their

separate space, which allows for efficient modeling and prototyping real-world

problems. The initial and boundary conditions are modeled separately in the

function space and can be efficiently enforced. Empirically we observed that

the Duplex algorithm efficiently converges toward the optimum value and is

two orders of magnitude faster than random-walk based methods.

Consider the Dido isoperimetric [98] functional optimization problem as

shown in Figure 3.9. The Dido problem is a classic problem in optimal

control. The algorithm asks for what is the largest enclosed area given fixed

initial, boundary and perimeter conditions. Specifically, we are interested in

minimizing

J(y) =

∫ b

a

y(x)dx s.t. y(a) = y(b) = 0 (3.10)

C0 =

∫ b

a

√
1 + y′(x)2dx (3.11)

(3.12)

In this problem, the state space x ∈ R2, there are no dynamics and the

function space y, has infinite dimensions. Figure 3.9 shows the functional

space of the random tree and the result of the algorithm, an optimized path

capturing the maximum area. The optimum solution is an arc of a circle and

the algorithm will eventually converge toward the optimal solution.

3.9 Online resources

We developed a toolset for evaluating and demonstrating the Duplex algo-

rithm. This toolset, along the benchmarks, is released under an open source

license and is available online.

The Duplex algorithm, as presented in this chapter, is developed in C++

and released in the Duplex optimization toolbox [136]. We later ported the

scripts to C++ for supporting multi-objective stimuli generation, runtime

monitoring, eye diagram analysis and test compression [137]. RRT reposi-

44



Figure 3.9: The result of the Dido optimization problem using Duplex algo-
rithm.

tory [137] also includes the initial prototype of the directed test generation

algorithm that was implemented in MATLAB. The results from Chapter 4,

5, 7, and 8 are partially generated using [137]. We finally created the Duplex

optimization toolbox that follows the algorithm as described in this chapter

in [136]. The reachability analysis tool was implemented in [138].

The case studies that we used in this thesis are stored in [139]. We

implemented the Urbana SAT solver [140] that uses Duplex to solve the

boolean satisfiability problem. We implemented the Rapidly-exploring Ran-

dom Forests algorithm for test generation and reachability analysis [141].

Finally we implemented a game, where we use Duplex to find the Nash equi-

librium of capacitated selfish replicated games [142].

3.10 Chapter summary

In this chapter we introduced the Duplex optimization algorithm. We de-

scribed our contributions over the classic RRT algorithms: i) direction in

search, and ii) separation of spaces. Finally, we showed which optimization

problems can be solved with the Duplex algorithm and how we can solve

them using the Duplex.

45



CHAPTER 4

DIRECTED INPUT STIMULI
GENERATION

4.1 Introduction

4.1.1 Validating analog circuits by simulation

We motivate the reasons to generate input stimuli automatically, as well as

the reasons to prefer directed stimuli over random stimuli in analog valida-

tion. Our intended use case for this technology is in pre-silicon and post-

silicon validation, as a replacement to random Monte Carlo simulations. In

current practice, three types of input stimuli are applied to the netlist. The

first is generic stimuli from the design house’s repository of standard stimuli

for the circuit, like applying a sine input to an opamp circuit. The second

input stimuli are random Monte Carlo simulations to check for behaviors

under different operating conditions. The designer then manually writes test

benches designed specifically to check the circuit’s corner case behavior and

functionality.

In this process, neither the first nor second set of stimuli is capable of

exciting corner cases and critical functionality. The most complex part of

the verification is done manually. While this was acceptable in the era where

analog was relegated to a few standard, non-integrated circuits such as small

amplifiers and regulators, etc., such custom crafting of verification artifacts

cannot scale to today’s systems. Today, analog and mixed signal chips form

a majority of modern systems-on-a-chip (SoCs). Automated stimulus gen-

eration is therefore a critical need for current and future analog and mixed

signal designs.

In current practice, the automated part of the verification is in the sec-

ond type of stimuli, i.e. Monte Carlo simulations [143, 144]. Monte Carlo

based methods simulate the circuit using randomly generated inputs. They

46



do not take into account the circuit structure, topology, or state space to

target their simulations. On the other hand, directed simulation can focus

the simulations to expected or known objectives that capture the desired

functionality. Objectives can be simple, such as reaching a specific state (say

equilibrium), output saturation or safety. Objectives can also be complex

behavior-based, like locking, operating regions of active elements, stressing

interconnects, etc. Objectives are especially useful during IP integration,

where generating stimuli for integrating a netlist into an SoC is a complex

problem. For instance, if unsafe regions (e.g. overshooting voltages or ex-

cessive current through the IO) in the interface between the SoC and analog

netlist are set as goal objectives, an input stimulus can be generated to check

for erroneous behavior. This is an increasingly common practical scenario.

In the absence of objective based directed inputs, random stimuli may not

even reach the desired objectives within acceptable time and resource limits.

We believe that this significant chasm in the analog and mixed signal veri-

fication process can be bridged by introducing directed stimulus generation.

In order for analog verification to scale to the designs of the future with nu-

merous and complex analog components, directed simulations are critically

important. To calibrate, in digital circuits, directed input stimuli form the

majority of the pre-silicon verification process. Random stimuli are intro-

duced much later for simulating unexpected or corner case scenarios, and

aborted after a pre-decided number of cycles.

4.1.2 Generating directed input stimuli using Duplex

We use the Duplex algorithm for automatic directed input stimulus generation

for validating nonlinear analog circuits. Ours is a simulation based approach

that can be used to exercise interesting or relevant behaviors of the circuit

in a targeted manner. Goals such as operating modes of active components,

stable operating states, failure regions, stressing interconnects, equilibrium

states, and other relevant behavior can be triggered using our approach.

These goals can be user specified or automatically inferred by our algorithm.

Input stimuli that can reach these goal regions are then generated. Coverage

goals can also be specified in our algorithm, such that the generated input

stimuli can meet them. We define coverage as uniformity of the visited states

in the reachable state space.

47



We formulate the directed input stimuli generation as a type-I duplex

optimization problem. In type-I problems, Duplex grows a single random

tree in the state space of the circuit. The Duplex can be manipulated to

provide local direction concerning which state the simulation should branch

from next, as well as global direction concerning which region in the state

space the simulation should be directed. The Duplex tracks the states it

has visited so far by maintaining a tree data structure that it updates every

iteration. The classic RRT grows the tree structure by sampling states from

a uniform distribution over the state space. In [145], we augmented the RRT

with a time dimension, to be able to generate time-variant transient input

stimuli. For this work, we will use these time-augmented RRTs.

In [88], we introduced goal-orientedness in analog input stimulus genera-

tion. In this work, we have developed that idea further into a directed input

stimulus generation methodology that can simultaneously optimize for goals

as well as coverage. We also propose in this work, Multi-Objective RRTs

(MORRTs), which introduce a biasing and feedback loop into the regular

RRTs, to bias the growth of the RRTs towards a goal and/or a coverage

objective. Traditional RRTs simulate the next state by sampling from a de-

fault uniform distribution of states. With MORRTs, we provide alternate

distributions for the RRT to sample from. These alternate distributions are

biased in favor of goal regions and/or increased coverage. While in [88] we

used a clustering algorithm, in this work, we infer these goal and coverage

distributions automatically using variational Bayesian inference (VBI)[4], a

statistical inferencing algorithm. The VBI algorithm infers a goal distribu-

tion from an initial learning phase where it samples states from the user

defined or frequently occurring states. It infers a coverage distribution by

analyzing the state space distribution of the previously visited states of the

MORRT. This provides an integrated methodology to generate high coverage

input stimulus directed towards goal regions.

4.1.3 Benefits of using Duplex methodology

We demonstrate that the MORRT algorithm is able to generate tests in goal

regions significantly better than Monte Carlo. It takes the random Monte

Carlo simulations 199×more iterations and 188×more time to reach the goal

regions, as compared to our directed approach. The time overhead incurred

48



in every iteration is higher for the MORRT than Monte Carlo, but we show

that it is no greater than 22% in our experimental results. The computational

overhead in the MORRT is because of i) inferring the goal distribution, and

ii) searching for the closest node to the desired goals. The MORRT stores

context through a data structure that represents the visited state space.

The memory overhead as a result of maintaining this data structure is not

significant.

We present extensive and detailed experimental results on several circuits.

We used a Josephson junction circuit, an op-amp and a high-speed VCO

circuit. The op-amp is an 8-dimensional CMOS circuit. The VCO netlist

is extracted from the post-layout circuit. We demonstrate that our learning

strategy with VBI is able to identify the goal regions effectively. We also

show that the input stimuli generated by the MORRT algorithm are more

efficient than the traditional RRT in achieving objectives. For the Josephson

junction circuit, we obtained several stimuli cases that drove the circuit into

undesirable states. Such undesirable behavior is known to be hard to detect

using conventional test-generation methods [146]. We also demonstrate that

our tests can validate correct behavior as well as reveal anomalous behavior.

Finally, we quantify the coverage and goal-orientedness of MORRT in terms

of the star discrepancy metric used by [147].

In [88] we used the traditional RRT algorithm for generating goal-oriented

input stimuli for nonlinear analog circuits. We used a grid-based clustering

algorithm to identify the goal regions and biased the growth of the RRT

toward those regions. Our contributions over [88] are as follows. In this

work, we introduce coverage as an objective for input stimulus generation

along with goals. We introduce the MORRT algorithm that can generate

tests with respect to both high coverage and goal-orientedness. We intro-

duce a biasing technique based on a feedback loop in the MORRT algorithm

to favor its growth towards a desirable part of the state space. We use the

variational Bayesian inference algorithm to infer the goal distribution and

coverage distributions. We introduce a parameter that provides a knob be-

tween the goal-orientedness and high coverage simultaneously. We provide

extensive experimental results including a CMOS circuit (over [88]) that show

the efficacy, efficiency and scale of the MORRT.

49



Learning - VBI Simulation - MORRT

Variational Bayesian 
Inference

Biasing toward 
objective

G
oa

l 
di

st
rib

ut
io

n

Co
ve

ra
ge

 
di

st
rib

ut
io

n

Generate a new sample (state) 
from mixture distribution

Find nearest node to the 
sampled state

Grow the RRT from nearest 
node toward the sampled state

Simulation 
objectives 
achieved?

Input Stimulus Generation

Generate input stimuli 
for goal regions with 

high coverage
⇣

Objective 
weight 

parameter

Goal 
observations

No

Mixture 
distribution

Yes

Figure 4.1: Framework of our directed input stimulus generation technique
(Section 4.2)

4.1.4 Chapter organization

The rest of this chapter is organized as follows. In Section 4.2 we overview

the Duplex methodology for directed input stimuli generation. We describe

the Duplex algorithm in Section 4.3. We show the experimental results in

Section 4.4.

4.2 Framework of our automated directed input

stimulus generation algorithm

The input to our algorithm is an analog circuit netlist (MATLAB or HSPICE

netlist). We determine the state space of the circuit by converting it to an

ODE [32]. The output of our algorithm is a set of input stimuli. Each

input stimulus is a piecewise linear input waveform signal that is assigned

to each transient input source in the netlist such as current, voltage and

other transient variable sources that are inputs to the circuit (Section 4.3.4,

Figure 4.3).

Figure 4.1 shows an overview of our automated directed input stimulus

generation framework. There are three key components: i) learning, ii) sim-

ulation, and iii) input stimulus generation. The purpose of the learning

component is to infer goal distributions and coverage distributions that the

MORRT simulation phase can sample from. This phase provides the bias for

the subsequent MORRT growth. We use the variational Bayesian inference

50



algorithm (Section 2.3) to infer the goal distribution and coverage distribu-

tions. Goals can either provided by the user or automatically generated by

our learning algorithm. VBI infers a goal distribution from set of training

states. The training states are generated from frequently occurring regions

in the state space. To determine coverage distribution, we employ the VBI

algorithm in a non-standard way (Section 4.4.3. We exploit the fact that

the MORRT maintains a data structure to keep track of visited states, and

feedback the visited states to the VBI algorithm. The algorithm then infers

the distribution that will bias the sampling in favor of higher coverage of the

state space.

The output of the learning phase is a mixture distribution that combines

both the goal and coverage distributions according to ζ, a weight factor. ζ

can be dialed up or down by the user to reflect the extent to which he wants

goal orientation and/or high coverage in the generated tests. The purpose

of the simulation component is to simulate the MORRT. The MORRT is a

random tree grown in the state space of the circuit. In each iteration, the

next state to be simulated (node of the tree) is generated from the mixture

distribution. The MORRT then finds the node of the tree nearest to the

newly sampled state and simulates an optimum trajectory path from that

node to the new state (Section 4.3.3). If the goal regions are reached, or the

coverage goal is reached during simulation, we invoke the final component.

The purpose of the input stimulus generation phase is to extract a test

from the MORRT simulations at a given state. We extract the path from

the initial state (the root of the MORRT) towards the goal region (the leaf

of the MORRT) by traversing the tree (Section 4.3.4).

4.3 Proposed directed input stimulus generation

algorithm: Multi-Objective RRT

The details of our Multi-Objective RRT algorithm are explained in Algorithm

4. The MORRT algorithm generates biased states from a distribution M
which is a mixture of two distributions: the goal distribution G and the

coverage distribution H. The mixture distribution M is defined as:

M = (1− ζ)×H + ζ ×G (4.1)

51



Compute the 
distribution of the 

training 
observations

Compute the 
Gaussian mixture 
of the Goal & MO-
RRT distributions

Grow the MO-RRT 
toward the sample

Compute the 
distribution of the 
MO-RRT nodes

Monte Carlo 
simulations

Generate a 
sample from 

Gaussian mixtureTraining 
observations

g1, . . . , gl G
Goal 

distribution

⇣ : mixture weight

M

qsample

Mixture 
distribution

MO-RRT nodes
x1, . . . , xn

H MO-RRT 
distribution

1 2 3 4

56

Feedback 
loop

Figure 4.2: Detailed block diagram of the learning phase of the Multi-
Objective RRT algorithm. First, we identify the goal distribution (block
1 and 2). We grow the MORRT by sampling states from the mixture distri-
bution. We feed the MORRT states back to the learning algorithm to update
the mixture distribution (blocks 6 and 3). Shaded regions corresponds to the
VBI algorithm.

where G, H and M are the CDF of the goal, coverage and MORRT sam-

pling distributions. The primary input to the algorithm is a mixture weight

parameter ζ such that 0 ≤ ζ ≤ 1, which tunes the algorithm between the

two objectives. A higher ζ causes more states to be generated from the goal

distribution G. Higher ζ biases our algorithm to be more directed toward

the goal-oriented traces. On the other hand, a lower ζ generates more states

from coverage distribution H and increases the coverage of our algorithm in

the reachable state space. The other inputs to the algorithm are the state

space S, the input space U, and the initial condition x(0) of the circuit. The

outputs of the algorithm are the MORRT data structure and a set of input

stimuli that drive the circuit from the given initial conditions (x(0)) to the

goal region.

For simplicity, first we explain the case where ζ = 1 and the algorithm is

purely goal-oriented, as in [88]. In this case, the goal states {g1, . . . , gl} are

provided by the users. If the user does not know the goal region, we generate

a few training states using a uniform distribution over the entire state space.

We simulate the training states and record the terminating states as goal

states {g1, . . . , gl} (Algorithm 4, line 6). We determine the Gaussian mixture

distribution of the goal states G using the VBI algorithm (Algorithm 4, line

7).

In the simulation phase (Algorithm 4, lines 10−17), we grow the MORRT

in the state space. We draw states from the Gaussian mixture distribution M.

Since ζ = 1, the algorithm is purely goal-oriented, and M = G. Much as in

52



Algorithm 4 Multi-Objective RRT algorithm

1: ζ: Mixture weight parameter
2: Goal distribution G: Mixture Gaussian distribution of the goal states
3: Coverage distribution H: Mixture Gaussian distribution of the visited

states in MORRT
4: Sampling distribution M: Mixture Gaussian distribution of the goal (G)

and coverage (H) distributions.
5: MAX − ITER: Maximum iteration of the algorithm
6: {g1 . . . gl} = training observations
7: G← Variational Bayesian inference (gi)
8: M← G
9: RRT.init (x(0))

10: for i = 1→MAX − ITER do
11: qgoal ← Generate a random state from M
12: qnear ← Find nearest node in the MORRT (S, qgoal)
13: qnew ← Find optimum trajectory (qnear, qgoal)
14: RRT.expand (qnew)
15: H← Variational Bayesian inference (MORRT)
16: M← Gaussian mixture distribution (G,H, ζ)
17: end for
18: return input stimuli from MORRT

the classic RRT algorithm (Algorithm 1), we grow the MORRT by finding the

node nearest to the sampled state and then finding the optimum trajectory

from that node toward the sampled state. After the fixed number of iterations

MAX − ITER, we exit the exploration phase, and then we generate input

stimuli from the MORRT (Algorithm 4, line 18). We generate stimuli for

the circuit by analyzing the MORRT data structure. Each stimulus can be

used to drive the circuit from a given initial state to the goal region that we

identified in the state space (Section 4.3.4).

Now, if ζ < 1, we have to balance the goal objective with coverage. The

sampling distribution M is a mixture Gaussian distribution of the distribution

of the goal states and the MORRT states. The mixture weight in distribution

M is proportional to ζG and (1−ζ)H. To compute the sampling distribution

M, we perform the learning phase to identify goal distribution G, and then

we let M = G. Initially, we let M = G since the MORRT does not yet

exist (Algorithm 4, line 8). As the algorithm iterates, the MORRT grows to

explore the reachable state space. We update M at every iteration using the

feedback from the states visited thus far by the MORRT (Algorithm 4, line

16).

53



Each state x1, . . . , xn in the MORRT is a visited state that is reachable

from the initial state. At each iteration, we update the distribution of the

MORRT states H using the VBI algorithm (Algorithm 4, line 15). After

updating the distribution H, we update the sampling distribution M based

on the mixture weight ζ. If ζ is closer to 1, it means that M will be closer

to G, making the algorithm more goal-oriented. A low ζ means that M will

be closer to the distribution H, making the algorithm generate more states

in the already-visited regions of the state space to increase the coverage.

4.3.1 Inferring the goal and coverage distributions

We utilize the variational Bayesian inference (VBI) (Section 2.3) [4] algo-

rithm to determine the distribution of the goal states and visited states

(MORRT states) in the learning phase of the MORRT algorithm (Figure 4.2).

In the learning phase, we compute the distribution of the goal states from the

training data {g1, . . . , gl} (Figure 4.2, block 2). As the MORRT algorithm

explores the state space, we compute the distribution of the reached state

space from the MORRT nodes {x1, . . . , xn} (Figure 4.2, block 4).

Identifying the distribution of goal states G

We infer the goal distribution from the goal states. The goal states are states

from the goal region. The goal observations can be directly provided by the

user. In case the user already knows the goal region in the state space, he

can manually generate states around that goal region and use them as goal

observations. The goal state does not have to be a solution of the circuit or

even reachable. MORRT will find an input stimulus that drives the circuit

from the initial state toward those goal states. In practice, occasionally the

user is unable to provide the goal states or generating goal states might be

labor-intensive. In case that the user does not provide the goal observations,

our algorithm samples the state space of the circuit by performing a limited

number of training simulations. In each simulation, we generate a random

initial state as well as the duration of the simulation from a uniform distribu-

tion. At the termination of each simulation, we record the final state of the

simulation. We refer to these terminating simulation states as goal states. We

use the concentration of the goal states as a measure of the importance of a

54



region. We assume that the distribution of the goal observations is Gaussian

around the goal region.

The VBI algorithm will determine the optimum number of goal regions

that provides the best explanation of the goal states by optimizing the mix-

ing coefficient (Equation 2.5). We have no prior information about the dis-

tribution of the goal states. We set the mean to the mean of goal states and

set the variance to 1, as the initial values to the algorithm. Distribution of

the goal states is computed only once, and after the learning phase it re-

mains constant. The VBI algorithm computes the mean and variance of the

distribution. On convergence, the output of the algorithm consists of four

parameters: µG,ΛG,πG, and number of components, KG. We compute the

mixture Gaussian distribution as a goal distribution using Equation 2.5:

G(µG,ΛG) =

KG∑
i=1

πGi
N (µGi

,Λ−1
Gi

) (4.2)

Infer the coverage distribution H

As the MORRT algorithm explores the reachable state space, it provides a

very accurate snapshot of the reachable state space. Each MORRT node is a

visited state in the state space that is reachable from the initial state. After

adding each new state to the MORRT, we compute the mean and variance of

the distribution of the MORRT states. After the VBI algorithm converges,

the output of the algorithm consists of four parameters, µH,ΛH, and πH,

and the number of components, KH. We compute the mixture Gaussian

distribution as a coverage distribution using (Equation 2.5):

H(µH,ΛH,πH) =

KH∑
i=1

πHi
N (µHi

,Λ−1
Hi

) (4.3)

Unlike the goal distribution, G, that is fixed throughout the growth of

the MORRT, at each iteration the coverage distribution, H, evolves as the

MORRT explores the state space. Therefore the number of components and

the mixture distribution itself are dynamic, whereas the goal distribution is

static and does not change throughout the algorithm. Mixture distribution

M gets updated because of H at every iteration.

55



4.3.2 Biasing towards objectives

The most important part of the MORRT algorithm is generation of the

biased states (Figure 4.2 - block 3). In our algorithm, we bias the states

toward the distribution of the goal region or the reachable space according to

the parameter ζ. The goal distribution and the coverage distribution are the

mixture Gaussian distribution G and the H determined by the VBI algorithm

(Equations 4.2 and 4.3). The biased mixture distribution is a mixture of the

goal and coverage distributions proportional to the weight parameter ζ:

M(x) = (1− ζ)×H(µH,ΛH,πH) + ζ ×G(µG,ΛG,πG) (4.4)

As a result of our weight mixture, if the user specifies ζ = 0, then the biased

distribution M is the same as the coverage distribution, and our algorithm

is completely coverage-driven. Similarly, if the user specifies ζ = 1, then the

biased distribution M is equal to the goal distribution G, and our algorithm

is completely goal-oriented. Our algorithm will mix the goal distribution and

coverage distribution according to the weight mixture ζ. We study different

choices of ζ in the experimental results section. We consider only finite

mixture models. Note that although G is independent of ζ, H is dependent

on ζ. However, since ζ is constant throughout the algorithm, we ignore it in

the inference of the coverage distribution.

4.3.3 MO-RRT based circuit simulation

We grow the MORRT in the simulation phase of the algorithm to explore

the state space. At every iteration, we generate a state from the mixture

distribution of the goal and coverage distributions. We find the nearest node

in the MORRT from the sampled state. The nearest node is computed

according to the Euclidean distance between nodes. Next, we determine the

optimum trajectory from the nearest node towards the sampled state. Each

trajectory is an assignment to the circuit’s inputs from the nearest node. We

randomly sample different inputs and pick the one that takes us closer to the

sampled state. Finally we simulate the circuit from the nearest node using

the optimum trajectory for the simulation time ∆t. We add the result of the

simulation as a new node to the MORRT and continue.

Generating a state from the mixture distribution and picking a nearest

56



node provides a global direction in the MORRT. Therefore when more states

are generated from the goal distribution, the growth of the MORRT is biased

toward the goal regions. Similarly, picking an optimum trajectory gives a

local direction to the MORRT.

4.3.4 Extracting input stimuli from MORRT

Each leaf in the MORRT corresponds to an input stimulus. The algorithm

will record each input u(t) used in each edge of the MORRT on the edge.

For each leaf we can extract the unique input sequence that drives the circuit

from the initial state (root of the MORRT) to that leaf. To generate a

stimulus, we select the desired circuit states as our targets and choose the

appropriate target node (qtarget) in the tree that is inside our target regions.

We extract a (unique) path between the target node and a root of the tree

(the initial state). By traversing that path in reverse, we can generate the

input sequence u(t) that would take us from the initial state (qroot) to our

desired state (qtarget). An example input stimulus and corresponding trace

are shown in Figure 4.5c.

Figure 4.3a shows the state space of the Josephson circuit (explained in

Section 4.4.1) where the initial state is selected at state (−2.6, 0). The ideal

input drives the circuit to an equilibrium state at (0, 6), which results in

the output trace shown in Figure 4.3b. However, if we use Multi-Objective

RRT, we can explore alternative goal regions and obtain different results

(Figure 4.3a). MORRT can explore other goal regions around equilibrium

states (0, 0) and (0, 6). After the MORRT reaches a state in the goal region,

we can extract an input stimulus by traversing the path from that state

toward the root of the RRT. Finally, we can obtain the input sequences

(Figures 4.3c and 4.3d) and report them to the user as input stimuli.

4.4 Experimental results

We developed a prototype tool to evaluate the accuracy and efficiency of

our algorithm. The tool's input is the circuit netlist in SPICE format. We

perform the modified nodal analysis to obtain the DAE model (Equation 2.1)

for the netlist. Next, we construct the MORRT data structure and grow the

57



−4 −2 0 2 4
−8

−6

−4

−2

0

2

4

6

8

v
c

Φ
L

MO−RRT 
simulation path

Initial
state

Monte Carlo 
simulation path 

with no 
variation 
in input

(a) The state space of
the Josephson circuit.
The MORRT algorithm
explores very different
paths from the nominal
simulation. Our algorithm
is able to excite behaviors
of the circuit that are
normally very hard to test.

0 5 10
−8

−7

−6

−5

−4

−3

−2

−1

0

1

2

Time (sec)

Φ
L

MO−RRT output trace

Monte Carlo 
output trace

(b) An output trace w.r.t.
time computed using RRT
is very different from the
nominal simulation. Our
algorithm is able to find an
input stimulus that shows
the circuit not functioning.

0 5 10 15
−1

−0.5

0

0.5

1

Time (sec)

i s

(c) Input sequence is(t)
extracted from the out-
put trace.

0 5 10 15
−1

−0.5

0

0.5

1

Time (sec)

∆ 
p

(d) Input sequence
∆p(t) extracted from
the output trace.

Figure 4.3: An example of the input stimuli generated for the Josephson cir-
cuit (Section 4.4.1) from the MORRT. Generating input stimulus for Joseph-
son circuit is difficult using conventional Monte Carlo methods.

RRT in the state space of the circuit according to Algorithm 4. We utilize

MATLAB’s ode45 and the Synopsys HSPICE numerical ODE/DAE solver

to simulate the circuit and obtain the optimum trajectories.

We applied our algorithm to two nonlinear systems: a Josephson junction

circuit with complex and nonlinear dynamics (Section 4.4.1), and a CMOS

opamp circuit 8-dimensional state space (Section 4.4.4). In the Josephson cir-

cuit, we show how we tuned the bias of our algorithm from goal-orientedness

to high coverage. We compared our algorithm against Monte Carlo simu-

lation for generating directed tests and coverage criteria. For the op-amp

circuit, we showed how our technique can be used in practical situations for

generating stress and/or functional tests. Furthermore, we showed that the

auto-generated directed tests are shorter and more efficient than manually

generated tests.

4.4.1 Effects of ζ on growth of the MORRT

The Josephson junction circuit is shown in Figure 4.4. The Josephson junc-

tion is a time-invariant nonlinear inductor governed by Equation 4.5. As

58



+
-

Figure 4.4: Josephson junction circuit.

before, we set ∆t = 0.1. We executed the classic RRT algorithm for 3,000 it-

erations. We executed the Multi-Objective RRT algorithm for total of 3,000

iterations (including 2700 iterations for growing the RRT and 300 training

iterations) for various choices of ζ.

iL = I0 × sin(kΦL) (4.5)

Therefore, the differential system for the circuit in Figure 4.4 is

v̇c =
1

C
(

1

R
vc − I0sin(kΦL) + is(t)) (4.6)

Φ̇L = vc (4.7)

where I0 = 1, R = 4, and C = 1. The inputs of the circuit are the current

source (is(t)) and the variation in ΦL(∆Φ), which are both within the range

of [−0.1, 0.1].

Figure 4.5 shows the results of the MORRT algorithm versus the classic

RRT algorithm. The initial state of the circuit was chosen at state (-1,3). We

identified regions around the state (0,0) as our goal regions; the algorithm

thus guided the tree toward the state (0,0) and generated many traces toward

that state. As shown in Figure 4.5, in MORRT, the algorithm did not waste

any states in the irrelevant regions and quickly converged directly towards

the goal state (0,0). On the other hand, in classic RRT, the algorithm spent

a lot of its states in uninteresting regions and eventually did not converge

toward the goal state (0,0). Figure 4.5 also shows the correlation between

the mixture weight parameter ζ and the growth of the MORRT. When ζ was

relatively low, the algorithm spent a lot of states inside the reachable state

space to increase the coverage. However, as ζ increased, the MORRT grew

toward the goal regions. As we show later in Section 4.4.3, we observed that

setting ζ = 0.5 yielded the best trade-off between coverage and concentration

59



(a) Classic RRT.

−2 −1.5 −1 −0.5 0 0.5 1 1.5
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3

v
c

Φ
L

(b) The MORRT
algorithm (ζ =
0).

−2 −1.5 −1 −0.5 0 0.5 1 1.5
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3

v
c

Φ
L

(c) The MORRT
algorithm (ζ =
0.1).

−2 −1.5 −1 −0.5 0 0.5 1 1.5
−2

−1

0

1

2

3

v
c

Φ
L

(d) The MORRT
algorithm (ζ =
0.3).

−2 −1.5 −1 −0.5 0 0.5 1 1.5
−2

−1

0

1

2

3

v
c

Φ
L

(e) The MORRT
algorithm (ζ =
0.5).

−2 −1.5 −1 −0.5 0 0.5 1 1.5
−2

−1

0

1

2

3

v
c

Φ
L

(f) The MORRT
algorithm (ζ =
0.9).

−2 −1.5 −1 −0.5 0 0.5 1 1.5
−2

−1

0

1

2

3

v
c

Φ
L

(g) The MORRT
algorithm (ζ =
1.0).

−2 −1.5 −1 −0.5 0 0.5 1 1.5
−2

−1

0

1

2

3

v
c

Φ
L

(h) Trace ex-
tracted from our
goal-oriented
algorithm.

Figure 4.5: Exploring the state space of a Josephson junction circuit using
the classic RRT and MORRT. Figure 4.5a shows the classic RRT algorithm;
for the given number of iterations (3,000), the algorithm did not converge.
Figures 4.5b to 4.5g show the various MORRT results for different increasing
values of ζ. Finally, Figure 4.5h shows a trace extracted from our algorithm.
For the same number of iterations, the MORRT algorithm will converge
faster and provide more coverage of the region around the equilibrium state
(0,0).

of tests around the goal regions.

4.4.2 Performance comparison of MORRT vs. Monte Carlo

To evaluate the performance of our algorithm against Monte Carlo, we per-

formed two experiments. We used the Josephson case study used in Sec-

tion 4.4.1. The initial state was selected at state (−2.6, 0) (similar to Sec-

tion 4.3.4 Figure 4.3a). The goal region was selected within 0.5−ball around

the stable equilibrium state (0, 0). Each Monte Carlo simulation simulates

the circuit for t = 2.5s and takes 250 iterations. Similar to Monte Carlo, we

set ∆t = 0.1 in MORRT algorithm. We performed two experiments:

1. Experiment I: We ran both MORRT and M.C. for 3,000 iterations.

We reported total execution time and the number of relevant tests in

each case.

60



Table 4.1: Performance comparison of MORRT vs M.C.

Experiment I: Running both
algorithm for 3,000 iterations

MORRT Monte Carlo
Number of goal input stimuli 487 0
Total execution time 9.66 sec 7.47 sec

Experiment II: Running both
algorithm until finding 30 goal input stimuli

MORRT Monte Carlo
Total iterations 1248 249250
Total execution time 3.57 sec 672.13 sec

2. Experiment II: We ran both MORRT and M.C. algorithms until

finding 30 goal-oriented test stimuli ending within the 0.5−ball around

the equilibrium state (0, 0). We reported total execution time and total

iterations in each case.

Table 4.1 shows the result of the performance comparison. Given the same

number of iterations, Monte Carlo was 22.6% faster than our algorithm.

