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ABSTRACT

The problem of estimating the Kullback-Leibler divergence D(P‖Q) be-

tween two unknown distributions P and Q is studied, under the assumption

that the alphabet size k of the distributions can scale to infinity. The esti-

mation is based on m independent samples drawn from P and n independent

samples drawn from Q. It is first shown that there exists no consistent es-

timator that guarantees asymptotically small worst-case quadratic risk over

the set of all pairs of distributions. A restricted set that contains pairs of

distributions, with density ratio bounded by a function f(k), is further con-

sidered. An augmented plug-in estimator is proposed, and is shown to be

consistent if and only if m has an order greater than k∨ log2(f(k)), and n has

an order greater than kf(k). Moreover, the minimax quadratic risk is char-

acterized to be within a constant factor of ( k
m log k

+ kf(k)
n log k

)2 + log2 f(k)
m

+ f(k)
n

, if

m and n exceed constant factors of k/ log(k) and kf(k)/ log k, respectively.

The lower bound on the minimax quadratic risk is characterized by employ-

ing a generalized Le Cam’s method. A minimax optimal estimator is then

constructed by employing both the polynomial approximation and plug-in

approaches.
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CHAPTER 1

INTRODUCTION

1.1 Background

As an important quantity in information theory, the Kullback-Leibler (KL)

divergence between two distributions has a wide range of applications in

various domains. For example, KL divergence can be used as a similarity

measure in nonparametric outlier detection [1], multimedia classification [2],

text classification [3], and the two-sample problem [4]. In these contexts, it

is often desired to estimate KL divergence efficiently based on available data

samples. This thesis studies such a problem.

1.2 Problem Statement

Consider the estimation of KL divergence between two probability distri-

butions P and Q defined as

D(P‖Q) =
k∑
i=1

Pi log
Pi
Qi

, (1.1)

where P and Q are supported on a common alphabet set [k] , {1, . . . , k},
and P is absolutely continuous with respect to Q, i.e., if Qi = 0, Pi = 0,

for 1 ≤ i ≤ k. We use Mk to denote the collection of all such pairs of

distributions.

Suppose P and Q are unknown, and that m independent and identi-

cally distributed (i.i.d.) samples X1, . . . , Xm drawn from P and n i.i.d.

samples Y1, . . . , Yn drawn from Q are available for estimation. The suf-

ficient statistics for estimating D(P‖Q) are the histograms of the samples
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M , (M1, . . . ,Mk) and N , (N1, . . . , Nk), where

Mj =
m∑
i=1

1{Xi=j} and Nj =
n∑
i=1

1{Yi=j} (1.2)

record the numbers of occurrences of j ∈ [k] in samples drawn from P and Q,

respectively. Then M ∼ Multinomial (m,P ) and N ∼ Multinomial (n,Q).

An estimator D̂ of D(P‖Q) is then a function of the histograms M and N ,

denoted by D̂(M,N).

We adopt the following worst-case quadratic risk to measure the perfor-

mance of estimators of the KL divergence:

R(D̂, k,m, n) , sup
(P,Q)∈Mk

E[(D̂(M,N)−D(P‖Q))2]. (1.3)

We further define the minimax quadratic risk as:

R∗(k,m, n) , inf
D̂
R(D̂, k,m, n). (1.4)

In this thesis, we are interested in the large-alphabet regime with k →∞.

Furthermore, the numbers m and n of samples are functions of k, which are

allowed to scale with k to infinity.

Definition 1. A sequence of estimators D̂, indexed by k, is said to be con-

sistent under sample complexity m(k) and n(k) if

lim
k→∞

R(D̂, k,m, n) = 0. (1.5)

We are also interested in the following set:

Mk,f(k) =

{
(P,Q) : |P | = |Q| = k,

Pi
Qi

≤ f(k), ∀ 1 ≤ i ≤ k

}
, (1.6)

which contains distributions (P,Q) with density ratio bounded by f(k). We

define the worst-case quadratic risk over Mk,f(k) as

R(D̂,k,m, n, f(k)) , sup
(P,Q)∈Mk,f(k)

E[(D̂(M,N)−D(P‖Q))2], (1.7)
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and define the corresponding minimax quadratic risk as

R∗(k,m, n, f(k)) , inf
D̂
R(D̂, k,m, n, f(k)). (1.8)

1.3 Notations

We adopt the following notation to express asymptotic scaling of quantities

with n: f(n) . g(n) represents that there exists a constant c s.t. f(n) ≤
cg(n); f(n) & g(n) represents that there exists a constant c s.t. f(n) ≥
cg(n); f(n) � g(n) when f(n) & g(n) and f(n) . g(n) hold simultaneously;

f(n) � g(n) represents that for all c > 0, there exists n0 > 0 s.t. for all

n > n0, |f(n)| ≥ c|g(n)|; and f(n)� g(n) represents that for all c > 0, there

exists n0 > 0 s.t. for all n > n0, |f(n)| ≤ cg(n).

1.4 Related Work

Several estimators of KL divergence when P and Q are continuous have

been proposed and shown to be consistent. The estimator proposed in [5] is

based on data-dependent partition on the densities, the estimator proposed

in [6] is based on a k-nearest neighbor approach, and the estimator developed

in [7] utilizes a kernel-based approach for estimating the density ratio. A more

general problem of estimating the f -divergence was studied in [8], where an

estimator based on a weighted ensemble of plug-in estimators was proposed

to trade bias for variance. All of these approaches exploit the smoothness of

continuous densities or density ratios, which guarantees that samples falling

into a certain neighborhood can be used to estimate the local density or

density ratio accurately. However, such a smoothness property does not hold

for discrete distributions, whose probabilities over adjacent point masses can

vary significantly. In fact, an example is provided in [5] to show that the

estimation of KL divergence can be difficult even for continuous distributions

if the density has sharp dips.

A more general problem of estimating the f -divergence for d-dimensional

distributions is studied in [8]. A weighted ensemble divergence estimator is

proposed, which is based on a weighted ensemble of plug-in estimators to
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trade bias for variance. Such an estimator is shown to converge faster than

the simple plug-in estimator, perform well for high dimensions and be easily

implemented.

Estimation of KL divergence when the distributions P and Q are discrete

has been studied in [9–11] for the regime with fixed alphabet size k and large

sample sizes m and n. Such a regime is very different from the large-alphabet

regime in which we are interested, with k scaling to infinity. Clearly, as k

increases, the scaling of the sample sizes m and n must be fast enough with

respect to k in order to guarantee consistent estimation.

In the large-alphabet regime, KL divergence estimation is closely relat-

ed to entropy estimation with a large alphabet recently studied in [12–15].

Compared to entropy estimation, KL divergence estimation has one more

dimension of uncertainty, that is, regarding the distribution Q. Some distri-

butions Q can contain very small point masses that contribute significantly to

the value of divergence, but are difficult to estimate because samples of these

point masses occur rarely. In particular, such distributions dominate the risk

in (1.3) and make the construction of consistent estimators challenging.

1.5 Contribution of Thesis

We summarize our main contribution in the following three theorems,

whose detailed proofs are given respectively in Chapters 2, 3 and 4.

Our first result, based on Le Cam’s two-point method [16], is that there is

no consistent estimator of KL divergence over the distribution set Mk.

Theorem 1. For any m,n ∈ N, and k ≥ 2, R∗(k,m, n) is infinite. There-

fore, there exists no consistent estimator of KL divergence over the set Mk.

The intuition behind this result is that the set Mk contains distributions

Q that have arbitrarily small components that contribute significantly to

KL divergence but require arbitrarily large number of samples to estimate

accurately. However, in practical applications, it is reasonable to assume that

the ratio of P to Q is bounded. Thus, we further focus on the set Mk,f(k)

given in (1.6) that contains distribution pairs (P,Q) with their density ratio

bounded by f(k).
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We construct an augmented plug-in estimator, and characterize the suffi-

cient and necessary conditions on the sample complexity such that the esti-

mator is consistent in the following theorem.

Theorem 2. The augmented plug-in estimator of KL divergence is consistent

over the set Mk,f(k) if and only if

m� k ∨ log2(f(k)) and n� kf(k). (1.9)

Our proof of the sufficient conditions is based on evaluating the bias and

variance of the estimator separately. Our proof of the necessary condition

m � log2 f(k) is based on Le Cam’s two-point method with a judicious-

ly chosen pair of distributions. And our proof of the necessary conditions

m � k and n � kf(k) is based on analyzing the bias of the estimator and

constructing different pairs of “worst case” distributions for the cases where

either the bias caused by insufficient samples from P or the bias caused by

insufficient samples from Q dominates.

The above result suggests that the required samples m and n should be

larger than the alphabet size k for the plug-in estimator to be consistent. This

naturally inspires the question of whether the plug-in estimator achieves the

minimax risk, and if not, what estimator is minimax optimal and what is the

corresponding minimax risk.

We show that the augmented plug-in estimator is not minimax optimal,

and that an estimator that employs both the polynomial approximation and

plug-in approaches is minimax optimal, and the following theorem charac-

terizes the minimax risk.

Theorem 3. If f(k) ≥ log2 k, logm . log k, log2 n . k1−ε, m & k
log k

and

n & kf(k)
log k

, where ε is any positive constant, then the minimax risk satisfies

R∗(k,m, n, f(k)) �

(
k

m log k
+
kf(k)

n log k

)2

+
log2 f(k)

m
+
f(k)

n
. (1.10)

The key idea in the construction of the minimax optimal estimator is the

application of a polynomial approximation to reduce the bias in the regime

where the bias of the plug-in estimator is large. Compared to entropy es-

timation [13, 15], the challenge here is that the KL divergence is a function

of two variables, for which a joint polynomial approximation is difficult to
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derive. We solve this problem by employing separate polynomial approxima-

tions for functions involving P and Q as well as judiciously using the density

ratio constraint to bound the estimation error. The proof of the lower bound

on the minimax risk is based on a generalized Le Cam’s method involving

two composite hypotheses, as in the case of entropy estimation [13]. But

the challenge here that requires special technical treatment is the construc-

tion of prior distributions for (P,Q) that satisfy the bounded density ratio

constraint.

We note that the first term
(

k
m log k

+ kf(k)
n log k

)2

in (1.10) captures the squared

bias, and the remaining terms correspond to the variance. If we compare the

upper bound on the risk in (3.3) for the augmented plug-in estimator with

the minimax risk in (1.10), there is a log k factor rate improvement in the

bias.

Theorem 3 directly implies that in order to estimate the KL divergence

over the set Mk,f(k) with vanishing mean squared error, the sufficient and

necessary conditions on the sample complexity are given by

m� (log2 f(k) ∨ k

log k
), and n� kf(k)

log k
. (1.11)

The comparison of (1.11) with (1.9) shows that the augmented plug-in esti-

mator is strictly sub-optimal.
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CHAPTER 2

NO CONSISTENT ESTIMATOR OVERMK

Theorem 1 states that the minimax risk over the setMk is unbounded for

arbitrary alphabet size k and m and n samples, which suggests that there is

no consistent estimator for the minimax risk over Mk.

We will provide a rigorous proof in the following section. The idea follows

from Le Cam’s two-point method [16]: If two pairs of distributions (P (1), Q(1))

and (P (2), Q(2)) are sufficiently close such that it is impossible to reliably

distinguish between them using m samples from P and n samples from Q

with error probability less than some constant, then any estimator suffers a

quadratic risk proportional to the squared difference between the divergence

values.

2.1 Lower Bound for the Worst Case Risk over SetMk

Proof. For any fixed (k,m, n), applying Le Cam’s two-point method, we have

R∗(k,m, n) ≥ 1

16
(D(P (1)‖Q(1))−D(P (2)‖Q(2)))2 (2.1)

exp
(
−mD(P (1)‖P (2))− nD(Q(1)‖Q(2))

)
.

The idea here is to keep P (1) close to P (2), and Q(1) close to Q(2), so that

D(P (1)‖P (2)) ≤ 1
m
, D(Q(1)‖Q(2)) ≤ 1

n
, but keep (D(P (1)‖Q(1))−D(P (2)‖Q(2)))2

large. We construct the following two pairs of distributions:

P (1) = P (2) =

(
1

2(k − 1)
, . . . ,

1

2(k − 1)
,
1

2

)
, (2.2)

Q(1) =

(
1− ε1
k − 1

, . . . ,
1− ε1
k − 1

, ε1

)
, (2.3)

Q(2) =

(
1− ε2
k − 1

, . . . ,
1− ε2
k − 1

, ε2

)
, (2.4)
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where 0 < ε1 < 1/4, and ε2 = ε1 + 1
4n
< 1

2
. By such a construction, we obtain

D(P (1)‖P (2)) = 0, (2.5)

D(Q(1)‖Q(2)) = (1− ε1) log
1− ε1
1− ε2

+ ε1 log
ε1
ε2
. (2.6)

Furthermore,

D(Q(1)‖Q(2)) = (1− ε1) log

(
1 +

ε2 − ε1
1− ε2

)
+ ε1 log

ε1
ε1 + 1

4n

= (1− ε1) log

(
1 +

1

4n(1− ε2)

)
+ ε1 log

ε1
ε1 + 1

4n

<
1− ε1

4n(1− ε2)
. (2.7)

Since ε1 > 0 and ε2 < 1/2, we obtain D(Q(1)‖Q(2)) ≤ 1
2n

.