However, MC did not find any goal input stimuli, whereas our algorithm

was able to generate 487 input stimuli directed toward the goal region. This

experiment demonstrates that performance overhead of our algorithm w.r.t.

the Monte Carlo simulation is as low as 22.6%.

On the other hand, for generating 30 goal input stimuli, we performed

significantly better than the Monte Carlo. It takes the random Monte Carlo

simulations 199× more iterations and 188× more time to generate 30 goal

input stimuli, as compared to our directed approach.

4.4.3 Measuring coverage and goal-orientedness

We used a quantitative approach to measure coverage and goal-orientedness

to evaluate our algorithm. For goal-orientedness, we measured the number

of traces generated in the vicinity of the goal region. For coverage, we used

a discrepancy metric to measure how much the visited states were equi-

distributed in the reachable state space.

To evaluate the coverage of the MORRT algorithm, we measured the dis-

crepancy of the nodes in the MORRT. We used the star discrepancy [147, 42]

61



to compute the discrepancy. The star discrepancy has previously been used

by [42] to guide and bias the RRT algorithm. In analog circuits, classic

measures of computing coverage, such as branch coverage or path coverage,

are not applicable, because of the continuous dynamics of the analog circuits.

On the other hand, geometric discrepancy measures can express how well the

states are equi-distributed in the reachable state space or around the goal

regions. The star discrepancy measures the uniformity of the distribution

of a state within a region. We relate a high coverage with uniformity of a

state’s distribution inside the reachable state space.

Let P denote the state set {x1, . . . , xn} inside the k-dimensional unit cube

B = [0, 1)k. Let I∗ be the class of all k-dimensional sub-intervals I of B of

the form I =
∏k

i=1[0, βi] such that 0 ≤ βi ≤ 1. The local discrepancy is

defined as

D(P, I) ≡
∣∣A(P, I)

k
− V ol(I)

∣∣ (4.8)

where A(P, I) is the number of states of P that are inside I and V ol(I) is

the volume of the sub-interval I. The star discrepancy is the supremum of

all local discrepancies. The star discrepancy [147, 42] of the state set P in

the box B is defined as

D∗(P,B) ≡ sup
i∈I

D(P, i) (4.9)

The term star reflects the fact that every sub-interval in I∗ has a vertex at

the origin.

The range of the star discrepancy is the set (0, 1], where low discrep-

ancy means a more uniform set and a higher discrepancy indicates greater

nonuniformity. In general, generating a low-discrepancy random sequence is

very difficult. We estimated the coverage of the MORRT algorithm with

respect to the mixture weight ζ. We used the results from the Joseph-

son junction circuit. To estimate the coverage, we set the box B equal

to the interval [−1.5,−1.3] × [1.5, 1.7] and we computed the star discrep-

ancy of RRT states inside B. To measure goal-orientedness, we set the box

G at [−0.1, 0.1] × [−0.1, 0.1] (the goal region), and we counted the number

of MORRT nodes inside B. Figure 4.6 shows the discrepancy and goal-

orientedness results of the MORRT algorithm. Figure 4.6a gives the goal-

orientedness of our algorithm w.r.t. parameter ζ. In the MORRT, we can

extract one trace for each state in the goal region. As shown in Figure 4.6a, as

62



(a) Number of goal traces with respect to ζ.

0.3	  

0.4	  

0.5	  

0.6	  

0.7	  

0.8	  

0.9	  

1	  

0	   0.1	   0.2	   0.3	   0.4	   0.5	   0.6	   0.7	   0.8	   0.9	   1	  

St
ar

 D
is

cr
ep

an
cy

 

	  	  	  	  	  

Discrepancy	  of	  the	  region	  
[-‐1.5,-‐1.3][1.5,	  1.7]	  to	  express	  
coverage	  
Discrepancy	  of	  the	  goal	  region	  

Mixture weight ζ	  

(b) Star discrepancy with respect to ζ.

Figure 4.6: Effects of ζ on discrepancy and number of states in MORRT.

we increase the ζ, we bias the growth of the MORRT toward the goal region

(in this case, the origin state). The results in Figure 4.6a are confirmed by the

results in Figure 4.5. The increase in the number of states around the origin

indicates that our algorithm is more goal-oriented as ζ increases. Figure 4.6a

clearly shows the correlation between the mixture weight ζ and the number

of goal traces. Figure 4.6b illustrates the coverage of our algorithm w.r.t.

parameter ζ. As the figure clearly shows, increasing ζ will cause the discrep-

ancy in the box [−1.5,−1.3] × [1.5, 1.7] to increase. Increased discrepancy

indicates less uniformity and less coverage. Therefore, when we use a lower ζ,

we achieve a lower discrepancy (in the range of [0.3, 0.5]). Moreover, Figure

4.6b shows that if ζ is increased (i.e., our algorithm is more goal-oriented),

the MORRT will be grown toward the goal region, and we will have more

states inside the goal region. Therefore, our generated input stimuli will be

more goal-oriented. Based on Figure 4.6, we recommend an optimum value

for ζ that yields an acceptable degree of coverage and goal-orientedness. Our

general recommendation is that ζ be set to 0.5. However, depending on the

application, the user can choose a higher or lower value for ζ to customize

the algorithm.

63



Figure 4.7: Schematic of the opamp circuit.

4.4.4 Generating input stimuli for CMOS operational
amplifier circuit

In this section, we demonstrate how MO-RRTs is used in practical situations.

We used a 2-stage CMOS operational amplifier integrator circuit, as shown

in Figure 4.7, to show practicality and scalability of our algorithm. We used

this opamp in a voltage divider configuration with unity gain. The opamp

was designed in 0.18 µm library. We sat V DD = −V SS = 0.9V. Each test

was applied to the Vin signal. The output of the opamp was saturating at

0.2V and −0.8V, respectively.

We used Synopsys HSPICE to simulate the circuit. The input to our tool

was the op-amp netlist in HSPICE format. The output of the tool was a PWL

signal that could be used as an input stimuli to the Vin voltage source. The

state space consists of the following variables: {vcap, vdd, vi, vinn, vinp, vo, vss,
vw, vx, vy, vz, vw, t} ∈ R12,1 (Figure 4.7). We ran each experiment for 10,000

iterations. Each iteration consisted of a small HSPICE simulation for du-

ration of dt = 10µs. Each experiment took approximately 15 minutes to

complete on a Core-i5 machine equipped with 16GB of memory. In order

to analyze the time-variant op-amp circuit, we augmented each state in the

MORRT with time notation [145]. The root of was time-annotated with zero.

For each other state, the time annotation was the time of the parent node

plus the duration of the transient simulation from the parent to the state.

We used our tool to generate three types of input stimuli: i) functional

tests, where the objective was to reach a specific region (namely, the saturated

64



(a) The input signal to generate
signal profile

(b) The current profile of the re-
sistor R1

(c) The MORRT algorithm
generates a stress tests for re-
sistor R1.

Figure 4.8: Generating tests for stressing the resister R1

outputs) in the state space, ii) stress tests, where the objective was to put

as much current or voltage through circuit components or nodes as possible,

and iii) combining different input stimuli together.

Generating functional tests

We generated a test that would saturate the output of the opamp circuit.

We manually generated a random vector where vo = 0.2V and vo = −0.8V

to learn the goal region. It is not required for the training observations to be

simulated or even reachable. We used those states as a training observations,

effectively bypassing the Monte Carlo simulation step (Figure 4.2 block 1)

in our algorithm. Next, we used our learning algorithm to identify the goal

region from these states and to compute the goal distribution. Finally, we

used the MORRT to generate input stimuli that could saturate the outputs

of the circuit at 0.2V and −0.8V. We ran the algorithm twice to reach the

output voltage 0.2V and −0.8V. Figure 4.9a shows the output of the circuit

when the MORRT was directed toward saturating the output at 0.2V. We

extracted multiple input stimuli from the MO-RRT that saturates the output

voltage. As long as the goal region is reachable, the MO-RRT algorithm can

effectively find an input stimuli that directs the circuit toward the goal region.

65



We observed that the lengths of the input stimuli generated by MO-RRT are

very compact and efficient.

Generating stress tests

We used our algorithm to generate stress tests for different components on

the circuit. For stress testing the components, initially we computed a profile

for each node in the circuit. We applied the input signal vsquare as shown in

the Figure 4.8a to compute the minimum and maximum value of the cur-

rent through the resistor. Figure 4.8b shows the voltage vx and the current

through resistor R1 = 2.1KΩ. The maximum current through R1 is deter-

mined to be 0.57mA (= vx−vss
R1

). Next, we applied the MO-RRT algorithm

and biased the growth of the tree towards the region with maximum current

where iR1 = 0.6mA. For the given resistor R1 in the circuit, the objective

of the algorithm was to put as much as 0.6mA current through that resis-

tor. Our algorithm selected the plane iR1 = 0.6mA as the goal region and

generated tests that would reach that region. Figure 4.8c shows the result.

Our algorithm was able to compute several input signals that would stress

the resistor R1 to its maximum allowed current. The automated generated

tests requires 4us to finish, whereas the manually generated test by the de-

signer requires 200µs to finish. Furthermore, the input stimuli determined

by our technique was shorter and more efficient that the profile signal. We

repeated the same experiments for all other nodes in the circuit and success-

fully reached the goal objectives using MO-RRT.

Combining multiple input stimuli

Finally, we used the MO-RRT algorithm to combine different test stimuli.

We wanted to find a test that saturates the output voltage vo at 0.2V and

stresses the resistor Rc by maximizing the voltage vx. Figure 4.9a shows the

MORRT G1 that is used to generate tests for saturating the output voltage.

Similarly, we computed another MORRT G2 that maximizes the voltage vx

and stresses the resistor Rc. The MO-RRT G1 can be used to generate tests

that stresses Rc (and vice versa) but it is not efficient because most of the

states do not reach maximum current through Rc.

The objective of the experiment was to learn the goal regions from G1 and

66



(a) The MO-RRT generates a
test that saturates the output
at 0.2v.

(b) The voltage vx in the MO-
RRT of the combined tests for
saturating output vo and stress-
ing resistor Rc.

(c) Extracting tests from the
MO-RRT that saturates the
output and maximizes the cur-
rent through Rc.

Figure 4.9: Combining different tests. The MO-RRT can learn the goal
regions from two given test sets and generate a combined tests that simulta-
neously reaches both goal regions.

G2 and generate a new MO-RRT that can simultaneously reach both goal

regions. We are only interested in the dimensions of the vo and vx. First we

collected the terminating states in MO-RRT G1 and G2. We generated a new

set of learning states from those terminating states where the output voltage

was obtained from G1 and the vx was obtained from G2. We computed a new

goal distribution from the learning states. The goal distribution is a normal

distribution with the mean (vo, vx) = (0.2V, 0.3V ). We grow the MO-RRT

toward the goal region (0.2V, 0.3V ). Figure 4.9b shows the MO-RRT toward

the combined goal regions. In comparison to the previous result, the MO-

RRT for the combined goal region explored both goal regions simultaneously

and combined the two test sets. Figure 4.9c shows the extracted tests from

the combined MO-RRT that saturates the output and stresses resistor Rc.

Finding design bugs in the opamp

In order to show how MORRT can be used to find bugs in the circuit design,

we intentionally introduced a bug into the opamp design. We emulated a

67



vbug

vout

(a) Schematic of the introduced
bug in the opamp circuit.

(b) The input stimulus gener-
ated by the MORRT that ex-
cites the bug in the opamp de-
sign.

(c) The erroneous output of the
opamp.

Figure 4.10: Combining different tests. The MO-RRT can learn the goal
regions from two given test sets and generate a combined test that simulta-
neously reaches both goal regions.

bug by adding a small voltage limiter subcircuit to the opamp circuit as

shown in Figure 4.10a. We connected the output of the voltage limiter to

the second differential input of the opamp at vinn node (this node was initially

grounded). Using this circuit, when the vbug increases more than 0.5V, the

transistor turns on and increases the voltage of the node vinn. There were

two inputs to the circuit: the input signal vin and the second faulty input

vbug.

To excite the bug, we searched for combination of input signal that resulted

a in positive vinn (normally this signal was grounded). We set the vinn =

0.5 as the goal objective and executed the MORRT for 1,000 iterations (1

minute). The MORRT algorithm successfully found multiple stimuli ending

in the region where vinn = 0.5. Each stimulus resulted in the erroneous

output in the opamp. Figure 4.10b and 4.10c shows the input stimulus

vbug and corresponding output of the opamp, respectively. The spike in the

opamp’s output was caused by reaching the goal region in the input stimuli.

68



4.4.5 Generating input stimuli for voltage controlled oscillator
circuit

Voltage controlled oscillators (VCO) are widely used in RF circuits, frequency

synthesizers and phased-locked loops. We generated input stimuli for a post-

layout 1 GHz VCO circuit in TSMC-0.18µm process, shown in Figure 4.11, to

validate its functionality and interface. The netlist was extracted from the

VCO layout with all the parasitic capacitance and resistors. Figure 4.12a

shows the oscillation of the VCO circuit where Vbias = 750mV, Vcontrol =

630mV and Vdd = 1.8V. It takes 10.8ns for the output to reach its peak-to-

peak maximum. The output oscillates between 0.7V and 1.34V.

We defined three transient inputs to the circuit (0 ≤ Vbias ≤ 1, 0 ≤
Vcontrol ≤ 1 and 1.8 ≤ Vdd ≤ 2) to model transient input and power noise in

the circuit. We executed the MORRT for 20,000 iterations (60 minutes). We

used the MORRT to generate input stimuli for the following tests:

• Reaching the maximum output voltage (1.34V) as soon as possible

without oscillating. This stimulus is useful to check the peak-to-peak

swing of the VCO circuit. Figure 4.12b shows the result of the ex-

periment. The MORRT successfully generated stimuli that drive the

output voltage to 1.3V.

• Stimuli for cutting off the output voltage. In order to cut off the output,

we selected the output at 0V as our goal region and ran the MORRT.

Note the vout = 0 was not included in the initial output swing of the

VCO circuit. The MORRT was able to find many stimuli that min-

imized the output as low as 0.05V. There are always small leakage

current and capacitive charge that prevent the output from becoming

0. The length of the test was 0.65ns.

4.4.6 Intermediate results for our algorithm

We used a tunnel diode circuit [148] to show how our technique works under

parameter and input variation. The circuit’s behavior was specified by the

following differential equations:

69



Figure 4.11: Schematic of the VCO circuit.

i̇L =
1

C
(iL − h(vr)) (4.10)

v̇r =
1

L
(−id −R× iL + E) (4.11)

where iL is the current through the inductor L, and vr is the voltage across

the tunnel diode. In our configuration, the circuit parameters were set to

E = 1.2V, R = 1.5KΩ, C = 2pF, and L = 5µH (Figure 4.13). The tunnel

diode’s behavior was governed by a nonlinear current-voltage relation

h(x) = 17.76x− 103.79x2 + 229.62x3 − 226.31x4 + 83.72x5 (4.12)

The circuit had three equilibrium points at approximately (0.063, 0.758),

(0.285, 0.61), and (0.884, 0.21). Two equilibrium points can easily be identi-

fied using the learning step of the algorithm. We selected an unstable equi-

librium point (0.285, 0.61) as the initial state and the root of the MORRT.

We set ∆t = 0.1. First, we executed the classic RRT algorithm for 3,000

samples. Then we executed the MORRT algorithm and a total of 3,000

samples (including 2,700 samples for growing the MORRT and 300 training

samples) for various choices of ζ. We analyzed the circuit under disturbance

input variables for the current throughout the diode (modeled as Id = h(Vd)+

∆p1) and voltage variation from the DC source (modeled as E = U0 + ∆p2).

The range of the disturbances was (p1, p2) ∈ [−0.1, 0.1]× [−0.1, 0.1].

Figures 4.15a and 4.15b show the results of the analysis using both classic

RRT and our Multi-Objective RRT algorithm. As shown in the figure, in

comparison to the classic RRT algorithm, ours generates more traces ending

70



TIME #10-9
0 1 2 3 4 5 6 7 8 9 10

ou
t1

0.7

0.8

0.9

1

1.1

1.2

1.3

(a) The default output of the
VCO circuit. The output oscil-
lates between (0.7V,1.3V).

(b) Testing the peak swing of
the VCO output using random
tree.

(c) Random tree generates a
tests to cut-off output.

Figure 4.12: Generating input stimuli for VCO circuit.

+

Figure 4.13: Tunnel-diode circuit.

in the target regions (in this case, around two equilibrium points of the tunnel

diode circuit); the classic algorithm uses the uniform sampling and would

waste a lot of samples to find its path toward equilibrium points. We biased

the growth of the MORRT by sampling from the mixture of goal and coverage

distributions. Figure 4.14 shows the probability distribution function of the

Gaussian mixture of the goal and coverage distributions determined using

the VBI algorithm (Section 2.3).

4.4.7 Scaling the MORRT input stimulus generation

To demonstrate the scalability of the MORRT input stimulus generation

algorithm, we applied it to the ring modulator circuit with 15 dimensions.

The ring modulator circuit is used for amplitude modulation or frequency

71



−0.4 −0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

v
c

i L

(a) Mixture distribution
with ζ = 0.2.

−0.4 −0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

v
c

i L

(b) Mixture distribution
with ζ = 0.5.

−0.4 −0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

v
c

i L

(c) Mixture distribution
with ζ = 0.9.

Figure 4.14: Effect of mixture weight ζ on the mixture Gaussian distribution
M. The mixture distribution converges toward the distribution of the goal
region G for goal-oriented MORRT with higher ζ. On the other hand, a
lower ζ with coverage-driven objective ensures that M is closer the MORRT
distribution H.

(a) Classic RRT.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

v
r

i L

(b) MORRT (ζ = 0.5).

0 0.2 0.4 0.6 0.8 1
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

v
r

i L

(c) MORRT (ζ = 1.0).

Figure 4.15: Tunnel diode results for classic and MORRT algorithm. While
the classic RRT algorithm will generate a lot of samples to find its path to-
wards two stable equilibrium points (the boxed regions), the MORRT algo-
rithm will rapidly converge and will generate more traces in relevant regions
and explores more regions of the state space. Moreover, the MORRT will
provide a better coverage in the reachable state space (the enveloped region).

72



_
+

Input stage

R
C

Vin

Ls1

R
i
+

R
g
1

Lh

v1 v2v3

v4

v5

v6

v7

vout

R
c
+

R
g
l

L
s
1C

Lh R

Output stage

_+

Carrier input
Rp

Cp

VCarrier

Diode ring
Rg2Rg2

Rg3 Rg3

Cs
Cs

Cs
Cs

Ls2
Ls2

Ls3Ls3

id1

id2

id3

id4

v1 vout

Figure 4.16: Schematic of the ring modulator circuit. The ring modulator
consists of four parts: the input stage, the carrier stage, the output stage,
and the diode ring. The circuit modulates the input signal Vin with carrier
signal VCarrier.

mixing. It produces the output signal vout from the low-frequency signal

Vin multiplied by the signal VCarrier in the time domain. A schematic of the

classic ring modulator is shown in Figure 4.16. The main part of the circuit

consists of four nonlinear diodes arranged in a clockwise ring configuration.

The dynamics of the circuit are governed by a 15-dimensional time-variant

ODE function f . The first seven equations describe the voltage relations,

whereas the rest of the equations describe the current throughout the nodes.

The ODE function f and its parameters are described in [149]. In our imple-

mentation, we set Cs = 1 nF. The initial state was the point zero. We used

the Modified Extended Backward Differentiation ODE/DAE solver MEBDF-

DAE to simulate the system [150]. MEBDFDAE is a very efficient solver for

simulating stiff and nonstiff ODE and DAE systems. Figure 4.16 shows a

transient output signal vout and the output of the input stage v1 of the circuit

for nominal inputs without any variations.

The state space of the circuit is y ∈ R15. The simulation time was t ∈
[0, 10−3]. The inputs to the circuits were the following sinusoidal voltage

sources. The variation parameters ∆0 × ∆1 were uniformly sampled from

interval [−0.1, 0.1]× [−0.05, 0.05].

Vin(t) = 0.5 sin(2000πt) + ∆0

VCarrier(t) = 2 sin(20000πt) + ∆1

The current through each diode in the ring was modeled as

id = IS(e
VD
nVT − 1) = γ × (eδVD − 1) (4.13)

73



where γ = 40.67286402× 10−9 and δ = 17.7493332 (see [149] for details).

In order to analyze the time-variant inputs Vin and VCarrier, we augmented

each state y in the MORRT with time notation [145]. The root of the tree had

the time annotation zero. For each other state, the time annotation was the

time of the parent node plus the duration of the transient simulation from the

parent to the state. In our case study, each edge was a transient simulation

with duration 10µs. Augmenting MORRT with time dimensions allowed us

to model time-variant behaviors, such as oscillation in the state-time space

[145].

We manually provided the algorithm with 300 training observations that

were relevant to the functionality of the ring modulator. Our algorithm

inferred the goal distribution (with two components) from the training ob-

servation using VBI. We performed an initial exploratory simulation of the

state space using the classic RRT for 100 samples. We biased the time di-

mension in the initial exploration to ensure the transient progress of the RRT

[145]. After the initial exploration, we used our Multi-Objective RRT algo-

rithm (with ζ set to 0.5) to explore the state space of the circuit. In this case

study, we were particularly interested in the input-output relation of the cir-

cuit. So we selected 5 voltages (including v1 and vout) as the variables for the

VBI algorithm and biasing. By choosing only a subset of variables instead

of the entire variable set, we reduced the order of the learning algorithm and

gained efficiency. Moreover, by removing the uncorrelated signals from the

learning phase, we were able to generate more accurate results. For the rest

of the variables, we used uniform sampling similar to that of the classic RRT.

We emphasize that the MORRT algorithm does not necessarily need to be

applied to whole systems, but only to the dimensions of interest from the

design perspective.

Figure 4.17 shows the results of our algorithm for the ring modulator cir-

cuit. As we mentioned earlier, the ring modulator is a time-variant circuit.

Therefore, we augmented each state with a time annotation to preserve tim-

ing information. The expected output of the circuit and corresponding input

(after the input stage) are shown in the circuit schematic (Figure 4.16). Fig-

ure 4.18a shows the expected signal v1 with respect to signal vout. Figure

4.18b illustrates the state space of the circuit and the state space that we

used in our learning algorithm.

After the MORRT algorithm was executed, the signal vout was extracted

74



0 0.2 0.4 0.6 0.8 1

x 10
−3

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

time

v 2

(a) The output of the
circuit vout(t) with no
disturbance; this sig-
nal is the multiplication
of the signal Vin(t) by
Vcarrier(t).

0 0.2 0.4 0.6 0.8 1 1.2

x 10
−3

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

time

y 7

(b) Output of the car-
rier stage v7(t) with
added perturbation in
the MORRT algorithm.

Figure 4.17: The output of the carrier stage is relatively clean according
to the specification, because of the RC filter in the design. Therefore, the
output perturbation is propagated from the input stage through the diode
ring. The cause of the bug in the circuit is the poor input stage filter design.

from the MORRT. There were many divergences from the expected output

because of the disturbances on the input signals. Between the two input

signals (Vin and VCarrier), the perturbation on Vin has a greater effect on the

circuit outputs because the RC filter (formed by resistor Rp and capacitor

Cp) at the output of the carrier stage absorbs most of the high-frequency

disturbances that we put on the carrier signal. That observation is supported

in Figure 4.17b, which shows the output of the carrier stage; the output is

very clean.

Finally, Figure 4.18b shows the scatter plot of the MORRT projected into

the v1 and vout dimensions. During the initial learning phase, the VBI algo-

rithm identified the origin as the goal region. As a result, many of the sam-

ples were generated around the origin point. In Figure 4.18b, we removed

the edges of the MORRT to demonstrate the concentrations of the samples

around the origin. Many of the MORRT nodes were generated around the

center region in the state space that was identified as the goal region. The

rest of the samples were generated almost uniformly in the reachable state

space to improve the coverage of the MORRT. As shown in Figure 4.18a, the

rest of the samples were uniformly generated in the reachable state space to

improve the coverage of the MORRT.

75



(a) Projection of sig-
nal v1 with vout with
no disturbance to delin-
eate the reachable state
space. The circuit is
simulated once for 1 ms.

−1 −0.5 0 0.5 1
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

v
in

v ou
t

(b) Scatter plot of v1-
vout projection of the
circuit with MORRT.

Figure 4.18: Exploring the reachable state space using MORRT. For each leaf
node in the MORRT, we can extract the input sequence that will generate
that trace. The VBI algorithm inferred the distribution at the origin as the
goal region. As a result, most of the traces are focused around the center of
the region.

4.5 Chapter summary

In this chapter, we used Duplex for pre-silicon directed input stimulus gener-

ation for nonlinear analog circuits. We modeled the input stimuli generation

problem as a type-I duplex search problem. We added objectives such as goal-

oriented and coverage to the Multi-Objective RRT algorithm. We demon-

strated that Duplex is useful for generating goal-oriented and high coverage

input stimulus for analog circuits in order to check their functionality during

the design process.

76



CHAPTER 5

RUNTIME MONITORING OF RANDOM
TREES

5.1 Introduction

Verifying nonlinear analog circuits is a major challenge and an ongoing topic

of intensive research. Formal verification methods exhaustively analyze all

possible behaviors of the circuit statically. They present a very daunting

computational challenge in the domain of analog circuits. A less rigorous,

but more practically viable, alternative is runtime verification and monitoring

of properties. In runtime verification, a property monitor checks whether

a finite set of simulation traces would satisfy or violate a given property

specification [49].

Current approaches for runtime verification are inefficient. Runtime ver-

ification has two components: the generation of traces and behavior (sim-

ulation) and checking and monitoring of properties against the simulated

traces. Existing approaches (See [20]) for runtime verification generate tran-

sient traces of the system using Monte Carlo simulation and monitor prop-

erties against these traces.

In this chapter, we introduce a technique for runtime verification that is

based on the Rapidly Exploring Random Tree (RRT) algorithm [43]. Our

technique simulates the state-space of a nonlinear analog circuit in a manner

different from Monte Carlo simulations. The RRT is a tree data structure

that grows rapidly by performing exploratory simulations of system behavior.

We use the incremental nature of RRT growth patterns to monitor properties

of interest incrementally. Hence, our RRT-based runtime verification frame-

work provides a novel simulation as well as property-checking and monitoring

methodology. Previously, RRTs have been extensively used in robotic mo-

tion planning [43] and reasoning [54], safety falsification [39, 151] and test

generation [42].

In order to adapt traditional RRTs to runtime monitoring of analog cir-

77



cuits, we introduce the Time-augmented RRT (TRRT) algorithm. RRT,

being a tree data structure, spans the state-space and does not contain loops

and cycles. This makes the RRT unsuitable for checking properties like os-

cillation that need to traverse a cyclic path in the state-space. The RRT

explores the entire state-space uniformly without any bias towards a partic-

ular dimension. Thus the growth along the time dimension might be very

small for a large state-space with many dimensions. We address these is-

sues in TRRT data structure. We augment the state-space of an analog

circuit with the time dimension, providing a state-time space for the time-

augmented RRT to grow. The state-time space adds the time dimension to

the n−dimensional state-space vector. In order to ensure forward progress in

time, we introduce a sampling bias in the time dimension, without violating

the probabilistic completeness property of the time-augmented RRT.

Our runtime verification technique based on TRRTs works as follows. De-

sign specification properties are provided to describe the temporal and logi-

cal behavioral model of the analog signals. Given initial state(s) and input

parameters of a system (including uncertainty and variation parameters),

our algorithm randomly samples the state-time space of the circuit and ex-

pands the TRRT toward the new samples through simulation. The TRRT

is constructed incrementally starting from the specified initial state. At ev-

ery incremental iteration, an edge corresponding to a single simulation trace

from the previous (initial) state to the next (final) state is added to the

tree. As a result, the constructed TRRT consists of many randomized sim-

ulation traces as edges. At every iteration, our monitoring algorithm checks

the newly added edge against given properties for violation. The properties

we check include both analog properties, meaning input/output properties

that do not involve previous state information, and temporal properties, i.e.,

properties that are stateful. We use the STL/PSL properties [49], with a few

modifications for TRRT-based checking. We define the operator Norm for

computing distance the between vectors as well as the jitter property in a

manner that is not amendable to Monte Carlo simulation, but is verifiable

with TRRTs.

Our technique has many benefits over state-of-the-art approaches for run-

time verification. First, ours is more efficient. A major source of inefficiency

in Monte Carlo simulations is the overlapping of simulation traces. For a

given circuit, a majority of the simulation traces browse the same path in

78



the state-space during runtime. Therefore, they share the same path and

overlap with each other. Repeated simulation of the same path in the cir-

cuit does not provide any new information, and results in poor performance.

However, the TRRT-based method incrementally grows the TRRT in the

state-time space. TRRT is persistently aware of the state-space all the time.

TRRT, being a tree data structure, always grows toward unique samples in

the state-space such that two traces never coincide. In TRRT the direction

of the growth is always toward a state as yet unexplored and every simula-

tion trace is unique. At every iteration, the tree traverses and covers more of

the state-space. Consequently, TRRT does not allow repeated sampling of

the same sequence of nodes and prohibits overlapping of traces in the state-

space. Since we conceptually arrange Monte Carlo’s linear simulation traces

in a tree data structure, we have an average logarithmic efficiency in simu-

lation performance and memory to achieve the same state-space coverage as

Monte Carlo.

Second, our monitoring algorithm proceeds incrementally. For most cases,

we only have to check the incremented edge to the TRRT to decide whether

a property has been violated. Thus, our incremental monitoring algorithm

using TRRT is more efficient than monitoring the entire trace [54].

Finally, by using TRRTs, we efficiently verify properties that require a

comparison over the entire trace. Such properties include jitter and deviation.

Monte Carlo simulations, as they simulate only one trace at a time and

possess no knowledge of the state-space, are not well suited to checking those

properties. On the other hand, the TRRT can maintain information and

verify multiple traces simultaneously because of its step-by-step growing data

structure.

We model circuit states and inputs as continuous finite variables without

discretizing them. We use SPICE to simulate circuit behavior. Our method-

ology accurately models the continuous-time behavior of analog circuits.

Our main contributions are as follows.

• We propose an incremental property checking and runtime monitoring

algorithm for nonlinear analog circuits that utilizes TRRT to verify

design specification properties. Our algorithm is incremental in nature

and more efficient than previous strategies for runtime verification.

• We introduce a Time-augmented Rapidly-exploring Random Tree (TRRT)

79



algorithm. TRRT has an augmented time dimension and a biased sam-

pling algorithm in that dimension. TRRT provides the same coverage

as Monte Carlo, while utilizing the logarithmic order memory and time.

TRRT prohibits simulation trace overlap.

• We define the semantics for our property specification language.

To demonstrate the effectiveness of the proposed approach, we applied our

technique in several case studies. We first used our methodology on a tunnel

diode circuit as a proof of concept. Then we showed the scalability and

practicality of our technique by using it to verify a PLL circuit.

5.2 Analog property specification

We use a property specification language based on STL/PSL to define our

properties [49, 152, 50]. We use a subset of the operators defined in STL/PSL,

and define a few of our own to suit the RRT verification framework. As

in PSL, the analog layer is used to describe the properties of continuous

variables and vectors, and the temporal layer is used to reason about the

temporal behavior of the circuit.

We define the Norm operator for both the analog and temporal layers. We

also express the jitter property in a manner that is conducive to RRT-based

verification. We describe the syntax and semantics of all the operators we use

in both layers. The rest of this section describes the syntax and semantics of

the analog and temporal layers of properties.

5.2.1 Syntax

Syntax of the analog layer

The grammar for the analog syntax is

φ ::= var|const|f(φ, . . . , φ) (5.1)

var is a continuous finite variable, and can be a single-dimensional vector,

much as xi denotes to a single waveform in simulation, or can be any subset

of the circuit’s state vector, like < xi1 , xi2 , . . . , xin′ >, where the index set

80



{i1, . . . , in′} is specified by the user. const is a finite constant. Finally, f

can be any of the following functions:

• Shift

• Binary operators, including {+,−,×, /}1

• Norm

The semantics of the above functions are described in Section 5.2.2.

Syntax of the temporal layer

We define the temporal layer to reason about time. Let φ be an atomic

proposition. For every state (sub)vector x, we associate a time instance of

the form x(t) where t ∈ T. Set T is the set of all possible times, and it is

defined as T := {x|x = k ×∆t, k ∈ Z+} where ∆t is the minimum discrete

time resolution. The time interval is an array of x(t) with a variable t. Time

intervals can be fixed, like t ∈ [30, 40], or relative, like t ∈ [t, t+300]. In both

cases, we write them as t ∈ [ti, tj]. Moreover since we monitor the behavior

of the system for a finite time interval, temporal modalities are bounded to

intervals of the form [i, j], where 0 < i < j ≤ Tmax, and i, j ∈ T where

Tmax = sup(T) = kmax ×∆t.

Similar to [49], we define the temporal layer as follows:

ϕ = p | φ[a : b] ? φ[a : b] | not ϕ | ϕ • ϕ
| eventually[a : b] ϕ | ϕ until[a : b] ϕ |J [a : b](ϕ)

v is a propositional variable; the comparison operator ? includes {≤, <,≥
, >,

.
=, 6 .=}. The logical operator • includes logical and, or, xor, xnor, nand

and nor. The semantics of the above functions and operators are defined in

Section 5.2.2.

We use the notation φ for analog and ϕ for temporal formulas.

1With the exception that φ1

φ2
is well-defined if and only if 0 6∈ φ2.

81



5.2.2 Semantics

Semantics of analog layer

The semantics of the analog layer are defined as the function of f over the

state (sub)vector φ. f can be any of the following functions:

• Shift: Shift is defined as changing the index of time dimension of a vari-

able along the same trace on the simulation, i.e., shift(φ, const)[t] =

φ(t+ const).

• Binary function2 f : f(φ1, φ2)[t] = f(φ1[t], φ2[t]).

• Norm(φ, p), Norm(φ1, φ2): returns the p-norm of φ, or the L2-norm for

computing the distance between φ1 and φ2, assuming both propositions

have the same dimension. Norm is used to measure the distance of the

state-vector against another vector or a constant. L2-norm is defined as

Norm(x, y) := ||x−y|| =
√∑n′

j=1(xij − yij)2, and the p-norm, assuming

p ≥ 1, is defined as Norm(x, p) := ||x||p = (
∑n′

j=1 |xij |p)
1
p .

Semantics of the temporal layer

For the temporal layer, we mostly use the same semantics proposed in [49],

with some modifications as follows. Comparison operator ? includes {≤, <
,≥, >, .=, 6 .=}. To reason about equivalence in the analog domain, we use the

notation x(t)
.
= y(t′) to indicate that ||x(t)−y(t′)|| < ε. Equivalence operator

is satisfied if and only if for any given t ∈ [ti, tj], state x(t) remains within

ε-envelope around y(t′) for any given t′ ∈ [t′i, t
′
j]. The following definition

easily expands to ≤,≥, and 6 .=.

The logical operator • includes logical and, or, xor, xnor, nand & nor.

The semantics of not are defined as M |= (notϕ) iff M 6|= ϕ. Similarly,

M |= (ϕ1 and ϕ2) iff M |= ϕ1 and M |= ϕ2 and so on. M is the circuit’s

simulation abstraction provided by the RRT G.

The semantics of Until are defined in [49]. The Eventually operator can

be defined using Until as follows. The temporal modalities ♦ (eventually,

sometimes in the future) and � (always, from now on forever) are derived as

2For simplicity, we use the notation � for the binary function f . Therefore, (φ1�φ2)[t] =
φ1[t] � φ2[t].

82



follows: ♦ϕ ≡ true until ϕ and �ϕ ≡ ¬♦¬ϕ. By combining the above, we

obtain the infinitely often ϕ ≡ �♦ϕ and the eventually forever ϕ ≡ ♦�ϕ.

Jitter is an undesired deviation from true periodicity of an assumed pe-

riodic original signal. The basic jitter operator (J (x, t)) will compute the

deviation in time using

J (f, x, t) = max
0≤t≤Tmax

(x(t)− x(t− f))− min
0≤t≤Tmax

(x(t)− x(t− f))

For periodic signals, the above definition is equivalent to a maximum devia-

tion of state vector x(t) from other state vectors at the same period (including

other states at time t, t−f, t−2f, . . . ). We use that idea to create a recursive

J operator model for computing jitter in RRT later in Section 5.3.2. We also

extend the jitter operator to compute the deviation of non-periodic signals.

5.3 TRRT-based runtime verification algorithm

Our goal is to verify that an analog circuit M satisfies a property Φ. A

summary of the steps (Figure 5.1) in our TRRT-based runtime verification

algorithm is as follows:

1. We construct a TRRT G (Section II.B) to represent a set of feasible

traces of the analog circuit M. We construct G by initializing it to a

known operating point of the circuit and then growing it step by step.

2. In each step, we employ a monitor to check whether the property Φ is

violated by any of the traces represented by the TRRT G.

3. If the monitor does not detect a violation, we grow the TRRT by one

more step. We repeat this process iteratively until a violation is de-

tected or a user-specified limit on the number of steps is reached.

In each step of our algorithm, we grow the TRRT G by adding a single edge

to the tree (Section II.B). Each edge in G corresponds to a single transient

circuit simulation of length ∆t. For several types of properties, our monitor

can detect a violation by checking only the newly added edge of the TRRT.

Therefore, for those types of properties, our algorithm is highly efficient since

it can perform verification in an incremental manner.

With each step, the TRRT grows. TRRT will quickly explore and pro-

vide a high coverage of the reachable state-time space of the circuit M [42].

83



Increment RRT G

Check Incremented G(M) |= �

Initialize RRT G

Finish
Yes

No

if � is violated or RRT 
is finished

CircuitM

Property �

Figure 5.1: Flowchart of TRRT-based runtime monitoring algorithm.

Algorithm 5 TRRT-based runtime monitoring algorithm

1: InitializeTRRT(x(0))
2: InitializeMonitor(ϕ)
3: for i = 1→ K do
4: qsample = UniformSampling(S)
5: qsample[n] = rand([ i

k
× rand(0, Tmax)], Tmax)

6: qnear = FindNearestNodeInTree(S, qsample)
7: u(t) = GenerateNewInput(S)
8: qnew = Simulate(M, qnear, u(t),∆t)
9: G.expand(qnew)

10: Monitor(G, qnew, ϕ)
11: if (G 6|= ϕ) return False
12: end for

Therefore, we can have more confidence in the verification results that we

obtain using our algorithm than the verification results obtained from ran-

dom Monte Carlo simulations. State-time space is the circuit’s state-space

augmented with a dimension corresponding to time.

Algorithm 5 shows our TRRT-based runtime monitoring algorithm. The

inputs to our algorithm are i) the circuit M, ii) the initial state of M, and

iii) the properties ϕ to be verified on M.

We now describe the steps of our algorithm in detail.

84



5.3.1 Constructing the TRRT for the circuit

This section describes how we extended the TRRT algorithm for runtime

verification of analog circuits.

In real-world circuits, a state might be revisited during circuit operation.

Oscillation circuits are very good examples of that scenario. Traditional

TRRTs are tree data structures that span the state-space, and therefore do

not contain any cycles. Such TRRTs cannot be used for verifying oscillation

properties. In order to address that issue, we modify TRRTs to include a

notion of time as well.

For a circuit with n state variables, we construct a TRRT G of n+1 dimen-

sions corresponding to the state-time space of the circuit. State-time space

is the n-dimensional state-space augmented with a dimension corresponding

to time. Each node in the tree G is an n + 1-dimensional vector denoted

by < x1, x2, . . . , xn, t > that corresponds to an n-dimensional state vector

< x1, x2, . . . , xn > and a time variable t. Let q be a point in the state-time

space of circuit M. We use the notation q[x] to indicate the state vector and

q[t] to indicate the time variable of q.

Each edge in the TRRT G denotes a transient simulation of the circuit.

We annotate each edge of G with the simulation time stamp t and the inputs

to the circuit at that time u(t). We use a discrete time step ∆t for simu-

lating each edge of the TRRT. Therefore, in the process of constructing the

TRRT, we discretize the behavior of the circuit. We choose ∆t to be small

enough such that we do not discard the relevant behavior of the circuit. The

minimum time step ∆t should satisfy the Nyquist criterion 1
∆t
≥ 2fmax, where

fmax is the maximum operating frequency of the circuit [52].

To build the TRRT G, we first select an initial state as the root of the

tree G. Our algorithm performs standard DC operating point analysis over

M and sets the computed operating point as the initial state of the circuit.

Alternatively, we allow the user to specify the initial state of the circuit.

In our algorithm, we grow the TRRT in a step-by-step manner. In each

step, we obtain a point qsample by randomly sampling the state-time space of

M. We then grow the TRRT towards the point qsample as follows. We first

find the closest node (in terms of Euclidean distance) to qsample in the TRRT

G, namely qnear. As in the classical TRRT algorithm, we determine the best

possible trace from qnear toward qsample and generate an input u(t) to the

circuit to follow that trace. We simulate the circuit M from state qnear for

85



simulation time ∆t using input u(t), and determine the resulting state qnew.

We then add qnew as the new reached state to the TRRT G.

The transient circuit simulation always progresses in time. We wish to

model that in the TRRT growth as well. In order to achieve that while

growing the TRRT, we filter out the candidates for the closest node that

have a time annotation higher than that of qsample. In other words, qsample[t] ≥
qnear[t]. Therefore, we ensure that the time notation of the parent node in G
is always smaller than that of its children. As a result, our TRRT correctly

models the progression of time in simulation traces of the circuit.

The classical TRRT algorithm tries to explore the entire space uniformly

with no bias towards any particular dimension. Therefore, if there are many

circuit state variables, the TRRT’s growth in the time dimension may be

very small. Consequently, it may take a large number of growth steps be-

fore the TRRT contains long simulation traces. Therefore, we modify the

classical TRRT algorithm to improve the efficiency of our methodology. We

modify the classical TRRT algorithm by introducing a small bias towards

the time dimension. We ensure that the bias does not alter the probabilistic

completeness property of the TRRT.

Let Tmax be the maximum simulation time specified by the user. We bias

our random number generator by adding a probabilistic offset to the time

variable. The default random generator for qsample is qsample[t] = rand(0, Tmax).

Function rand(a, b) uniformly samples a number in the interval (a, b). We

wish to shift the time bias as i, the number of iterations, increases. Therefore,

we use the following probabilistic offset to bias the time: i
k
× rand(0, Tmax).

That bias does not violate the probabilistic completeness property of TRRTs,

since limK→∞
i
k
× rand(0, Tmax) = 0.

With our bias, we calculate the time index of each new sample as

qsample[t] = rand([
i

k
× rand(0, Tmax)], Tmax) (5.2)

where k is the maximum number of iterations and i is the current iteration

of the algorithm. The t index in each node corresponds to the time variable.

We use the notation Gi to indicate the TRRT G at the ith iteration of the

algorithm. After adding a new edge to the Gi−1, the monitoring algorithm

Monitor checks the incremented tree Gi against the property Φ.

86



5.3.2 TRRT-based incremental monitoring algorithm

The monitoring algorithm Monitor first parses the analog property Φ (Section

5.2) into a parser tree P. The parser breaks down the formula into smaller

sub-formulas. Each sub-formula can be an analog or temporal formula as

described in Section 5.2. The parser performs that procedure recursively

until all the sub-formulas are atomic propositions. An atomic proposition is

a formula that is either true or false and cannot be broken down into simpler

sub-formulas. Every leaf in P corresponds to an atomic proposition.

Monitor starts by checking the atomic propositions in the leaves of the

parser tree P. For every atomic proposition ϕ, the monitoring algorithm

marks every node q in TRRT G such that q |= ϕ. Algorithms 6 and 7 de-

scribe how Monitor checks analog and temporal properties, respectively. The

algorithm then moves from the leaves of P upwards to the top formula (i.e.,

the root of P), checking every sub-formula stored in P. Monitor terminates

when the root of P is reached.

If the atomic proposition is an analog formula, Monitor employs Algorithm

6 to evaluate it. The evaluation of an analog formula involves computations

using scalar data. These computations do not involve sequences in time. The

algorithm marks every node in G in which the proposition evaluates to true.

The shift function can be implemented by traversing the TRRT G back-

ward in a trace from a leaf toward the root of the tree. The TRRT consists of

a set of simulation traces that are continuous in time. Therefore, a path from

any node to the root of the tree is a complete reversed simulation trace of

the circuit. Hence, traversing the tree backward through each node’s parents

is the same as moving backward in simulation. Similarly, the maxSibling and

minSibling functions, which we use later in jitter computation, traverse the

TRRT among siblings of each node (instead of parents) and would return a

sibling with the maximum or minimum value. The basic operators and norm

functions are computed according to the semantics in Section 5.2.2. Finally,

the algorithm moves on to the next leaf in the parser tree.

Since most analog and temporal properties are associated with a single

node, by adding a new node, we do not have to check the entire TRRT

G to verify those properties. In most cases, verification of satisfaction and

violation can be deduced by only checking the last node qnew against the

incremented tree. As a result, because of the iterative construction of TRRT,

algorithm 6 can be performed at O(1) for most operators. The shift operator

87



Algorithm 6 Analog checking algorithm Monitor(G, qnew, φ )

1: Analog Formula φ, TRRT G, new node qnew
2: switch φ do
3: case const
4: return const
5: case f(φ1, . . . , φn)
6: for i = 1 to n do
7: Check(φi)
8: end for
9: switch f do

10: case Shift
11: qparent = qnew
12: while Parent(qparent)[t] 6= φ2 do
13: qparent = Parent(qparent)
14: end while
15: case Binary Operator �
16: if f is division function then
17: Check φ2 6∈ (0− ε, 0 + ε)
18: end if
19: case Norm
20: Compute L2 or Lp norm ||φ1||φ2 or ||φ1 − φ2||
21: case Max(Min)-Sibling
22: for Node qsibling in Child(Parent(qnew)) do
23: Max = Max(qsibling)
24: Min = Min(qsibling)
25: end for
26: return f(φ1, . . . , φn)

27: if G |= φ then
28: mark qnew
29: end if

is an exception with the worst-case complexity of traversing the tree from a

leaf to the node, which is O(log n).

In order to verify a formula with temporal operators, Monitor employs

Algorithm 7. This algorithm analyzes sequences of nodes in G, each of which

corresponds to a transient simulation in the circuit. An interval in which the

proposition is defined is specified in the proposition. At every iteration, the

algorithm checks whether G satisfies or violates the temporal formula for

traces that lie within that interval. An example would be a decision on

whether G |= (x[t, t+ 100] < y[0, 100]).

In order to incrementally decide whether qnew |= Eventually ϕ, we

88



add a Boolean variable IsEventuallySatisfied to each node in TRRT G.

IsEventuallySatisfied is true, if and only if at least one node along the

path from qnew along its parents to the root of G satisfies ϕ (honoring the

time interval [a,b], on the path and filtering out other nodes). Algorithm 7

shows how we compute and update Eventually operator on TRRT.

To incrementally decide whether qnew |= ϕ1 until ϕ2, we add two addi-

tional variables to each node in TRRT. The first variable is alwaysϕ1TillNow

which indicates that along the path from qnew to its parents in the interval

[a, b], the proposition ϕ1 is always satisfied. Similarly, NumberOfϕ2TillNow

∈ {0, 1, many}, which counts the number of nodes that satisfy proposition ϕ2.

In Until proposition, violation occurs when ϕ1 does not hold until ϕ2. Our

method for finding the violation is sketched in Algorithm 7.

The TRRT algorithm incrementally builds the tree by adding simulation

traces edge by edge. As a result, for the majority of formulas in our semantics,

checking only the new edge is enough to verify or find a violation of the

formula over G. However, for some temporal properties we may have to

go back in time or more concisely traverse the TRRT G from the new leaf

node upward, through its parents, towards the root of the tree until we

can determine the status of the property. In the worst-case, that can take

O(log n), where n is the size of TRRT G. Since the size of the tree is finite,

and by definition of the tree, there is no loop in the tree, our algorithm always

terminates.

5.4 Experimental results and discussion

To evaluate our approach, we have implemented our algorithm in the C++

language. For simulating the circuit, we used Synopsys HSPICE and devel-

oped the interface between HSPICE and our tool.

We show the results for two nonlinear systems. The first case study involves

a tunnel diode oscillator that we used as a proof of concept. The second case

study is a phase-locked loop (PLL) circuit.

89



+

Figure 5.2: Tunnel-diode oscillator circuit.

5.4.1 Tunnel diode oscillator

To illustrate our methodology, we considered a tunnel diode oscillator that is

a well-known nonlinear analog circuit. The resonant tunneling of the tunnel

diode allows the current to decrease as voltage increases for some range of

voltages. We used the circuit shown in Figure 5.2.

This circuit has a two-dimensional state-space. The state equations are

modeled as

˙iL =
1

L
(vin −R× iL − vC) (5.3)

v̇c =
1

C
(−id(vc) + iL) (5.4)

where id(vc) describes the nonlinear tunnel diode behavior.

We wished to verify whether or not for a given variation in the voltage

source and uncertainty parameters in tunnel-diode models and for given ini-

tial conditions, the circuit satisfies the following oscillation property. We

modeled the voltage source variation as Vin = V0 + p1, where V0 = 300mV

and the tunnel diode uncertainty was modeled as id(x) = x3−1.5x2+0.6x+p2.

We assumed that the distribution of both variation parameters (p1 and p2)

was uniform.

The oscillation property under consideration is as follows [153]. For os-

cillation, the current iL should cycle between 0.02 and 0.06 indefinitely.

Within the time interval [0, 1µs], infinitely often whenever the Norm(iL)

reaches 0.02, it will reach this value again within the time interval [0, 6e−7].

Also, the same property applies for iL with amplitude 0.06. Formally ∀�[0 :

1µs](∀♦[0 : 0.6µs](iL ≤ 0.02)) ∧ ∀�[0 : 1µs](∀♦[0 : 0.6µs](iL ≥ 0.06))

Figure 5.3 shows the results of the tunnel-diode analysis using TRRT.

Figure 5.3a shows the state-time space of the tunnel diode circuit with

the voltage source variation modeled by p1 ∈[-0.05mv, 0.05mv] and p2 ∈

90



(a) State-time space of random tree
after oscillation with uncertainty.

(b) Projection of random tree’s
state-time space into state-space for
oscillation with uncertainty.

(c) Random tree’s state-space pro-
jection for oscillation.

(d) Random tree’s state-space pro-
jection of non-oscillating circuit.

Figure 5.3: Random tree outputs for tunnel diode oscillator.

[−0.005, 0.005]. The TRRT time resolution was set to ∆t = 10µs, and we

executed the algorithm for 20,000 iterations. Figure 5.3b shows the projec-

tion of the state-time space into the time dimension, which is the state-space

of the circuit. As shown in Figure 5.3b, for many simulation traces, the cir-

cuit oscillates fully; however, for some branches of the TRRT, the oscillation

was limited and did not meet the specification. Those branches failed to

satisfy the design constraints for oscillation. Thus, this circuit is not verified.

Figure 5.3c shows the same circuit for the same initial condition, but with re-

duced variation parameters p1 ∈[-5mV, 5mV] and p2 ∈[-0.5mV, 0.5mV]. We

did not find any violation of the specification in this circuit. This example

shows that even for a common initial state, the bound on variation parame-

ters can lead to the violation of design specifications. The final experiment,

shown in Figure 5.3d, was the tunnel diode example. The parameters in the

tunnel diode model were set up by the same bounded variation as shown in

Figure 5.3c, but with a different initial state. In this case, the circuit would

not oscillate at all.

91



Phase
Detector

Loop 
Filter VCORef

�v

�ref

Figure 5.4: Phase-locked loop (PLL) circuit

5.4.2 Phased-locked loop circuit

PLL is a circuit that generates an output signal whose phase is related to

the phase of an input reference signal. PLL circuit typically consists of a

reference signal generator, a voltage-controlled oscillator (VCO), a phase-

frequency detector (PFD), a loop filter, and a feedback loop.

Figure 5.4 shows the basic architecture of a PLL. In our simulation, we

set the initial condition in the unlocked state of the PLL. When the PLL

is out of lock, the frequencies of the input and output signals are different.

The filter suppresses the higher harmonics. Consequently, there will be a

DC component that will pull the average output frequency of the VCO up or

down until the PLL locks. When the output of the filter is stable, PLL has

locked to the input signal. We used a PLL circuit with Φref = 1 MHz and

f0 = 1.01 MHz. The input signal was generated through a fixed sinusoidal

voltage source. HSPICE simulation was performed at the highest run level for

maximum accuracy. To verify the uncertainty parameters in PLL, we added

variation parameters to sources at the phase-detection block at each iteration.

The variations were uniformly generated from interval [−0.001, 0.001]. We

executed the TRRT for 30,000 iterations. Our PLL circuit had 17 states.

We used the output signal of the loop filter to verify the locking of the

PLL. When PLL locks, the output signal eventually becomes stable, and

there is no more deviation in the signal, except for some small deviations

due to the phase-detector operations. We define the PLL-locking-property

as eventually forever the jitter on the analog signal Norm(v1 − v2) becomes

less than 50mV in 2us interval where v1 and v2 are outputs of the loop filter

block. Therefore eventually forever jitter on v1 − v2 is smaller than 50mV.

That property means that the deviation of the given signal has to become

less than 0.05 in a 2µs interval, so that it can be considered stable. Thus, we

can assume that PLL has locked.

Figure 5.5 shows the deviation trace of the norm distance between the

loop filter’s output generated by TRRT under uncertainty parameters in

the phase-detector block. Our algorithm finds no violation in the pll-locking-

92



Figure 5.5: The TRRT trace of signal deviation for a loop filter.

property, so we assume the output of the loop filter eventually becomes stable

forever.

5.5 Chapter summary

In this chapter, we used Duplex for runtime monitoring of analog circuits.

We proposed a runtime verification algorithm to check the random trees

against given specification. Our runtime verification methodology consists

of i) incremental construction of the random trees to explore the state-time

space and ii) use of an incremental online monitoring algorithm to check

whether or not the incremented random tree satisfies or violates specification

properties at each iteration.

93



Algorithm 7 Temporal checking algorithm Monitor(G, qnew, ϕ )

1: Temporal Formula ϕ, TRRT G, new node qnew
2: switch ϕ do
3: case v
4: return v
5: case φ1 ? φ2

6: check if qnew |= φ1 ? φ2 // Analog properties

7: case ϕ1 • ϕ2

8: check if qnew |= ϕ1 • ϕ2 // Temporal properties

9: case Eventually ϕ[a,b]
10: if qnew |= ϕ or Parent(qnew).IsϕSatisfied then
11: qnew.IsϕSatisfied = true
12: end if
13: case ϕ1 until ϕ2

14: if qnew |= ϕ2 then
15: qnew.NumberOfϕ2TillNow =Parent(qnew).NumberOfϕ2TillNow

+ 1
16: end if
17: if qnew |= ϕ1 and Parent(qnew).Alwaysϕ1TillNow then
18: qnew.Alwaysϕ1TillNow = true
19: end if
20: if qnew.NumberOfϕ2TillNow = 1 and

Parent(qnew).Alwaysϕ1TillNow=false then
21: return violation
22: end if
23: case J
24: for Every child node vi in Shift(qnew, t) do
25: J (qnew) = max(J (vi))-min(J (vi))
26: end for
27: if G |= ϕ then
28: mark qnew
29: end if

94



CHAPTER 6

REACHABILITY ANALYSIS

6.1 Introduction

We propose a methodology for reachability analysis of nonlinear analog cir-

cuits. Our method reduces the approximation error and is computationally

efficient. Our technique can be applied to general nonlinear systems while

providing a precise analysis for handling polynomial nonlinear systems. Our

algorithm is faithful to the nonlinear nature of the system and does not

linearize the system at any point. Consequently, it provides a tightly over-

approximated reachable set that is close to the exact reachable set. Most

of the previous techniques compute reachability starting with the initial

state and iteratively growing the reachable set [24, 58]. That approach is

called forward reachability analysis [24]. In contrast, we start with an over-

approximation that constitutes the entire reachable space of the system. We

compute the boundaries of the reachable set by iteratively determining which

regions in the over-approximated reachable set are unreachable. Next, we re-

move those regions from the reachable set to reduce its size. We call our

method the iterative reachable set reduction.

Our algorithm works as follows. Initially, the entire state space is marked

as the reachable set. Then we compute and refine the boundaries of the

reachable set from the outside. At every iteration, our algorithm recursively

partitions the reachable space into convex polytopes. For a given polytope,

an adjacent polytope is one that shares a face with it. We determine if every

polytope is reachable from its adjacent reachable polytopes. If we determine

that a polytope is not reachable from any of its adjacent neighbor polytopes,

then that polytope is marked as unreachable. We remove those unreachable

polytopes from the reachable set to refine the over-approximated reachable

set.

A polytope is reachable if there is a feasible trajectory toward it from any of

95



its adjacent reachable polytopes. Therefore, we examine the direction of state

space trajectories over the common face of every adjacent neighbor polytope.

The direction of a state space trajectory is modeled as a multi-variable reach-

ability decision function whose domain is the common face between the two

adjacent polytopes. We call a function existentially positive if there exists a

point in its domain where the sign of the function is positive.1 If the reacha-

bility decision function is existentially positive on the common face between

the target and its adjacent polytope, we determine that the target polytope

is reachable. If none of the corresponding reachability decision functions are

existentially positive, we declare the target polytope unreachable.

To determine whether a function is existentially positive on its domain, we

check whether that function has any roots in that domain. Current root find-

ing algorithms are known to be numerically unstable [32]. However, in our

context, we would like to determine the existence of a root in a domain rather

than finding the location of the root. Hence it is sufficient to count the roots

without actually finding them. We employ a root counting method based on

Sturms theorem [154] for nonlinear polynomial systems. Although the root

counting method provides precise analysis for polynomial nonlinear circuits,

in the case of general nonlinear circuits, it is not applicable. In the general

case, we use root finding methods (like the Newton-Raphson method or the

Quasi-Newton method [32]) to determine whether the function is existen-

tially positive. By using root counting for polynomial nonlinear systems, we

provide an accurate solution for proving reachability without linearizing the

system at any point. The polytopes that represent the partitions of the state

space get progressively smaller with every iteration. The over-approximation

error of the reachable set is non-increasing and becomes smaller.

Typical implementations of polytope partitioning suffer from memory-

related efficiency issues. We circumvent these problems by using the Space

Partitioning Tree (SPT) data structures to model the state space. SPT is the

generalized Binary Space Partitioning Tree (BSPT) in higher dimensions[155].

Previously, BSPT has been used in computer graphics [155], CAD, and ver-

ification [25]. We use SPT for recursive partitioning of the state space and

as a data structure for storing and accessing geometric objects. Partitioning

of the state space into polytopes results in generation of many polytopes for

1Existential positivity is defined over a ball in Rn space. A function can be existentially
positive and negative over a ball at the same time.

96



modeling the state space. SPT models polytopes in the state space using

hyperplane division instead of modeling each polytope individually. Conse-

quently, the complexity order of the number of generated polytopes becomes

polynomial. Also, SPT is very efficient at enumerating adjacent polytopes

[155] and extracting the boundaries of the reachable set [156]. Those prop-

erties make SPT a suitable underlying data structure for our reachability

algorithm.

Our major contributions are as follows.

• We propose the iterative reachable set reduction algorithm, for reach-

ability analysis of analog circuit systems. Our algorithm iteratively

reduces the volume of the reachable set in an outside-in manner and

converges quickly on a result.

• Our algorithm can be used to verify nonlinear analog circuits. We are

faithful to the nonlinearities of the system. Our algorithm is accurate

and does not introduce any linearization error into the reachable set.

• Our algorithm utilizes Space Partitioning Trees (SPT) to efficiently

model the state space partitioning. Due to usage of SPT, our algorithm

is more memory efficient than the state-of-the-art.

Since our over-approximations are conservative abstractions of the reach-

able set, our algorithm will never declare an unsafe state as safe, but it

might declare a safe state as unsafe. We prove this soundness of our algo-

rithm. Our algorithm will always converge to the exact reachable set, or

an over-approximation of it. We demonstrate empirically that the algorithm

converges in a few iterations to a tight approximation. We compute the

reachable set of a nonlinear Van der Pol oscillation circuit, a standard cir-

cuit used in this analysis. To increase the confidence in our results, we run

several transient simulations using a numerical simulator to approximately

delineate and illustrate the reachable set. The transient simulations closely

follow the output of our algorithm.

6.2 Iterative reachable set reduction algorithm

The objective of reachability analysis is to determine if there exists a trajec-

tory from the set of initial states that eventually reaches the set of unsafe

97



Initial set: Rinitial state = x0

Add the entire state-space P to the reachable set
Add polytope P to polytope queue Q

P
a
rt

it
io

n
in

g
re

a
ch

a
b
le

se
t

in
to

c
o
n
v
e
x

p
o
ly

to
p
e
s

Compute ci the center of polytope pi

Compute vi state-space trajectory at ci

Find intersections of u1, . . . , ud with pi

Generate polytopes p01, . . . , p
0
2d

D
e
te

rm
in

in
g

re
a
ch

a
b
il
it
y

o
f
p
o
ly

to
p
e

fr
o
m

it
s

a
d
ja

c
e
n
t

n
e
ig

h
b
o
rs

Compute neighbor polytopes p001 , . . . , p00k of pi

Let D be the common face of p00i and pi

Compute wi, an orthogonal vector to D

reachability decision function ⌅ is f ⇥ wi

Add pi to polytope queue Q

Apply root counting on ⌅0
j over D

circuit dynamics: f
unsafe set: Runsafe

 For every polytope pi in polytope queue Q

Is Runsafe 2 Q? System
is safe

S
P

T
S
P

T

S
P

T

NoYes

No

p
i

is
u
n
re

a
ch

a
b
le

8j  d : ⌅0
j  rotate ⌅i for ✓j

Yes

It
e
ra

ti
v
e

re
a
ch

a
b
le

se
t

re
d
u
ct

io
n

Compute orthogonal basis u1, . . . , ud of vi
for every neighbor

Is 8j : ⌅0
j existentially

positive on
D?

Figure 6.1: Overview of the iterative reachable set reduction algorithm. The
exterior loop is the iterative reachable set reduction algorithm. For each
polytope, our algorithm partitions it. Then, for each new partition, our
algorithm decides on the reachability of those partitions from the reachable
set. The parts of our algorithm that use SPT for computation are marked
with SPT labels.

states under the circuit’s differential regime. Our algorithm achieves this ob-

jective by iteratively identifying unreachable states. To identify the unreach-

able regions, we will recursively partition the over-approximated reachable

set Rx into convex polytopes.

Our iterative reachable set reduction algorithm consists of four major com-

ponents: i) the main iterative reachable set reduction loop, ii) the state space

partitioning algorithm, iii) a process for determining the reachability of ad-

jacent neighbor regions, and iv) an SPT data structure for state space mod-

eling. Figure 6.1 illustrates the important phases of our algorithm that are

described in the following subsections.

The inputs to our algorithm are i) the state space of a nonlinear analog

circuit, along with ii) the governing differential equations, iii) the set of initial

states in the state space, and iv) the set of unsafe states.

Let S ⊆ Rd be the continuous state space of an analog circuit where d is

the number of the state variables. Let Rx(0) ⊆ S be the reachable set of the

circuit from the initial set x(0), and R ⊆ S be an over-approximation of Rx,

98



so Rx ⊆ Rx. We assume the state space is bounded. That assumption is

not limiting, because the target of our algorithm is an analog circuit. For

example, a user can define the voltage variable to be bounded by [−Vcc,+Vcc],
where Vcc is the value of the voltage source, and so on. We assume that any

region outside those bounds is unreachable, and we consider the region inside

the bounds to be the state space of the circuit.

6.2.1 Iterative reachable set reduction

In this section, we describe the primary loop of our algorithm, the iterative

reachable set reduction. Algorithm 8 shows that this loop will recursively

remove the unreachable regions from the reachable state space.