By the construction of (P (1), Q(1)) and (P (2), Q(2)),

(
D(P (1)‖Q(1))−D(P (2)‖Q(2))

)2
=

(
1

2
log
(1− ε2

1− ε1
)

+
1

2
log

ε2
ε1

)2

=

(
1

2
log
(1− ε2

1− ε1
)

+
1

2
log
(
1 +

1

4nε1

))2

.

(2.8)

Note that |1
2

log
(

1−ε2
1−ε1

)
| is upper bounded by log 2. The only constraint for

(2.8) is 0 < ε1 < 1/4. Hence, we can choose ε1 to be arbitrarily small, such

that 1
4nε1

is arbitrarily large for any fixed k, m and n. Consequently,

(
D(P (1)‖Q(1))−D(P (2)‖Q(2))

)2
=

(
1

2
log
(1− ε2

1− ε1
)

+
1

2
log
(
1 +

1

4nε1

))2

→∞,

(2.9)

as ε1 → 0. Therefore, the minimax quadratic risk lower bound is infinity for

any fixed k, m and n, which implies that there does not exist any consistent

estimator over the set Mk.
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2.2 Example

We next give an example of binary distributions, i.e., k = 2, to illustrate

how the distributions in the proof can be constructed. We let P1 = P2 =

(1
2
, 1

2
), Q1 = (e−s, 1 − e−s) and Q2 = ( 1

2s
, 1 − 1

2s
), where s > 0. For any

n ∈ N, we choose s sufficiently large such that D(Q1‖Q2) < 1
n
. Thus, the

error probability for distinguishing Q1 and Q2 with n samples is greater

than a constant. However, D(P1‖Q1) � s and D(P2‖Q2) � log s. Hence,

the minimax risk, which is lower bounded by the difference of the above

divergences, can be made arbitrarily large by letting s → ∞. This example

demonstrates that two pairs of distributions (P1, Q1) and (P2, Q2) can be

very close so that the data samples are almost indistinguishable, but the KL

divergences D(P1‖Q1) and D(P2‖Q2) can still be far away. In such a case,

it is not possible to estimate the KL divergence accurately over the set Mk

under the minimax setting.
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CHAPTER 3

AUGMENTED PLUG-IN ESTIMATOR

Since there exists no consistent estimator of KL divergence over the set

Mk, we study estimators over the set Mk,f(k).

3.1 Augmented Plug-in Estimator over SetMk,f(k)

The “plug-in” approach is a natural way to estimate the KL divergence,

namely, first estimate the distributions and then substitute these estimates

into the divergence function. This leads to the following plug-in estimator,

i.e., the empirical divergence

D̂plug−in(M,N) = D(P̂‖Q̂), (3.1)

where P̂ = (P̂1, . . . , P̂k) and Q̂ = (Q̂1, . . . , Q̂k) denote the empirical distribu-

tions with P̂i = Mi

m
and Q̂i = Ni

n
, respectively, for i = 1, · · · , k.

As frequently observed in functional estimation problems, the plug-in esti-

mator is simple but may cause a lot of problems. Unlike the entropy estima-

tion problem, where the plug-in estimator Ĥplug−in is asymptotically efficient

in the “fixed P , large n” regime, the direct plug-in estimator D̂plug−in in

(3.1) of KL divergence has an infinite bias. This is because of the non-zero

probability of Nj = 0 and Mj 6= 0, for some j ∈ [k], which leads to infinite

D̂plug−in.

We can get around the above issue associated with the direct plug-in esti-

mator if we add one more sample to each mass point of Q, and take Q̂′i = Ni+1
n

as an estimate of Qi so that Q̂′i is non-zero for all i. We therefore propose

the following “augmented plug-in” estimator based on Q̂′i:

D̂A−plug−in(M,N) =
k∑
i=1

Mi

m
log

Mi/m

(Ni + 1)/n
. (3.2)
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Theorem 2 characterizes sufficient and necessary conditions on the sample

complexity to guarantee consistency of the augmented plug-in estimator over

Mk,f(k). The proof of Theorem 2 involves the proofs of the following two

propositions, which provide upper and lower bounds on the worst case risk

of augmented plug-in estimator, respectively.

3.2 Upper Bound for the Worst Case Risk of

Augmented Plug-in Estimator

Proposition 1. For all k ∈ N, m & k and n & kf(k),

R(D̂A−plug−in, k,m, n, f(k)) .

(
kf(k)

n
+
k

m

)2

+
log2(k)

m
+

log2 f(k)

m
+
f(k)

n
.

(3.3)

Therefore, if m� (k ∨ log2 f(k)) and n� kf(k),

R(D̂A−plug−in, k,m, n, f(k))→ 0, ask →∞.

Proof. The proof consists of separately bounding the bias and variance of the

augmented plug-in estimator. The details are provided in Appendix A.

It can be seen that in the risk bound (3.3), the first term captures the

squared bias, and the remaining terms correspond to the variance.

3.3 Lower Bound for the Worst Case Risk of

Augmented Plug-in Estimator

Proposition 2. If m . (k ∨ log2 f(k)), or n . kf(k), then for sufficiently

large k

R(D̂A−plug−in, k,m, n, f(k)) & 1. (3.4)

Outline of Proof. We provide the central idea of the proof here with the de-

tails provided in Appendix B. It can be shown that the bias of the augmented

11



plug-in estimator is lower and upper bounded as follows:

sup
(P,Q)∈Mk,f(k)

E[D̂A−plug−in(m,n)−D(P‖Q)] ≥ (
k

m
∧ 1)− kf(k)

n
(3.5a)

E[D̂A−plug−in(m,n)−D(P‖Q)] ≤ log

(
1 +

k

m

)
− k − 1

k
exp(− 1.05n

kf(k)
).

(3.5b)

1) If m . k and n� kf(k), the lower bound in (3.5a) is lower bounded by a

positive constant, for large k. Hence, the bias as well as the risk is lower

bounded by a positive constant.

2) If m � k and n . kf(k), the upper bound in (3.5b) is upper bounded

by a negative constant, for large k. This implies that the risk is lower

bounded by a positive constant.

3) If m . k and n . kf(k), the lower bound (3.5a) and the upper bound

(3.5b) provide no useful information. Hence, we design another approach

for this case as follows.

The bias of the augmented plug-in estimator can be decomposed into:

1. bias due to estimating
∑k

i=1 Pi logPi;

2. bias due to estimating
∑k

i=1 Pi logQi.

It can be shown that the first bias term is always positive for any distri-

bution P . The second bias term is always negative for any distribution Q.

Hence, the two bias terms may cancel out partially or even fully. Thus, to

show that the risk is bounded away from zero, the idea is to first determine

which bias dominates, and then to accordingly construct a pair of distri-

butions such that the dominant bias is either lower bounded by a positive

constant or upper bounded by a negative constant.

If k
m
≥ (1 + ε)αkf(k)

n
, where ε > 0 and 0 < α < 1 are constants, and which

implies that the number of samples drawn from P is smaller than the number

of samples drawn from Q, the first bias term dominates. If P is uniform and

Q =
(

1
αkf(k)

, · · · , 1
αkf(k)

, 1− k−1
αkf(k)

)
, then it can be shown that the bias

(and hence the risk) is lower bounded by a positive constant.
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If k
m
< (1+ ε)αkf(k)

n
, which implies that the number of samples drawn from

P is larger than the number of samples drawn from Q, the second bias term

dominates.

• If n ≤ kf(k), set P to be uniform andQ =
(

1
kf(k)

, · · · , 1
kf(k)

, 1− k−1
kf(k)

)
.

• If n > kf(k), set P =
(
f(k)
n
, · · · , f(k)

n
, 1− (k−1)f(k)

n

)
, and

Q =
(

1
n
, . . . , 1

n
, 1− k−1

n

)
.

It can be shown that the bias is upper bounded by a negative constant.

Hence, the risk is lower bounded by a positive constant.

4) If m . log2 f(k), we construct two pairs of distributions as follows:

P (1) =

(
1

3(k − 1)
, · · · , 1

3(k − 1)
,
2

3

)
, (3.6)

P (2) =

(
1− ε

3(k − 1)
, · · · , 1− ε

3(k − 1)
,
2 + ε

3

)
, (3.7)

Q(1) =Q(2) =

(
1

3(k − 1)f(k)
, · · · , 1

3(k − 1)f(k)
, 1− 1

3f(k)

)
. (3.8)

By Le Cam’s two-point method [16], it can be shown that if m . log2 f(k),

no estimator can be consistent, which implies that the augmented plug-in

estimator is not consistent.
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CHAPTER 4

MINIMAX QUADRATIC RISK OVER
MK,F (K)

Our third main result, Theorem 3, characterizes the minimax quadratic

risk (within a constant factor) of estimating KL divergence over Mk,f(k).

In this chapter, we describe ideas and central arguments underlying this

theorem, with detailed proofs relegated to the appendix.

4.1 Poisson Sampling

The sufficient statistics for estimating D(P‖Q) are the histograms of the

samples M = (M1, . . . ,Mk) and N = (N1, . . . , Nk), and M and N are multi-

nomial distributed. However, the histograms are not independent across

different bins, which is hard to analyze. In this subsection, we introduce the

Poisson sampling technique to handle the dependency of the multinomial

distribution across different bins, as in [13] for entropy estimation. Such a

technique is used in our proofs to develop the lower and upper bounds on

the minimax risk in Sections 4.2 and 4.3.

In Poisson sampling, we replace the deterministic sample sizes m and n

with Poisson random variables m′ ∼ Poi(m) with mean m and n′ ∼ Poi(n)

with mean n, respectively. Under this model, we drawm′ and n′ i.i.d. samples

from P and Q, respectively. The sufficient statistics Mi ∼ Poi(nPi) and

Ni ∼ Poi(nQi) are then independent across different bins, which significantly

simplifies the analysis.

Analogous to the minimax risk (1.8), we define its counterpart under the

Poisson sampling model as

R̃∗(k,m, n, f(k)) , inf
D̂

sup
(P,Q)∈Mk,f(k)

E[(D̂(M,N)−D(P‖Q))2], (4.1)

where the expectation is taken over Mi ∼ Poi(nPi) and Ni ∼ Poi(nQi) for

14



i = 1, . . . , k. Since the Poisson sample sizes are concentrated near their means

m and n with high probability, the minimax risk under Poisson sampling is

close to that with fixed sample sizes as stated in the following lemma.

Lemma 1. There exists a constant c > 1
4

such that

R̃∗(k, 2m, 2n, f(k))− e−cm log2 f(k)− e−cn log2 f(k) (4.2)

≤ R∗(k,m, n, f(k)) ≤ 4R̃∗(k,m/2, n/2, f(k)).

Proof. See Appendix C.

Thus, in order to show Theorem 3, it suffices to bound the Poisson risk

R̃∗(k,m, n, f(k)). In Section 4.2, a lower bound on the minimax risk with

deterministic sample size is derived, and in Section 4.3, an upper bound on

the minimax risk with Poisson sampling is derived, which further yields an

upper bound on the minimax risk with deterministic sample size. It can be

shown that the upper and lower bounds match each other (up to a constant

factor).

4.2 Minimax Lower Bound

In this subsection, we develop the following lower bound on the minimax

risk for the estimation of KL divergence over the set Mk,f(k).

Proposition 3. If f(k) ≥ log2 k and log2 n . k, m & k
log k

, n & kf(k)
log k

,

R∗(k,m, n, f(k)) &

(
k

m log k
+
kf(k)

n log k

)2

+
log2 f(k)

m
+
f(k)

n
. (4.3)

Outline of Proof. We describe the main idea in the development of the lower

bound, with the detailed proof provided in Appendix D.

To prove Proposition 3, it suffices to show that the minimax risk is lower

bounded separately by each individual terms in (4.3) in the order sense. The

proof for the last two terms requires the Le Cam’s two-point method, and

the proof for the first term requires a more general method, as we outline in

the following.
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Le Cam’s two-point method: The last two terms in the lower bound

correspond to the variance of the estimator.

The bound R∗(k,m, n, f(k)) & log2 f(k)
m

can be shown by setting

P (1) =

(
1

3(k − 1)
, . . . ,

1

3(k − 1)
,
2

3

)
, (4.4)

P (2) =

(
1− ε

3(k − 1)
, . . . ,

1− ε
3(k − 1)

,
2 + ε

3

)
, (4.5)

Q(1) = Q(2) =

(
1

3(k − 1)f(k)
, . . . ,

1

3(k − 1)f(k)
, 1− 1

3f(k)

)
, (4.6)

where ε = 1√
m

.

The bound R∗(k,m, n, f(k)) & f(k)
n

can be shown by choosing

P (1) = P (2) =

(
1

3(k − 1)
, 0, . . . ,

1

3(k − 1)
, 0,

5

6

)
, (4.7)

Q(1) =

(
1

2(k − 1)f(k)
, . . . ,

1

2(k − 1)f(k)
, 1− 1

2f(k)

)
, (4.8)

Q(2) =

(
1− ε

2(k − 1)f(k)
,

1 + ε

2(k − 1)f(k)
, . . . ,

1− ε
2(k − 1)f(k)

,
1 + ε

2(k − 1)f(k)
, 1− 1

2f(k)

)
,

(4.9)

where ε =
√

f(k)
n

.