We model the partitioned regions as convex polytopes which are identi-

fied through intersections of hyperplanes. At every iteration, we analyze

the polytopes that are at the boundaries of the reachable set. This implies

that those polytopes share boundaries with some unreachable set. For every

generated polytope Pi, if Pi is adjacent to some unreachable set, then we

analyze the reachability of Pi from its neighbors. We analyze the reachabil-

ity of the polytope by checking the direction of state space trajectories of

adjacent partitions in the reachable set. If we prove there is no feasible tra-

jectory from any of the adjacent reachable regions toward the polytope Pi,

we determine that Pi is unreachable and we remove it from the reachable set

Rx. Otherwise, we recursively partition the Pi to further refine the reachable

set.

In Algorithm 8, we create a queue of reachable polytopes. For each of those

polytopes Pi, if Pi is at the boundary of reachable set, we further divide Pi

to get a finer partition. Next, for each of the sub-partitions of Pi (called

Pi’s children) we determine if they are reachable from the reachable set. We

enqueue any of those sub-partitions that are reachable and discard other sub-

partitions to get a more accurate over-approximation. This process continues

until a predefined number of polytope divisions n is reached; at that point,

the algorithm terminates. In our algorithm, the volume of polytopes rapidly

gets smaller and our algorithm converges to an approximated reachable set

very fast.

To determine the reachability of each sub-partitions, we analyze the direc-

tion of the state space trajectories toward those sub-partitions. The polytope

99



Algorithm 8 Iterative reachable set reduction algorithm

1: Circuit S, Initial States I, Iteration bound n
2: Queue Q
3: ReachableSet Rx

4: Q.push(Rx)
5: while ¬ Q.empty() do
6: Polytope P ← Q.pop()
7: if P is adjacent to an unreachable region or iteration < n then
8: iteration ← iteration+1
9: partition(P)

10: for Pj in P.getChildren() do
11: Determine the reachability of Pj from its adjacent

neighbors
12: if Pj is reachable then
13: Q.push( Pj )
14: end if
15: end for
16: end if
17: end while

Algorithm 9 Partitioning the polytope

1: Circuit S, Convex Polytope P
2: c = center point of P
3: v = S.state space trajectory at (c)
4: u1, . . . , ud = GramSchmidt(S, v)
5: i1, . . . , id = Compute intersections of u1, . . . , ud hyperplanes with P
6: P1, . . . , P2d = Polytopes defined by i1, . . . , id points and P
7: return P1, . . . , P2d

is reachable under either of two conditions: i) the polytope is part of the ini-

tial state, or ii) there exists a trajectory from at least one of the polytope’s

reachable adjacent neighbors toward it. In those cases, we conclude that the

polytope is reachable.

6.2.2 Partitioning the reachable set into convex polytopes

We partition the continuous space of analog circuits to obtain a discrete

model for the state space. Our algorithm partitions the reachable state space

into convex polytopes. The partitioning is based on the direction of state

trajectories at the center of each polytope. Let d denote the dimension of

the system.

100



(a) (b) (c)

c c
c

v1 u1u2

P1

P2

P3

P4

q1

q2

q3

q4

i1

q5

i2

i3i4

Figure 6.2: Partitioning a polytope based on state space trajectories.

Algorithm 9 shows an overview of our partitioning algorithm for a given

polytope P . Initially, the entire state space constitutes the first polytope. At

every subsequent iteration, we recursively divide the polytope by partition-

ing it using hyperplanes. We compute those hyperplanes using a vector basis

that is orthogonal to the state space trajectory at the center of the polytope.

Let c be the center of convex polytope P . Let v be the trajectory vector

of the system at c (Figure 6.2.a). Using Gram-Schmidt orthonormalization

process [157, 60], we construct an orthogonal basis vector set u such that

{u1, . . . , ud : ui.uj = 0,∀1 ≤ i, j ≤ d, i 6= j, v ∈ u} (Figure 6.2.b). Vec-

tors u1, . . . , ud form a set of d hyperplanes that divides the polytope P into

2d convex polytopes P1, . . . , P2d (Figure 6.2.c). Accordingly, our algorithm

computes the intersection of each hyperplane with the faces of the polytope

P . Then we compute the polytopes generated by the intersection of those

hyperplanes and the polytope P . For example, in Figure 6.2.c, the new poly-

tope P1 is defined by the sequence of points < c, i4, q5, q1, i1 > and so on.

For recursively partitioning the state space, we utilize space partitioning tree

(SPT) algorithm. SPT divides the state space into convex polytopes defined

by intersection of hyperplanes. SPT algorithm allows an efficient storing and

accessing of the polytopes in polynomial time [155].

6.2.3 Determining the reachability of adjacent polytopes

After generating a new polytope, we determine whether that polytope is

reachable from the adjacent reachable polytopes. To determine the reacha-

bility between adjacent polytopes, we evaluate the direction of trajectories at

the common face of the polytope and adjacent polytopes from the reachable

set. If we can prove that for all common faces with the reachable set, there

101



is no trajectory from the reachable set toward that polytope, we can deduce

that polytope is unreachable and remove it from the reachable set. As shown

in Figure 6.2, in 2-dimensions, the shared face between two adjacent poly-

topes R1 and R2 is the line from p1 to p2. Therefore for checking reachability

of R1 from its adjacent reachable neighbor R2, we should check if there is

any trajectory from R2 to R1 at the common face between two polytopes.

We need to find at least a single trajectory from R2 that goes toward R1.

We reformulate this as an analytical reachability decision function.

The direction of the trajectories over the bounded face of the polytope

is presented as a multi-variable reachability decision function. Let w be

an orthogonal vector from the center of the p1, p2 face toward R1. We use

a cross product of the RHS of the circuit’s ODE f (Section 8.2) with the

w vector to determine the direction of trajectories. For example, for a 2-

dimensional system, the direction of vector trajectories is defined by the

following reachability decision function Ξ:

Ξ(x, y) = f(x, y).w = det

(
p2.x− p1.x f1 − p1.x

p2.y − p1.y f2 − p1.y

)
(6.1)

where p1 =< x1, y1 > and p2 =< x2, y2 >.

We define existential positivity of a function to determine if there is any

interval in which the function ξ is positive on its domain. The existential

positivity property for function ξ is defined as if there exists any ball Bε(t) ∈
Dξ such that for some x ∈ Bε(t) we have ξ(x) > 0, where Dξ denotes to

domain of ξ.

The existence of a trajectory from R2 toward R1 is equivalent to the exis-

tential positivity of the reachability decision function Ξ on the function’s do-

main (line p1 to p2, i.e., D = {< x, y >: λp1+(1−λ)p2 =< x, y >, λ ∈ [0, 1]}).
Therefore, when Ξ(x, y) > 0, the direction of the trajectories is toward R1

and Ξ(x, y) < 0 is an indication of the direction of the trajectories toward

R2.

To determine existential positivity of higher dimensional functions, we

transform them to lower dimensions. Therefore, we reduce that function

to a weaker form by transforming it from a single d-dimensional function

into d single-dimensional functions using rotation transformation. At lower

dimensions (like d = 1), we use a root-counting method using the Sturm’s

theorem [154] and root-finding method using the Newton-Raphson algorithm

102



⇡
2 � ✓

✓p1 p2'

p2

Figure 6.3: Determining existential positivity of the reachability decision
function. Our algorithm rotates the function θ degrees to align it to the axis.
Therefore, other variables become constant, and the reachability decision
function becomes a single-dimensional basis function.

[32] to determine the existential positivity of the function. We call these

single-dimensional functions the basis functions of the reachability decision

function.

The domain of the basis function becomes paraxial by applying rotation

transformation to the common face between two adjacent polytopes (Fig-

ure 6.3). Therefore except for only one axis, all other variables are constant.

By applying d rotation transformations to the decision function for each axis,

the reachability decision function is reduced to d single-dimension basis func-

tions. If all of those d single-dimension functions are existentially positive on

their basis domains (which are the intervals obtained by rotating the domains

of the decision functions), we conclude that the reachability decision function

is existentially positive on its domain. For example, in two dimensions the

rotation transformation is as follows:[
Φ(x)

Φ(y)

]
=

[
Ξ1(x, y)

Ξ2(x, y)

]
×
[

cos(−θ) − sin(−θ)
sin(−θ) cos(−θ)

]

where Ξ1 and Ξ2 are the RHS of the system’s ODE, and θ is the angle between

the face and the axis. Φ(x) and Φ(y) are the basis functions.

For a single-dimensional basis function, our algorithm uses two different

methods for determining its existential positivity. Existential positivity for

a function depends on whether the function has any roots in its domain. If

103



the root does not exist, it means that the function is not changing signs on

its interval. Therefore we evaluate the basis function at the midpoint of the

function’s domain. If the function evaluates to positive, then we can conclude

existential positivity of the basis function. Otherwise, the basis function is

not existentially positive. We use two methods for determining the existence

of a root in the basis function.

• Root counting method. For polynomial systems, we count the number

of roots in any given domain using Sturm’s theorem [154], which defines

the number of real roots of a polynomial system in any interval using

the changes in the signs of the values of the Sturm’s sequence.

Therefore if the total number of roots of the basis function in its domain

is more than one, we deduce that the basis function is existentially

positive on its domain. The benefit of the root counting method is

that it always returns an exact result. However, Sturm’s theorem can

only be applied to nonlinear polynomial systems.

• Root finding method. Instead of counting the number of roots, our

algorithm computes the roots of the function. If our algorithm is able

to find at least one root in the domain of the basis function, we conclude

that the basis function is existentially positive on its domain. Our

algorithm uses the Newton-Raphson [32] algorithm to find roots of

nonlinear functions.

6.2.4 Modeling the state space using a space partitioning tree
(SPT)

We use a space partitioning tree (SPT) algorithm to model and store the

polytopes generated in the state space. The space partitioning tree algorithm

is the general n-dimensional case of the binary space partitioning algorithm

used in [25, 155].

The polytopes are modeled in the SPT tree as shown in Figure 6.4. First,

the entire state space is modeled as the root of the tree. Then we partition

the root into 22 polytopes using two hyperplanes. Those hyperplanes are

added to the SPT to model the generated polytopes. The tree is built and

maintained on-the-fly during execution of the reachability algorithm.

104



P12

P12

P12

P12

L1

L2

L3

L4

P1234

P1234

P1234

P1234

P12

P12

P12

L1

L2

Figure 6.4: State space partitioning using hyperplanes. The polytopes are
defined by the intersections of the hyperplanes in the state-space.

Let d denote the number of dimensions. We are constructing the SPT

in Rd space. At each iteration, we add d hyperplanes to the tree to model

the 2d convex polytopes. Each hyperplane can be defined in O(d) memory.

Therefore the memory complexity of our algorithm is O(nd2) where n is

the number of divisions that our algorithm performs. SPT allows access

of logarithmic complexity to each polytope inside the state space while it

utilize a moderately small memory foot-print. SPT also facilitates an efficient

enumeration of adjacent polytopes to a region. Finally, SPT allows for fast

computation of boundary of reachable set without computing the union of

all reachable sets [156].

6.2.5 Sketch of soundness proof

To prove soundness of the iterative reachable set reduction algorithm, we

show that if the region is unsafe, our algorithm will never declare that the

region is safe. On the other hand, if the region is safe, our algorithm does

not make any guarantees on it. We do not generate any false positives. Let

S ⊆ Rn denote the continuous state space of the circuit. Let Rx(0) and Runsafe

denote the initial set and unsafe set of states respectively. A region is a set

of states in S. An unsafe region X is a region such that X ∈ Runsafe. The safe

regions are in S− X. Let the sequence < pi, pi+1, . . . , pj > denote the set of

convex polytopes in the state space such that pt and pt+1 are adjacent.

We use proof by contradiction. Given an unsafe region U ∈ Runsafe, let

us assume that our algorithm declares this unsafe region as safe. Initially,

the algorithm considers the entire set of states as reachable. This includes

the safe as well as unsafe states in the system. The algorithm does not

declare any unsafe region as safe. Hence, it is initially sound. Let us say

105



that in iteration i, the algorithm declares (erroneously) that a region U is

safe. In every subsequent iteration, it will declare U as safe. Initially we

assumed that the system was unsafe. This implies that there is at least one

trajectory from initial state x0 ∈ Rx(0) to state xf ∈ U. Let us call this

trajectory T . By construction, T will cross some subsequence of adjacent

polytopes < p0, p1, . . . , pk > such that x0 ∈ p0 and xf ∈ pk. The polytope p0

is reachable because p0 ∩Rx(0) 6= ∅. Since the algorithm declared the system

safe, the polytope pk should be unreachable. Therefore, for some 1 < j ≤ k

our algorithm has determined that pj is reachable but pj+1 is unreachable.

This would mean that there is no trajectory from pj toward pj + 1. But T is

a trajectory from p0 to p1 to . . . pj to pj+1 to . . . to pk. Therefore there is a

trajectory from pj to pj+1. This is a contradiction. Hence the soundness of

the algorithm is proved.

6.3 Experimental results

We implemented the iterative reachable set reduction algorithm in a proto-

type tool in the C++ language to evaluate its accuracy and efficiency. We

chose an Apple Macbook Pro laptop equipped with a Core i7 processor and

8 GB memory as our computing platform. We ran our algorithm over a Van

der Pol oscillation circuit to compute its reachable set. A Van der Pol oscil-

lator is a nonconservative oscillator with nonlinear damping. A Van der Pol

oscillator is a fundamental example in nonlinear oscillation theory [148]. It

has a periodic solution that attracts every solution in the state space (except

the zero solution). It is governed by two dimensional equations.

ẋ = y (6.2)

ẏ = ε(1− x2)× y − x (6.3)

In our experiment, we let ε = 1, which was a medium value for ε and

resulted in a medium distortion in the oscillation. The state space was defined

as a bounded box S = [−10, 10]× [−10, 10] ⊂ R2. The initial set was a box

[−3.0,−2.8]× [3, 3.2] ⊂ S. Figure 6.5 shows the reachable set of the Van der

Pol oscillator circuit. The reachable set is the grey region. The unreachable

states are in white. Figure 6.5 also shows the hyperplanes and the polytopes

that our algorithm generated to compute the reachable set. As shown in

106



-10

-8

-6

-4

-2

 0

 2

 4

 6

 8

 10

-10 -8 -6 -4 -2  0  2  4  6  8  10

phase portrait

Figure 6.5: Reachable set for the Van der Pol oscillator using our iterative
reachable set reduction algorithm. The reachable set is in grey and the
unreachable states are in white. The polytopes at the boundaries of the
reachable set shrink rapidly in volume.

the figure, our algorithm rapidly removed huge portions of the state space

that were unreachable from the reachable set during the first few iterations.

Then our algorithm eventually converged on the more refined and accurate

reachable set. Our algorithm took 0.05 seconds to compute the reachable

set on our computing platform.

The iterative reachable set reduction algorithm can be effectively used for

safety verification through computation of the reachable set. In many real

test cases, only a few iterations are required to generate a coarse approxima-

tion of the reachable set and hence prove safety. That makes our algorithm a

suitable candidate for safety verification. At any point during the execution,

if we can prove safety, our algorithm terminates. If after reaching a prede-

fined number of polytope partitioning, we have been unable to prove safety,

our algorithm terminates without deciding on the safety of the system.

To make Figure 6.5 more informative, we added a quiver plot of the vector

field (marked with arrows). We have also shown a transient simulation from

a sampled point in the initial set. The transient trace was simulated using

a numerical ODE solver (explicit embedded Runge-Kutta Prince-Dormand

(8,9) method available in GNU-gsl-odeiv2 package) to delineate the reachable

107



Table 6.1: Space partitioning tree statistics. During the execution of the
iterative reachable set reduction algorithms, most of the generated polytopes
are at the boundaries of the reachable set and they rapidly get smaller in
volume. † indicates that the number is a two-dimensional volume.

Statistical information obtained from the SPT Value
Number of generated polytopes 1000
Number of leaves in the tree 751
Number of reachable leaves in the tree 491
Number of generated hyperplanes 500
Maximum depth of the SPT 9
Average depth of the SPT 7.34
Volume of smallest polytope in the leaf 4.63e-4 †
Volume of biggest polytope in the leaf 26.40 †
Volume of biggest reachable polytope in the leaf 6.25 †
Average volume of a polytope in the leaf 0.53 †
Average volume of a reachable polytope in the leaf 0.14 †

set. The circuit was simulated for t = 20 with δt = 0.02 time steps.

Table 6.1 shows some statistics of the space partitioning tree. We ter-

minated the execution after 250 iterations. The SPT was built in two di-

mensions on-the-fly during the execution of our algorithm. In the end, the

algorithm explored and divided 751 out of the possible 49 polytopes. The

maximum depth of the tree was a logarithmic order of the generated polytope.

In the end, the boundary of the reachable set consisted of 214 polytopes.

Among the different components of our iterative reachable set reduction al-

gorithm, the component that allows for optimizations is the partitioning tech-

nique. Hence, a change in the partitioning algorithm significantly impacts

the quality of results. Initially, we used hyper-rectangle partitioning, where

each polytope’s face was aligned to the axes. Similar to [60], we observed

that the hyperbox data structure was causing a massive over-approximation

of the reachable state space. Also, we tried other methods for polytope par-

titioning, such as partitioning of each polytope into two polytopes using the

binary space partitioning tree (instead of d polytopes). However, the results

were unsatisfactory. With those observations, we decided that polytope par-

titioning with d hyperplanes, resulting in 2d polytopes at each iteration, is

the optimum implementation of our algorithm.

To evaluate the reachability determination between adjacent polytope al-

gorithm, we used a sampling-based method. To determine the reachability

108



of a polytope from its adjacent polytopes, our algorithm incorporated a sam-

pling scheme as follows. Our algorithm created many sample points at the

borders of the polytope and simulated them for a δt time. Then our algo-

rithm determined if the final state of the simulation had ended up inside

the polytope or in the adjacent polytope. As a result, for 100 samples for

each common face of each polytope, there was no significant difference be-

tween the sampling based reachability decision and our algorithm. However

the sampling-based method took significantly more time (4.48 seconds) to

compute the reachable set.

6.4 Chapter summary

In this chapter, we proposed a technique for reachability analysis of nonlinear

analog circuits to verify safety properties. Our algorithm iteratively deter-

mines which regions in the state space are unreachable and removes those

unreachable regions from the over-approximated reachable set. We use the

State Partitioning Tree (SPT) algorithm to recursively partition the reach-

able set into convex polytopes. The algorithm can verify safety properties in

near real-time and is very memory efficient. We computed the reachable set

of the Van der Pol oscillation circuit.

109



CHAPTER 7

WORST-CASE EYE DIAGRAM ANALYSIS

7.1 Introduction

7.1.1 Monitoring signal integrity using the eye diagrams

Transient circuit simulation using Monte Carlo simulations is the most com-

monly used eye diagram analysis technique for nonlinear time-variant circuits

[6]. However, Monte Carlo simulations can take very long (between days to

weeks) [6] to fully analyze variations in the channel and circuits. Their cover-

age of simulation corners is also not as high as desired. Statistical [7, 8] and

convolution-based analytical methods [9, 10] are fast and high coverage, but

their scope is limited to linear time-invariant circuits. Also, they produce the

final eye diagram contour, but not the corresponding input simulation trace.

We present a simulation based eye diagram analysis technique as an alter-

native to Monte Carlo based methods. We analyze nonlinear time-variant

circuits such as CMOS circuits. We argue for the higher coverage of simula-

tion corners using our method as compared to Monte Carlo in the same time.

Put differently, we produce the same quality eye as Monte Carlo as much as

20× faster. We also provide the input traces for an eye.

7.1.2 Using Duplex algorithm for generating worst-case eye
diagram

We model the eye diagram analysis as a type-III duplex optimization prob-

lem. We use geometry to model the eye diagram as a type-III optimization

problem. The worst-case eye diagram of the circuit corresponds to the min-

imum of the objective function in our optimization problem. Secondly, we

use Duplex to minimize the objective function. The Duplex algorithm de-

110



termines the input to the circuit and accordingly simulates the circuit to

compute the eye diagram.

In current practice, the eye diagram is used as an output. We use the

eye diagram itself to compute the worst case behavior of the design. If the

eye diagram was representing non-ideal signal behavior, its contours would

be distorted, depicting a noisy signal. Our method exploits this relationship

by reversing the order and distorting the eye diagram itself. We model the

distortion of the eye diagram for parameters such as noise margin and jitter

as a distortion functional of that parameter. For example, the noise margin

distortion functional models the area inside the contours of the eye diagram.

We define jitter and overshoot/undershoot distortion functionals as well. We

model these functionals such that an objective function comprising their

weighted sum can optimize for the worst case eye diagram.

The sampling based optimization approach we use is based on random

trees. We use the random tree algorithm to optimize the objective function

and determine the contours of the eye diagram for the given input sequence.

Using random tree simulation, we avoid repetitive exploration of the same

regions, which is a known problem in Monte Carlo simulations [6]. Further-

more, we provide a better coverage of simulation corners than Monte Carlo

transient simulations. These reasons make the random tree more attractive

as an optimizing option than other standard optimization algorithms. Much

of our efficiency and scalability results from the choice of the random tree as

an optimization tool

There are two circuit inputs to our method. The first input is a deter-

ministic logical input bit pattern to the circuit. The second input is a set of

nondeterministic perturbation parameters that model variations, uncertainty

in modeling and noise such as voltage fluctuation, input noise and signal tim-

ing variations. We model the perturbation parameters as truncated Gaussian

random processes. We generate the eye diagram for the pre-determined in-

put bit-sequence. We assume truncated Gaussian distribution for all the

perturbation parameters. We automatically determine and cover the corner

cases for each perturbation parameter. Finally, we generate the eye diagram

corresponding to the selected bit pattern for the worst-case corner of all the

perturbation parameters. Using our method, we can, with high accuracy,

generate the absolute worst-case eye diagram of the circuit.

111



7.1.3 Benefits and contributions of Duplex algorithm

Our geometric approach of manipulating the eye diagram using integrals and

optimization has many benefits. Our approach is quantifiable and precise

with an optima. Our formulation is very efficient and does not impose any

significant computational overhead because it can be computed and updated

incrementally at every iteration of the algorithm. Our algorithm is adaptable

to different scenarios by adjusting the perturbation parameters for computing

area in the eye, as well as optimization objectives. The random tree algorithm

is simulation based and we can compute the eye diagram of nonlinear time-

variant analog circuits including high-speed CMOS circuits.

We use a post-layout CMOS inverter circuit as a proof of concept. To

produce the same eye diagram, our random tree algorithm utilizes samples

more efficiently and requires 20.66× fewer samples and 20.14× less absolute

time. Alternatively, if we execute both Monte Carlo and random tree for

the same amount of samples, our algorithm provides better coverage of the

simulation corners while only imposing 1% absolute runtime overhead in

comparison to the Monte Carlo. Finally, we demonstrate the scalability of

our algorithm by computing the worst-case eye diagram of a post-layout 7-

stage CMOS ring oscillator circuit. We added 35 variation parameters to this

circuit, making the input space have 35 dimensions, while the state space has

210 dimensions.

Our contributions in this work are as follows. We present an efficient

method for eye diagram analysis of nonlinear analog circuits. We geometri-

cally model the worst case eye diagram as an area under the eye contours.

We introduce a random tree algorithm to optimize the distortion functionals

for parameters like noise margin, jitter, etc. We demonstrate how a random

tree approach is best suited for this optimization problem. We show that our

methodology provides a much higher quality eye than Monte Carlo, while

being time efficient and scalable.

7.2 The eye diagram

An eye diagram [5] is a two-dimensional plot generated by repeatedly sam-

pling and superimposing a signal (Figure 7.1). Let VOL denote the logic

level 0 and VOH denote the logic level 1. The eye diagram consists of samples

112



Figure 7.1: Eye diagram.

Figure 7.2: The high-level description of our approach. We use the eye dia-
gram as a feedback in our approach and minimize the distortion functionals
using the random tree algorithm.

corresponding to the signal value 0, signal value 1, transition from 0→ 1 and

transition from 1→ 0. Important signal features such as noise margin, peak

distortion such as voltage overshoot/undershoot and jitter can be measured

from the eye diagram. The noise margin denotes the height of the eye, VOH

to VOL at peak to peak, which determines the amount of the additive noise

at the output. Peak distortion is the amount of the noise as overshoot and

undershoot on VOH and VOL voltages. The jitter is determined by the width

of the eye.

7.3 Our approach for eye diagram analysis

We generate the initial eye diagram for any pre-determined input bit se-

quence. The input bit sequence is defined by the user and can be arbitrarily

113



long. We make a simplifying assumption that the elements of the bit se-

quence are independent and there is no interdependence between symbols.

On the other hand, the focus of this chapter is on the worst-case corners in

perturbation random processes that affect the input signal such as voltage

fluctuations, noise, timing variations, etc. We focus on transient variations

in power, input and timing variations such as jitter and rise time and fall

time.

We analyze the eye diagram. For each simulation corner, we determine

the worst case input that generates the eye diagram with minimum noise

margin, maximum jitter, etc. Our methodology (Figure 7.2) consists of two

important phases: i) Measuring the eye diagram using distortion functionals

such as noise margin and jitter functional (Section 7.4), and ii) Using random

tree optimization to minimize the distortion functional (Section 7.5). For the

given perturbation input corner, the eye diagram with minimum distortion

functional corresponds to the eye diagram of the circuit. For the given corner,

worst case input determined by our algorithm corresponds to the eye diagram

of the circuit.

7.4 Geometric measurement of the eye diagram

In this section we model the eye diagram analysis as a multi-objective opti-

mization problem.

7.4.1 Geometric measurement of the eye output

We propose a formulation for the eye diagram analysis problem. We maxi-

mize the signal envelope of the eye diagram. Equivalently, we can minimize

the eye closure, i.e. area inside the eye diagram contour. The eye closure

determines various signal integrity parameters such as noise margin, jitter

and voltage overshoot/undershoot.

Let {b0, . . . , bn} denote the n-bit input bit sequence for the circuit. Let

{Y0, . . . ,Yp} denote the p perturbation random processes. Each random pro-

cess Yi follows a truncated Gaussian distribution N (µi, σi). Let {d1, . . . , dp}
denote the maximum distance of the perturbation samples from the mean of

the distribution. For example, to determine an eye diagram of an inverter

114



(a) The higher eyelids in the eye
diagram.

(b) The g1 functionals measures
the area inside the higher eyelid
that we wish to minimize.

(c) The g3 functional is a
Lebesgue integral [158] that
measures the jitter distortion.

Figure 7.3: The distortion functionals.

circuit with the input bit sequence is 00110, we add voltage fluctuation on

input signal Y1, where Y1 follows a Normal distribution N (0, 0.052) and the

input voltage can deviate up to d1 = 6σ = 0.3V in that input corner.

Let v denote the output signal of the circuit. Let w denote the window

size of the eye diagram analysis where w = 2 × T , where T is the period of

the signal v. Let s denote the set of signal samples in the eye diagram. Each

sample is a pair of voltage and time, denoted by s(v) and s(t), respectively.

In order to analyze the eye diagram, we decompose the eye diagram into

higher and lower eyelids.

Definition 1 (Higher and Lower eyelid). The higher eyelid is the set of

signal samples corresponding to 1→ 1 and 0→ 1→ 0 transitions in the eye

diagram (Figure 7.3a). Similarly, the lower eyelid corresponds to 0→ 0 and

1→ 0→ 1 transitions.

We define important eye diagram specifications such as noise margin, jitter

and voltage overshoot/undershoot w.r.t. the signal envelope of each eyelid.

Definition 2 (Frontier set). The frontier set is the signal envelope of the

lower and higher eyelid.

Noise margin functionals: We measure the noise margin using the

integral of the eye diagram contour of the minimum of the higher eyelid

115



(As shown in Figure 7.3b) and maximum of lower eyelid w.r.t. time. The

minimum of higher eyelid corresponds to a weak logical 1 and maximum of

lower eyelid corresponds to a weak logical 0. These integrals denote the area

within the intersection of higher and lower eyelids. Minimizing this area as

a result of minimizing these integrals results in lower noise margin.

The noise margin functionals measure the area inside the higher and lower

eyelids. We define these functionals in such a way that minimizing them re-

sults in lower noise margin in the eye diagram. Let s1(t) and s2(t) denote the

minimum higher eyelid and maximum lower eyelid at the time t, respectively.

We define noise margin distortion functional as

g1 =

∫ w

0

s1(t)− sUtopian1 (t)dt

g2 =

∫ w

0

sUtopian2 (t)− s2(t)dt (7.1)

where the Utopian functions sUtopian1 (t) and sUtopian2 (t) denote the minimum

and maximum for output voltages and w is the time window of the eye dia-

gram. Without loss of generality assume sUtopian1 (t) = VOL and sUtopian2 (t) =

VOH .

Jitter, unlike noise margin or overshoot/undershoot, is a mapping from

voltage to time. Although minimizing noise margin integrals also minimizes

jitter as well, we emphasize jitter performance in high-speed IO circuits sep-

arately. We measure jitter using the Lebesgue integral [158] of the frontier

set from VOL to VOH w.r.t. voltage as shown in Figure 7.3c. We define these

functionals in such a way that minimizing them results in higher jitter in the

eye diagram. Let s3(v) and s4(v) denote the states with the maximum and

minimum time annotation (right-most and left-most samples) in the higher

eyelid in the first and second period respectively. The jitter distortion func-

tionals g3 and g4 are defined as

g3 =

∫ vOH

vOL

s3(v)− sUtopian3 (v)dv

g4 =

∫ vOH

vOL

s4(v)− (W − sUtopian4 (v))dv

(7.2)

where sUtopian3 (v) and sUtopian4 (v) denote the rise time and fall time of the

116



signal, respectively. Figure 7.3c shows the result of the jitter distortion func-

tional g3 where sUtopian3 = 40ps. Similarly, g5 and g6 are defined for the lower

eye lid as well.

Overshoot and undershoot are computed using the integral of maxi-

mum of higher eyelid and minimum of lower eyelid using the area outside

the higher and lower eyelid curves. Minimizing these integrals increases the

maximum of higher eyelid and minimum of lower eyelid and results in max-

imum overshoot and undershoot, respectively. Let s7 and s8 denote the set

of maximum higher eyelid and minimum lower eyelid samples of the signal.

The overshoot and undershoot distortion functionals are defined as

g7 =

∫ w

0

sUtopian7 (t)− s7(t)dt

g8 =

∫ w

0

s8(t)− sUtopian8 (t)dt (7.3)

where sUtopian7 (t) and sUtopian8 (t) are some values that the signal will surely

never reach. For CMOS digital circuits, we use sUtopian7 (t) = 1.2V and

sUtopian8 (t) = −0.2V.

7.4.2 Computing the worst-case corner for the eye diagram

We define the eye closure functional as

g({Y0, . . . ,Yp}) =
8∑
i=1

ωigi(x({b0, . . . , bn}, {Y0, . . . ,Yp})) (7.4)

where x({b0, . . . , bn}, {Y0, . . . ,Yp}) is a sample in the eye diagram. {b0, . . . , bn}
is the input bit sequence specified by the user. {Y0, . . . ,Yp} is the pertur-

bation random processes. The weights ω1, . . . , ω8 are defined by the user

s.t.
∑
ωi = 1 and specify the importance of each distortion functional in the

shape of the eye diagram. We want to minimize the eye closure. To minimize

g, we have to minimize each distortion functional gi. The eye diagram with

minimum g corresponds to the eye diagram of the circuit. Since bit sequence

bi is selected by the user, our objective is to find the random processes Yi
that result in the minimum g and the eye diagram of the circuit.

To the best of our knowledge, there is no direct analytical method to opti-

mize or even solve the objective function g [98]. We thereby use a simulation

117



x0

xbranch

u1

u3u2

Figure 7.4: The growth of the random tree algorithm.

based optimization approach that provides a close approximation to the eye

diagram of the circuit.

7.5 Minimizing distortion functionals using random

trees

7.5.1 The random tree algorithm

We use a random tree (Figure 7.4) to simulate the circuit. The tree is incre-

mentally grown by adding an edge between an existing node and a new state.