Generalized Le Cam’s method: In order to show thatR∗(k,m, n, f(k)) &(
k

m log k
+ kf(k)

n log k

)2

, it suffices to show that R∗(k,m, n, f(k)) &
(

k
m log k

)2

and

R∗(k,m, n, f(k)) &
(
kf(k)
n log k

)2

. These two lower bounds can be shown by

applying a generalized Le Cam’s method, which involves the following two

composite hypotheses [16]:

H0 : D(P‖Q) ≤ t versus H1 : D(P‖Q) ≥ t+ d. (4.10)

Le Cam’s two-point approach is a special case of this generalized method. If

no test can distinguish H0 and H1 reliably, then we obtain a lower bound

on the quadratic risk with order d2. Furthermore, the optimal probability

of error for composite hypothesis testing is equivalent to the Bayesian risk

under the least favorable priors. Our goal here is to construct two prior

distributions on (P,Q) (respectively for two hypothesis), such that the two

corresponding divergence values are separated (by d), but the error proba-

bility of distinguishing between the two hypotheses is large. However, it is
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difficult to design joint prior distributions on (P,Q) that satisfy the above

desired property. In order to simplify this procedure, we set one of the dis-

tributions P and Q to be known. Then the minimax risk when both P and

Q are unknown is lower bounded by the minimax risk with only either P

or Q being unknown. In this way, we only need to design priors on one

distribution, which can be shown to be sufficient for the proof of the lower

bound.

In order to show that R∗(k,m, n, f(k)) &
(

k
m log k

)2

, we set Q to be the

uniform distribution and assume it is known. Therefore, the estimation of

D(P‖Q) reduces to the estimation of
∑k

i=1 Pi logPi, which is the entropy of

P . Following steps similar to those in [13], we can obtain the desired result.

In order to show that R∗(k,m, n, f(k)) &
( kf(k)
n log k

)2
, we set

P =
( f(k)

n log k
, . . . ,

f(k)

n log k
, 1− (k − 1)f(k)

n log k

)
, (4.11)

and assume P is known. Therefore, the estimation of D(P‖Q) reduces to

the estimation of
∑k

i=1 Pi logQi. We then properly design priors on Q and

apply the generalized Le Cam’s method to obtain the desired result.

We note that the proof of Proposition 3 may be strengthened by designing

jointly distributed priors on (P,Q), instead of treating them separately. This

may help to relax or remove the conditions f(k) ≥ log2 k and log2 n . k in

Proposition 3.

4.3 Minimax Upper Bound via Optimal Estimator

Comparing the lower bound in Proposition 3 with the upper bound in

Proposition 1 that characterizes an upper bound on the risk for the aug-

mented plug-in estimator, it is clear that there is a difference of a log k factor

in the bias terms, which implies that the augmented plug-in estimator is

not minimax optimal. A promising approach to fill in this gap is to design

an improved estimator. Entropy estimation [13, 15] suggests incorporating

a polynomial approximation into the estimator in order to reduce the bias

with price of the variance. In this subsection, we construct an estimator

using this approach, and characterize an upper bound on the minimax risk
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in Proposition 4.

The KL divergence D(P‖Q) can be written as

D(P‖Q) =
k∑
i=1

Pi logPi −
k∑
i=1

Pi logQi. (4.12)

The first term equals the entropy of P , and the minimax optimal entropy

estimator (denoted by D̂1) in [13] can be applied to estimate it. The major

challenge in estimating D(P‖Q) arises due to the second term. We overcome

the challenge by using a polynomial approximation to reduce the bias when

Qi is small. Under Poisson sampling model, unbiased estimators can be con-

structed for any polynomials of Pi and Qi. Thus, if we approximate Pi logQi

by polynomials, and then construct unbiased estimator for the polynomials,

the bias of estimating Pi logQi is reduced to the error in the approximation

of Pi logQi using polynomials.

A natural idea is to construct polynomial approximation for |Pi logQi| in

two dimensions, exploiting the fact that |Pi logQi| is bounded by f(k) log k.

However, it is challenging to find the explicit form of the best polynomial

approximation in this case [17].

On the other hand, a one-dimensional polynomial approximation of logQi

also appears challenging to develop. First of all, the function log x on interval

(0, 1] is not bounded due to the singularity point at x = 0. Hence, the

approximation of log x when x is near the point x = 0 is inaccurate. Secondly,

such an approach implicitly ignores the fact that Pi
Qi
≤ f(k), which implies

that when Qi is small, the value of Pi should also be small.

Another approach is to rewrite the function Pi logQi as ( Pi
Qi

)Qi logQi, and

then estimate Pi
Qi

and Qi logQi separately. Although the function Qi logQi

can be approximated using polynomial approximation and then estimated

accurately (see [18, Section 7.5.4] and [13]), it is difficult to find a good

estimator for Pi
Qi

.

Motivated by the unsuccessful approaches, we design our estimator as fol-

lows. We rewrite Pi logQi as Pi
1
Qi
Qi logQi. When Qi is small, we construct

a polynomial approximation µL(Qi) for Qi logQi, which does not contain a

zero-degree term. Then, µL(Qi)
Qi

is also a polynomial, which can be used to

approximate 1
Qi
Qi logQi. Thus, an unbiased estimator for µL(Qi)

Qi
is construct-

ed. Note that the error in the approximation of logQi using µL(Qi)
Qi

is not
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bounded, which implies that the bias of using unbiased estimator of µL(Qi)
Qi

to estimate logQi is not bounded. However, we can show that the bias of

estimating Pi logQi is bounded, which is due to the density ratio constraint

f(k). The fact that when Qi is small, Pi is also small, helps to reduce the

bias. In the following, we will introduce how we construct our estimator in

detail.

By Lemma 1, we apply Poisson sampling to simplify the analysis. We

first draw m′1 ∼Poi(m), and m′2 ∼Poi(m), and then draw m′1 and m′2 i.i.d.

samples from distribution P , where we use M = (M1, . . . ,Mk) and M ′ =

(M ′
1, . . . ,M

′
k) to denote the histograms of m′1 samples and m′2 samples, re-

spectively. We then use these samples to estimate
∑k

i=1 Pi logPi following

the entropy estimator proposed in [13]. Next, we draw n′1 ∼Poi(n) and

n′2 ∼Poi(n) independently. We then draw n′1 and n′2 i.i.d. samples from

distribution Q, where we use N = (N1, . . . , Nk) and N ′ = (N ′1, . . . , N
′
k) to

denote the histograms of n′1 samples and n′2 samples, respectively. We note

that Ni∼Poi(nQi), and N ′i∼Poi(nQi).

We then focus on the estimation of
∑k

i=1 Pi logQi. If Qi ∈ [0, c1 log k
n

], we

construct a polynomial approximation for the function Pi logQi and further

estimate the polynomial function. And if Qi ∈ [ c1 log k
n

, 1], we use the bias

corrected augmented plug-in estimator. We use N ′ to determine whether to

use a polynomial estimator or plug-in estimator, and we use N to estimate∑k
i=1 Pi logQi. Intuitively, if N ′i is large, then Qi is more likely to be large,

and vice versa. Based on the generation scheme, N and N ′ are independent.

Such independence significantly simplifies the analysis.

We let L = bc0 log kc, where c0 is a constant to be determined later, and

denote the degree-L best polynomial approximation of the function x log x

over the interval [0, 1] as
∑L

j=0 ajx
j. We further scale the interval [0, 1] to

[0, c1 log k
n

]. Then we have the best polynomial approximation of the function

x log x over the interval [0, c1 log k
n

] as follows:

γL(x) =
L∑
j=0

ajn
j−1

(c1 log k)j−1
xj −

(
log

n

c1 log k

)
x. (4.13)

Following the result in [18, Section 7.5.4], the error in approximating x log x
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by γL(x) over the interval [0, c1 log k
n

] can be upper bounded as follows:

sup
x∈[0,

c1 log k
n

]

|γL(x)− x log x| . 1

n log k
. (4.14)

Therefore, we have |γL(0) − 0 log 0| . 1
n log k

, which implies that the zero-

degree term in γL(x) satisfies:

a0c1 log k

n
.

1

n log k
. (4.15)

Now, subtracting the zero-degree term from γL(x) in (4.13) yields the follow-

ing polynomial:

µL(x) , γL(x)− a0c1 log k

n

=
L∑
j=1

ajn
j−1

(c1 log k)j−1
xj −

(
log

n

c1 log k

)
x. (4.16)

The error in approximating x log x by µL(x) over the interval [0, c1 log k
n

] can

also be upper bounded by 1
n log k

, because

sup
x∈[0,

c1 log k
n

]

|µL(x)− x log x| = sup
x∈[0,

c1 log k
n

]

∣∣∣∣γL(x)− x log x− a0c1 log k

n

∣∣∣∣
≤ sup

x∈[0,
c1 log k
n

]

|γL(x)− x log x|+
∣∣∣∣a0c1 log k

n

∣∣∣∣
.

1

n log k
. (4.17)

The bound in (4.17) implies that although µL(x) is not the best polynomial

approximation of x log x, the error in the approximation by µL(x) has the

same order as that by γL(x). Compared to γL(x), there is no zero-degree

term in µL(x), and hence µL(x)
x

is a valid polynomial approximation of log x.

Although the approximation error of log x using µL(x)
x

is unbounded, the error

in the approximation of Pi logQi using Pi
µL(Qi)
Qi

can be bounded. More im-

portantly, by the way in which we constructed µL(x), Pi
µL(Qi)
Qi

is a polynomial

function of Pi and Qi, for which an unbiased estimator can be constructed.

More specifically, the error in using Pi
µL(Qi)
Qi

to approximate Pi logQi can be
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bounded as follows:∣∣∣∣PiµL(Qi)

Qi

− Pi logQi

∣∣∣∣ =
Pi
Qi

|µL(Qi)−Qi logQi| .
f(k)

n log k
, (4.18)

if Qi ∈ [0, c1 log k
n

]. We further define the factorial moment of x by (x)j ,
x!

(x−j)! . If X ∼Poi(λ), E[(X)j] = λj. Based on this fact, we construct an

unbiased estimator for µL(Qi)
Qi

as follows:

gL(Ni) =
L∑
j=1

aj
(c1 log k)j−1

(Ni)j−1 −
(

log
n

c1 log k

)
. (4.19)

We then construct our estimator for
∑k

i=1 Pi logQi as follows:

D̂2 =
k∑
i=1

(
Mi

m
gL(Ni)1{N ′i≤c2 log k} +

Mi

m

(
log

Ni + 1

n
− 1

2(Ni + 1)

)
1{N ′i>c2 log k}

)
.

(4.20)

For the term
∑k

i=1 Pi logPi in D(P‖Q), we use the minimax optimal en-

tropy estimator proposed in [13]. We note that γL(x) is the best polynomial

approximation of the function x log x. And an unbiased estimator of γL(x)

is as follows:

g′L(Mi) =
1

m

L′∑
j=1

aj
(c′1 log k)j−1

(Mi)j −
(

log
m

c′1 log k

)
Mi. (4.21)

Based on g′L(Mi), the estimator D̂1 for
∑k

i=1 Pi logPi is constructed as fol-

lows:

D̂1 =
k∑
i=1

(
g′L(Mi)1{M ′i≤c′2 log k} + (

Mi

m
log

Mi

m
− 1

2m
)1{M ′i>c′2 log k}

)
. (4.22)

Combining the estimator D̂1 in (4.22) for
∑k

i=1 Pi logPi [13] and the esti-

mator D̂2 in (4.20) for
∑k

i=1 Pi logQi, we obtain the estimator D̃opt for KL

divergence D(P‖Q) as

D̃opt = D̂1 − D̂2. (4.23)
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Due to the density ratio constraint, we can show that 0 ≤ D(P‖Q) ≤
log f(k). We therefore construct an estimator D̂opt as follows:

D̂opt = D̃opt ∨ 0 ∧ log f(k). (4.24)

The following proposition characterizes an upper bound on the worse case

risk of D̂opt.

Proposition 4. If log2 n . k1−ε, where ε is any positive constant, and

logm ≤ C log k for some constant C, then there exist c0, c1 and c2 depending

on C only, such that

sup
(P,Q)∈Mk,f(k)

E
[(
D̂opt(M,N)−D(P‖Q)

)2]
. (4.25)(

k

m log k
+
kf(k)

n log k

)2

+
log2 f(k)

m
+
f(k)

n
.

Proof. See Appendix E.

It is clear that the upper bound in Proposition 4 matches the lower bound

in Proposition 3 (up to a constant factor), and thus the constructed estimator

is minimax optimal, and the minimax risk in Theorem 3 is established.
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CHAPTER 5

NUMERICAL EXPERIMENTS

In this chapter, we provide numerical results to demonstrate the perfor-

mance of our estimators, and compare our augmented plug-in estimator and

minimax optimal estimator with a number of other KL divergence estimators.

To implement the minimax optimal estimator, we first compute the co-

efficients of the best polynomial approximation by applying the Remez al-

gorithm [19]. In our experiments, we replace the N ′i and M ′
i in (4.20) and

(4.22) with Ni and Mi, which means we use all the samples for both selecting

estimators (polynomial or plug-in) and estimation. We choose the constants

c0, c1 and c2 following ideas in [15]. More specifically, we set c0 = 1.2,

c2 ∈ [0.05, 0.2] and c1 = 2c2.