Each node is a point from the state space of the analog circuit. Each edge is

a short SPICE simulation of the circuit with a specific input trajectory. At

each iteration, we select a node qfrom where we wish to branch. To determine

which input trajectory to take, we randomly shoot multiple trajectories from

qfrom in order to determine an optimum trajectory of the circuit at qfrom. We

provide details of how we compute the optimum trajectory in the next sec-

tion. Next, we select the optimum trajectory and simulate the circuit from

qfrom to get the new node qnew. Finally the tree is expanded from qfrom to

qnew.

7.5.2 Our algorithm to minimize distortion functionals

We use random tree algorithm to minimize the distortion functionals and

obtain the eye diagram with minimum eye closure (Algorithm 10). Initially,

we apply an initial bit pattern1 to the inputs of the circuit to exercise the

1In this work, we used the bit sequence 00110 to expose the 0→ 0, 0→ 1, 1→ 0 and
1 → 1 transitions and clock signaling in the eye diagram. Any other pre-determined or

118



initial eye diagram. At every iteration, we choose which distortion functional

we wish to minimize from g1, . . . , g8 with probability ωi (Equation 7.4). The

random tree algorithm simulates the circuit and samples perturbation in-

puts that reduce the distortion functionals. This process continues until we

converge to the eye diagram of the circuit.

At every iteration, let gi denote the distortion functional that we wish to

minimize. The random tree algorithm randomly picks the node qfrom from

the frontier set si of the distortion functional gi.

After selecting qfrom ∈ si we compute the perturbation input that decreases

the distortion functional gi. The distribution and amplitude of the perturba-

tion are defined by the user. We sample a finite number of trajectories from

qfrom by linearizing the circuit at qfrom and computing the optimum trajectory

from the Jacobian matrix [32]. We pick a trajectory y0, . . . , yp that minimizes

the distortion functional gi. We simulate the circuit from the node qfrom for

time ∆t using the input trajectory y0, . . . , yp to get the new node qnew. The

user defines the simulation step ∆t. Finally we add the new node qnew to the

random tree and update the eye diagram.

We terminate the algorithm after reaching the maximum number of it-

erations. We also terminate if we converge to the final eye diagram where

the consecutive change in the value of distortion functionals is below the

threshold.

The output of the random tree algorithm is the eye diagram of the circuit,

parameters for the worst case IO excitation, and the input sequence (bit

pattern and variation in parameters such as noise and voltage fluctuations)

corresponding to the output eye diagram.

7.6 Experimental results and discussions

In order to evaluate our algorithm, we implemented a tool in C++ and

developed the interface with Synopsys HSPICE for simulating analog circuits.

Our experiments were performed on a Core-i52500K processor equipped with

16GB memory.

random input bit sequence can be used.

119



Algorithm 10 Our algorithm for minimizing the distortion functionals

1: Input: bit sequence b0 . . . bn
2: Input: perturbation random processes {Y0, . . . ,Yp}
3: G.init ()
4: Initial eye diagram I = Simulate the circuit with input bit sequence
b0 . . . bn

5: while terminating condition not met do
6: gi = Select objective with probability ωi
7: si = Select frontier set of gi from I
8: qfrom = Select a node randomly from the set si
9: {y0, . . . , yp} = Find an optimum trajectory y0, . . . , yp from random

processes {Y0, . . . ,Yp} from qfrom that reduces gi
10: qnew = simulate the circuit from qfrom using input trajectory
{y0, . . . , yp}

11: G.exapnd(qnew)
12: Update the eye diagram I and its frontier sets
13: end while

Figure 7.5: Schematic of CMOS inverter circuit.

7.6.1 Efficiency of random tree algorithm

We use a post-layout CMOS inverter circuit (Figure 7.5) to evaluate the

efficiency of the Duplex algorithm vs. Monte Carlo transient simulations for

computing the eye diagram of the circuits. The inverter has 31 dimensions.

The input to the circuit is a binary signal with non-ideal rise and fall time

and input jitter. There are 5 variation sources in this circuit on inputs, power

networks and substrate network (Figure 7.5). Our algorithm automatically

adds amplitude and timing noise to the input signal and DC noise to other

variations sources.

Efficiency: Figure 7.6a shows the eye diagram of the inverter circuit

obtained using Monte Carlo transient simulation for 50, 000 iterations. Each

iteration is a small simulation step for ∆t = 1ps. The frequency of the

120



(a) Eye diagram of the CMOS circuit using
Monte Carlo simulation of the circuit.

(b) Eye diagram computed using random tree
algorithm.

Figure 7.6: The worst-case analysis of the eye diagram in Monte Carlo vs.
our algorithm. Given the same number of iterations, our algorithm generates
an eye diagram that is 47% smaller than the eye diagram generated using
Monte Carlo simulation.

input signal is 10GHz. We simulated the circuit for 50,000
100ps/1ps

= 500 random

bits. The DC noise follows normal distribution with standard deviation 0.05.

The jitter and rise/fall time noise follows a Normal distribution N (5ps, 1ps)

and N (10ps, 2ps), respectively. As shown in Figure 7.6a, the Monte Carlo

algorithm does not converge to the eye diagram of the circuit within the

limited number of iterations.

Figure 7.6b shown the eye diagram obtained using our algorithm. We run

the random tree algorithm for the same number of iterations as Monte Carlo

(50,000). Perturbation parameters were sampled from Gaussian distribu-

tions. In our algorithm we set the simulation corner to 6− σ deviation from

the mean of the distribution. For example, input timing variation (jitter)

follows a N (5ps,1ps) Gaussian distribution, but can take a value from the

range of [0, 5 + 6 × 1ps]. The probability of a sample with 6σ deviation in

Monte Carlo is 0.00034%, but our algorithm was able to quickly find such

121



Figure 7.7: The convergence rate of random tree algorithm vs. Monte Carlo
for the eye diagram analysis. The random tree algorithm converges much
faster that Monte Carlo.

Figure 7.8: The size of the eye diagrams for different maximum deviations
for simulation parameters.

corners.

As a result our algorithm was much faster and more efficient than the

Monte Carlo. Given the same number of iterations, our algorithm produces

a more accurate eye diagram and converges faster than Monte Carlo. In

terms of absolute runtime, our algorithm does not impose any significant

computational overhead. In our tool, the runtime of the Monte Carlo for

50,000 iterations was 141 minutes whereas random tree took 143 minutes,2

which shows only 1% runtime overhead.

2In our implementation, at every iteration in both Monte Carlo and random tree, we
had to execute the HSPICE software as an external tool which takes an substantially long
time for license checkout.

122



Figure 7.7 shows the progress of our algorithm vs. Monte Carlo in each

iteration. At every iteration, we reported the size of the eye diagram using

Equation 7.4. Using Monte Carlo, the objective size decreased quickly at

the beginning of the simulation, but the rate of convergence slowed down

very quickly after a few bits. The random tree algorithm, on the other hand,

rapidly converged to a smaller eye closure.

Figure 7.8 shows the eye diagram contour for different maximum deviations

from the means of random processes. We executed out tool for different

maximum distance from the mean of the distribution for every perturbation

parameter. We plotted the contour of the generated eye diagram for 1σ

distance to 6σ distance. As shown in the figure, as we increase the distance

from 1σ to 6σ, the enemy closure becomes smaller and the signal integrity

declines.

Finally, we extract input stimuli for generating the eye diagram. Statistical

methods and analytical convolution-based methods are unable to do this.

Figure 7.9 shows the scatter plot of the input stimuli for power voltage V DD

that generates the logical 1 in our eye diagram. Each input stimulus was a

path from the root of the tree to a node in the frontier set s1 corresponding to

the minimum of higher eyelid. The output sequence of the eye diagram was

11001. Most tests in Figure 7.9 initially follow the ideal path (the initial eye

diagram in Figure 7.2) which is highlighted in the Figure 7.9 at voltage 0.9V.

Figure 7.9.a shows the histogram of the VDD inputs in the input sequences.

We removed the ideal paths from the histogram (where VDD=0.9V) for

clarity. Most of the samples for generating a weak logic 1 came from the

tail of the voltage distribution at 0.7V (In Monte Carlo, this distribution

was N (0.9V, 0.05V). Figure 7.9.b shows the scatter plot of the input stimuli

extracted from the random tree. There were total of 130 input sequence

corresponding to the minimum of higher eyelid (window-size
dt

= 130ps
1ps

= 130).

Figure 7.9.b shows that the worst-case higher-eyelid consists of three separate

part. In each part, the signal followed the ideal path for some time and then

diverged into that part. The worst case higher eyelid occurred during the

1→ 1, 1→ 0 and 0→ 1 transition. However, most of the samples (including

the samples determining the noise margin at t = 60ps) were from the 0→ 1

transitions. This information can be used for debugging and validating the

circuit.

123



Figure 7.9: The scatter plot of the VDD inputs for generating the frontier set
s1. The left side figure shows the histogram of the VDD inputs samples (we
excluded the samples from the ideal path). The right side is the scatter plot
of input stimuli drawn over time, which identifies three separate component
in the worst-case eye diagram.

7.6.2 Scalability of our algorithm

The random tree simulation, similar to Monte Carlo, is highly scalable and

can be used on industrial circuits. We analyzed the 7-stage post-layout

CMOS ring oscillator circuit in 45nm process to demonstrate scalability. The

ring oscillator consists of an odd-number of CMOS inverters (Figure 7.5) ar-

ranged in a ring architecture. As a result, the circuit was unstable and

oscillated as expected. We added 35 variation parameters to the circuit and

analyzed the eye diagram for worst-case at the output. The state space of

the circuit was 210 dimensions and the input space was 35 dimensions. Un-

like the inverter circuit, the ring oscillator did not have any digital input

signal, so we excluded the input jitter and rise/fall time model in the input

space. Furthermore, the output oscillates so there is no 1 → 1 and 0 → 0

transitions in the eye diagram. As a result, we did not model the overshoot

and undershoot functionals (g7 and g8) in the objective function by setting

ω7 = ω8 = 0.

Figure 7.10 shows the eye diagram of the ring oscillator circuit obtained

using our algorithm after 20,000 iterations. Our algorithm took 62 minutes

to compute the eye diagram.

124



Figure 7.10: The eye diagram of ring oscillator circuit computed using our
technique.

7.7 Chapter summary

In this chapter, we used Duplex for worst-case analysis of the eye diagram

of CMOS circuits in presence of non-idealities in the circuit such as noise,

voltage fluctuations and jitter. We argued that the classic definitions are

inadequate in measuring important factors in the eye diagram and then pro-

posed new objectives for analyzing the worst-case eye diagram. We modeled

the eye diagram analysis as a type-III Duplex functional optimization prob-

lem. We modeled the objective function for noise margin and jitter as an

area of the eye diagram curve. We used the Duplex algorithm to minimize

the area of the eye diagram and determine the worst case eye diagram. Our

experimental results demonstrated that the Duplex algorithm can be effec-

tively and efficiently utilized to find worst-case signal integrity failures in

the high speed CMOS circuits. Importantly, these worst-cases are not easily

obtainable using classic simulation techniques such as Monte Carlo.

125



CHAPTER 8

TEST COMPRESSION

8.1 Introduction

8.1.1 Problem and Motivation

Test compression for analog and mixed signal circuits is a challenging prob-

lem. Analog circuits are nonlinear systems and work with continuous signals.

Compressing continuous inputs is very complex and an instance of functional

optimization. Compressing tests while maintaining the same precision and

recall specification is challenging. Compressing analog tests may increase the

rate of false positives and results in unnecessary losses. Therefore, test com-

pression algorithm should guarantee functional equivalency and ensure the

circuit will behave identically under the original and compressed tests. Test

compression methods often require extra circuitry, both on-chip and off-chip,

to minimize communication time and compressing the tests. The additional

circuitry increases the cost of the testing. Finally, optimizing RF tests are

still an open challenge because compressing RF tests in time inherently de-

stroys frequency properties of the initial test.

To reduce test time, we introduce an automated test compression method-

ology for analog and mixed signal circuits. We apply our test compression

algorithm to stress testing in this work. The intent of the stress test is to

expeditely push vulnerable sections of certain corner-case die to manifest as

hard defects. During the stress test, a functional test sequence is executed on

the IC under high electrical activity. For analog circuits, this implies close to

functionally achievable high currents and voltages on internal nets and node

pairs respectively. The maximum and minimum values of voltage and cur-

rent are obtained from the functional testing profile of a circuit. The input

test sequences in stress testing are obtained from functional tests. However,

126



the length of each functional test can be reduced, as long as it exercises the

maximal and minimal electrical characteristics of the circuit.

Stress testing typically has three phases as shown in Figure 8.1: i) setup

phase, ii) execution phase, and iii) stress phase. During setup, the circuit is

reset, and DC inputs are set. For SoCs, the test is uploaded to the chip during

the setup phase. Transient inputs are applied during execution, driving the

circuit from an initial state to the final stressed circuit state. The circuit

remains in the stressed condition for the remaining test duration. Some

techniques compress the tests by reducing the communication time during

the setup phase [18, 19]. However, these methods often require an extra

on-chip circuitry and can be expensive. On the other hand, the duration of

the stress phase is fixed and cannot be reduced. The focus of this chapter

is the execution phase where the objective is only to drive the circuit to

a stressed state. Since functional tests are not created with the purpose of

achieving high electrical activity at different internal regions in optimal time,

a lot of time is spent in the execution phase on finding the inputs that would

stress the circuit. After our shortened execution phase, the stress phase can

continue as usual, by stressing critical nodes repeatedly in the final state.

Decreasing the duration of execution phase will not have any impact on the

functionality of the stress test and does not require any additional cost or

hardware on the circuit or the ATE machine.

8.1.2 Our methodology for test compression

In [159], we proposed a technique for automated test compression for electri-

cal stress testing of analog circuits. We modeled the test compression as an

optimization problem. We used our technique to compress tests for practical

and scalable analog circuits. We analyze the output response of the analog

circuit, instead of the input stimuli itself. We define two tests as functionally

equivalent if they have the same initial value and boundary value in the state

space with respect to a target electrical quantity. The test is finished when

it reaches the boundary value within the test duration. The length of the

test is the time duration for the test to reach its boundary value from the

initial value. For instance, in an inverter, all input signals that can drive

the output to VOH from reset are functionally equivalent. For example, for

testing VOH in an inverter circuit, we are only interested in checking if the

127



Vo
lta
ge

x

xf

x0
TT̃0 t0

Setup
Time

Transient Time
(Driving the circuit toward final state) Stress Time

TF

y

z

Figure 8.1: Compressed test z with the optimal time among all functionally
equivalent tests {x, y, z}.

output voltage can reach a particular value. Hence, all input signals that

can drive the output voltage from the reset state to the VOH are functionally

equivalent, regardless of their length. So any input signals that can drive the

output voltage from the reset state to the VOH are functionally equivalent

regardless of how long each input signal takes.

Given an output transient response of the system, our objective is to find

a functionally equivalent, but shorter test. In Figure 8.1, given test x, tests

y and z are functionally equivalent to x because their initial value x0 and

boundary value xf are the same. z is the shortest test. Note that shorter test

length corresponds to smaller area on the left side of the transient response

curve. If we now pull the curve while keeping the initial and boundary values

the same, we get shorter tests.

We formalize this intuition as follows. We formulate test time minimization

as a functional [98] optimization problem.1 We express the output transient

response of the system as an electrical flux functional [98]. Electrical flux2

is a quantity that captures voltage as well as time. Electrical flux functional

measures the area to the left of the output transient. This is the area that we

get by integrating vertically, i.e. along the value axis as shown in Figure 8.1.

If we now optimize the electrical flux functional as our objective function, we

can achieve the goal of test time compression. Since the initial and boundary

values of voltages are fixed, this is tantamount to minimizing the time taken

for the voltage to reach boundary value from its initial value. We prove

for smooth and differentiable nonlinear analog circuits that the test with

1Functional integration refers to the field of calculus where the domain of an integral is
a space of functions. This is distinct from the use of functional tests in the manufacturing
process of chip design. An example of a functional is a function applied to the state space
or the output response of the circuit, such as integrating the output curve.

2Should not be confused with magnetic flux.

128



minimal test time corresponds to the test with minimum flux functional

(Section 8.2.1).

For minimizing this electrical flux functional, there are no closed form

analytical solutions to the best of our knowledge. We therefore provide a

simulation based minimization approach. This simulation based approach

is based on random trees. Random trees use numerical methods (such as

SPICE) to simulate the circuit. While random trees have some benefits we

describe in the chapter, simulated annealing and other numerical optimiza-

tion algorithms could well be applied to solve this problem. Since we use

a simulation based optimization method, we do not guarantee the minimal

solution, but a near-minimal one. Empirically, we observe that our tests

provide significant compression over the original tests.

We demonstrate the effectiveness of our test compression methodology on

three CMOS circuits. We use a post-layout CMOS inverter circuit (45nm, 31

dimensions) with all the extracted parasitics as an illustrative example. We

show that we can achieve up to 94% reduction in the inverter test length. Our

main case study is a CMOS opamp circuit (0.18µm library, 12 dimensions).

We show that we can consistently achieve on average 93% reduction in test

length for multiple functional and burn-in stress tests for the op-amp. We

analyze tests for a voltage controlled oscillator designed in 0.18µm circuit to

show scalability and achieve compression up to 88%.

Our technique compresses the tests in the time dimension, destroying fre-

quency properties of the test. Hence, it cannot be used to compress frequency

tests such as bandwidth. On the other hand, stress tests, functional tests and

defect screening are independent of the frequency properties of the circuit and

adapt very well to our algorithm.

Variations in manufacturing process, especially at deep sub-micron levels,

introduce uncertainties in device geometries and mismatch in sizing. Vari-

ation causes variances in the timing and output performance of the circuit

which decreases yield. As a result, testing analog circuits becomes very chal-

lenging due to unpredictability of the circuit’s behaviors. If the performance

of the output metric is outside the test specification, the circuit fails the test,

which results in decreased yield for that set and device. It is essential to

design (and compress) tests to cover the worst-case execution and achieve

minimum false positives in order to improve yield. Our previous technique

[159] did not handle test compression in the presence of process variation.

129



Test generation and compression is a very time-consuming task. We have

to spend hours in the lab to cut picoseconds from the test time. Compress-

ing each test for a practical-sized circuit can take hours [159] on a typical

workstation. The downside of test compression is increase in the engineering

R&D time and increased time-to-market.

8.2 Test compression as a flux functional optimization

problem

Let T in Eq 2.2 denote the length of the test sequence u(t). x(T) is the

boundary value, indicating the final state of the test. In practical appli-

cations, the solution of nonlinear analog circuits can be computed using a

numerical ODE solver like SPICE.

There may be multiple boundary values x1, . . . ,xf on the solution of the

test sequence. A test has to visit states x1, . . . ,xf in sequence to be passed.

We divide this problem into n − 1 single boundary test compression. Each

boundary value xi is computed using

xi+1(ti+1) = xi(ti) +

∫ ti+1

ti

f(xi(t),ui(t))dt (8.1)

where xi and xi+1 are the initial and the boundary values for the test compres-

sion problem. For sake of simplicity, in this chapter we are only concerned

with an initial value x0(0) and a single boundary value xf (T ). Multiple

boundary values can be divided into multiple single boundary value prob-

lems. Dynamics of analog circuits are smooth and continuous and satisfy the

local Lipschitz property [98]. This ensures the existence and uniqueness of

the solutions. We can concatenate these divided tests back together to form

the original test.

D
¯

efinition: Functionally equivalent tests : We define two tests (input sig-

nals) as functionally equivalent if and only if for the same nonlinear system,

their initial and boundary values are the same. In other words, two input

signal u and ũ are functionally equivalent when

∫ T

0

f(x, t,u)dt =

∫ T̃

0

f(x, t, ũ)dt (8.2)

130



where T and T̃ denote the length of the input signal u and ũ, respectively.

This implies that for both input test u and ũ if initial values x0 are equal

then their boundary values xf are equal. For test compression, the length of

the compressed, functionally equivalent tests should be less than the original.

So T̃ ≤ T .

The objective of the test compression problem is to find, among all possible

input stimuli ũ which are functionality equivalent to the original input stimuli

u, the input stimuli that requires minimum amount of time to reach the

boundary value xf from the initial value x0 as shown in Figure 8.2. We

propose the following objective function for optimization:

min

∫ xf

x0

t(x)dx (8.3)

where t(x) is the time dimension of each state in the solution. x denotes the

state and is a vector in Rn.

Equation 8.3 is an integral along the solution path x(t) describing the

electrical flux of the circuit. Flux is a physical entity that captures voltage

and time simultaneously. The flux is quantified by the Weber metric and

expressed in terms of voltage times seconds (Wb = V × s). We can mea-

sure the flux by either integrating voltage dv or time dt. Since we want to

minimize time while keeping the boundary voltages fixed, we define the test

compression objective function using a Lebesgue integral [98] in equa-

tion 8.3. Figure 8.1 shows the area that the Equation 8.3 is computing. The

Lebesgue integral measures the area by integrating the value (y axis) over

time, in contrast to the standard horizontal time axis integration.

Since x0 and xf are constant, minimizing this integral results directly in

minimizing T . Although decreasing the flux functional does not necessarily

minimize time, the test with minimum flux functional coincides with the

test with minimum time. This implies that minimizing the flux functional is

necessary, but not sufficient, for minimizing the test time. When we converge

to the minimum of the flux functional, we also provably converge to the test

with optimum time. Since the time required to reach the boundary value

in output is the same as input test time, minimizing Equation 8.3 results in

compressing the input test signal too.

Equation 8.3 is directly computing a function of the state of the circuit. An

input signal is just another dimension in the state space. Hence, minimizing

131



Time

Vo
lta
ge

x

v2

v1
T1

(a) Objective functional of the test
compression.

Time

Vo
lta
ge xx̃

xf

x0

TT̃

(b) Compressed test will reach the
boundary value sooner.

Figure 8.2: The modeling of the test compression problem.

this integral will minimize the time required for a test to reach the boundary

value.

To the best of our knowledge, there is no closed form analytical solution

for Equation 8.3 when the system f is a nonlinear function. We therefore

optimize Equation 8.3 using simulation based algorithm based on random

trees.

8.2.1 Sketch of proof for minimality of flux functionals

Reducing the flux functional is the necessary, but not sufficient, condition

for optimizing test time. The optimal test (with minimum length) also has

the minimum flux functional. We prove this by contradiction. First, we

prove the statement for low-dimension cases and then generalize it to higher

dimensions.

Theorem: The optimal test (with minimum length) has the minimum

flux functional.

Proof: Assume that the solution y of the nonlinear system f with input

u is smooth, 2nd-order differentiable and locally Lipschitz. Assume there

exists an optimal test u1 with the transient solution y1 such that the flux

functional of y1 is not minimal. Let Tmin denote the length of u1. Assume

there exists a test u2 with transient solution y2 such that y2 has the minimum

flux functional among all admittable transient solutions in the system. The

length of u2 is bigger than Tmin.

Because of the first mean value theorem for integrals, x2 and x1 are going to

intersect at some point x∗ at time t∗ (Figure 8.3). We construct an alternative

132



x0

xf

t
y1

y2

t⇤

x⇤

tmin

Figure 8.3: Contradiction test with minimum time but not minimum flux
functional.

x

xf

x0

C

xf

t
y1

y2

x⇤

Figure 8.4: Generalization of the proof to higher dimensions.

solution x3 by applying the input u2 till time t∗ and then the input u1 to

the circuit till time Tmin. The combined test has a corner point and is not

smooth anymore, so we use Wierstrass-Erdmann theorem [98] to construct

the test. The length of the test u3 is Tmin which indicates that this is a

minimal test. On the other hand, the flux functional of x3 is less than x2

which is a contradiction. Therefore a test with minimum time is also a test

with smallest flux functional.

The same idea can be applied in higher dimensions as well. Assume the

smooth manifold C is the set of all admittable transient solutions of the

system with minimum flux functional (Figure 8.4). Any trace below and

above manifold C has higher and lower flux functional, respectively. Sim-

ilarly, assume test u1 with solution y1 is time-optimal. Trace y1 intersects

with manifold C at x∗. Similarly, according to existence and uniqueness the-

orem, we can construct an alternative tests y3 that follows y2 till reaching x∗

and then follows y1. y3 has less flux functional and is time-optimal, which is

a contradiction.

133



8.3 Optimizing Functionals Using Random Trees

In this section, we present the Duplex optimization algorithm to find a opti-

mal solution to Equation 8.3. The solution is the compressed test sequence

ũ. The input to our algorithm is the circuit netlist and an input test signals

in piecewise linear (PWL) format.

8.3.1 Random Trees

A random tree is a tree-based simulation algorithm that generates and main-

tains a tree data structure during simulation. It is able to backtrack to

different previously visited states, which makes it more versatile than a ran-

dom walk based simulation algorithm like Monte Carlo. It is incrementally

grown by adding an edge between an existing state and a new state. Each

node of the tree is a point in the state space of the analog circuit. Each edge

is a short SPICE simulation of the circuit with a specific input trajectory.

At each iteration, it selects a state xbranch to branch from. The random tree

randomly shoots multiple trajectories u1, . . . , um from xbranch. It then selects

the optimum trajectory uopt and simulates the circuit from xbranch to get the

new node xnew. Finally the tree is expanded from xbranch to xnew. The selec-

tion of the locally optimum trajectory at every iteration of the tree’s growth

can be biased according to heuristics pertaining to the objective function.

Time annotation in random trees The root of the tree is the initial

value state with time 0. Let G be the random tree data structure. Each

state in G is augmented with time annotation. Therefore a state v in G is a

pair of (x1, x2, . . . , xn, t) where xis are the set of values assigned to the state

variables of the circuit and t is the sample time.

8.3.2 Random tree algorithm to minimize flux functional

Figure 8.5 shows steps of the random tree algorithm, as applied to minimize

our test compression functional formulation. Initially we grow the random

tree according to the original test input u. We determine the initial value x0

and the boundary value xf from the original test (Figure 8.5-block 0).

A state x is time-optimal if and only if x belongs to the convex hull of

134



Figure 8.5: Random tree algorithm to minimize flux functional.

states and has a minimum time among other states for the same voltage. The

frontier set is the set of time-optimal states in the random. Intuitively, the

frontier set is the set of left-most states on the signal envelope of the random

tree. The frontier set contains the candidate states that can minimize the

objective function. We update the frontier set by computing the convex hull

of the states in the random tree algorithm and sorting the nodes according

to their times.

Each iteration in our algorithm consists of the steps (0-4) shown in Fig-

ure 8.5. First, the state xi is selected to branch from. The algorithm picks

a state from the frontier set (Fig 8.5-block 1). Secondly, the algorithm de-

termines the input test ui. It randomly samples multiple different input

trajectories and picks a trajectory that reduces the objective function using

the Jacobian[98] of the circuit at the state xi. The Jacobian linearizes the

circuit in vicinity of xi to choose the optimum trajectory. Thirdly, the algo-

rithm then simulates the nonlinear circuit from xi for time dt by applying

the input trajectory ui to get the next state xi+1. The simulation time for

each edge is small (Fig 8.5-block 2). Finally the algorithm adds the state

xi+1 to the random tree and updates the frontier set accordingly. If the state

xi+1 reduces the objective function (Equation 8.3), it changes the convex hull

of the nodes and updates the frontier set. The frontier set is highlighted in

Figure 8.5-e with the bold lines (Fig 8.5-block 3). The algorithm terminates

whenever i) the objective function converges to a minimum, or ii) maximum

number of iteration is reached. We compute the compressed input sequence

135



ũ by traversing the tree from the root to a node in the frontier set that satis-

fies the boundary value xf and concatenating the input ui on each edge into

a sequence ũ. The result is the compressed input sequence ũ.

Choosing the optimum trajectory at each iteration: In our case, the

random tree algorithm operates in two modes: 1) Test compression mode,

where the objective is to compress the given test in time, and 2) Directed

test compression mode, with the additional constraint of the test’s boundary

conditions. We use a technique presented in [88] to bias the growth of the

random tree toward the final boundary state.

In our case, we select the optimum trajectory (input) at every iteration ac-

cording to i) how much the given trajectory decreases the objective function,

and ii) how close it drives the test to the boundary condition. We select the

optimum trajectory (input) at every iteration according to (i) how much the

given trajectory decreases the objective function. and ii) how close it drives

the test to the boundary condition. We generate a few sample inputs vi from

a uniform distribution. For each sample, we compute the approximate circuit

trajectory ui from vi using the Jacobian of the circuit. We rank the sampled

inputs according to the Equation 8.4.

rui = α∆f + (1− α)d(xf , xi + ∆tui) (8.4)

where α is the weight determining mode of the operation, xf is the boundary

condition, d(xf , xi) is the Euclidean distance between xf and current state

xi, and ∆f is the approximate negative difference in flux functional. The

formula xi + ∆tui gives us the approximate result of the simulation for a

small simulation time ∆t.

When our algorithm operates in test compression mode we choose a tra-

jectory that minimizes the flux functional in Equation 8.3. When we want

to enforce the boundary conditions as well, the algorithm chooses the trajec-

tory ui that minimizes the flux functional and takes us closer to the boundary

condition xf . In Figure 8.5-c, uc is selected since it takes us closer to xf .

136



(a) Initial test input ap-
plied to the inverter.

(b) Output of the inverter
circuit for the given test.

(c) Compressed output of
the inverter circuit, show-
ing 94% compression in the
stimuli length.

Figure 8.6: We use the inverter circuit as an illustrative example for test
compression.

8.3.3 Termination

The random tree algorithm will terminate after running for a fixed number

of iterations. After termination, the algorithm lists every state that meets

the boundary conditions of the test. We sort these states according to their

finishing time. Then we pick the state with the minimum finishing time. We

extract the compressed test sequence by traversing the random tree from the

candidate state toward the root of the tree. The resulting test is guaranteed

to be functionally equivalent to the original test since the candidate state

meets the boundary condition.

8.3.4 Compressing tests for the CMOS inverter circuit: an
Illustrative example

We compressed functional tests for a post-layout CMOS inverter circuit (Fig-

ure 8.6). Figures 8.6a-8.6b show an example input stimulus and the corre-

sponding output for the inverter circuit. We extracted the netlist from the

layout of the 65nm inverter circuit with all the parasitics. We wish to test

whether the VOH could reach 0.9V. Initially the designer provided an input

sequence u(t) shown in Figure 8.6a in the PWL (piecewise linear) format.

The corresponding output of the inverter x(t) is shown in Figure 8.6b. It

takes 950ps for the circuit to reach VOH for the given input sequence. In

this case, we have initial value x0 = 0V and boundary value xf =0.9V. The

initial test took 950ps to reach the objective so the length of the initial test

is 950ps.

Figure 8.6c shows a test for an inverter where VOH = 0.9v was the stress

137



test objective. After 300, 000 iterations, the random tree reached VOH in

52ps with a compression rate of 94%. The random tree tried to switch the

input to 0 at 100ps and 400ps before converging to optimum switching time

as 0ps. Figure 8.6c shows multiple output traces overlapped in one figure.

We pick the path that reaches the final state vout = 0.9 first.

8.4 Test compression in the presence of process

variation

Process variation, especially at sub-65nm technology process, introduces vari-

ability in analog designs. The variation in the chip manufacturing may in-

troduce randomness in physical and electrical characteristic of the analog

circuits. The process variation is due to variation in process parameters,

variation in lithography process, etc. These variabilities include uncertain-

ties in device geometries and mismatch in sizing.

From the test compression perspective, process variation can increase the

rate of false positives and decrease yield. For example, a compressed test for

the ideal circuit might not pass on the worst-case circuit with variation, even

if the design is still within the specification limit. It is important to design

and compress tests for the worst-case behavior of the circuit. However, the

worst-case corners of the circuits are test-dependent and are not known a

priori.

In this work we consider static process variation. Static variation affects

physical model of the circuit such as transistor widths, lengths, etc. The

static variations are randomly sampled at the beginning of the simulation and

will not change during the simulation. We assume process variation follows

a truncated Gaussian distribution. The analog circuit can be viewed as a

statistical entity with n random variables that model the process variation.