We compare the performance of the following five estimators: 1) our aug-

mented plug-in estimator (BZLV A-plugin) in (3.2); 2) our minimax optimal

estimator (BZLV opt) in (4.23); 3) Han, Jiao and Weissman’s modified plug-

in estimator (HJW M-plugin) in [20] ; 4) Han, Jiao and Weissman’s minimax

optimal estimator (HJW opt) [20]; 5) Zhang and Grabchak’s estimator (ZG)

in [9] which is constructed for fix-alphabet size setting.

We first compare the performance of the five estimators under the tradi-

tional setting in which we set k = 104 and let m and n change. We choose

two types of distributions (P,Q). The first type is given by

P =

(
1

k
,

1

k
, · · · , 1

k

)
, Q =

(
1

kf(k)
, · · · , 1

kf(k)
, 1− k − 1

kf(k)

)
, (5.1)

where f(k) = 5. For this pair of (P,Q), the density ratio is f(k) for

all but one of the bins, which is in a sense a worst-case for the KL di-

vergence estimation problem. We let m range from 103 to 106 and set

n = 3f(k)m. The second type is given by (P,Q) = (Zipf(1),Zipf(0.8))

and (P,Q) = (Zipf(1),Zipf(0.6)). The Zipf distribution is a discrete distri-

bution that is commonly used in linguistics, insurance, and the modeling of
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rare events. If P = Zipf(α), then Pi = i−α∑k
j=1 j

−α , for 1 ≤ i ≤ k. We let m

range from 103 to 106 and set n = 0.5f(k)m, where f(k) is computed for

these two pairs of Zipf distributions, respectively.

In Fig. 5.1, we plot the root mean square errors (RMSE) of the five esti-

mators as a function of the sample size m for these three pairs of distribu-

tions. It is clear from the figure that our minimax optimal estimator (BZLV

opt) and the HJW minimax optimal estimator (HJW opt) outperform the

other three approaches. Such a performance improvement is significant es-

pecially when the sample size is small. Furthermore, our augmented plug-in

estimator (BZLV A-plugin) has a much better performance than the HJW

modified plug-in estimator (HJW M-plugin), because the bias of estimating∑k
i=1 Pi logPi and the bias of estimating

∑k
i=1 Pi logQi may cancel each oth-

er out by the design of our augmented plug-in estimator. Furthermore, the

RMSEs of all five estimators converge to zero when the number of samples

is sufficiently large.

We next compare the performance of the five estimators under the large-

alphabet setting, in which we let k range from 103 to 106, and set m =
2k

log k
and n = kf(k)

log k
. We use the same three pairs of distributions as in the

previous setting. In Fig. 5.2, we plot the RMSEs of the five estimators as a

function of k. It is clear from the figure that our minimax optimal estimator

(BZLV opt) and the HJW minimax optimal estimator (HJW opt) have very

small estimation errors, which is consistent with our theoretical results of

the minimax risk bound. However, the RMSEs of the other three approaches

increase with k, which implies that m = 2k
log k

, n = kf(k)
log k

are insufficient for

those estimators.
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(a) P =
(
1
k ,

1
k , · · · ,

1
k

)
, Q =(

1
kf(k) , · · · ,

1
kf(k) , 1−

k−1
kf(k)

)
.

(b) P = Zipf(1), Q = Zipf(0.8).

(c) P = Zipf(1), Q = Zipf(0.6).

Figure 5.1: Comparison of five estimators under traditional setting with
k = 104, m ranging from 103 to 106 and n � f(k)m.
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(a) P =
(
1
k ,

1
k , · · · ,

1
k

)
, Q =(

1
kf(k) , · · · ,

1
kf(k) , 1−

k−1
kf(k)

)
.

(b) P = Zipf(1), Q = Zipf(0.8).

(c) P = Zipf(1), Q = Zipf(0.6).

Figure 5.2: Comparison of five estimators under large-alphabet setting with
k ranging from 103 to 106, m = 2k

log k
and n = kf(k)

log k
.
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CHAPTER 6

CONCLUSIONS

In this thesis, we studied the estimation of KL divergence between large-

alphabet distributions. We showed that there exists no consistent estimator

for KL divergence under the worst-case quadratic risk over all distribution

pairs. We then studied a more practical set of distribution pairs with bounded

density ratio. We proposed an augmented plug-in estimator and character-

ized tight sufficient and necessary conditions on the sample complexity for

such an estimator to be consistent. We further designed a minimax optimal

estimator by employing a polynomial approximation along with the plug-in

approach, and established the optimal minimax rate. We anticipate that the

designed KL divergence estimator can be used in various application con-

texts including classification, anomaly detection, community clustering, and

nonparametric hypothesis testing.
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APPENDIX A

PROOF OF PROPOSITION 1

The quadratic risk can be decomposed into the square of the bias and the

variance as follows:

E
[
(D̂A−plug−in(M,N)−D(P‖Q))2

]
=

(
E
[
D̂A−plug−in(M,N)−D(P‖Q)

])2

+ Var
[
D̂A−plug−in(M,N)

]
.

We bound the bias and the variance in the following two subsections, respec-

tively.

A.1 Bounding the Bias

The bias of the augmented plug-in estimator can be written as∣∣∣E(D̂A−plug−in(M,N)−D(P‖Q)
)∣∣∣

=

∣∣∣∣∣E
(

k∑
i=1

[
Mi

m
log

Mi/m

(Ni + 1)/n
− Pi log

Pi
Qi

])∣∣∣∣∣
=

∣∣∣∣∣E
(

k∑
i=1

[
Mi

m
log

Mi

m
− Pi logPi

])
+ E

(
k∑
i=1

[
Pi logQi −

Mi

m
log

Ni + 1

n

])∣∣∣∣∣
=

∣∣∣∣∣E
(

k∑
i=1

[
Mi

m
log

Mi

m
− Pi logPi

])
+ E

(
k∑
i=1

Pi log
nQi

Ni + 1

)∣∣∣∣∣
≤

∣∣∣∣∣E
(

k∑
i=1

[
Mi

m
log

Mi

m
− Pi logPi

])∣∣∣∣∣+

∣∣∣∣∣E
(

k∑
i=1

Pi log
nQi

Ni + 1

)∣∣∣∣∣ . (A.1)
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The first term in (A.1) is the bias of the plug-in estimator for entropy esti-

mation, which can be bounded as in [21]:∣∣∣∣∣E
(

k∑
i=1

[
Mi

m
log

Mi

m
− Pi logPi

])∣∣∣∣∣ ≤ log

(
1 +

k − 1

m

)
<

k

m
. (A.2)

Next, we bound the second term in (A.1) as follows:

E

(
k∑
i=1

Pi log
nQi

Ni + 1

)
=−

k∑
i=1

PiE
(

log
(
1 +

Ni + 1− nQi

nQi

))
(a)

≥ −
k∑
i=1

PiE
(
Ni + 1− nQi

nQi

)

=−
k∑
i=1

Pi
1

nQi

≥− kf(k)

n
, (A.3)

where (a) is due to the fact that log(1 + x) ≤ x. Furthermore, by Jensen’s

inequality, we have

E

(
k∑
i=1

Pi log
nQi

Ni + 1

)
=

k∑
i=1

PiE
(

log
nQi

Ni + 1

)
≤

k∑
i=1

Pi logE
[
nQi

Ni + 1

]
.

(A.4)

Let B(n, p) denote the binomial distribution where n is the total number of

experiments, and p is the probability that each experiment yields a desired

outcome. Note that since Ni ∼ B(n,Qi), then the expectation in (A.4) can
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be computed as follows:

E
[

1

Ni + 1

]
=

n∑
j=0

1

j + 1

(
n

j

)
Qj
i (1−Qi)

n−j

=
n∑
j=0

1

j + 1

n!

(n− j)!j!
Qj
i (1−Qi)

n−j

=
1

n+ 1

n∑
j=0

(n+ 1)!

(n− j)!(j + 1)!
Qj
i (1−Qi)

n−j

=
1

(n+ 1)Qi

n∑
j=0

(
n+ 1

j + 1

)
Qj+1
i (1−Qi)

n−j

=
1

(n+ 1)Qi

(1− (1−Qi)
n+1) <

1

nQi

. (A.5)

Thus, we obtain

E

(
k∑
i=1

Pi log
nQi

Ni + 1

)
≤

k∑
i=1

Pi logE
[
nQi

Ni + 1

]
<

k∑
i=1

Pi log
nQi

nQi

= 0. (A.6)

Combining (A.3) and (A.6), we obtain the following upper bound for the

second term in the bias:∣∣∣∣∣E
(

k∑
i=1

Pi log
nQi

Ni + 1

)∣∣∣∣∣ ≤ kf(k)

n
. (A.7)

Hence, ∣∣∣∣E(D̂A−plug−in(M,N)−D(P‖Q)

)∣∣∣∣ < k

m
+
kf(k)

n
. (A.8)

A.2 Bounding the Variance

Applying the Efron-Stein inequality [22, Theorem 3.1], we have:

Var[D̂A−plug−in(M,N)] ≤m
2
E
[
(D̂A−plug−in(M,N)− D̂A−plug−in(M ′, N))2

]
+
n

2
E
[
(D̂A−plug−in(M,N)− D̂A−plug−in(M,N ′))2

]
,

(A.9)
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whereM ′ andN ′ are the histograms of (X1, . . . , Xm−1, X
′
m) and (Y1, . . . , Yn−1, Y

′
n),

respectively. Here, X ′m is an independent copy of Xm and Y ′n is an indepen-

dent copy of Yn.

Let M̃ = (M̃1, . . . , M̃k) be the histogram of (X1, . . . , Xm−1), and Ñ =

(Ñ1, . . . , Ñk) be the histogram of (Y1, . . . , Yn−1). Then M̃ ∼ Multinomial(m−
1, P ) is independent from Xm and X ′m, and Ñ ∼ Multinomial(n − 1, Q) is

independent from Yn and Y ′n. Denote the function φ as

φ(x, y) , x log x− x log y. (A.10)

Using this notation, the augmented plug-in estimator can be written as

D̂A−plug−in(M,N) =
k∑
i=1

φ(
Mi

m
,
Ni + 1

n
). (A.11)

Let M̃Xm be the number of samples in bin Xm. We can bound the first

term in (A.9) as follows:

E
[
(D̂A−plug−in(M,N)− D̂A−plug−in(M ′, N))2

]
=E

[
E

[(
φ
(M̃Xm + 1

m
,
NXm + 1

n

)
+ φ
(M̃X′m

m
,
NX′m + 1

n

)
− φ
(M̃Xm

m
,
NXm + 1

n

)
− φ
(M̃X′m + 1

m
,
NX′m + 1

n

))2∣∣∣∣Xm, X
′
m

]]
(a)

≤4E

[
E

[(
φ
(M̃Xm + 1

m
,
NXm + 1

n

)
− φ
(M̃Xm

m
,
NXm + 1

n

))2∣∣∣∣Xm

]]

=4
k∑
j=1

E

[(
φ
(M̃j + 1

m
,
Nj + 1

n

)
− φ
(M̃j

m
,
Nj + 1

n

))2
]
Pj

=
4

m2

k∑
j=1

E

[(
(M̃j + 1) log

M̃j + 1

m
− M̃j log

M̃j

m
− log

Nj + 1

n

)2
]
Pj

=
4

m2

k∑
j=1

E

[(
log

M̃j + 1

m
+ M̃j log(1 +

1

M̃j

)− log
Nj + 1

n

)2
]
Pj

(b)

≤ 8

m2
+

8

m2

k∑
j=1

E

[(
log

M̃j + 1

m
− log

Nj + 1

n

)2
]
Pj, (A.12)

where (a) is due to the fact thatXm is independent and identically distributed
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as X ′m, and (b) is due to the fact that 0 ≤ x log(1 + 1
x
) ≤ 1 for all x > 0. We

rewrite the second term in (A.12) as follows:

E

[(
log

M̃j + 1

m

n

Nj + 1

)2
]

=E

[(
log

M̃j + 1

m

n

Nj + 1
1
{M̃j≤

mPj
2
}
1
{Nj>

nQj
2
}

)2
]

+ E

[(
log

M̃j + 1

m

n

Nj + 1
1
{M̃j>

mPj
2
}
1
{Nj>

nQj
2
}

)2
]

+ E

[(
log

M̃j + 1

m

n

Nj + 1
1
{M̃j≤

mPj
2
}
1
{Nj≤

nQj
2
}

)2
]

+ E

[(
log

M̃j + 1

m

n

Nj + 1
1
{M̃j>

mPj
2
}
1
{Nj≤

nQj
2
}

)2
]
.

To analyze the above equation, we first observe the following properties that

are useful:

If M̃j ≤
mPj

2
, then

1

m
≤ M̃j + 1

m
≤ Pj

2
+

1

m
;

If M̃j >
mPj

2
, then

Pj
2

+
1

m
<
M̃j + 1

m
≤ 1;

If Nj >
nQj

2
, then

Qj

2
+

1

n
<
Nj + 1

n
≤ 1 +

1

n
;

If Nj ≤
nQj

2
, then

1

n
≤ Nj + 1

n
≤ Qj

2
+

1

n
.