Let V = {v1, . . . , vn} be a set of n random variables. Each variable vi ∈ V
is independent and has a real value and belongs to the interval [vmini , vmaxi ],

corresponding to a different process corner. We assume for each input test ui,

there are n instances ui1, . . . , uin corresponding to different process corners.

We propose two approaches to test circuits in the presence of process vari-

ation. These approaches are independent and can be used at the same time.

Firstly, we can compress every test for different corners where the electrical

138



Pick a test ui from S

uc = compress(ui)

8uj 2 S: if uc = uj?
remove uj from S

|S| = 1

v1

v2

v3 v1

v1

(a)

(c)

(b)

W1

W
2

W
2

W
2

W1

W1

Figure 8.7: The flowchart of the greedy algorithm for compress test in the
presence of process variation.

activity excitation profile might vary. A circuit can have a slightly different

electrical activity excitation profile in different process corners for the same

functional test. During testing, the user can apply the appropriate test for

each specific die by identifying where it lies in the process spectrum using

on-die process monitors such as ring oscillators. This approach requires com-

pressing all test patterns. Secondly, we observed many of the test patterns

for the slower corners are functionally equivalent and can be used for the

faster corners as well. In this approach we use a greedy algorithm to reduce

the total number of tests n in the presence of process variation.

We use a greedy algorithm to find the worst-case corner for the given

compressed test. This algorithm will identify the most applicable test for

different corners and use those tests to replace as many tests as possible in

the faster corners. The algorithm will eventually converge to a compressed

test that is slow enough to cover every the worst-case corners.

The test compression algorithm in the presence of process variation is

shown in Algorithm 11. Let u denote the analog stress test for the circuit M .

Let u1, . . . , un denote the instances of the test u for different process corners.

The timing specifications are varied among these instances, but they are

functionally equivalent. These instances are automatically generated using

our goal-oriented input stimuli generation algorithm [88] to be functionally

equivalent to the test u for different process corners vi. Let set S denote the

set of all tests u1, . . . , un for different process corners.

At every iteration, the algorithm randomly picks a process corner vi and the

corresponding test ui. We use our test compression algorithm (Figure 8.5)

139



Algorithm 11 Test compression in the presence of process variation

1: Inputs: circuit netlist, process corners V = v1, . . . , vn, input tests
u1, . . . , un

2: Initialize the test
3: Let Queue S = {u1, . . . , un}
4: while S.size()==1 or converged() do
5: ui = pick an input test from S
6: uc = compress input ui for the given process corner vi
7: for all uj ∈ S, simulate the circuit with test uj and process corner vj
8: Remove all tests uj ∈ S from S that are functionally equivalent to uc
9: Push uc to the end of the queue S

10: end while

to compress the test ui and obtain the compressed version uc. For each

remaining process corners vj, we simulate the circuit with both input uj and

uc to see if uc is functionally equivalent to the tests uj or not. If uc can replace

the uncompressed test uj, it means that the process corner vi is slower than

vj. Therefore a test for the process corner vi can also be used to test the

circuit at the process corner vj. We will remove the test ui from the set S

and use uc instead. Finally, we push back the compressed test uc to the end

of the queue. The algorithm will terminate when we only have 1 test left in

the queue. The last test is guaranteed to be functionally equivalent to all

other tests in the original test batch. The algorithm also terminates when we

cannot replace any more tests. We use the last remaining test a compressed

test for all process corners.

Figure 8.7 shows the overview of our greedy algorithm for test compres-

sion in the presence of process variation. The figure also shows an example

of different process corners v1, . . . , vn for the circuit. At the beginning, our

algorithm randomly picks process corner v1 and corresponding test u1 from

the set S. The algorithm compresses test u1 to obtain uc. Say uc is func-

tionally equivalent to the tests u2 and u3 in the set S from corners v2 and v3

in our example in Figure 8.7.b. As a result, we can use corner v1 instead to

replace corners v2 and v3. Next, the greedy algorithm removes corner v2 and

v3 from the set S. The algorithm continues until there is only one process

corner is left in S, which corresponds to the worst-case corner for that test.

140



8.5 Parallel test compression

Nowadays, powerful multi-core workstations are inexpensive and ubiquitous.

The engineers, on the other hand, are very expensive. For a large-scale

circuit, compressing every test can take tens of engineering man-hours. It is

essential to utilize parallelization to minimize the time required by the test

compression algorithm in order to increase efficiency, minimize research and

development costs and reduce time-to-market.

We introduce algorithmic parallelism to our test compression algorithm.

During our experiments, we observed that a majority of the test compres-

sion runtime (about 98%) was spent on simulating the circuit using HSPICE

(block 3 in Figure 8.5). Furthermore, the SPICE simulations are executed

independently and tend to be more parallelizable. Executing multiple simu-

lations concurrently greatly reduces the compression runtime. On the other

hand, the other steps of the random tree algorithm, including picking nodes

from the frontier set, generating inputs and updating the frontier sets, take

up less than 2% of the runtime of the algorithm. Parallelizing them does not

improve performance significantly. We execute those blocks sequentially in

order to avoid memory corruptions and deadlocks.

Figure 8.8 shows the parallel version of the random tree algorithm. Assume

we have n processors core p1, . . . , pn. We use thread p1 as the master and

p1, p2, . . . , pn as worker threads. Thread p1 runs the compression algorithm

and maintains the random tree data structure. All accesses to the random

tree, including insertions and lookups in the frontier set, are synchronized in

a single-thread. We use superscript notation q
(1)
i to indicate that processor

p1 is working on node qi. At the beginning of the ith iteration, thread p1

selects n nodes from the frontier set P, namely q
(1)
i , . . . , q

(n)
i . The algorithm

generates n sample trajectories u
(n)
i , . . . , u

(n)
i for each node qi. Next, the

algorithm spawns n threads, each simulating the netlist from initial state

q
(j)
i , 1 ≤ j ≤ n with the input trajectory u

(j)
i . Each thread is assigned to a

worker thread pj for execution and concurrently simulates the circuit. After

the simulation is finished, the algorithm updates the frontier set with the

new nodes q
(1)
i+1, . . . , q

(n)
i+1.

To evaluate the efficiency of parallelism, we compressed the input to an

opamp circuit (in Section 9.4) using both single-threaded and multi-threaded

version of our algorithm. We executed both versions on a machine equipped

141



Simulate the circuit for input u
(2)
i

from the node q
(2)
i

to obtain the new node q
(2)
i+1

Simulate the circuit for input u
(n)
i

from the node q
(n)
i

to obtain the new node q
(n)
i+1

Simulate the circuit for input u
(1)
i

from the node q
(1)
i

to obtain the new node q
(1)
i+1

…

Pick n nodes, q
(1,...,n)
i ,

from the frontier set P

Sample di↵erent input trajectories, u
(1,...,n)
i ,

for each q
(1,...,n)
i , to minimize Eq. 6.

Update the frontier set with the new nodes q
(1,...,n)
i+1

3.n3.23.1
Sy

nc
.

Sy
nc

.
Sy

nc
.

C
on

cu
rre

nt

1

2

4

Figure 8.8: Parallel version of the random tree algorithm to minimize flux
functional. The SPICE simulations are executed concurrently.

with quad-core single CPU with 6MB L3 cache and 16GB memory with

no hyper-threading. Utilizing parallelization, reduced the runtime of our

algorithm from 3 hours to less than 45 minutes, yielding 70% overall speedup

versus single-threaded execution.

8.6 Experimental results

We developed a prototype tool in C++ to evaluate the accuracy and efficiency

of our algorithm. The input to our tool was the circuit netlist in HSPICE

format. The user defines the test input signals as a PWL (Piecewise linear)

sources. Our tool used Synopsys HSPICE to simulate the circuit. The output

of our tool was another PWL signal that can be used to test the circuit.

We ran each experiment for 100,000 iterations. Each iteration consisted of

a small HSPICE simulation for duration of dt = 1µs. Each experiment

took approximately 3 hours to be completed on a quad-core Core-i5 machine

equipped with 16GB of memory. When we enabled parallel version of our

algorithm, the same experiment took less than 45 minutes. Table 8.1 lists

the parameters that we used in our experiments.

142



Table 8.1: Parameters of the random tree

parameter value description
max-iter 10000 The maximum number of iterations
tree size 10000 The size of tree, also the number of HSPICE simulation
dt 1µs The length of each edge in the random tree
total time 3 hrs Total runtime of the random tree algorithm per test
α 0.5 The weight of objectives for ranking states in Equation 6

Figure 8.9: Schematic of the operational amplifier circuit.

We used an operational amplifier circuit, shown in Figure 8.9, to show prac-

ticality, scalability and effectiveness of our algorithm. We used this opamp

in a voltage divider configuration with unity gain. The opamp was designed

in 0.18µm library. We sat VDD = −VSS =0.9V. Each test was applied to

the Vin signal. The output of the opamp was saturating at 0.2V and -0.8V

respectively. The state space consists of the following variables (Figure 8.9):

{vc, v+, vi, vin, vip, vo, v−, vw, vx, vy, vz, vw, t} ∈ R12,1 (8.5)

Compressing functional tests: Our first set of results consists of com-

pressing the input stimuli given by the user. The given stimuli stress tests

or checks the functionality of the circuit. The output of the opamp circuit

saturates at 0.2V and -0.8V. For the saturation test, we applied the input

signal shown in Figure 8.10a to the Vin. The input signal is a standard test

with a period of a sine wave at 10KHz combined with a ramp voltage and a

white noise. Figure 8.10b shows the output of the opamp. The circuit was

saturated at -0.8V at time 23µs. The circuit was saturated again at time

36µs when the output reached 0.2V. The test takes 40µs to finish. We used

our test compression algorithm to compress the saturation test input for the

143



(a) Uncompressed test in-
put to the opamp.

(b) Original test output of
the opamp.

(c) Random tree after
the test compression algo-
rithm.

Figure 8.10: Saturation test for the opamp circuit.

(a) Stress testing resistor
R1.

(b) The current profile of
the resistor R1.

(c) Random tree stressing
resistor R1.

Figure 8.11: Using random trees to compress stress tests for circuit’s com-
ponents.

opamp circuit. Figure 8.10c shows the random tree as a result of our algo-

rithm. The random tree algorithm found an alternative test that reached

both saturation voltages -0.8V and 0.2V in 2µs and 1µs, respectively. We

extracted a compressed test of the length 3µs, achieving a compression ratio

of 92.5%.

Compressing stress tests: We used the input shown in Figure 8.11a

to stress opamp’s current source and determine maximum drivable current

through resistor Rc = 2.1KΩ. Current profile simulation showed the maxi-

mum current was 576mA, when switching from VDD to VSS in the input at

2.12µs. Our algorithm found an alternative test that could drive the same

current from resistor Rc in 80ns, whereas the length of the original test was

2.12µs. The compression ratio for the test was 96%. In our test, the switch

from VSS to VDD occurred at the beginning of the test. The output of the

random tree is shown in Figure 8.11c.

Compression ratio consistency: We created a profile for each node in

the opamp by applying the input signal in Figure 8.11a to the Vin and sim-

ulating the circuit. We computed the maximum and the minimum value for

144



82.00	  

84.00	  

86.00	  

88.00	  

90.00	  

92.00	  

94.00	  

96.00	  

98.00	  

100.00	  

Vcap	   Vo	   Vw	   Vx	   Vy	   Vz	   Average	  

Co
m
pr
es
si
on

	  ra
,o

	  %
	  

Test	  name	  

Figure 8.12: Compression ratio for different tests.

the signal. We extracted a test for reaching the extrema of the signal from

the profile. Finally, we used our technique to compress each test. Figure 8.12

shows the compression ratio for each tests. On average, we can achieve 93%

compression ratio for these tests. All of our compressed tests are func-

tionally equivalent to the original tests.

Directed test compression mode We demonstrate an example of the

directed test compression mode of our algorithm. In this mode, our algorithm

simultaneously generates and compresses tests that are time-optimal. We use

the technique presented in [88] to guide the growth of the random tree toward

the boundary condition. At each iteration, we choose a trajectory toward

the boundary condition with the minimum flux functional as described in

Section 8.3. We set α in Equation 8.4 to 0.5. Sometimes (specially for stress

testing) the user knows the objective of the test (such as reaching a specific

voltage or current through a node), but the original input test is hard to

find. We designed our algorithm to handle such cases where only the final

boundary value of the test is known, but the path from the initial to final

state is unknown.

Generating and compressing single tests: We set up our algorithm to

generate a test that would saturates the output of the op-amp. We set the

hyper planes vo = 0.2V and vo = −0.8V as the goal boundary conditions. We

used the random tree to generate two input stimuli that saturates the outputs

of the circuit at 0.2V and −0.8V. We ran the algorithm twice to reach the

output voltage 0.2V and -0.8V. Figure 8.13a shows the output of the circuit

when the random tree was directed toward saturating the output at 0.2V.

We extracted multiple input stimuli from the random tree that saturates the

145



(a) Auto-generated and
compressed test to saturate
the output.

(b) The voltage vx in the
random tree of the com-
bined tests for saturating
output vo and stressing re-
sistor Rc.

(c) Extracting combined
tests from random tree.

Figure 8.13: Combining different tests.

output voltage. The length of the generated test is 30µs.

Combining multiple tests We used the random tree with directed test

generation to combine multiple tests into a single test. The combined test

should reach the boundary conditions of all of those tests. We generated two

sets of tests g1 and g2. Tests g1 saturate the output voltage of the opamp

and g2 tests stress the resistor Rc by maximizing the current through it. The

objective was to generate a new random tree that can simultaneously reach

both boundary planes g1 and g2. First we collected the terminating states in

random tree g1 and g2 as in [88]. The goal distribution is a mixture Gaussian

distribution with the mean (vo, vx) = (0.2, 0.3). We grow the random tree

toward the boundary state (0.2V, 0.3V). Figure 8.13b shows that the random

tree explored both the boundary planes simultaneously and combined tests.

Figure 8.13c shows the extracted tests from the combined random tree that

saturates the output and stresses resistor Rc.

Compressing tests for voltage controlled oscillator: Voltage con-

trolled oscillator (VCO) circuits are widely used in RF circuits, frequency

synthesizers and phased-locked loops. We used a VCO circuit, as shown

in Figure 8.14a, to demonstrate the practicality and scalability of our algo-

rithm. Figure 8.14b shows the standard output of the VCO circuit where

Vbias =750mV, Vcontrol =630mV and VDD = 1.8V. It takes 10.8ns for the

output to reach its peak-to-peak maximum. The maximum output is 1.34V.

We used our tool to compress tests for the VCO circuit. We defined three

transient inputs to the circuit: 0.75 ≤ Vbias ≤ 1, 0.65 ≤ Vcontrol ≤ 1 and 1.8 ≤
VDD ≤ 2. We executed the random tree for 10,000 iterations. The algorithm

146



(a) Schematic of the VCO
circuit.

TIME #10-9
0 1 2 3 4 5 6 7 8 9 10

ou
t1

0.7

0.8

0.9

1

1.1

1.2

1.3

(b) The uncompressed out-
put of the VCO circuit.

(c) The compressed output
of the VCO circuit.

Figure 8.14: Compressing tests for VCO circuit. Our technique compressed
VCO swing tests by 88%.

" W
nmos

 (nm)
-50 -40 -30 -20 -10 0 10 20 30 40 50

"
 W

pm
os

 (
nm

)

-50

-40

-30

-20

-10

0

10

20

30

40

50

Slow process
Nominal process
Fast process
No variation

Worst-case execution

Figure 8.15: Process variation in the width of NMOS and PMOS transistors
in the inverter circuit and worst-case corner.

took 30 minutes and produced an output that reached the maximum output

voltage within 1.2ns. In comparison to the original tests, the compression

ratio was 88%. Our generated input stimuli cannot be used to test the

oscillation of the VCO, but it can be used to validate the output swing,

defect screening and stress testing the circuit.

Compressing tests in the presence of process variation We used

the inverter circuit, as shown in Figure 9.1, designed at 45 nm process with

process variation as a case study. We modeled process variation in transistor

width as a truncated Gaussian distribution with σ =25nm. The nominal

147



width of NMOS and PMOS transistors were 415 nm and 630 nm, respectively.

We randomly generated a batch of 10 different variation instance for the three

process corner, including fast, nominal and slow. The total number of tests

was 30. We set the length of the test for the slowest corner to be 100 ps, i.e.

at 100 ps, the output must be equal to VOH . Figure 8.15 shows the variation

in the width of the NMOS and PMOS transistor in the inverter circuit.

We compressed the batch using our greedy test compression algorithm

(Algorithm 11). The random tree in the inner loop of the greedy algorithm

was executed four times to compress four different corners. The algorithm

finally picked the process corner (∆Wnmos,∆Wpmos) = (8 nm, -45 nm) as the

worst-case corner and compressed test for that corner. The compressed test

is applicable to all other corners in the circuit.

In this particular experiment, we were checking the output-high of the

inverter circuit, which would stress the PMOS transistor. As a result, the

greedy algorithm found the narrowest PMOS transistor as the worst-case

corner for that particular test. The worst-case corners are test dependent

and for different tests, the worst-case corner will be different. Worst-case

corners cannot be identified during design without first understanding and

analyzing test stimuli.

8.7 Chapter summary

In this chapter, we used Duplex for automated test compression for electrical

stress testing of analog and mixed signal circuits. Duplex optimally extracts

only portions of a functional test that electrically stress the nets and devices

of an analog circuit. We modeled the test compression as a type-III Duplex

functional optimization problem. We demonstrated with an op-amp, VCO,

and CMOS inverter that the method consistently reduces the length of each

test by an average of 93%. Duplex can compress tests in the presence of

process variation and utilize parallel processing to speed up the compression

algorithm.

148



CHAPTER 9

CIRCUIT OPTIMIZATION

9.1 Introduction

9.1.1 Optimizing performance of analog circuits by searching
the parameter space

The goal of performance optimization is to find an optimum assignment to the

circuit’s parameters, such as transistors’ widths and lengths, that optimizes

the circuit’s performance metrics such as gain, bandwidth and power.

We model the performance optimization problem as a type-II duplex op-

timization problem. Duplex determines the optimal design, the Pareto set

and the sensitivity of circuit’s performance metrics to its parameters. Duplex

does not get stuck in local minima and provides valuable feedback to the user

in the form of performance to parameter sensitivity graphs and Pareto set.

Duplex is also highly performance efficient and scalable, as demonstrated in

our results.

9.1.2 Using Duplex algorithm for optimizing analog circuits

Duplex uses random tree search, a tree based simulation algorithm that also

maintains the tree data structure as a record of the state space traversed.

It maintains and simultaneously grows two homomorphic (mirrored) random

trees; one in the parameter space and the other in the performance space.

In the performance space, it uses the basic random tree search to find the

globally optimal design by expanding the tree toward the goal region. In the

parameter space, it decides which parameter needs to change to get closer to

the goal region. This decision is made using a reinforcement learning algo-

rithm [132] that evaluates the history of previous changes in the parameter

149



tree based on a reward function. Duplex does not get stuck in local minima

because of the probabilistic completeness property of random trees[43]. This

is in contrast to random walk based methods like simulated annealing. The

guidance in every step from the global search towards the local step decision

helps in converging quickly to the optimal goal region.

The choice of random trees contributes to most of the advantages of Du-

plex. Random trees generally search the space more efficiently than Monte

Carlo based simulation methods [43, 89, 133, 134], contributing to Duplex’s

efficiency. Additionally, during the course of the simulation, a unified tree

structure connecting performance and parameter space of the circuit is main-

tained. This helps generate by-products like Pareto surfaces and sensitivity

analysis that provide design insights. Computing the exact Pareto surface is

typically computationally very expensive [30, 28] since Pareto sets are high

dimensional surfaces in the parameter space. Duplex uses a statistical in-

ference algorithm to infer the distribution of optimal states in the tree in

the parameter space. It uses the inferred distribution of optimal parameter

states as a Pareto surface. In addition, Duplex keeps track of how variations

in a given parameter cause performance metrics to change and retrospec-

tively generates a performance to parameter sensitivity graph. This is in

contrast to typical algorithms that do not record circuit information during

the optimization process.

9.1.3 Benefits and contributions of using the Duplex
algorithm

Duplex is a scalable algorithm and can optimize system-level post-layout cir-

cuits. We demonstrate duplex’s scalability by optimizing a system-level post-

layout 1.6 GHz charged-pump PLL circuit [160] (with 131 CMOS transistors)

as shown in Figure 9.10. Duplex’s scalability is due to its open-ended search

being restricted to the performance space, that tends to be much smaller

than the parameter space, greatly reducing the size of the search space. The

size of the parameter space depends on the size of the circuit. The PLL

circuit has over 100 CMOS transistors, but the performance space has only

5 dimensions (Table 9.2). The complexity of Duplex is not dependent on

circuit size, allowing it to scale easily.

Duplex is computationally highly efficient. We demonstrate that Duplex

150



has an 81% (up to 5×) more speedup as compared to state-of-the-art results

[31] on the same design (two stage operational amplifier [31]). Notably, this

design has local minima. Although a few branches in the parameter tree

grow toward the local maxima, Duplex used the performance tree to grow

toward the global optimum and successfully converged toward the global

maximum (resulting in an opamp with 5 GHz bandwidth), unlike [31] which

got stuck in a local minima (reporting 2 GHz as a maximum bandwidth for

the circuit) (Figure 9.6). We also demonstrate Pareto surface computation

and sensitivity analysis (Section 9.4.1). Duplex is a stable algorithm with

little variance in its execution with different initial states. We demonstrate

Duplex’s stability by running it multiple times on a CMOS inverter circuit

and optimizing the inverter for power and delay (Figure 9.7).

Our contributions are as follows. We present Duplex random tree search

for performance space optimization of analog circuits that is more efficient

than state-of-the-art. Duplex is inherently scalable and does not get stuck in

local minima. We provide a simple and efficient technique for Pareto surface

generation. We also present a technique to analyze the relative sensitivity of

a parameter with respect to performance. With Duplex, we present the idea

of optimization by simultaneously traversing dual spaces.

9.1.4 Chapter organization

In this chapter, initially we provide a model for the performance optimization

problem that is similar to type-II duplex problems in Section 3.8.3. Then we

propose using Duplex to solve the optimization problem in Section 8.3. Fi-

nally, we demonstrate the Duplex algorithm by optimizing an opamp circuit

and a charge-pump PLL circuit. We show that Duplex is 5× faster than the

state-of-the-art and finds the global optimum for a design whose previously

published result was a local optimum. We show our algorithm’s scalabil-

ity by optimizing a system-level post-layout charged-pump PLL circuit in

Section 9.3.

151



9.2 Optimization model

For a given circuit topology and process technology, performance of the cir-

cuits is measured with respect to metrics such as gain, slew rate and band-

width. The circuit’s performance depends on parameters such as transistor

width, length, resistor and capacitor values. Let P ∈ Rn and Q ∈ Rm denote

the parameter and performance space, respectively. Let n and m denote

the number of parameters and performance metrics, respectively. We refer

the points in the performance and parameter space as a performance and

parameter states, respectively.

We model physical constraints of the circuit and manufacturing process as

constraints in the parameter space. For example, for the inverter circuit in

Figure 9.1, transistor M1 could have a width constraint 1µm < M1 ≤ 10µm.

The parameter space may also have equality constraints enforced by layout

design rules. For example, the width of transistor M1 should be twice the

width of transistor M2.

The parameter and performance variables can each have different scales

(say Nano to Giga) and measuring units. We normalize across them by map-

ping every variable to the interval [0, 1]. In general, the size of a parameter

space n is related to the number of components (size) of the circuit.

The constrained parameter space is a subset of the parameter space,

bounded by the physical constraints of the circuit. A constrained parameter

space is modeled as an intersection of k inequalities:

P = {p | Cp ≤ b} (9.1)

where C and b are k × n and n × 1 matrices. For each p in the set P , all

sizing requirements of the circuit are met.

A performance (parameter) variable is a variable in the performance (pa-

rameter) space. A performance (parameter) state is a vector value assignment

to all the performance (parameter) variables in the circuit. The relationship

between parameter and performance spaces is shown in Figure 9.2. An in-

stance of the circuit with a given parameter state corresponds to a specific

performance state. This can be viewed as an onto, or many-to-one mapping f

from many parameter states to one performance state. We can only evaluate

mapping f point wise using numerical simulation (such as HSPICE).

The reachable performance space is the image Q of the constrained

152



WNMOS/Lmin

WPMOS/Lmin

=1.2V

=5pF

Lmin=65nm

Figure 9.1: Schematic of an inverter circuit that we use as an illustrative
example. We want to optimize the width of NMOS and PMOS transistors
to minimize dynamic power and delay.

parameter space P in the performance space.

Q = {q | q = f(p) where p ∈ P} (9.2)

The goal region is a subset of the reachable performance space where the

performance of the circuit is within the acceptable range, set by the designer.

Qgoal = {qgoal | Gqgoal ≤ d} (9.3)

where l × m matrix G defines the constraints on the goal region. The

optimal state is any state in the goal region of the performance space.

For the inverter in Figure 9.1, parameter space is R2 and consists of the

widths of NMOS and PMOS transistors. The optimization goal is to min-

imize power, rise and fall time delay of the circuit. Specifically, we want

power ≤ 100µW and delay ≤10 ps. An example of the parameter state

is (wpmos, wnmos) = (4µm, 2µm). Similarly, a performance state is a vector

(p, drise, dfall) = (50µW, 5ps, 4ps).

9.3 The Duplex random tree search algorithm

9.3.1 Random tree search

The random tree is a tree structure [89, 43, 134] that is constructed in the

continuous space Rn. Each node in the tree is a vector in Rn. Each node can

153



Parameter Space Performance Space
p1

p2

p

Goal 
Region

Constrained Parameter Space

q = f(p)

q1

q2

q

q⇤

Reachable Performance
 Space

Optimal
State

Figure 9.2: The relation between constrained parameter space (left) and the
reachable performance space and the goal region (right).

Finished?

  
Uniformly sample a performance state  
qsampleqsample  from the goal region

Sa
m

pl
e

Generate a random parameter state prootproot. 
Simulate performance state qrootqroot. 
Set prootproot and qrootqroot as roots of the parameter 
and performance trees.In

it
ia

liz
e

      Search the performance tree for the 
nearest state qnearqnear  from qsampleqsample  

G
lo

ba
l

se
ar

ch

Find the parameter state pnearpnear corresponding 
to qnearqnear in the parameter tree

Lo
ok

up

Generate & simulate the netlist with parameter 
pnewpnew. Add pnewpnew and qnewqnew  to the trees.Si

m

      Generate a new parameter state pnewpnew from
pnearpnear Lo

ca
l 

st
ep

No

Compute boundary of parameter space.
Pareto distribution for performance metric
Performance-to-Parameter sensitivityO

ut
pu

ts

Yes

Sec. 3.3

Sec. 3.4

Sec. 3.5

Sec. 3.6

Sec. 3.4

Figure 9.3: Flowchart of the Duplex random tree search algorithm for per-
formance optimization.

have multiple children. The tree is initialized by fixing its root to a specific

state in the space. The random tree is constructed incrementally.

Random trees are shown to consistently outperform random walk based

search methods such as Monte Carlo simulations for search applications

[89, 133, 134]. Efficiency improvement can be credited to the data struc-

ture maintained by the random tree algorithm during the simulation. While

growing, it samples a new state in the goal region (desired solution set), and

then determines which state is closest (in L2-norm sense) to that sampled

goal state among all of the previously visited states in the tree. It simulates

a path between the closest state and the newly sampled state and adds the

new state to the tree. This is in contrast to the memory-less sampling of

points in the Monte Carlo based methods.

Duplex simultaneously constructs and maintains two different, but mir-

rored (homomorphic), random trees in the performance and parameter space.

154



Parameter Space Performance Space
p1

p2

p0

p1

p2

Performance 
Tree

Parameter
Tree

q1

q2

q2q1

q0Constrained Parameter Space

Goal 
Region

Optimal
State

Reachable Performance
 Space

Tp

Tq

Q⇤

qsample

qnear
pnear

pnew
qnew

Simulation
Nearest

 Neighbor

Figure 9.4: Growing parameter and performance tree in the parameter and
performance space.

Figure 9.4 shows the parameter and performance random tree growing in the

parameter and performance space. Intuitively, the performance tree is the

mirror of the parameter tree in the performance space. Let Tq denote the

performance tree and Tp denote the parameter tree. Let q(i) and p(i) denote

the ith nodes in the performance and parameter tree, respectively. Let Q∗

denotes the goal region in the performance space.

These trees represent different relationships. An edge in the parameter

tree indicates that the two parameter states connected to that edge differ in

exactly one variable. An edge in the performance tree between indicates that

the corresponding states in the parameter tree are connected. For each node

p in the parameter tree, there exists a corresponding node in the performance

tree, and vice versa. The corresponding node in the performance tree is

computed by simulating the circuit with the given parameters.

For the inverter circuit, each node in the parameter tree is a two-dimensional

vector p = (wnmos, wpmos), corresponding to the width of NMOS and PMOS

transistors. Each node in the performance tree is an assignment of vector

of performance metrics q = (power, drise, dfall). Performance node q is com-

puted by simulating the inverter circuit with the parameter vector p using

HSPICE.

9.3.2 The Duplex algorithm

Figure 9.3 shows the flow of the Duplex algorithm. Duplex advances toward

the goal region Q∗ in the performance space. At the ith iteration, it navi-

gates the performance space to get closer to the goal region (q
(i)
sample). This

is the global search step. When it finds a close enough state (q
(i)
near) to the

155



goal region, it looks up the corresponding mirror image of that state in the

parameter space (p
(i)
near). For the mirror state, it finds a neighbor state by

perturbing a single parameter in the mirror state (p
(i+1)
new ). This local step

in the parameter space is the action the algorithm takes based on the guid-

ance from the performance space. A performance state corresponding to the

neighbor state is added in the performance space (q
(i+1)
new ). The algorithm

continues until it reaches an optimal state in the performance space.

9.3.3 Global search steps in performance space

Duplex biases the search by growing the performance tree toward the goal

region. In every iteration, it uniformly samples the goal region to find a

candidate optimal state q
(i)
sample. Duplex’s objective in this iteration is to get

closer to q
(i)
sample. It finds the closest state q

(i)
near as per Euclidean distance

in the performance tree from q
(i)
sample. It uses the KD-tree algorithm[43] for

efficient search of the tree in the performance space. For this q
(i)
near, it then

looks up the corresponding state in the parameter space and finds p
(i)
near.

9.3.4 Local coordinated steps in the parameter space

In this phase, Duplex’s objective is to find a state p
(i+1)
new in the parameter

space that is a neighbor of p
(i)
near such that its image q

(i+1)
new will be closer to the

goal region. It perturbs exactly one parameter in the parameter state p
(i)
near

to obtain a new neighbor state p
(i+1)
new . There are three reasons why duplex

only perturbs a single parameter (coordination) at each iteration: Firstly,

optimizing a circuit with multiple parameters can be done by iteratively

optimizing single parameters in rotation, as in the coordinated descent algo-

rithm [4]. Secondly, for circuit design, explaining the results of the learning

algorithm is very valuable. By using coordinated steps instead of the gradi-

ent, Duplex is able to use reinforcement learning and compute the sensitivity

of performance metrics to parameters. Finally, some parameters might not

have significant impact on the performance metrics. By coordinating one pa-

rameter at a time, we can find these less significant parameters and i) avoid

perturbing them in the future and ii) report them to the designer.

Duplex uses a reinforcement learning algorithm [132] to determine which

parameter variable (pj ∈ p
(i+1)
new ) to perturb. It uses an annealing learning

156



rate [4] to determine how much to perturb the jth parameter in p
(i+1)
new .

Reinforcement learning

Since we treat the circuit as a blackbox, the gradient information is not

available. Without the gradient, analytically computing an optimal local

step is not possible. Instead, Duplex relies on the history of the previously

taken steps to learn what is the best step in the future. Duplex keeps a

history of how influential each parameter is in getting closer to the goal

region. Every parameter state p
(i)
near has a reward vector Q associated with

it, that is initialized to all ones at the root of the parameter tree. After each

iteration, Q is updated, depending on whether changing the jth parameter

resulted in the corresponding performance state getting closer to the goal

region or not.