With the above bounds, and assuming that m > 2, n > 2, we next analyze

the following four cases:

1. If M̃j ≤ mPj
2

and Nj >
nQj

2
, then we have n

m(n+1)
≤ M̃j+1

m
n

Nj+1
≤

Pj
2

+ 1
m

Qj
2

+ 1
n

,
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and

E

[(
log

M̃j + 1

m

n

Nj + 1
1{M̃j≤m2 Pj}

1
{Nj>

nQj
2
}

)2
]

≤

[
log2(

n

m(n+ 1)
) +

(
log(

Pj
2

+
1

m
)− log(

Qj

2
+

1

n
)

)2
]
P
(
M̃j ≤

m

2
Pj

)
(c)

≤

[
log2(

1

2m
) +

(
log(

Pj
2

+
1

m
)− log(

Qj

2
+

1

n
)

)2
]

exp
(
− (m− 2)Pj

8

)
≤2

[
log2(

1

2m
) +

(
log2(

Pj
2

+
1

m
) + log2(

Qj

2
+

1

n
)

)]
exp

(
− (m− 2)Pj

8

)
≤2

[
log2(2m) +

(
log2(

Pj
2

) + log2(
Qj

2
)

)]
exp

(
− (m− 2)Pj

8

)
,

(A.13)

where (c) follows from the Chernoff bound on the binomial tail.

2. If M̃j >
mPj

2
and Nj >

nQj
2

, then we have n
n+1

(
Pj
2

+ 1
m

) ≤ M̃j+1

m
n

Nj+1
≤

1
Qj
2

+ 1
n

, and

E

[(
log

M̃j + 1

m

n

Nj + 1
1{M̃j>

m
2
Pj}1{Nj>

nQj
2
}

)2
]

≤
[
log2(

n

n+ 1
(
Pj
2

+
1

m
)) + log2(

Qj

2
+

1

n
)

]
≤2

[
log2(

Pj
4

) + log2(
Qj

2
)

]
. (A.14)

3. If M̃j ≤ mPj
2

and Nj ≤ nQj
2

, then we have 1

m(
Qj
2

+ 1
n

)
≤ M̃j+1

m
n

Nj+1
≤

nPj
2

+ n
m

, and

E

[(
log

M̃j + 1

m

n

Nj + 1
1{M̃j≤m2 Pj}

1
{Nj≤

nQj
2
}

)2
]

≤
[
log2(m(

Qj

2
+

1

n
)) + log2(n(

Pj
2

+
1

m
))

]
exp

(
− (m− 2)Pj

8
− nQj

8

)
≤2

[
log2(

Qj

2
) + log2m+ log2(

Pj
2

) + log2 n

]
exp

(
− (m− 2)Pj

8
− nQj

8

)
.

(A.15)
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4. If M̃j >
mPj

2
and Nj ≤ nQj

2
, then we have

Pj
2

+ 1
m

Qj
2

+ 1
n

≤ M̃j+1

m
n

Nj+1
≤ n, and

E

[(
log

M̃j + 1

m

n

Nj + 1
1{M̃j>

m
2
Pj}1{Nj≤

nQj
2
}

)2
]

≤

[(
log(

Pj
2

+
1

m
)− log(

Qj

2
+

1

n
)

)2

+ log2 n

]
exp

(
− nQj

8

)
≤2

[
log2 n+

(
log2(

Pj
2

) + log2(
Qj

2
)

)]
exp

(
− nQj

8

)
. (A.16)

Combining the four cases together, we have

E
[
(D̂A−plug−in(M,N)− D̂A−plug−in(M ′, N))2

]
≤ 8

m2
+

8

m2

k∑
j=1

E

[(
log

M̃j + 1

m
− log

Nj + 1

n

)2
]
Pj

≤ 16

m2

k∑
j=1

Pj

[
log2(

Qj

2
) + log2m+ log2(

Pj
2

) + log2 n

]
exp

(
− (m− 2)Pj

8
− nQj

8

)
+

16

m2

k∑
j=1

Pj

[
log2(2m) +

(
log2(

Pj
2

) + log2(
Qj

2
)

)]
exp

(
− (m− 2)Pj

8

)
+

16

m2

k∑
j=1

Pj

[
log2(n) +

(
log2(

Pj
2

) + log2(
Qj

2
)

)]
exp

(
− nQj

8

)
+

16

m2

k∑
j=1

Pj

[
log2(

Pj
4

) + log2(
Qj

2
)

]
+

8

m2

≤ 16

m2

k∑
j=1

Pj

[
4 log2(

4

Pj
) + 4 log2(

2

Qj

) + 2 log2(2m) exp
(
− (m− 2)Pj

8

)
+ 2 log2 n exp

(
− nQj

8

)]
+

8

m2
. (A.17)

Now, we analyze the asymptotic behavior of the above four terms in (A.17):

1. It can be shown that
∑k

j=1−Pj logPj ≤ log k and
∑k

j=1 Pj log2 Pj ≤
log2 k. Hence, we obtain

k∑
j=1

Pj log2(
4

Pj
) =

k∑
j=1

Pj(log2(Pj)+log2 4−2 logPj log 4) ≤ (log k+log 4)2.

(A.18)
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2. Given the bounded ratio constraint 1
Qj
≤ f(k)

Pj
, we have

k∑
j=1

Pi log2(
2

Qj

) ≤
k∑
j=1

Pj log2 2f(k)

Pj
(A.19)

=
k∑
j=1

Pi(log2 2f(k) + log2 Pj − 2 log 2f(k) logPj)

≤ (log k + log 2f(k))2.

3. Since supx>0 x exp(−nx/8) = 8
ne

, we have

k∑
i=1

Pi log2(2m) exp
(
− (m− 2)Pj

8

)
≤

k∑
i=1

8 log2(2m)

(m− 2)e
≤ 8k log2(2m)

(m− 2)e
.

(A.20)

4. Since Qj ≥ Pj
f(k)

, and supx>0 x exp(−nx/8) = 8
ne

, we have

k∑
i=1

Pi log2 n exp
(
−nQj

8

)
≤

k∑
i=1

log2 nPi exp
(
− nPj

8f(k)

)
≤ 8kf(k) log2 n

ne
.

(A.21)

Thus,

E
[
(D̂A−plug−in(M,N)− D̂A−plug−in(M ′, N))2

]
.

(log f(k) + log k)2

m2
+
k log2m

m3
+
kf(k) log2 n

m2n

.
(log f(k) + log k)2

m2

(
1 +

k log2m

m log2 k
+

kf(k) log2 n

log2(kf(k))n

)
, (A.22)

where the second term applies kf(k) ≥ k. Note that the assumption m & k

and n & kf(k) implies that k log2m
m log2 k

. 1 and kf(k) log2 n

log2(kf(k))n
. 1, because x

log x
is

an increasing function. We then obtain

E
[
(D̂A−plug−in(M,N)− D̂A−plug−in(M ′, N))2

]
.

log2 f(k) + log2 k

m2
. (A.23)
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The second term in (A.9) can be bounded similarly as follows:

E
[
(D̂A−plug−in(M,N)− D̂A−plug−in(M,N ′))2

]
=E

[
E

[(
φ
(MYm

m
,
ÑYm + 2

n

)
+ φ
(MY ′m

m
,
ÑY ′m + 1

n

)
− φ
(MYm

m
,
ÑYm + 1

n

)
− φ
(MY ′m

m
,
ÑY ′m + 2

n

))2∣∣∣∣Ym, Y ′m
]]

≤4E

[
E

[(
φ
(MYm

m
,
ÑYm + 2

n

)
− φ
(MYm

m
,
ÑYm + 1

n

))2∣∣∣∣Ym
]]

=4
k∑
j=1

E

[(
φ
(Mj

m
,
Ñj + 2

n

)
− φ
(Mj

m
,
Ñj + 1

n

))2
]
Qj

=4
k∑
j=1

E

[(
Mj

m
log
(

1 +
1

Ñj + 1

))2
]
Qj

=
4

m2

k∑
j=1

E
[
M2

j

]
E

[
log2

(
1 +

1

Ñj + 1

)]
Qj. (A.24)

Since Mj follows the binomial distribution, we compute E [Mj]
2 as follows:

E
[
M2

j

]
= E[Mj]

2 + Var(Mj) = m2P 2
j +mPj(1− Pj). (A.25)

We can also derive

E

[
log2

(
1 +

1

Ñj + 1

)]
≤ E

[( 1

Ñj + 1

)2
]

≤ E

[
2

(Ñj + 1)(Ñj + 2)

]
≤ 2

(n− 1)2Q2
j

, (A.26)
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where the last inequality follows similarly from (A.5). Thus,

E
[
(D̂A−plug−in(M,N)− D̂A−plug−in(M,N ′))2

]
=

4

m2

k∑
j=1

E
[
M2

j

]
E

[
log2

(
1 +

1

Ñj + 1

)]
Qj

≤4
k∑
j=1

(
P 2
j +

Pj(1− Pj)
m

)
2

(n− 1)2Q2
j

Qj

.
k∑
j=1

Pj
Qj

(
Pj +

1

m

)
2

n2

.
f(k)

n2
+
kf(k)

n2m
. (A.27)

Combing (A.23) and (A.27), we obtain the following upper bound on the

variance:

Var[D̂A−plug−in(M,N)]

≤m
2
E
[
(D̂A−plug−in(M,N)− D̂A−plug−in(M ′, N))2

]
+
n

2
E
[
(D̂A−plug−in(M,N)− D̂A−plug−in(M,N ′))2

]
.

log2 k

m
+

log2 f(k)

m
+
f(k)

n
+
kf(k)

nm
. (A.28)

Note that the term kf(k)
nm

in the variance can be further upper bounded as

follows:
kf(k)

nm
≤ kf(k)

n

k

m
≤
(
kf(k)

n
+
k

m

)2

. (A.29)

Combining (A.8), (A.28) and (A.29), we obtain the following upper bound

on the worse case quadratic risk for augmented plug-in estimator:

R(D̂A−plug−in, k,m, n, f(k)) .

(
kf(k)

n
+
k

m

)2

+
log2 k

m
+

log2 f(k)

m
+
f(k)

n
.

(A.30)
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APPENDIX B

PROOF OF PROPOSITION 2

In this section, we derive necessary conditions on the sample complexity to

guarantee consistency of the augmented plug-in estimator over Mk,f(k). We

first show that m � k and n � kf(k) are necessary by lower bounding the

squared bias. We then show that m � log2 f(k) is necessary by Le Cam’s

two-point method.

B.1 m� k and n� kf (k) Are Necessary

It can be shown that the mean square error is lower bounded by the squared

bias, which is as follows:

E
[(
D̂A−plug−in(M,N)−D(P‖Q)

)2
]
≥
(
E
[
D̂A−plug−in(M,N)−D(P‖Q)

])2

.

(B.1)

Following steps in (A.1), we have:

E[D̂A−plug−in(M,N)−D(P‖Q)] =E

(
k∑
i=1

(
Mi

m
log

Mi

m
− Pi logPi

))

+ E

(
k∑
i=1

Pi log
nQi

Ni + 1

)
. (B.2)

The first term in (B.2) is the bias of the plug-in entropy estimator. As shown

in [13] and [21], the worst case quadratic risk of the first term can be bounded
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as follows:

E

(
k∑
i=1

(
Mi

m
log

Mi

m
− Pi logPi

))
≥ (

k

m
∧ 1), if P is uniform distribution,

(B.3a)

E

(
k∑
i=1

(
Mi

m
log

Mi

m
− Pi logPi

))
≤ log

(
1 +

k − 1

m

)
, for any P .

(B.3b)

As shown in (A.3), we have the following bound on the second term in

(B.2):

−kf(k)

n
≤ E

(
k∑
i=1

Pi log
nQi

Ni + 1

)
, for any (P,Q). (B.4)

In order to obtain a tight bound for the bias, we choose the following

(P,Q):

P =

(
1

k
,

1

k
, · · · , 1

k

)
, Q =

(
1

kf(k)
, · · · , 1

kf(k)
, 1− k − 1

kf(k)

)
. (B.5)

It can be verified that P and Q satisfy the density ratio constraint. For this

a (P,Q) pair, we have

E

(
k∑
i=1

Pi log
nQi

Ni + 1

)
≤

k∑
i=1

Pi logE
[
nQi

Ni + 1

]

=
k∑
i=1

Pi log

(
nQi

(n+ 1)Qi

(1− (1−Qi)
n+1)

)

≤
k∑
i=1

Pi log(1− (1−Qi)
n+1)

≤ k − 1

k
log(1− (1− 1

kf(k)
)n+1)

≤ −k − 1

k
(1− 1

kf(k)
)n+1

= −k − 1

k
(1− 1

kf(k)
)kf(k)(n+1) 1

kf(k) . (B.6)

Since (1−x)1/x is decreasing on [0, 1], and limx→0(1−x)1/x = 1
e
, for sufficiently
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large k, 1/(kf(k)) is close to 0 , and thus we have

e−1 > (1− 1

kf(k)
)kf(k) > e−β0 , (B.7)

where β0 > 1 is a constant. Thus,

E

(
k∑
i=1

Pi log
nQi

Ni + 1

)
≤ −k − 1

k
exp(− β0n

kf(k)
), for (P,Q) in (B.5).

(B.8)

Combining (B.3a) and (A.3), we have

(
k

m
∧ 1)− kf(k)

n
≤ sup

(P,Q)∈Mk,f(k)

E[D̂A−plug−in(M,N)−D(P‖Q)], (B.9)

and combining (B.3b) and (B.8), we obtain

E[D̂A−plug−in(M,N)−D(P‖Q)] ≤ log

(
1 +

k

m

)
− k − 1

k
exp(− β0n

kf(k)
),

(B.10)

for (P,Q) in (B.5).

1) If m . k and n � kf(k), let m ≤ C1k, where C1 is a positive constant.

Then (B.9) suggests

sup
(P,Q)∈Mk,f(k)

E[D̂A−plug−in(M,N)−D(P‖Q)] ≥ (
k

m
∧1)−kf(k)

n
→ (

1

C1

∧1).

(B.11)

The bias is lower bounded by a positive constant, and hence, for suffi-

ciently large k, the augmented plug-in estimator is not consistent.

2) If m� k and n . kf(k), let n ≤ C2kf(k), where C2 is a positive constant.

Then (B.10) suggests

E[D̂A−plug−in(M,N)−D(P‖Q)] ≤ log

(
1 +

k

m

)
− k − 1

k
exp (− β0n

kf(k)
)

→ −k − 1

k
exp (− β0n

kf(k)
)

≤ −k − 1

k
e−β0C2 . (B.12)
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The bias is upper bounded by a negative constant, and hence, for suffi-

ciently large k, the augmented plug-in estimator is not consistent.

3) If m . k and n . kf(k), we cannot get a useful lower bound on the

squared bias from (B.9) and (B.10) using the chosen pair (P,Q). Hence,

we need to choose other pairs (P,Q).

The bias of the augmented plug-in estimator can be decomposed into: bias

due to estimating
∑k

i=1 Pi logPi and bias due to estimating
∑k

i=1 Pi logQi.

It can be shown that the first bias term is always positive because x log x is a

convex function. The second bias term is always negative for any distribution

Q. Hence, the two bias terms may cancel out partially or even fully. Thus,

to show that the risk is bounded away from zero, we first determine which

bias term dominates, and then construct a pair of distributions such that the

dominant bias term is either lower bounded by a positive constant or upper

bounded by a negative constant.

Case I: If k
m
≥ (1+ε)αkf(k)

n
, where ε > 0 and 0 < α < 1 are constants, and

which implies that the number of samples drawn from P is smaller than the

number of samples drawn from Q, the first bias term dominates. We then

set:

P =

(
1

k
,

1

k
, · · · , 1

k

)
, Q =

(
1

αkf(k)
, · · · , 1

αkf(k)
, 1− k − 1

αkf(k)

)
.

(B.13)

Let α > 1
f(k)

, and then 1 − k−1
αkf(k)

> 1
k
. It can be verified that the density

ratio between P and Q is bounded by αf(k) ≤ f(k). Since P is a uniform

distribution, which has the maximal entropy, the bias of entropy estimation

can be written as

E

(
k∑
i=1

(
Mi

m
log

Mi

m
− Pi logPi

))
= log k + E

(
k∑
i=1

Mi

m
log

Mi

m

)
. (B.14)

It can be shown that

k∑
i=1

Mi

m
log

Mi

m
≥ − logm. (B.15)
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Combining with (B.3a) and (B.3b), we have

(
k

m
∧ 1) ∨ log

k

m
≤ E

(
k∑
i=1

(
Mi

m
log

Mi

m
− Pi logPi

))
≤ log

(
1 +

k

m

)
.

(B.16)

And for the above choice of (P,Q),

E

(
k∑
i=1

(
Pi logQi −

Mi

m
log

Ni + 1

n

))

=−
k∑
i=1

PiE
[
log

Ni + 1

nQi

]

≥−
k∑
i=1

Pi logE
[
Ni + 1

nQi

]

=−
k∑
i=1

Pi log

(
1 +

1

nQi

)
≥− k − 1

k
log

(
1 +

αkf(k)

n

)
− 1

k
log

(
1 +

k

n

)
≥− log

(
1 +

αkf(k)

n

)
− log 2k

k
. (B.17)

Combining with (B.16), we obtain the following lower bound:

E[D̂A−plug−in(M,N)−D(P‖Q)]

≥(
k

m
∧ 1) ∨ log

k

m
− log

(
1 +

αkf(k)

n

)
− log 2k

k

≥(
k

m
∧ 1) ∨ log

k

m
− log

(
1 +

k

m(1 + ε)

)
− log 2k

k
. (B.18)

Note that m . k. Let m ≤ C1k, where C1 is a positive constant. Without

loss of generality, we can assume that C1 > 1, since the case C1 ≤ 1 is

included in the following discussion.

Denote x = k
m

, x ∈ [ 1
C1
,∞]. If x ∈ [ 1

C1
, 1], then (x ∧ 1) ∨ log x = x, and it

can be shown that

x− log

(
1 +

x

1 + ε

)
≥ x− x

1 + ε
≥ ε

C1(1 + ε)
. (B.19)
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If x ∈ (1, e], then (x ∧ 1) ∨ log x = 1, and it can be shown that

1− log

(
1 +

x

1 + ε

)
≥ 1− log

(
1 +

e

1 + ε

)
. (B.20)

If x ∈ (e,∞), then (x ∧ 1) ∨ log x = log x, and it can be shown that

log x− log

(
1 +

x

1 + ε

)
= log

(
1

1
x

+ 1
1+ε

)
≥ 1− log

(
1 +

e

1 + ε

)
. (B.21)

Combining (B.19), (B.20) and (B.21), we obtain

(x ∧ 1) ∨ log x− log

(
1 +

x

1 + ε

)
≥ min

(
ε

C1(1 + ε)
, 1− log

(
1 +

e

1 + ε

))
.

(B.22)

If ε > 1
e−1

, the right-hand side in the above inequality is positive. And for

sufficiently large k, log(2k)
k

is arbitrarily small. This implies that the worst

case quadratic error is also lower bounded by a positive constant, and hence,

the augmented plug-in estimator is not consistent.

Case II: If k
m
< (1 + ε)αkf(k)

n
, which implies that the number of samples

drawn from P is larger than the number of samples drawn from Q, then the

second bias term dominates.

Since n . kf(k), assume that n ≤ C2kf(k), where C2 is a positive con-

stant. Without loss of generality, we assume that C2 > 1.

For n ≤ kf(k), we set:

P =

(
1

k
,

1

k
, · · · , 1

k

)
, Q =

(
1

kf(k)
, · · · , 1

kf(k)
, 1− k − 1

kf(k)

)
. (B.23)

Following the steps in (B.6) and (B.7), we have

E[D̂A−plug−in(M,N)−D(P‖Q)] (B.24)

≤ log

(
1 +

k

m

)
+
k − 1

k
log(1− exp(− β0n

kf(k)
))

=
k − 1

k

(
log

(
1 +

k

m

)
+ log(1− exp(− β0n

kf(k)
))

)
+

1

k
log

(
1 +

k

m

)
≤k − 1

k
log

((
1 + (1 + ε)

αkf(k)

n

)(
1− exp(− β0n

kf(k)
)
))

+
log(2k)

k
. (B.25)
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Let β , (1 + ε)α, and t = n
kf(k)

. Then, we define the function

h(t) , (1 +
β

t
)(1− exp(−β0t)), t ∈ (0, 1). (B.26)

For sufficiently large k, we choose β0 = 1.05. Then for any β < 0.3, we have

h(t) = (1 +
β

t
)(1− exp(−1.05t)) < 0.9, ∀t ∈ (0, 1). (B.27)

Thus, if f(k) is large, e.g., f(k) > 6, then we can find α that satisfies the

condition α > 1
f(k)

and (1 + ε)α < 0.3, with ε > 1
e−1

. Then, for sufficiently

large k,

E[D̂A−plug−in(M,N)−D(P‖Q)]

≤k − 1

k
log

((
1 + (1 + ε)

αkf(k)

n

)(
1− exp(− β0n

kf(k)
)
))

+
log(2k)

k

→ log

((
1 + (1 + ε)

αkf(k)

n

)(
1− exp(− 1.05n

kf(k)
)
))

≤ log 0.9 < 0. (B.28)

For kf(k) < n ≤ C2kf(k), we set:

P =

(
f(k)

n
, . . . ,

f(k)

n
, 1− (k − 1)f(k)

n

)
, Q =

(
1

n
, . . . ,

1

n
, 1− k − 1

n

)
. (B.29)

It can be shown that (P,Q) satisfy the density ratio constraint. Following

the steps for deriving (B.6), we have

E[D̂A−plug−in(M,N)−D(P‖Q)]

≤ log

(
1 +

k

m

)
+

(k − 1)f(k)

n
log(1− (1− 1

n
)n+1)

(a)

≤ k

m
− 0.3

(k − 1)f(k)

n

≤(1 + ε)
αkf(k)

n
− 0.3

kf(k)

n
+

0.3f(k)

n
(b)

≤((1 + ε)α− 0.3)
1

C2

+
0.3

k
(c)
<0, (B.30)
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where (a) is due to the fact that log(1 − (1 − 1
n
)n+1) ≤ −0.3 for n ≥ 5; (b)

holds if (1 + ε)α− 0.3 < 0; and (c) holds for sufficiently large k.

This implies that for large k,

E[D̂A−plug−in(M,N)−D(P‖Q)] < c < 0, (B.31)

where c is a negative constant. Hence, the worst case quadratic risk is lower

bounded by a positive constant, and the augmented plug-in estimator is not

consistent in this case.

B.2 m� log2 f (k) Is Necessary

It suffices to show that the augmented plug-in estimator is not consistent

whenm . log2 f(k). We use the minimax risk as the lower bound of the worst

case quadratic risk for augmented plug-in estimator. To this end, we apply

Le Cam’s two-point method. We first construct two pairs of distributions as

follows:

P (1) =

(
1

3(k − 1)
, . . . ,

1

3(k − 1)
,
2

3

)
, (B.32)

P (2) =

(
1− ε

3(k − 1)
, . . . ,

1− ε
3(k − 1)

, 1− 1− ε
3

)
, (B.33)

Q(1) = Q(2) =

(
1

3(k − 1)f(k)
, . . . ,

1

3(k − 1)f(k)
, 1− 1

3f(k)

)
. (B.34)

The above distributions satisfy:

D(P (1)‖Q(1)) =
1

3
log f(k) +

2

3
log

2
3

1− 1
3f(k)

, (B.35)

D(P (2)‖Q(2)) =
1− ε

3
log(1− ε)f(k) +

(
1− 1− ε

3

)
log

1− 1−ε
3

1− 1
3f(k)

, (B.36)

D(P (1)‖P (2)) =
1

3
log

1

1− ε
+

2

3
log

2
3

1− 1−ε
3

. (B.37)
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We set ε = 1√
m

, and then obtain

D(P (1)‖P (2)) =
1

3
log

(
1 +

ε

1− ε

)
+

2

3
log

(
1− ε

2 + ε

)
≤ ε

3(1− ε)
− 2

3

ε

2 + ε

=
ε2

(1− ε)(2 + ε)
≤ 1

m
. (B.38)

Furthermore,

D(P (1)‖Q(1))−D(P (2)‖Q(2))

=
1

3
log f(k) +

2

3
log

2
3

1− 1
3f(k)

− 1− ε
3

log(1− ε)f(k)−
(

1− 1− ε
3

)
log

1− 1−ε
3

1− 1
3f(k)

=
1

3
log

1

1− ε
+
ε

3
log(1− ε)f(k) +

2

3
log

2

2 + ε
− ε

3
log

2 + ε

3− 1
f(k)

=
1

3
log

1

1− ε
4

(2 + ε)2
− ε

3
log

2 + ε

(1− ε)(3f(k)− 1)
, (B.39)

which implies that

(D(P (1)‖Q(1))−D(P (2)‖Q(2)))2 & ε2 log2 2

(3f(k)− 1)
� log2 f(k)

m
, (B.40)

as m→∞. Now applying Le Cam’s two-point method, we obtain

R∗(k,m, n, f(k)) ≥ 1

16
(D(P (1)‖Q(1))−D(P (2)‖Q(2)))2

exp
(
−mD(P (1)‖P (2))− nD(Q(1)‖Q(2))

)
. (B.41)

Clearly, if m . log2 f(k), the minimax quadratic risk does not converge to

0 as k → ∞, which further implies that the augmented plug-in estimator is

not consistent for this case.

46



APPENDIX C

PROOF OF LEMMA 1

We prove the inequality (4.2) that connects the minimax risk (1.8) un-

der the deterministic sample size to the risk (4.1) under the Poisson sam-

pling model. We first prove the left-hand side of (4.2). Recall that 0 ≤
R∗(k,m, n, f(k)) ≤ log2 f(k) and R∗(k,m, n, f(k)) is decreasing with m,n.

Therefore,

R̃∗(k, 2m, 2n, f(k))

=
∑
i≥0

∑
j≥0

R∗(k, i, j, f(k))Poi(2m, i)Poi(2n, i)

=
∑
i≥m+1

∑
j≥n+1

R∗(k, i, j, f(k))Poi(2m, i)Poi(2n, i)

+
∑
i≥0

n∑
j=0

R∗(k, i, j, f(k))Poi(2m, i)Poi(2n, i)

+
m∑
i=0

∑
j≥n+1

R∗(k, i, j, f(k))Poi(2m, i)Poi(2n, i)

≤R∗(k,m, n, f(k)) + e−(1−log 2)n log2 f(k) + e−(1−log 2)m log2 f(k), (C.1)

where the last inequality follows from the Chernoff bound P[Poi(2n) ≤ n] ≤
exp(−(1 − log 2)n). We then prove the right-hand side of (4.2). By the

minimax theorem,

R∗(k,m, n, f(k)) = sup
π

inf
D̂

E[(D̂(M,N)−D(P‖Q))2], (C.2)

where π ranges over all probability distribution pairs on Mk,f(k) and the

expectation is over (P,Q) ∼ π.