The new neighbor state p
(i+1)
new differs by the parent parameter state only

in parameter j, so we compute the reward vector according to Equation 9.4.

Q(p(i)
near, j)← Q(p(i)

near, j) + γ(‖q(i+1)
new , Q∗‖ − ‖q(i)

near, Q
∗‖) (9.4)

where ‖.‖ is the distance from the performance state q and the goal region

and γ is the discount rate. Next time the parameter state p is chosen, Duplex

uses weighted uniform sampling on Q(p) to select the parameter j.

The reward vector is inherited only by children states of a parent state.

Reward vectors on two different paths do not influence each other. This is

necessary to avoid making global mistakes in the random tree. Therefore,

even if one branch of the tree is stuck in a local minima, the other branches

are not affected.

Annealing learning rate

The learning rate α in Duplex is set such that initially we search the space,

then we converge toward the optimum state. Duplex determines the length

of each step, the extent to which the new parameter state should differ from

the parent state, according to a learning rate α. Initially the length of the

steps are very high (the search phase), but as we get closer to the optimum

state, we anneal (gradually lower) the length of each step in order to converge

toward the optimum.

157



The learning rate depends on the step length of the parent state, and a

parameter K, and the initial step length α0 specified by the user.

αpnew =
α0

1 +K × αpnear
(9.5)

The sign of the step length is chosen randomly. Duplex adds or subtracts

the value of αpnew to the jth parameter in the parameter state vector. In

Duplex, unlike other learning algorithms, the learning rate is dependent on

the depth of the tree and not the number of iterations. After determining

which parameter to change and how much to change that parameter, Duplex

generates the new parameter state p
(i+1)
new .

9.3.5 Generating the new performance state

From the neighbor state p
(i+1)
new , Duplex generates the new performance state

by using a numerical simulator like SPICE to evaluate the sampled parame-

ter. The values of the performance metrics (gain, bandwidth etc.) form the

state vector of q
(i+1)
new . The pair (p

(i+1)
new , q

(i+1)
new ) is added to the parameter and

performance trees respectively and the reward vector for pnew is updated.

9.3.6 Other outputs: Pareto distribution and sensitivity
analysis

After reaching the goal region, the algorithm generates the Pareto surface

of the design space. Let S denote the set of performance states in the goal

region. Duplex computes the Pareto set by gathering all the corresponding

parameter states to the set S. It infers the mixture distribution of the Pareto

set using variational Bayesian inference [4].

Duplex also analyzes the sensitivity of each performance metric j to each

parameter i. It records the result in the sensitivity variable ssij. Duplex

traverses the random tree to determine the number of times a parameter

has changed and the extent to which it has changed. In a manner similar

to covariance computation, the relative change in the performance due to a

parameter is of interest.

Let fj,q denote the value of performance metric j at state q. At each

iteration, if changing parameter i results in change in fj,q, we record the

158



difference in variable δqnew,i,j:

δqnew,i,j = |fqnew,j − fqnear, j| (9.6)

where qnear is the parent state of qnew. So δq,i,j is the difference of perfor-

mance j between the new state q and its parent when we change parameter

i. Duplex updates the sensitivity matrix according to ∆sij = | δq,i,j
fj,q
|.

sij =
∑
q

|δq,i,j
fj,q
| (9.7)

After termination, Duplex normalizes each row (j) in the sensitivity matrix

s.

9.3.7 Termination and complexity analysis

The objective of the Duplex algorithm is to reach a goal region. The Duplex

algorithm will terminate when it finds sufficient optimal states in the perfor-

mance tree within the goal region, or if it has reached the maximum number

of iterations.1

Duplex’s approach toward search is a twofold: 1) Global search in the

performance space, where it searches for the nearest visited state and biases

the search toward the goal region, and 2) local search in the parameter space,

where it takes the best action from the given parameter state according

to the past simulation history. In comparison to the local search, global

search typically provides significant efficiency improvement; However it is

very expensive and does not scale beyond 100 dimensions. In duplex, we only

perform global search in the performance space, which typically is very small

(to the order of tens of dimensions). Since the dimension of performance

space is usually very small (in comparison to the parameter space) search

in the performance space is very efficient. In our implementation, we used

KD-tree data structure [43] as our database for closest state search queries.

1Duplex is, in a certain sense, a search algorithm for high-dimensional continuous
spaces. Thus, it is technically different from other optimization techniques such as simu-
lated annealing or gradient descent. Unlike optimization methods, Duplex does not try to
optimize an objective function after reaching the goal region and meeting the performance
requirement of the circuit. Although search algorithms can be used as an optimization
algorithms and vice-versa.

159



Therefore, the complexity of search for Duplex is O(n ×m × log(n)) where

n is the number of iterations and m is the number of performance metrics.

The Duplex algorithm, unlike conventional search methods such as simu-

lated annealing, does not get stuck in local minima of the performance space.

Even if some branches of the random tree do get stuck in local minima, the

algorithm simultaneously grows other branches outside the minima and con-

verges toward the global optimum. Therefore, the probability of finding the

optimum state goes to 1 as times goes toward infinity. This is based on the

probabilistic completeness property of the random tree search algorithm [43].

9.4 Experimental results

In order to show the effectiveness, efficiency and scalability of Duplex algo-

rithm we used three case-studies: i) a CMOS inverter, which we used as a

proof-of-concept and to analyze the performance and stability of the Duplex

algorithm, ii) an amplifier circuit (from [31]), which we used to demonstrate

the efficiency of the algorithm and to show that our algorithm does not get

stuck in local minima, and iii) a system-level post-layout charge-pump PLL

circuit, which we used to demonstrate Duplex’s scalability and practicality

for high-dimensional system-level circuit.

We use the Duplex algorithm to explore the performance space of a two-

stage operational amplifier with frequency compensation [31] as shown in

Figure 9.5.2 The opamp circuit has many parameter and performance vari-

ables, demonstrating the scalability and efficiency of the Duplex algorithm.

The circuit was designed in 65 nm library and the supply voltage was 1.2V.

The main objective is to meet the bandwidth requirement of the circuit.

There are 7 design variables in the circuit: (the capacitor Cc, the bias cur-

rent Ibias, and the widths of transistors W1,W3,W5,W6 and W8. The other

parameters can be calculated from these parameters. Let λ =30 nm. The

lengths of all transistors are set to Lmin = 10λ to meet an acceptable output

resistance and intrinsic gain.

We executed Duplex to optimize the parameters in order to meet the spec-

ifications shown in Table 9.1. We designed the circuit in the same process,

used the same performance specification and applied the same inputs as [31].

2We selected the same opamp case-study as [31] in order to compare Duplex with the
state of the art.

160



Figure 9.5: Schematic of a two-stage operational amplifier.

Table 9.1: Performance specification for the opamp circuit and the result of
circuit optimization. Duplex determines the optimum value for the parame-
ters and performance metrics of the circuit.

Performance metric Performance Spec. Optimum Value
set by. computed
designer by Duplex

Power < 0.5mW 0.4763mW
Phase margin > 45◦ 109◦

Gain margin > 5dB 11.22dB
DC gain ¿30dB 76.59dB
Slew rate > 10 V

µsec
55.65 V

µs

Bandwidth ¿2GHz 5.766GHz

It took approximately 20 minutes and 857 HSPICE simulations to perform

the optimization and generate 100 optimal states within the goal region on a

Windows machine equipped with a Core-i5 processor and 16GB memory to

optimize the opamp circuit. The majority of the time was spent on HSPICE

simulation and the Duplex’s performance overhead was negligible.

Jung et al. [31] reported 4625 SPICE simulations to compute the opti-

mal design. In comparison, Duplex finished in 857 HSPICE sim-

ulations, demonstrating a 81% more performance efficiency than

[31]. Furthermore, Duplex improved the quality of the optimization results

by increasing the circuit’s bandwidth to 5.7GHz, up to 250%, in comparison

to [31] where they reported the optimized bandwidth of 2.2GHz. Notably,

the opamp design demonstrates how Duplex escapes getting stuck in local

minima.

Figure 9.6 shows how Duplex simultaneously explores the parameter and

performance space and avoids the local optima. On the left, Figure 9.6a

shows the circuit’s bandwidth w.r.t. size of transistors M1 and M3, assuming

161



(a) The bandwidth w.r.t. the width
of transistor M1 and M3. The band-
width objective has one global max-
imum and multiple local maxima in
the state space.

(b) The parameter tree explores the
space and converges to the global
maxima, while not getting trapped
in the local maxima.

Figure 9.6: Using Duplex for optimizing the bandwidth of the op-amp.

other parameters are set to optimal value. Let w1 and w3 denote the width of

transistor M1 and M3, respectively. Due to symmetry, size of transistors M2

and M4 are equal to M1 and M3, respectively. There is one global maximum,

located at (w1, w3) = (590λ, 30λ); however, there are multiple local maxima

throughout the space. The objective of Duplex was to maximize bandwidth

without getting stuck in local maxima. We set the initial state at w1, w3 =

(300λ, 60λ) and executed Duplex. Figure 9.6b shows the contour plot of the

bandwidth. We rendered the parameter tree over the contour plot to show

how Duplex explores the parameter space. Even though a few branches in the

parameter tree grow toward the local maximum at (250λ, 20λ), Duplex used

the performance tree to grow toward the global optimum and successfully

converged toward the global maximum.

As the algorithm got closer to the goal region, the annealing step length

caused Duplex to take smaller steps and remains within the goal region. As

a result, many samples were generated within the goal region. At each itera-

tion, Duplex only changed one parameter, making all edges in the parameter

tree parallel to the w1 −w3 axis. Hence, many of the states where the w1 or

w3 were unchanged are not shown in the projected figure. In order to increase

the bandwidth, Duplex aggressively increased the size of transistor M1. The

opamp’s unity-gain bandwidth can be approximated as [31] wc = gm1

Cc
. This

suggests that the bandwidth can be increased by transconductance of the

first stage, which in turn can be achieved by sizing up the input transistors

M1 and M2. Bandwidth can also be increased by reducing the compensa-

162



Figure 9.7: The convergence rate w.r.t. number of iterations for the Duplex
algorithm for the inverter case study. Our algorithm converges very fast
toward the optimum design from any initial state. Duplex is not sensitive to
the choice of initial state.

tion capacitor Cc or increasing the bias current Ibias. Duplex automatically

performed all of these optimizations in order to meet the specification.

We use the CMOS inverter from Figure 9.1 to demonstrate a few outputs

of Duplex. The inverter is designed in 65 nm process.

Figure 9.7 shows the visually weighted regression plot for convergence rate

for the Duplex algorithm for the inverter case study. We measure error as the

minimum distance from every step in the performance tree toward the center

of the goal region. We executed Duplex for 100 independent runs with a ran-

dom initial state and draw the overlapping convergence plots in the visually

weighted regression plot. We also draw the average of all the convergence

plot as the expected convergence rate. As shown in the convergence figure,

Duplex quickly converges toward the goal region in the performance space.

Figure 9.7 highlights two facts about the Duplex algorithm: 1) Duplex con-

verges exponentially fast toward the goal region and 2) Duplex is very stable

with respect to the choice of the initial state

In our experiment, we uniformly sampled the parameters for the initial

(root) state in the parameter space, which is the reason for high error variance

in the beginning. On the other hand, toward the end of the algorithm the

variance in error is low because Duplex converges to the optimum results

regardless of the choice of the initial state.

9.4.1 Performance to parameter sensitivity

We visualize the performance to parameter sensitivity matrix sij using a bi-

partite sensitivity graph as shown in Figure 9.8. The left side of the sensitivity

163



Gain

Bandwidth

1

1

0.5

0.4

Ibias

Cc

w1

w8

0.4

0.2

0.6

Figure 9.8: The sensitivity graph visualizing performance to parameter sen-
sitivity for opamp case-study.The Edges are annotated with the sensitivity
of a performance metric (a node in the right side) to a particular parameter
(a node on the left side).

graph denotes the parameters of the circuit (such as width of transistors or

bias current) and the right side denote the performance metric measured by

the Duplex algorithm (such as bandwidth, power and gain). The thickness

of each edge between a parameter and performance node denote the sensitiv-

ity. Due to the lack of space, we only showed the partial graph of the most

important nodes and leave out the rest.

Each row of the sensitivity matrix is normalized. Hence, for each given

performance metric, one parameter has an edge of thickness 1.0, denoting

the most influential parameter to that performance, and the other parame-

ters have values between [0, 1]. For the opamp circuit, the sensitivity graph

implies bandwidth depends on the bias current ibias, compensation capacitor

Cc and the width of transistors M1 and M8. This observation supports our

bandwidth analysis earlier. Similarly, the gain is very sensitive to the width

of transistor M1 and sizing of the current mirror M8, and the bias current.

However, the gain is not sensitive to the compensation capacitor. We also

observed that the biasing current was the most sensitive parameter in the

design.

9.4.2 Pareto distribution inference

To compute the Pareto distribution, we collect the parameter samples that

result in acceptable performance from the circuit. Figure 9.9 shows the Gaus-

sian mixture distribution of those samples for the opamp circuit, projected to

W5, Ibias plane, where W5 is a width of transistor M5 and Ibias is the bias cur-

rent. The mean of the Pareto distribution indicates the optimal value of the

164



Figure 9.9: Distribution of the optimal parameters for the opamp circuit.
Duplex computes the Pareto set as a mixture Gaussian distribution by in-
ferring the distribution of the samples in the goal region. Pareto surface is
computed from the CDF of the pareto distribution. We use the mean of the
distribution as the optimum state.

parameter. Furthermore, we can generate more optimal design parameters

from the Pareto distribution and predict the yield for the circuit.

9.4.3 Optimizing the PLL circuit

The charge-pump PLL (CP-PLL) [160, 161] is one of the key building blocks

in many analog IPs and SoCs. The PLL can be used in various applications

such as clock synchronization and jitter mitigation.

We used a low-noise 1.6 GHz CP-PLL circuit as a system-level example

to demonstrate Duplex’s scalability. The schematic of the CP-PLL circuit

is shown in Figure 9.10 [161]. The CP-PLL circuit consists of five blocks:

phase detector, charge-pump circuitry, loop filter, voltage controlled oscilla-

tor (VCO) and frequency divider, arranged in a feedback configuration [161].

The circuit has 131 CMOS transistors and 140 parameters (including the

width of the transistors and a few resistors and capacitors). The circuit is

designed using TSMC 0.18µm process, using supply voltage 1.8V. The refer-

ence clock was set at 200 MHz.

The first block in the CP-PLL circuit was the phase detector circuit. The

phase detector compares the clock produced from the VCO with the refer-

ence clock and produces an error signal proportional to the phase difference

between its inputs. The phase detector block was implemented using a NOR

gate, hence it was balanced but not very power efficient. We minimized the

total power dissipation of the phase detector while maximizing the gain Kd.

We set the width of the transistors in the NOR gate as a parameter.

165



Phase 
Detector

Charge
Pump

Loop 
Filter VCO

Frequency 
Divider

Vin Vout

feedback loop

CLK

CLK

Reset

Reset

Q’

Q’

PD_down

PD_up_n
CLK_VCO

CLK_REF
(200MHz)

Phase Detector

NOR

DLatch

DLatch

NOR
Charge
Pump

LPF_in

LPF
out

R1 R2

R0

C0
C1 C2

VCO

Divide by 2Divide by 2Divide by 2

NOT

Loop filter

Frequency (1/8) divider

VCO output
(1.6GHz)

M30

Ib

M27

M16

M25M26
DNpDNp

M29

Ismall

M17

M15

M20

M28

M23

M31 M32

M21M22

M24 Ib

UPn UPp

vdd

gnd

Ipump

Charge Pump Circuit

VCO circuit

Charge Pump PLL circuit

Figure 9.10: Schematic of a post-layout charge-pump PLL circuit.

The charge pump was a set of symmetrical current sources. Transistors

M21, . . . ,M26 supply the pump-up current to the loop filter. It consists of

an input differential pair M21M22, current mirror load M29, output current

source M28, and pull-up transistors M31M32. A similar circuit is used to

generate the pump-down current. We set the size of the input differential

transistors pairs as a parameter for duplex in order to make the charge-pump

circuit fully balanced. After the charge pump block, there was a filter to

remove the high-frequency components of the signal introduced by the phase

detector circuit. The loop filter was implemented as a simple RC network and

consisted of three resistors and capacitors that created a three-pole one-zero

network [160]. The CP-PLL’s stability was largely dependent on the value of

capacitor C1, and the bandwidth was dependent on the value of resistor R1.

After duplex optimization, the algorithm determined the optimum value for

capacitor C1 was 48 pF and for resistor R1 was 54 KΩ.

The voltage controlled oscillator (VCO) [160] was supposed to produce a

clock at 1.6GHz. The input stage consists of M4, . . . ,M7 transistors which

are used as varactors for frequency tuning. M1, . . . ,M3 offers negative con-

ductance to fulfill the oscillating pre-conditions. R0 and R1 are parasitic

resistance of L0 and L1. The output frequency of the VCO depends on the

value of mmult. The algorithm was optimizing the bias voltage of the VCO

circuit. For the VCO circuit, we ensured the gain of the circuit was more

than 25Meg
V

. The output of the VCO passes a series of 2:1 dividers, reducing

the frequency from expected 1.6 GHz to 200 MHz[160].

We optimized the PLL design such that it would meet the operating fre-

quency of the PLL at 1.6 GHz while optimizing the performance of phase

166



Table 9.2: Result of Duplex optimization of the CP-PLL circuit. Duplex
determines the optimum value for the parameters and performance metrics
of the circuit.

Perf. metric Perf. Spec. Opt. Val.
set by. computed
designer by Duplex

PD Gain Kd > 1µA/Deg 1.16µA/deg
Frequency 1.6GHz ±0.01 1.6025GHz
VCO PhaseNoise ¡-60dB@60K -96.25dB@60K
VCO gain ¿25MEG/V 39.1 MEG/V
PD Power ¡20mW 12.85mW

detector gain and power and the VCO gain and phase noise. We executed

duplex for 350 iteration which took approximately 13 hours. The algorithm

found multiple configurations that satisfied the performance requirements of

the CP-PLL circuit. Table 9.2 shows the result of the optimization.

9.5 Chapter summary

In this chapter, we used duplex algorithm to optimize performance metrics

of analog and mixed signal circuits. We modeled the circuit performance

optimization as a Duplex type-II nonconvex optimization problem. Duplex

determines the optimal design, the Pareto set and the sensitivity of circuit’s

performance metrics to its parameters. We demonstrated that Duplex is 5×
faster than the state-of-the-art and finds the global optimum for a design

whose previously published result was a local optimum. We showed our al-

gorithm’s scalability by optimizing a system-level post-layout charged-pump

PLL circuit.

167



CHAPTER 10

BEYOND ANALOG: APPLICATION OF
DUPLEX IN MACHINE LEARNING

Machine learning is the science of building models from the data and making

predictions. Machine learning combines different aspects of statistics, infor-

mation theory, control and computer science. Optimization is the core of all

machine learning algorithms. Vapnik first defined machine learning an op-

timization problem in [162]. A general approach to many machine learning

algorithms is to model the prediction error as a cost function. The process

of training the model is equivalent to minimizing the cost function. Similar

cost functions for unsupervised learning algorithms such as clustering also

exist based on energy functions. We can formulate many supervised and un-

supervised machine learning problems as an optimization problem and train

the model using the Duplex algorithm by minimizing the cost function.

The machine learning models should not be very sensitive to the input

changes. This is achieved by implementing low variance complex models

that avoids over fitting. A drawback of added complexity to the model is

a nonconvex landscape of the model’s cost function. Training such a model

is very challenging. The optimization algorithms often get stuck in local

minima without converging toward the optimal solution. Furthermore, the

cost function has multiple saddle points. First order optimization methods

suffer a performance penalty around the saddle points. The gradient is close

to zero around the saddle points and slows down the descent algorithm. On

the other hand, second order Newtonian methods do not scale with respect

to the size of the data.

We use Duplex to optimize the cost function in supervised and unsuper-

vised learning setup. Duplex is scalable, very efficient and does not get stuck

in local minima, which results in more accurate models.

168



10.1 Supervised learning and classification

In supervised learning, we learn from the labeled data. Let X denote the

feature (input) space, Y denote the label (output) space, and D denote the

distribution of samples over X×Y . The input to the algorithm is set S of N

training data S = {(x(1), y(1)), . . . , (x(n), y(n))}. Each pair (x(i), y(i)) consists

of the input feature vector x(i) and the output label y(i). The algorithm is

learning a function f : X → Y from the input space X to the output space

Y . In order to measure how well the model fits the training data we define a

loss function L : Y × Y → R≥0. The loss function L(z; y) measures the loss

whenever we predict y as z. The expected loss of f is defined as risk :

R(f) = E(x,y) D[L(f(x); y)] (10.1)

The purpose of the supervised learning algorithm is to search for a func-

tion f that minimizes the risk R. Finding the global minimizer of the risk

function arg minf is a function R(f) is fundamentally impossible. However, we

can approximate the risk with the training error

R̂(f) ≡ E(x,y) S[L(f(x); y)] ≈ R(f) (10.2)

by assuming that good performance on the training set translates to good

performance on every sample we see in the future.

We use logistic regression algorithm for classification. Assume the output

labels take binary values yi ∈ {0, 1}.

P (y = 1|x) = hθ(x) =
1

1 + exp(−θTx)
= σ(θTx), (10.3)

P (y = 0|x) = 1− P (y = 1|x) = 1− hθ(x). (10.4)

The function σ(z) = 1
1+exp(−z) is often called the sigmoid function and has

a range [0, 1] which allows us to interpret it as a probability. Intuitively, we

are searching for a value of θ such that the probability P (y = 1|x) = hθ(x)

is large when x belongs to the class 1 and small otherwise. We define the

following cost function to determining how well the model does:

J(θ) =
−1

N

N∑
i

(y(i) log(hθ(x
(i))) + (1− y(i)) log(1− hθ(x(i)))). (10.5)

169



Exam 1 score
30 40 50 60 70 80 90 100

E
xa

m
 2

 s
co

re

30

40

50

60

70

80

90

100

Admitted
Not admitted

Figure 10.1: Duplex algorithm cluster samples together by minimizing the
distortion function.

By minimizing the loss function J , we train the logistic regression model.

We formulate the learning problem as a type-II duplex problem. The input

space is the space of vector θ = [θ0, θ1, θ2]. The training set consists of 100

samples (x1, x2), each labeled with y1 output. The output dimension is the

space of parameter J . At each iteration, we compute the global step by gen-

erating a new sample using a zero-mean normal distribution (the minimum

of the loss function is at zero).

The gradient of function J with respect to input parameter θ is

dJ(θ)

dθj
=

1

N

N∑
i=1

(hθ(x
(i))− y(i))x

(i)
j (10.6)

We take the local steps along the direction of the gradient with added

white noise using

θ = θ − α ∗ dJ(θ)

dθ
+ β; (10.7)

where X is the vector of input, Y is the vector of features and α is the

learning rate and β is annealing white noise.

We trained the logistic regression model with the Duplex algorithm. Fig-

ure 10.1 shows the decision boundary computed using the Duplex algorithm.

After 1000 iterations, the accuracy of the model on the validation data was

91%. In comparison, the gradient descent algorithm converged after 100

iterations and its accuracy was 88%.

170



10.2 Unsupervised learning and clustering

In many machine learning problems, the data is not labeled. The goal of the

unsupervised learning algorithm is to infer the hidden structures from the

unlabeled data and cluster them together. Since there is no label, there is

no error function or risk associated with a solution.

An efficient method for clustering unlabeled data is K-means. The K-

means algorithm splits the data into K clusters. Assume we have N samples

{x(1), . . . , x(N)} such that x(i) ∈ Rn. We wish to cluster these samples into

K clusters, defined by their centroids {µ1, . . . , µK} such that every sample

belongs to the cluster with the closest centroid. The distortion of the samples

in the given cluster configuration is defined as

J(c, µ) =
m∑
i=1

||x(i) − µc(i)||2 (10.8)

where c(i) denotes the cluster that the ith sample belongs to. The objective

of the algorithm is to find c and µ that minimize the function J . The dis-

tortion function J is a nonconvex function and has discontinuities; therefore

standard optimization algorithm such as gradient descent are not guaranteed

to converge toward the global minimum.

The classic K-means algorithm repeatedly assigns each sample x(i) to a

cluster with closest centroids µj using

c(i) = arg min
j
||x(i) − µj||2 (10.9)

Then updates the clusters by moving the centroids to the mean of the samples

assigned to that cluster.

µj =

∑N
i=1 1{c(i) = j}x(i)∑N
i=1 1{c(i) = j}

(10.10)

The K-means algorithm repeats the following two steps until the centroids

do not move anymore. We used Duplex to solve the clustering algorithm. We

model the input (centroid) space as an N×K-vector {µ1, . . . , µk}. We break

the distortion functional into the sum of its components for each cluster as

171



Figure 10.2: Duplex algorithm cluster samples together by minimizing the
distortion function.

follows.

Jj(c, µ) =
N∑
i=1

1{c(i) = j}||x(i) − µc(i)||2 (10.11)

We formulate the clustering problem as a type-II optimization problem.

We use Duplex to minimize the distortion function. We simultaneously grow

two random trees in the centroid space RN×K and the distortion space RK .

At every iteration, we generate a goal sample in the distortion space where

the distortion is close to zero. Then we pick the nearest node in the distor-

tion random tree according to Euclidean distance. We find the correspond-

ing node in the centroid tree. We update one of the centers in that node

and randomly assign a new center. We evaluate the new node according to

Equation 10.11 and add the new node to the distortion tree. We repeat this

procedure until we converge to the optimal solution.

We clustered a synthetic 2D dataset of 500 samples as shown in Figure 10.2

to evaluate the Duplex algorithm. The final value of the distortion functional

after 1000 iterations was 1.38444. In comparison, the K-means algorithm con-

verged to the distortion value of 1.38999 after six iterations and ten restarts.

In comparison to the classic Kmean algorithm, Duplex can take a longer

time, but it will converge to a better solution.

172



10.3 Chapter summary

In this chapter, we used Duplex for optimizing the cost function of different

machine learning algorithms. First, we use Duplex for logistic regression as an

example of supervised learning problem. Then we used Duplex for clustering

an unsupervised learning example. We showed that the Duplex algorithm is

capable of optimizing nonconvex functions and has a high accuracy.

173



CHAPTER 11

CONCLUSION

Our mission was to provide automation to analog design flow to improve the

quality and reliability of analog circuits. To achieve this mission, we pro-

posed the Duplex methodology and optimization algorithm. We formulated

challenging problems in analog validation and optimization as a Duplex op-

timization objectives (state search, nonconvex and functional optimization

problems). Then we used the Duplex optimization algorithm to optimize the

objective function and solve the analog validation and optimization problem.

We have presented Duplex, a methodology for nonconvex and functional

optimization. We used Duplex to address the broad range of challenging

problems in analog design automation. The Duplex algorithm brought global

direction to the search and used it to find the optimum solutions quickly. Fur-

thermore, Duplex attacked more complicated problems by using the principle

of space separation, dividing the problem space into input, output and func-

tion spaces. Duplex utilized random tree data structure to simultaneously

explore these spaces and used how close it was in the higher spaces to guide

the random tree in lower spaces.

The Duplex algorithm provided a lot of advantages over the state-of-the-art

techniques, both in the analog domain and beyond. We showed the Duplex

algorithm enjoyed theoretical, as well as empirical, convergence guarantees

toward the global optimum solution. We found optimal solutions for the

problems that their previous state-of-the-art results were local optimums.

Globally optimum solutions result in increased bandwidth and higher perfor-

mance in analog, as well as higher classification accuracy in machine learning.

The duplex algorithm is very performance efficient and very concurrent in na-

ture. We consistently demonstrated that Duplex provides at least two orders

of magnitude speedup over Monte Carlo simulations. Finally, the Duplex

algorithm is very scalable. We demonstrated scalability in practice by using

Duplex to optimize system-level and post-layout circuits. Finally, Duplex

174



maintains the search history and uses the random tree to provide valuable

feedback to the user. We computed the circuit’s sensitivity, the distribution

of worst-case inputs, and the Pareto set of optimal samples and reported

them to the user.

We demonstrated the breadth of scope of Duplex methodology by apply-

ing it to solve the keystone problems in analog validation, optimization and

beyond. We addressed challenging open problems in analog validation such

as automatically generated directed input stimuli while simultaneously im-

proving coverage, compressing analog tests in time for stress and functional

testing, and worst-case eye diagram analysis. We provided new results, found

design bugs, provided two orders of magnitude efficiency improvements, com-

puted the circuit’s response up to 6-σ deviation in inputs, compressed tests

up to 96%, combined analog tests together, and computed distributions of

worst-case input corners in the eye diagram. We formally verified the circuit

by implementing reachability analysis and runtime monitoring algorithms.

We designed our analog specification language and developed an incremental

model checker to monitor the execution of the Duplex algorithm against the

specification property. We optimized analog circuits for getting the best per-

formance. We improved the state-of-the-art, both regarding efficiency (5×
speedup) and accuracy (found globally optimum solution). We computed

the circuit’s performance to parameter sensitivity and the Pareto frontier by

analyzing the samples in the random tree.

Finally, we generalized the Duplex algorithm as an optimization toolbox.

We observed that problems in analog circuits share the same characteristics

as problems in machine learning, motion planning and optimal control. We

found that the knowledge and the technique that we obtained for optimizing

problems in analog domain can also be used to solve problems in machine

learning. We employed the Duplex algorithm to train supervised and unsu-

pervised learning models for classification and clustering. We computed the

clustering of unlabeled data and improved the accuracy of a binary classifier.

175



REFERENCES

[1] GBI Research. Analog Integrated Circuits (IC) Market to 2016. GBI
research group market report No. GBISC029MR, Available online at
http://www.gbiresearch.com (accessed Oct 2015), 2012.

[2] ITRS group. International Technology Roadmap
for Semiconductors. Available online at
http://www.itrs.net/Links/2011ITRS/2011Chapters/2011Design.pdf
(accessed on Oct 2013), 2011.

[3] Georges G. E. Gielen, HCC Walscharts, and Willy M C Sansen. Analog
circuit design optimization based on symbolic simulation and simulated
annealing. IEEE Journal of Solid-State Circuits, 25(3):707–713, 1990.

[4] Christopher Bishop. Pattern Recognition and Machine Learning.
Springer, New York, 2006.

[5] A Bruce Carlson, Janet C Rutledge, and Paul Crilly. Communication
Systems. 5th edition. McGraw-Hill, January 2001.

[6] Christian P. Robert and G. Casella. Monte Carlo Statistical Methods
(Second ed.). Springer, New York, February 2004.

[7] P Kumar Hanumolu, B Casper, R Mooney, Gu-Yeon Wei, and Un-Ku
Moon. Analysis of PLL clock jitter in high-speed serial links. IEEE
Transactions on Circuits and Systems II: Analog and Digital Signal
Processing, 50(11):879–886, November 2003.

[8] Bryan K Casper, Matthew Haycock, and Randy Mooney. An accurate
and efficient analysis method for Multi-Gb/s Chip-to-chip signaling
schemes. Symposium on VLSI Circuits, February 2004.

[9] G Balamurugan, B Casper, J E Jaussi, M Mansuri, F O’Mahony, and
J Kennedy. Modeling and analysis of high-speed I/O links. IEEE
Transactions on Advanced Packaging, 32(2):237–247, 2009.

[10] Akira Tsuchiya, Masanori Hashimoto, and Hideotoshi Onedera. Opti-
mal termination of on-chip transmission-lines for high-speed signaling.
IEICE Transactions on Electronics, E90-C(6):1267–1273, June 2007.

176



[11] L S Milor. A tutorial introduction to research on analog and mixed-
signal circuit testing. Circuits and Systems II: Analog and Digital Sig-
nal Processing, IEEE Transactions on, 45(10):1389–1407, 1998.