Fix a prior π and an arbitrary sequence of estimators {D̂m,n} indexed by

the sample sizes m and n. It is unclear whether the sequence of Bayesian

risks αm,n = E[(D̂m,n(M,N)−D(P‖Q))2] with respect to π is decreasing in
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m or n. However, we can define {α̃i,j} as

α̃0,0 = α0,0, α̃i,j = αi,j ∧ αi−1,j ∧ αi,j−1. (C.3)

Further, define

D̃m,n(M,N) ,


D̂m,n(M,N), if α̃m,n = αm,n;

D̂m−1,n(M,N), if α̃m,n = αm−1,n;

D̂m,n−1(M,N), if α̃m,n = αm,n−1.

(C.4)

Then for m′ ∼ Poi(m/2) and n′ ∼ Poi(n/2), and (P,Q) ∼ π, we have

E
[
(D̂m′,n′(M

′, N ′)−D(P‖Q))2
]

=
∑
i≥0

∑
j≥0

E
[
(D̂i,j(M

′, N ′)−D(P‖Q))2
]

Poi(
m

2
, i)Poi(

n

2
, j)

≥
∑
i≥0

∑
j≥0

E
[
(D̃i,j(M,N)−D(P‖Q))2

]
Poi(

m

2
, i)Poi(

n

2
, j)

≥
m∑
i=0

n∑
j=0

E
[
(D̃i,j(M,N)−D(P‖Q))2

]
Poi(

m

2
, i)Poi(

n

2
, j)

(a)

≥ 1

4
E
[
(D̃m,n(M,N)−D(P‖Q))2

]
, (C.5)

where (a) is due to the Markov’s inequality: P[Poi(n/2) ≥ n] ≤ 1
2
. If we take

infimum of the left-hand side over D̂m,n, then take supremum of both sides

over π, and use the Bayesian risk as a lower bound on the minimax risk, then

we can show that

R̃∗(k,
m

2
,
n

2
, f(k)) ≥ 1

4
R∗(k,m, n, f(k)). (C.6)
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APPENDIX D

PROOF OF PROPOSITION 3

D.1 Bounds Using Le Cam’s Two-Point Method

D.1.1 Proof of R∗(k,m, n, f(k)) & log2 f(k)
m

Following the same steps in Appendix B.2, we can show that

R∗(k,m, n, f(k)) & (D(P (1)‖Q(1))−D(P (2)‖Q(2)))2 &
log2 f(k)

m
. (D.1)

D.1.2 Proof of R∗(k,m, n, f(k)) & f(k)
n

We construct two pairs of distributions as follows:

P (1) = P (2) =

(
1

3(k − 1)
, 0,

1

3(k − 1)
, 0, . . . ,

5

6

)
, (D.2)

Q(1) =

(
1

2(k − 1)f(k)
, . . . ,

1

2(k − 1)f(k)
, 1− 1

2f(k)

)
, (D.3)

Q(2) =

(
1− ε

2(k − 1)f(k)
,

1 + ε

2(k − 1)f(k)
, . . . ,

1− ε
2(k − 1)f(k)

,
1 + ε

2(k − 1)f(k)
, 1− 1

2f(k)

)
.

(D.4)

It can be verified that if ε < 1
3
, then the density ratio is bounded by 2f(k)

3(1−ε) ≤

f(k). We set ε =
√

f(k)
n

. The above distributions satisfy:

D(Q(1)‖Q(2)) =
1

4f(k)
log

1

1 + ε
+

1

4f(k)
log

1

1− ε
, (D.5)

D(P (1)‖Q(1))−D(P (2)‖Q(2)) =
1

6
log(1− ε) ≤ − ε

6
. (D.6)
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Due to ε =
√

f(k)
n

, it can be shown that

D(Q(1)‖Q(2)) =
1

4f(k)
log(1 +

ε2

1− ε2
) ≤ 1

4f(k)

ε2

1− ε2
<

ε2

f(k)
=

1

n
. (D.7)

We apply Le Cam’s two-point method,

R∗(k,m, n, f(k)) ≥ 1

16
(D(P (1)‖Q(1))−D(P (2)‖Q(2)))2

exp
(
−m(D(P (1)‖P (2))− nD(Q(1)‖Q(2)))

)
& (D(P (1)‖Q(1))−D(P (2)‖Q(2)))2

& ε2 =
f(k)

n
. (D.8)

D.2 Bounds Using Generalized Le Cam’s Method

D.2.1 Proof of R∗(k,m, n, f(k)) & ( k
m log k)2

Let Q(0) denote the uniform distribution. The minimax risk is lower bound-

ed as follows:

R∗(k,m, n, f(k)) = inf
D̂

sup
(P,Q)∈Mk,f(k)

E[(D̂(M,N)−D(P‖Q))2]

≥ inf
D̂

sup
(P,Q(0))∈Mk,f(k)

E[(D̂(M,Q(0))−D(P‖Q(0)))2]

,R∗(k,m,Q(0), f(k)). (D.9)

If Q = Q(0) is known, then estimating the KL divergence between P and Q(0)

is equivalent to estimating the entropy of P , because

D(P‖Q(0)) =
k∑
i=1

(
Pi logPi + Pi log

1

Q
(0)
i

)
=H(P ) + log k. (D.10)

Hence, R∗(k,m,Q(0), f(k)) is equivalent to the following minimax risk of

estimating the entropy of distribution P with Pi ≤ f(k)
k

for 1 ≤ i ≤ k such
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that the ratio between P and Q(0) is upper bounded by f(k).

R∗(k,m,Q(0), f(k)) = inf
Ĥ

sup
P :Pi≤ f(k)k

E[(Ĥ(M)−H(P ))2]. (D.11)

Ifm & k
log k

, as shown in [13], the minimax lower bound for estimating entropy

is given by

inf
Ĥ

sup
P

E[(Ĥ(M)−H(P ))2] & (
k

m log k
)2. (D.12)

The supremum is achieved for Pi ≤ log2 k
k

. Comparing this result to (D.11),

if f(k) ≥ log2 k, then
log2 k

k
≤ f(k)

k
. (D.13)

Thus, we can use the minimax lower bound of entropy estimation as the

lower bound for divergence estimation on Mk,f(k),

R∗(k,m, n, f(k)) & R∗(k,m,Q(0), f(k)) & (
k

m log k
)2. (D.14)

D.2.2 Proof of R∗(k,m, n, f(k)) & ( kf(k)n log k)2

Since n & kf(k)
log k

, we assume that n ≥ C′kf(k)
log k

. If C ′ ≥ 1, we set P = P (0),

where

P (0) =

(
f(k)

n log k
, . . . ,

f(k)

n log k
, 1− (k − 1)f(k)

n log k

)
. (D.15)

Then, we have 0 ≤ 1− (k−1)f(k)
n log k

≤ 1. Hence, P (0) is a well-defined probability

distribution. If C ′ < 1, we set P (0) as follows:

P (0) =

(
C ′f(k)

n log k
, . . . ,

C ′f(k)

n log k
, 1− C ′(k − 1)f(k)

n log k

)
, (D.16)

which is also a well defined probability distribution. In the following, we

focus on the case that C ′ ≥ 1. And the results can be easily generalized to

the case when C ′ < 1.

If P = P (0) given in (D.15) and is known, then estimating the KL diver-
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gence between P and Q is equivalent to estimating the following function:

D(P (0)‖Q) =
k−1∑
i=1

f(k)

n log k
log

f(k)
n log k

Qi

+ (1− (k − 1)f(k)

n log k
) log

1− (k−1)f(k)
n log k

Qk

,

(D.17)

which is further equivalent to estimating

k−1∑
i=1

f(k)

n log k
log

1

Qi

+ (1− (k − 1)f(k)

n log k
) log

1

Qk

. (D.18)

We further consider the following subset of Mk,f(k):

Nk,f(k) , {(P (0), Q) ∈Mk,f(k) :
1

n log k
≤ Qi ≤

c4 log k

n
, for 1 ≤ i ≤ k − 1},

(D.19)

where c4 is a constant defined later.

The minimax risk can be lower bounded as follows:

R∗(k,m, n, f(k)) = inf
D̂

sup
(P,Q)∈Mk,f(k)

E[(D̂(M,N)−D(P‖Q))2]

≥ inf
D̂

sup
(P (0),Q)∈Nk,f(k)

E[(D̂(P (0), N)−D(P (0)‖Q))2]

,R∗N (k, P (0), n, f(k)). (D.20)

For 0 < ε < 1, we introduce the following set of approximate probability

vectors:

Nk,f(k)(ε) , {(P (0),Q) :Q ∈ Rk
+, |

k∑
i=1

Qi − 1| ≤ ε,

1

n log k
≤ Qi ≤

c4 log k

n
, for 1 ≤ i ≤ k − 1}. (D.21)

Note that Q is not a distribution. Furthermore, the set Nk,f(k)(ε) reduces to

Nk,f(k) if ε = 0.

We further consider the minimax quadratic risk (D.20) under Poisson sam-
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pling on the set Nk,f(k)(ε) as follows:

R̃∗N (k, P (0), n, f(k), ε) = inf
D̂

sup
(P (0),Q)∈Nk,f(k)(ε)

E[(D̂(P (0), N)−D(P (0),Q))2],

(D.22)

where Ni ∼ Poi(nQi), for 1 ≤ i ≤ k. The risk (D.22) is connected to the risk

(D.20) for multinomial sampling by the following lemma.

Lemma 2. For any k, n ∈ N and ε < 1/3,

R∗(k, P (0),
n

2
, f(k)) ≥ 1

2
R̃∗N (k, P

(0), n, f(k), ε)− log2 f(k) exp (− n

50
)− log2(1 + ε).

(D.23)

Proof. See Appendix D.2.3.

For (P (0),Q) ∈ Nk,f(k)(ε), we then apply the generalized Le Cam’s method

which involves two composite hypothesis as follows:

H0 : D(P (0)‖Q) ≤ t versus H1 : D(P (0)‖Q) ≥ t+
(k − 1)f(k)

n log k
d. (D.24)

In the following we construct tractable prior distributions. Let V and V ′ be

two R+ valued random variables defined on the interval [ 1
n log k

, c4 log k
n

] and

have equal mean E(V ) = E(V ′) = α. We construct two random vectors

Q = (V1, . . . .Vk−1, 1− (k−1)α) and Q′ = (V ′1 , . . . .V
′
k−1, 1− (k−1)α) (D.25)

consisting of k − 1 i.i.d. copies of V and V ′ and a deterministic term

1 − (k − 1)α, respectively. It can be verified that (P (0),Q), (P (0),Q′) ∈
Nk,f(k)(ε) satisfy the density ratio constraint. Then the averaged divergences

are separated by the distance of

|E[D(P (0)‖Q)]− E[D(P (0)‖Q′)]| = (k − 1)f(k)

n log k
|E[log V ]− E[log V ′]|.

(D.26)

Thus, if we construct V and V ′ such that

|E[log V ]− E[log V ′]| ≥ d (D.27)
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then the constructions in (D.25) satisfy (D.24), serving as the two composite

hypothesis which are separated.

By such a construction, we have the following lemma via the generalized

Le Cam’s method:

Lemma 3. Let V and V ′ be random variables such that V , V ′ ∈ [ 1
n log k

, c4 log k
n

],

E[V ] = E[V ′] = α, and |E[log V ]− E[log V ′]| ≥ d. Then,

R̃∗N (k, P (0), n, f(k), ε) ≥
( (k−1)f(k)d

n log k
)2

32

(
1− 2(k − 1)c2

4 log2 k

n2ε2
− 32 log2(n log k)

(k − 1)d2

− kTV(E[Poi(nV )],E[Poi(nV ′)])

)
,

(D.28)

where TV(P,Q) = 1
2

∑k
i=1 |Pi − Qi| denotes the total variation between two

distributions.

Proof. See Appendix D.2.4..

To establish the impossibility of hypothesis testing between V and V ′, we

also have the following lemma which provides an upper bound on the total

variation of the two mixture Poisson distributions.

Lemma 4. [13, Lemma 3] Let V and V ′ be random variables on [ 1
n log k

, c4 log k
n

].

If E[V j] = E[V ′j] for j = 1, . . . , L, and L > 2c4 log k
n

, then

TV (E[Poi(nV )],E[Poi(nV ′)]) ≤ 2 exp

(
−
(
L

2
log

L

2ec4 log k
− 2c4 log k

))
∧ 1.

(D.29)

What remains is to construct V and V ′ to maximize d = |E[log V ′] −
E[log V ]|, subject to the constraints in Lemma 4. Consider the following

optimization problem over random variables X and X ′.

E∗ = maxE[logX]− E[logX ′]

s.t. E[Xj] = E[X ′j], j = 1, . . . , L

X,X ′ ∈ [
1

c4 log2 k
, 1]. (D.30)
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As shown in Appendix E in [13], the maximum E∗ is equal to twice the error

in approximating log x by a polynomial with degree L:

E∗ = 2EL(log, [
1

c4 log2 k
, 1]). (D.31)

The following lemma provides a lower bound on the error in the approxima-

tion of log x by a polynomial with degree L over [L−2, 1].

Lemma 5. [13, Lemma 4] There exist universal positive constants c, c′, L0

such that for any L > L0,

EbcLc(log, [L−2, 1]) > c′. (D.32)

Let (X,X ′) be the maximizer of (D.30). We let V = c4 log k
n

X and V ′ =
c4 log k
n

X ′, such that V, V ′ ∈ [ 1
n log k

, c4 log k
n

]. Then it can be shown that

E[log V ]− E[log V ′] = E∗, (D.33)

where V and V ′ match up to L-th moment. We choose the value of d to be

E∗.
Hence, we set L = bc log kc. Then from Lemma 5, d = E∗ > 2c′. We

further assume that log2 n ≤ c5k, set c4 and c5 such that 2c2
4 + 8c5

c′2
< 1 and

c
2

log c
2ec4
−2c4 > 2. Then from Lemma 3 and Lemma 2, with ε =

√
k log k
n

, the

minimax risk is lower bounded as follows:

R∗(k, P (0), n, f(k)) & (
kf(k)

n log k
)2. (D.34)

D.2.3 Proof of Lemma 2

Fix δ > 0 and (P (0), Q) ∈ Nk,f(k)(0). Let D̂(P (0), n) be a near optimal

minimax estimator for D(P (0)‖Q) with n samples such that

sup
(P (0),Q)∈Nk,f(k)(0)

E[(D̂(P (0), n)−D(P (0)‖Q))2] ≤ δ +R∗(k, P (0), n, f(k)).

(D.35)
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For any (P (0),Q) ∈ Nk,f(k)(ε), Q is approximately a distribution. We nor-

malize Q to be a probability distribution, i.e., Q∑k
i=1 Qi

, and then we have

D(P (0)‖Q) =
k∑
i=1

P0,i log
P0,i

Qi

= − log
k∑
i=1

Qi +D
(
P (0)

∥∥∥ Q∑k
i=1 Qi

)
. (D.36)

Fix distributions (P (0),Q) ∈ Nk,f(k)(ε). LetN = (N1, . . . , Nk), andNi ∼Poi(nQi).

And define n′ =
∑
Ni ∼ Poi(n

∑
Qi). We set an estimator under the Poisson

sampling by

D̃(P (0), N) = D̂(P (0), n′). (D.37)

By the triangle inequality, we obtain

1

2

(
D̃(P (0), N)−D(P (0)‖Q)

)2 ≤(D̃(P (0), N)−D
(
P (0)

∥∥∥ Q∑k
i=1 Qi

))2

+

(
D
(
P (0)

∥∥∥ Q∑k
i=1 Qi

)
−D(P (0)‖Q)

)2

=

(
D̃(P (0), N)−D

(
P (0)

∥∥∥ Q∑k
i=1 Qi

))2

+ (log

k∑
i=1

Qi)
2

≤

(
D̃(P (0), N)−D

(
P (0)

∥∥∥ Q∑k
i=1 Qi

))2

+ log2(1 + ε).

(D.38)

Since n′ =
∑
Ni ∼Poi(n

∑
Qi), we can show that

E

(D̃(P (0), N)−D

(
P (0)

∥∥∥ Q∑k
i=1 Qi

))2


=
∞∑
j=1

E

(D̂(P (0), j)−D
(
P (0)

∥∥∥ Q∑k
i=1 Qi

))2∣∣∣∣∣n′ = j

P(n′ = j)

≤
∞∑
j=1

R∗(k, P (0), j, f(k))P(n′ = j) + δ. (D.39)

We note that for fixed k, R∗(k, P (0), j, f(k)) is a monotone decreasing function

with respect to n. We also have R∗(k, P (0), j, f(k)) ≤ log2 f(k), because

for any (P (0),Q) ∈ Nk,f(k)(0), D(P (0)‖Q) ≤ log f(k). Furthermore, since
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n′ ∼ Poi(n
∑

Qi), and |
∑

Qi − 1| ≤ ε ≤ 1/3, we have P (n′ > n
2
) ≤ e−

n
50 .

Hence, we obtain

E

(D̃(P (0), N)−D
(
P (0)

∥∥∥ Q∑k
i=1 Qi

))2


≤
∞∑
j=1

R∗(k, P (0), j, f(k))P(n′ = j) + δ

=

n/2∑
j=1

R∗(k, P (0), j, f(k))P(n′ = j) +
∞∑

j=n
2

+1

R∗(k, P (0), j, f(k))P(n′ = j) + δ

≤R∗(k, P (0),
n

2
, f(k)) + (log2 f(k))P (n′ >

n

2
) + δ

≤R∗(k, P (0),
n

2
, f(k)) + log2 f(k)e−

n
50 + δ. (D.40)

Combining (D.38) and (D.40) completes the proof because δ can be arbitrar-

ily small.

D.2.4 Proof of Lemma 3

We construct the following pairs of (P,Q) and (P ′,Q′):

P = P ′ = P (0) =

(
f(k)

n log k
, . . . ,

f(k)

n log k
, 1− (k − 1)f(k)

n log k

)
, (D.41)

Q = (V1, . . . , Vk−1, 1− (k − 1)α) , (D.42)

Q′ =
(
V ′1 , . . . , V

′
k−1, 1− (k − 1)α

)
. (D.43)

We further define the following events:

E ,

{∣∣∣∣∣
k−1∑
i=1

Vi − (k − 1)α

∣∣∣∣∣ ≤ ε, |D(P‖Q)− E(D(P‖Q))| ≤ d(k − 1)f(k)

4n log k

}
,

(D.44)

E ′ ,

{∣∣∣∣∣
k−1∑
i=1

V ′i − (k − 1)α

∣∣∣∣∣ ≤ ε, |D(P ′‖Q′)− E(D(P ′‖Q′))| ≤ d(k − 1)f(k)

4n log k

}
.

(D.45)
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By union bound and Chebyshev’s inequality, we have

P (EC) ≤ (k − 1)Var(V )

ε2
+

16(k − 1)Var( f(k)
n log k

log Vi)

( (k−1)f(k)
n log k

d)2

≤ c2
4(k − 1) log2 k

ε2n2
+

16 log2(n log k)

(k − 1)d2
. (D.46)

Similarly, we have

P (E ′C) ≤ c2
4(k − 1) log2 k

ε2n2
+

16 log2(n log k)

(k − 1)d2
. (D.47)

Now, we define two priors on the set Nk,f(k)(ε) by the following conditional

distributions:π = PV |E and π′ = PV ′|E′ .

Hence, given π and π′ as prior distributions, recall the assumption |E[log V ]−
E[log V ′]| ≥ d, and we have

|D(P‖Q)−D(P ′‖Q′)| ≥ d(k − 1)f(k)

2n log k
. (D.48)

Now, we consider the total variation of observations under π and π′. The

observations are Poisson distributed: Ni ∼ Poi(nQi) and N ′i ∼ Poi(nQ′i). By

the triangle inequality, we have

TV(PN |E, PN ′|E′) ≤ TV(PN |E, PN) + TV(PN , PN ′) + TV(PN ′ , PN ′|E′)

= P (EC) + P (E ′C) + TV(PN , PN ′)

≤ 2c2
4(k − 1) log2 k

ε2n2
+

32 log2(n log k)

(k − 1)d2
+ TV(PN , PN ′).

(D.49)

From the fact that total variation of product distribution can be upper

bounded by the summation of individual ones, we obtain

TV(PN , PN ′) ≤
k−1∑
i=1

TV(E(Poi(nVi)),E(Poi(nV ′i ))),

= kTV (E(Poi(nV )),E(Poi(nV ′))) . (D.50)

Applying the generalized Le Cam’s method [16], and combining (D.49) and

(D.50) completes the proof.
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APPENDIX E

PROOF OF PROPOSITION 4

We first denote

D1 ,
k∑
i=1

Pi logPi, D2 ,
k∑
i=1

Pi logQi. (E.1)

Hence, D(P‖Q) = D1 −D2. Recall that our estimator D̂opt for D(P‖Q) is:

D̂opt = D̃opt ∨ 0 ∧ log f(k), (E.2)

where

D̃opt = D̂1 − D̂2, (E.3)

D̂1 =
k∑
i=1

(
g′L(Mi)1{M ′i≤c′2 log k} + (

Mi

m
log

Mi

m
− 1

2m
)1{M ′i>c′2 log k}

)
,

k∑
i=1

D̂1,i,

(E.4)

D̂2 =
k∑
i=1

(
Mi

m
gL(Ni)1{N ′i≤c2 log k} +

Mi

m

(
log

Ni + 1

n
− 1

2(Ni + 1)

)
1{N ′i>c2 log k}

)

,
k∑
i=1

D̂2,i. (E.5)

We define the following sets:

E1,i , {N ′i ≤ c2 log k,Qi ≤
c1 log k

n
},

E2,i , {N ′i > c2 log k,Qi >
c3 log k

n
},

F1,i , {N ′i ≤ c2 log k,Qi >
c1 log k

n
},

F2,i , {N ′i > c2 log k,Qi ≤
c3 log k

n
}, (E.6)
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and

E ′1,i , {M ′
i ≤ c′2 log k, Pi ≤

c′1 log k

m
},

E ′2,i , {M ′
i > c′2 log k, Pi >

c′3 log k

m
},

F ′1,i , {M ′
i ≤ c′2 log k, Pi >

c′1 log k

m
},

F ′2,i , {M ′
i > c′2 log k, Pi ≤

c′3 log k

m
}, (E.7)

where c1 > c2 > c3 and c′1 > c′2 > c′3. We further define the following sets:

E1 ,
k⋂
i=1

E1,i, E2 ,
k⋂
i=1

E2,i (E.8)

E ′1 ,
k⋂
i=1

E ′1,i, E ′2 ,
k⋂
i=1

E ′2,i (E.9)

E , E1 ∪ E2, E ′ , E ′1 ∪ E ′2, (E.10)

Ē , E ∩ E ′ =
k⋂
i=1

(
(E1,i ∪ E2,i) ∩ (E ′1,i ∪ E ′2,i)

)
. (E.11)

It can be shown that

Ēc =
k⋃
i=1

(E1,i ∪ E2,i)
c ∪ (E ′1,i ∪ E ′2,i)c =

k⋃
i=1

(F1,i ∪ F2,i) ∪ (F ′1,i ∪ F ′2,i).

(E.12)

By union bound and Chernoff bound for Poisson distributions [23, Theorem

5.4], we have

P(Ēc) = P

(
k⋃
i=1

(F1,i ∪ F2,i) ∪ (F ′1,i ∪ F ′2,i)

)
≤ k

(
P(F1,i) + P(F2,i) + P(F ′1,i) + P(F ′2,i)

)
≤ 1

k
c1−c2 log

ec1
c2
−1

+
1

k
c3−c2 log

ec3
c2
−1

+
1

k
c′1−c′2 log

ec′1
c′2
−1

+
1

k
c′3−c′2 log

ec′3
c′2
−1
.

(E.13)

We note that D̂opt, D(P‖Q) ∈ [0, log f(k)], and D̂opt = D̃opt ∨ 0∧ log f(k).
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Therefore, we have

E[(D̂opt −D(P‖Q))2]

=E[(D̂opt −D(P‖Q))21{Ē} + (D̂opt −D(P‖Q))21{Ēc}]

≤E[(D̃opt −D(P‖Q))21{Ē}] + log2 f(k)P (Ēc)

=E[(D̂1 − D̂2 −D1 +D2)21{Ē}] + log2 f(k)P (Ēc). (E.14)

We choose constants c1, c2, c3, c
′
1, c
′
2, c
′
3 such that c1 − c2 log ec1

c2
− 1 > C,

c′1 − c′2 log
ec′1
c′2
− 1 > C, c3 − c2 log ec3

c2
− 1 > C, and c′3 − c′2 log

ec′3
c′2
− 1 > C.

Then together with logm ≤ C log k, we have

log2 f(k)P (Ēc) ≤ log2 f(k)

m
. (E.15)

We define the index sets I1, I2, I ′1 and I ′2 as follows:

I1 , {i : N ′i ≤ c2 log k,Qi ≤
c1 log k

n
},

I2 , {i : N ′i > c2 log k,Qi >
c3 log k

n
},

I ′1 , {i : M ′
i ≤ c′2 log k, Pi ≤

c′1 log k

m
},

I ′2 , {i : M ′
i > c′2 log k, Pi >

c′3 log k

m
}. (E.16)

Using these index set, define

A ,
∑

i∈I1∩I′1

(
D̂1,i − D̂2,i − Pi logPi + Pi logQi),

B ,
∑

i∈I2∩I′1

(
D̂1,i − D̂2,i − Pi logPi + Pi logQi),

C ,
∑

i∈I1∩I′2

(
D̂1,i − D̂2,i − Pi logPi + Pi logQi),

D ,
∑

i∈I2∩I′2

(
D̂1,i − D̂2,i − Pi logPi + Pi logQi).
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We can further decompose E[(D̂1 − D̂2 −D1 +D2)21{Ē}] as follows:

E[(D