[12] L Milor and A L Sangiovanni-Vincentelli. Minimizing production test
time to detect faults in analog circuits. Computer-Aided Design of
Integrated Circuits and Systems, IEEE Transactions on, 13(6):796–813,
1994.

[13] Nourredine Akkouche, Salvador Mir, and Emmanuel Simeu. Ordering
of analog specification tests based on parametric defect level estimation.
VLSI Test Symposium (VTS), pages 301–306, 2010.

[14] Xin Li, Rob R Rutenbar, and Ronald D Blanton. Virtual probe: a sta-
tistically optimal framework for minimum-cost silicon characterization
of nanoscale integrated circuits. Proceedings of the 2009 International
Conference on Computer-Aided Design, pages 433–440, 2009.

[15] Mohamed A El-Gamal, Abdei-Karim S O Hassan, and Hany L Abdel-
Malek. A new approach for the selection of test points for fault diag-
nosis. ISCAS’95 - International Symposium on Circuits and Systems,
3:2019–2022, 1995.

[16] Asma Laraba, H G Stratigopoulos, Salvador Mir, Hervé Naudet, and
Christophe Forel. Enhanced reduced code linearity test technique for
multi-bit/stage pipeline ADCs. IEEE, pages 1723–6734, 2012.

[17] H G Stratigopoulos. Test metrics model for analog test development.
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, 31(7):1116–1128, July 2012.

[18] A Chandra and K Chakrabarty. Test data compression for system-on-
a-chip using Golomb codes. 18th IEEE VLSI Test Symposium, pages
113–120, 2000.

[19] Hantao Huang, Hao Yu, Cheng Zhuo, and Fengbo Ren. A compressive-
sensing based testing vehicle for 3D TSV pre-bond and post-bond test-
ing data. In ISPD ’16: Proceedings of the 2016 on International Sym-
posium on Physical Design, pages 19–25, New York, New York, USA,
April 2016. Arizona State University, ACM.

[20] Mohamed H. Zaki, Sofiène Tahar, and Guy Bois. Formal verification of
analog and mixed signal designs: A survey. Microelectronics Journal,
39(12):1395–1404, December 2008.

[21] Eugene Asarin, Venkatesh P. Mysore, Amir Pnueli, and Gerardo
Schneider. Low dimensional hybrid systems – decidable, undecidable,
don’t know. Information and Computation, 211:138–159, February
2012.

177



[22] Jörg Preußig, Olaf Stursberg, and Stefan Kowalewski. Reachability
analysis of a class of switched continuous systems by integrating rectan-
gular approximation and rectangular analysis. In HSCC ’99: Proceed-
ings of the Second International Workshop on Hybrid Systems: Com-
putation and Control. Springer-Verlag, March 1999.

[23] Colas Le Guernic and Antoine Girard. Reachability analysis of linear
systems using support functions. Nonlinear Analysis: Hybrid Systems,
4(2):250–262, May 2010.

[24] G Frehse. PHAVer: algorithmic verification of hybrid systems past
HyTech. International Journal on Software Tools for Technology Trans-
fer (STTT), 10(3):263–279, 2008.

[25] Rajeev Alur, Thao Dang, and Franjo Ivančić. Predicate abstraction
for reachability analysis of hybrid systems. Transactions on Embedded
Computing Systems, 5(1):152–199, February 2006.

[26] Georges G. E. Gielen and R Rutenbar. Computer-aided design of ana-
log and mixed-signal integrated circuits. In Proceedings of the IEEE,
pages 1823–1824. IEEE, 2000.

[27] C Toumazou and C A Makris. Analog IC design automation. I. Au-
tomated circuit generation: new concepts and methods. Computer-
Aided Design of Integrated Circuits and Systems, IEEE Transactions
on, 14(2):218–238, 1995.

[28] Saurabh K Tiwary, Pragati K Tiwary, and Rob A Rutenbar. Genera-
tion of yield-aware Pareto surfaces for hierarchical circuit design space
exploration. Design Automation Conference, pages 31–36, 2006.

[29] G Yu and P Li. Hierarchical analog/mixed-signal circuit optimization
under process variations and tuning. IEEE Transaction on Computer-
Aided Design of Integrated Circuits and Systems, 2011.

[30] G Stehr, H E Graeb, and K J Antreich. Analog performance space
exploration by normal-boundary intersection and by Fourier-Motzkin
elimination. Computer-Aided Design of Integrated Circuits and Sys-
tems, IEEE Transactions on, 26(10):1733–1748, 2007.

[31] S Jung, J Lee, and J Kim. Variability-aware, discrete optimization
for analog circuits. Computer-Aided Design of Integrated Circuits and
Systems, IEEE Transactions on, 33(8):1117–1130, 2014.

[32] Lawrence T Pillage, Ronald A Rohrer, and Chandramouli
Visweswariah. Electronic Circuit and System Simulation Methods.
McGraw-Hill Professional Publishing, 1995.

178



[33] Vaclav Smidl and Anthony Quinn. The Variational Bayes Method in
Signal Processing. Springer, 2006.

[34] P Duhamel and J Rault. Automatic test generation techniques for
analog circuits and systems: A review. Circuits and Systems, IEEE
Transactions on, 26(7):411–440, 1979.

[35] R Voorakaranam and A Chatterjee. Test generation for accurate pre-
diction of analog specifications. In VLSI Test Symposium, 2000. Pro-
ceedings. 18th IEEE, pages 137–142. IEEE Comput. Soc, 2000.

[36] A Abderrahman, B Kaminska, and E Cerny. Optimization-based mul-
tifrequency test generation for analog circuits. Journal of Electronic
Testing, 9(1-2):59–73, 1996.

[37] Chen-Yang Pan and Kwang-Ting Cheng. Test generation for linear
time-invariant analog circuits. Circuits and Systems II: Analog and
Digital Signal Processing, IEEE Transactions on, 46(5):554–564, 1999.

[38] Parijat Mukherjee, G Peter Fang, Rod Burt, and Peng Li. Efficient
Identification of Unstable Loops in Large Linear Analog Integrated
Circuits. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 31(9):1332–1345, 2012.

[39] E Plaku, L E Kavraki, and M Y Vardi. Hybrid systems: from verifica-
tion to falsification by combining motion planning and discrete search.
Formal Methods in System Design, 34(2):157–182, 2009.

[40] Jongwoo Kim and J. M. Esposito. Adaptive sample bias for rapidly-
exploring random trees with applications to test generation. In Amer-
ican Control Conference, 2005 Proceedings of the 2005, 2005.

[41] A Julius, G Fainekos, M Anand, and I Lee. Robust test generation
and coverage for hybrid systems. Hybrid Systems: Computation and
Control, 4416:329–342, January 2007.

[42] Thao Dang and Tarik Nahhal. Coverage-guided test generation for
continuous and hybrid systems. Formal Methods in System Design,
34(2):183–213, February 2009.

[43] Steven M LaValle. Planning Algorithms. Cambridge University Press,
2006.

[44] Sudhi Proch and P Mishra. Directed test generation for hybrid sys-
tems. 2014 15th International Symposium on Quality Electronic Design
(ISQED), pages 156–162, 2014.

[45] MH Zaki, S Tahar, and G Bois. A practical approach for monitoring
analog circuits. In Proceedings of the 16th ACM Great Lakes, January
2006.

179



[46] Goran Frehse. Compositional Verification of Hybrid Systems using Sim-
ulation Relations. PhD thesis, Radboud Universiteit Nijmegen, August
2005.

[47] G Al Sammane, M H Zaki, Z J Dong, and S Tahar. Towards assertion
based verification of analog and mixed signal designs using PSL. Forum
on Specification and Design Languages, pages 293–298, 2007.

[48] Ying-Chih Wang, A. Komuravelli, P. Zuliani, and E. M. Clarke. Analog
circuit verification by statistical model checking. In Design Automation
Conference (ASP-DAC), 16th Asia and South Pacific, 2011.

[49] D Nickovic and O Maler. AMT: A property-based monitoring tool
for analog systems. Formal Modeling and Analysis of Timed Systems,
January 2007.

[50] O Maler and D Nickovic. Monitoring temporal properties of continu-
ous signals. Formal Techniques, Modelling and Analysis of Timed and
Fault-Tolerant Systems, pages 71–76, 2004.

[51] Kevin D. Jones, Victor Konrad, and Dejan Ničković. Analog property
checkers: a DDR2 case study. Formal Methods in System Design,
36(2):114–130, June 2010.

[52] Tathagato Rai Dastidar and P. P. Chakrabarti. A verification system
for transient response of analog circuits. ACM Transactions on Design
Automation of Electronic Systems, 12(3):31–es, August 2007.

[53] T Nahhal and T Dang. Test coverage for continuous and hybrid sys-
tems. Computer Aided Verification, pages 1–46, May 2007.

[54] S Karaman and E Frazzoli. Sampling-based algorithms for optimal mo-
tion planning with deterministic µ-calculus specifications. 2012 Amer-
ical Control Conference, pages 2222–2229, 2012.

[55] E Asarin, G Schneider, and S Yovine. Algorithmic analysis of polygonal
hybrid systems, part I: Reachability. Theoretical Computer Science,
September 2012.

[56] A Chutinan and B H Krogh. Computational techniques for hybrid sys-
tem verification. Automatic Control, IEEE Transactions on, 48(1):64–
75, January 2003.

[57] M Greenstreet and I Mitchell. Reachability analysis using polygonal
projections. Hybrid Systems: Computation and Control, January 1999.

[58] A Girard. Reachability of uncertain linear systems using zonotopes.
Hybrid Systems: Computation and Control, pages 1–15, January 2005.

180



[59] W Hartong, R Klausen, and L Hedrich. Formal verification for non-
linear analog systems: Approaches to model and equivalence checking.
Advanced Formal Verification, pages 205–245, 2004.

[60] Sebastian Steinhorst. Formal Verification Methodologies for Nonlinear
Analog Circuits. PhD thesis, Universität Frankfurt, Frankfurt, August
2010.

[61] Sebastian Steinhorst and Lars Hedrich. Model checking of analog sys-
tems using an analog specification language. Design, Automation and
Test in Europe, pages 324–329, March 2008.

[62] Hallstein Asheim Hansen, Gerardo Schneider, and Martin Steffen.
Reachability analysis of non-linear planar autonomous systems. In
FSEN’11: Proceedings of the 4th IPM international conference on Fun-
damentals of Software Engineering. Springer-Verlag, April 2011.

[63] Stephen Prajna and Ali Jadbabaie. Safety verification of hybrid sys-
tems using barrier certificates. Hybrid Systems: Computation and Con-
trol, volume 2993 of Lecture Notes in Computer Science, pages 271–274,
February 2004.

[64] Christoffer Sloth, George J. Pappas, and Rafael Wisniewski. Composi-
tional safety analysis using barrier certificates. Proceedings of the 15th
ACM international conference on Hybrid Systems: Computation and
Control - HSCC ’12, pages 115–229, January 2012.

[65] S Ratschan and Z She. Recursive and backward reasoning in the ver-
ification on hybrid systems. In Proceedings of the 5th Int Conf on
Informatics in, January 2008.

[66] Mathworks. MATLAB eye diagram analysis. Available online at
http://www.mathworks.com/help/comm/ref/commscope.eyediagram.html
Accessed April-2014, 2014.

[67] Zhaoqing Chen and G Katopis. Searching for the worst-case eye dia-
gram of a signal channel in electronic packaging system including the
effects of the nonlinear I/O devices and the crosstalk from adjacent
channels. In Electronic Components and Technology Conference, 2009.
ECTC 2009. 59th, pages 1106–1113. IEEE, 2009.

[68] JiHong Ren and Kyung Suk Oh. Multiple edge responses for fast and
accurate system simulations. IEEE Transactions on Advanced Packag-
ing, 31(4):741–748, November 2008.

[69] Mike Peng Li, Masashi Shimanouchi, and Hsinho Wu. Advanements
in high-speed link modeling and simulation. Custom Integrated Circuit
Conference, 2013.

181



[70] Vladimir Stojanovic and Mark Horowitz. Modeling and analysis of
high-speed links. Custom Integrated Circuits Conference, pages 589–
594, 2003.

[71] Dan Oh, Jihong Ren, and Sam Chang. Hybrid statistical link simu-
lation technique. IEEE Transactions on Components, Packaging and
Manufacturing Technology, 1(5):772–783, May 2011.

[72] Rui Shi, Wenjian Yu, Yi Zhu, Chung-Kuan Cheng, and Ernest S Kuh.
Efficient and accurate eye diagram prediction for high speed signal-
ing. In ICCAD ’08: Proceedings of the 2008 IEEE/ACM International
Conference on Computer-Aided Design. IEEE Press, November 2008.

[73] L Milor and A Sangiovanni-Vincentelli. Optimal test set design for
analog circuits. In Computer-Aided Design, 1990. ICCAD-90. Digest
of Technical Papers., 1990 IEEE International Conference on, pages
294–297. IEEE Comput. Soc. Press, 1990.

[74] S D Huss and R S Gyurcsik. Optimal ordering of analog integrated
circuit tests to minimize test time. In Design Automation Conference,
1991. 28th ACM/IEEE, pages 494–499. IEEE, 1991.

[75] N Akkouche, S Mir, E Simeu, and M Slamani. Analog/RF test ordering
in the early stages of production testing. VLSI Test Symposium (VTS),
2012 IEEE 30th, pages 25–30, 2012.

[76] Jin Chen and A Ramachandran. A novel test set design for para-
metric testing of analog and mixed-signal circuits. In Computer De-
sign: VLSI in Computers and Processors, 1997. ICCD ’97. Proceed-
ings., 1997 IEEE International Conference on, pages 474–480. IEEE
Comput. Soc, 1997.

[77] Chieh-Yuan Chao, Hung-Jen Lin, and L Miler. Optimal testing of
VLSI analog circuits. IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, 16(1):58–77, November 2006.

[78] Sounil Biswas and R D Blanton. Reducing test execution cost of inte-
grated, heterogeneous systems using continuous test data. Computer-
Aided Design of Integrated Circuits and Systems, IEEE Transactions
on, 30(1):148–158, 2010.

[79] R Voorakaranam, S Cherubal, and A Chatterjee. A signature test
framework for rapid production testing of RF circuits. In Design, Au-
tomation and Test in Europe Conference and Exhibition, 2002. Pro-
ceedings, pages 186–191. IEEE Comput. Soc, 2002.

[80] L Balado, E Lupon, J Figueras, M Roca, E Isern, and R Picos. Verify-
ing functional specifications by regression techniques on Lissajous test

182



signatures. Circuits and Systems I: Regular Papers, IEEE Transactions
on, 56(4):754–762, 2009.

[81] P N Variyam, J Hou, and A Chatterjee. Efficient test generation for
transient testing of analog circuits using partial numerical simulation.
In 17th IEEE VLSI Test Symposium, pages 214–219. IEEE Comput.
Soc, 1999.

[82] Andrzej Kuczyński. Parametric faults detection in analog circuits using
polynomial coefficients in NN learning. International Conference on
Signals and Electronic Systems ICSES, pages 249–252, 2010.

[83] A Singhee and R A Rutenbar. Statistical blockade: very fast statistical
simulation and modeling of rare circuit events and its application to
memory design. IEEE Trans Comput-Aided Des Integr Circuits Syst,
28(8):1176–1189, 2009.

[84] S D Huynh, S Kim, M Soma, and Jinyan Zhang. Automatic analog
test signal generation using multifrequency analysis. Circuits and Sys-
tems II: Analog and Digital Signal Processing, IEEE Transactions on,
46(5):565–576, 1999.

[85] A Halder and A Chatterjee. Automated test generation and test point
selection for specification test of analog circuits. In Quality Electronic
Design, 2004. Proceedings. 5th International Symposium on, pages 401–
406. IEEE Comput. Soc, 2004.

[86] T Golonek and J Rutkowski. Genetic-algorithm-based method for op-
timal analog test points selection. IEEE Transactions on Circuits and
Systems II: Analog and Digital Signal Processing, 54(2):117–121, 2007.

[87] A V Gomes and A Chatterjee. Minimal length diagnostic tests for
analog circuits using test history. In Design, Automation and Test in
Europe Conference and Exhibition 1999. Proceedings, pages 189–194.
IEEE Comput. Soc, 1999.

[88] Seyed Nematollah Ahmadyan, Jayanand Asuk Kumar, and Shobha
Vasudevan. Goal-oriented stimulus generation for analog circuits. In
49th Design Automation Conference (DAC-2012), 2012.

[89] Seyed Ahmadyan and Shobha Vasudevan. Automated transient in-
put stimuli generation for analog circuits. Computer-Aided Design of
Integrated Circuits and Systems, IEEE Transactions on, pages 1–1,
October 2015.

[90] Seyed Nematollah Ahmadyan, Shobha Vasudevan, Eli Chiprout, Chen-
jie Gu, and Suriyaprakash Natarajan. Fast eye diagram analysis for
high-speed CMOS circuits. In Design, Automation Test conference in
Europe, 2015.

183



[91] Xin Li, Jian Wang, L T Pileggi, Tun-Shih Chen, and Wanju Chiang.
Performance-centering optimization for system-level analog design ex-
ploration. In Proceedings of the IEEEACM International conference on
Computer-aided design, pages 422–429. IEEE Computer Society, May
2005.

[92] Bo Liu, Francisco V Fernández, and Georges G E Gielen. Efficient and
accurate statistical analog yield optimization and variation-aware cir-
cuit sizing based on computational intelligence techniques. Computer-
Aided Design of Integrated Circuits and Systems, IEEE Transactions
on, 30(6):793–805, June 2011.

[93] Honghuang Lin and Peng Li. Circuit performance classification with ac-
tive learning guided sampling for support vector machines. Computer-
Aided Design of Integrated Circuits and Systems, IEEE Transactions
on, 34(9):1467–1480, 2015.

[94] Liuxi Qian, Zhaori Bi, Dian Zhou, and Xuan Zeng. Automated technol-
ogy migration methodology for mixed-signal circuit based on multistart
optimization framework. Very Large Scale Integration (VLSI) Systems,
IEEE Transactions on, 23(11):2595–2605, December 2014.

[95] Lucas C Severo and Alessandro Girardi. A methodology for the au-
tomatic design of operational amplifiers including yield optimization.
26th Symposium on Integrated Circuits and Systems Design (SBCCI),
pages 1–6, 2013.

[96] Dimitri P Bertsekas. Nonlinear Programming. Athena Scientific, Cam-
bridge, MA., 1999.

[97] Dimitri P Bertsekas, Angelia Nedic, and Asuman Ozdaglar. Convex
Analysis and Optimization. Athena Scientific., Belmont, MA., 2003.

[98] Daniel Liberzon. Calculus of Variations and Optimal Control Theory.
A consise introduction. Princeton university press, Princeton, NJ, 2012.

[99] R Rutenbar. Simulated annealing algorithms: an overview. Circuits
and Devices Magazine, 1989.

[100] Yoshua Bengio, Nicolas Boulanger-Lewandowski, and Razvan Pascanu.
Advances in optimizing recurrent networks. In 2013 IEEE Interna-
tional Conference on Acoustics, Speech and Signal Processing, pages
8624–8628. IEEE, 2013.

[101] Ilya Sutskever. Training Recurrent Neural Networks. PhD thesis, Uni-
versity of Toronto, Toronto, January 2013.

184



[102] John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient
methods for online learning and stochastic optimization. The Journal
of Machine Learning Research, 12:2121–2159, February 2011.

[103] Geoffrey Hinton, Nitrish Srivastava, and Kevin Swersky. Neural net-
works for machine learning coursera course, slide 29 of lecture 6a,
overview of mini-batch gradient descent. University of Toronto CSC321
Class notes, 2016.

[104] Yann N Dauphin, Razvan Pascanu, Caglar Gulcehre, Kyunghyun Cho,
Surya Ganguli, and Yoshua Bengio. Identifying and attacking the sad-
dle point problem in high-dimensional non-convex optimization. Neural
information processing systems (NIPS), pages 2933–2941, 2014.

[105] Yann N Dauphin, Harm de Vries, and Yoshua Bengio. Equilibrated
adaptive learning rates for non-convex optimization. arXiv.org, Febru-
ary 2015.

[106] Diederik Kingma and Jimmy Ba. ADAM: A method for stochastic
optimization. arXiv.org, December 2014.

[107] Jascha Sohl-Dickstein, Ben Poole, and Surya Ganguli. Fast large-scale
optimization by unifying stochastic gradient and quasi-Newton meth-
ods. arXiv.org, November 2013.

[108] Jeffrey Dean, Greg Corrado, Rajat Monga, Kai Chen, Matthieu
Devin, Mark Mao, Marc’aurelio Ranzato, Andrew Senior, Paul Tucker,
Ke Yang, Quoc V Le, and Andrew Y Ng. Large scale distributed deep
networks. Neural information processing systems (NIPS), pages 1223–
1231, 2012.

[109] Harold Szu and Ralph Hartley. Fast simulated annealing. Physics
letters A, 122(3-4):157–162, June 1987.

[110] S Kirkpatrick, C D Gelatt, and M P Vecchi. Optimization by simulated
annealing. Science, 220(4598):671–680, May 1983.

[111] Eckart Zitzler, Marco Laumanns, and Stefan Bleuler. A tutorial on
evolutionary multiobjective optimization. Metaheuristics for Multiob-
jective Optimisation, pages 1–32, November 2003.

[112] K Deb, A Pratap, S Agarwal, and T Meyarivan. A fast and elitist
multiobjective genetic algorithm: NSGA-II. IEEE Transactions on
Evolutionary Computation, 6(2):182–197, April 2002.

[113] G M Morris, D S Goodsell, R S Halliday, and R Huey. Automated
docking using a Lamarckian genetic algorithm and an empirical binding
free energy function. Journal of Computational Chemistry, 1998.

185



[114] J Horn, N Nafpliotis, and D E Goldberg. A niched Pareto genetic
algorithm for multiobjective optimization. First IEEE Conference on
Evolutionary Computation. IEEE World Congress on Computational
Intelligence, 1:82–87, 1994.

[115] Om Prakash Agrawal. A general formulation and solution scheme for
fractional optimal control problems. Nonlinear Dynamics, 38(1-4):323–
337, 2004.

[116] A M Bloch and P E Croach. Reduction of Euler Lagrange problems
for constrained variational problems and relation with optimal control
problems, volume 3. IEEE, 1994.

[117] Dmitry S Yershov and Emilio Frazzoli. Asymptotically optimal feed-
back planning using a numerical Hamilton-Jacobi-Bellman solver and
an adaptive mesh refinement. The International Journal of Robotics
Research, 35(5):570–584, October 2015.

[118] Rainer Buckdahn and Tianyang Nie. Generalized Hamilton–Jacobi–
Bellman equations with Dirichlet boundary condition and stochastic
exit time optimal control problem. SIAM Journal on Control and Op-
timization, 54(2):602–631, March 2016.

[119] David Hsu, Robert Kindel, Jean-Claude Latombe, and Stephen Rock.
Randomized kinodynamic motion planning with moving obstacles.
The International Journal of Robotics Research, 21(3):233–255, March
2002.

[120] C G Sørensen, T Bak, and R N Jørgensen. Mission planner for agri-
cultural robotics. Proc AgEng, 2004.

[121] Fernando Alfredo Auat Cheein and Ricardo Carelli. Agricultural
Robotics: Unmanned Robotic Service Units in Agricultural Tasks.
IEEE Industrial Electronics Magazine, 7(3):48–58, 2013.

[122] Fardin Abdi Taghi Abad, Marco Caccamo, and Brett Robbins. A fault
resilient architecture for distributed cyber-physical systems. 2012 IEEE
18th International Conference on Embedded and Real-Time Computing
Systems and Applications (RTCSA 2012), pages 222–231, 2012.

[123] Emilio Frazzoli, Munther A Dahleh, and Eric Feron. Real-time motion
planning for agile autonomous vehicles. Journal of Guidance, Control,
and Dynamics, 25(1):116–129, January 2002.

[124] S M LaValle and J J Kuffner Jr. Rapidly-exploring random trees:
Progress and prospects. Citeseer, 2000.

186



[125] Lydia Kavraki, Petr Svestka, Jean Latombe, and Mark Overmars.
Probabilistic Roadmaps for Path Planning in High-Dimensional Con-
figuration Spaces. IEEE Transactions on Robotics and Automation,
12(4):566–580, 1996.

[126] V Boor, M H Overmars, and A F van der Stappen. The Gaussian
sampling strategy for probabilistic roadmap planners. International
Conference on Robotics and Automation, 2:1018–1023 vol.2, 1999.

[127] Lucas Janson, Edward Schmerling, Ashley Clark, and Marco Pavone.
Fast marching tree: A fast marching sampling-based method for opti-
mal motion planning in many dimensions. The International Journal
of Robotics Research, 34(7):0278364915577958–921, May 2015.

[128] S. Karaman, M. R. Walter, A. Perez, E. Frazzoli, and S. Teller. Any-
time Motion Planning using the RRT*. In Robotics and Automation
(ICRA), 2011 IEEE International Conference on, 2011.

[129] Pierre Bonami, Alberto Olivares, and Ernesto Staffetti. Energy-optimal
multi-goal motion planning for planar robot manipulators. Journal of
Optimization Theory and Applications, 163(1):80–104, January 2014.

[130] Ryan Luna, Morteza Lahijanian, Mark Moll, and Lydia E Kavraki.
Asymptotically optimal stochastic motion planning with temporal
goals. In Algorithmic Foundations of Robotics XI, pages 335–352.
Springer International Publishing, Cham, 2015.

[131] Edward Schmerling, Lucas Janson, and Marco Pavone. Optimal
sampling-based motion planning under differential constraints: The
driftless case. 2015 IEEE International Conference on Robotics and
Automation (ICRA), pages 2368–2375, 2015.

[132] Richard S Sutton and Andrew G Barto. Reinforcement Learning: An
Introduction. MIT Press, Cambridge, MA, 1998.

[133] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Lau-
rent Sifre, George van den Driessche, Julian Schrittwieser, Ioannis
Antonoglou, Veda Panneershelvam, Marc Lanctot, Sander Dieleman,
Dominik Grewe, John Nham, Nal Kalchbrenner, Ilya Sutskever, Tim-
othy Lillicrap, Madeleine Leach, Koray Kavukcuoglu, Thore Graepel,
and Demis Hassabis. Mastering the game of Go with deep neural net-
works and tree search. Nature, 529(7587):484–489, January 2016.

[134] Cameron B Browne, Edward Powley, Daniel Whitehouse, Simon M
Lucas, Peter I Cowling, Philipp Rohlfshagen, Stephen Tavener, Diego
Perez, Spyridon Samothrakis, and Simon Colton. A survey of Monte
Carlo tree search methods. IEEE Transactions on Computational In-
telligence and AI in Games, 4(1):1–43, March 2012.

187



[135] James J Kuffner and S. M. LaValle. RRT-connect: An efficient ap-
proach to single-query path planning. In Robotics and Automation,
2000. Proceedings. ICRA ’00. IEEE International Conference on, pages
995–1001. IEEE, 2000.

[136] Seyed Nematollah Ahmadyan. Duplex optimization toolbox:
https://github.com/ahmadyan/Duplex. Github code repository, 2016.

[137] Seyed Nematollah Ahmadyan. Directed test genearation tool:
https://github.com/ahmadyan/RRT. Github code repository, 2016.

[138] Seyed Nematollah Ahmadyan. Reachability analysis tool
https://github.com/ahmadyan/Reachability. Github code reposi-
tory, 2016.

[139] Seyed Nematollah Ahmadyan. Analog benchmarks:
https://github.com/ahmadyan/analog. Github code repository,
2016.

[140] Seyed Nematollah Ahmadyan. Urbana SAT Solver
https://github.com/ahmadyan/Urbana. Github code repository,
2016.

[141] Seyed Nematollah Ahmadyan. Rapidly-exploring random forests
https://github.com/ahmadyan/RRT/tree/master/Myrkwood/Myrkwood.
Github code repository, 2016.

[142] Seyed Nematollah Ahmadyan. Capacitated Selfish Replication Game:
https://github.com/ahmadyan/Capacitated-Selfish-Replication-
Game. Github code repository, 2016.

[143] Haralampos-G Stratigopoulos and Sedat Sunter. Fast Monte Carlo-
based estimation of analog parametric test metrics. Computer-Aided
Design of Integrated Circuits and Systems, IEEE Transactions on,
33(12):1977–1990, December 2014.

[144] Rasit Onur Topaloglu. Early, accurate and fast yield estimation
through Monte Carlo-alternative probabilistic behavioral analog sys-
tem simulations. 24th IEEE VLSI Test Symposium, pages 6 pp.–142,
2006.

[145] Seyed Nematollah Ahmadyan, Jayanand Asok Kumar, and Shobha Va-
sudevan. Runtime verification of nonlinear analog circuits using in-
cremental time-augmented RRT algorithm. DATE 2013, pages 1–6,
December 2012.

[146] A Shkolnik, M Walter, and R Tedrake. Reachability-guided sampling
for planning under differential constraints. International Conference
on Robotics and Automation, January 2009.

188



[147] Eric Thiémard. An algorithm to compute bounds for the star discrep-
ancy. Journal of Complexity, 17(4):850–880, December 2001.

[148] Hassan K. Khalil. Nonlinear Systems (3rd Edition). Prentice Hall, 3
edition, December 2001.

[149] Francesca Mazzia and Cecilia Magherini. Test set for initial value prob-
lem solvers, release 2.4. Technical Report 4-2008, Department of Math-
ematics, University of Bari, Italy, February 2008.

[150] E Hairer and G Wanner. Solving ordinary differential equations II: stiff
and differential-algebraic problems. Springer-Verlag, April 1996.

[151] Thao Dang. Verification and Synthesis of Hybrid Systems. PhD thesis,
Verimag, Institut National Polytechnique de Grenoble, May 2006.

[152] John Havlicek, Dana Fisman, and Cindy Eisner. Basic results on the
semantics of Accellera PSL 1.1 foundation language. Accellera Techni-
cal Report, IBM Haifa Research Lab, April 2004.

[153] S Gupta, B H Krogh, and R A Rutenbar. Towards formal verification
of analog designs. In Computer Aided Design, 2004. ICCAD-2004.
IEEE/ACM International Conference on, pages 210–217, 2004.

[154] Paul Pedersen. Multivariate Sturm theory. Applied algebra, algebraic
algorithms and error-correcting codes, 539(Chapter 30):318–332, June
1991.

[155] William C. Thibault and Bruce F. Naylor. Set operations on poly-
hedra using binary space partitioning trees. Proceedings of the 14th
annual conference on Computer graphics and interactive techniques -
SIGGRAPH ’87, pages 153–162, January 1987.

[156] J Comba and B Naylor. Conversion of binary space partitioning trees
to boundary representation. In Proceedings of Theory and Practice of
Geometric, January 1996.

[157] Gene H. Golub and Charles F. van der Loan. Matrix Computations
(Johns Hopkins Studies in Mathematical Sciences)(3rd Edition). The
Johns Hopkins University Press, 3rd edition, October 1996.

[158] Robert G Bartle. The elements of integration and Lebesgue measure.
John Wiley & Sons Inc, New York, 1995.

[159] Seyed Nematollah Ahmadyan, Suriyaprakash Natarajan, and Shobha
Vasudevan. Every test makes a difference: compressing analog tests
to decrease production costs. In 2016 21st Asia and South Pacific De-
sign and Automation Conference (ASP-DAC), pages 539–544, Macau,
China, 2016. IEEE.

189



[160] J F Parker and D Ray. A 1.6-GHz CMOS PLL with on-chip loop filter.
IEEE Journal of Solid-State Circuits, 33(3):337–343, March 1998.

[161] Kyoohyun Lim, Chan-Hong Park, Dal-Soo Kim, and Beomsup Kim.
A low-noise phase-locked loop design by loop bandwidth optimization.
IEEE Journal of Solid-State Circuits, 35(6):807–815, 2000.

[162] Vladimir N Vapnik. Statistical Learning Theory. Wiley-Interscience,
1998.

190


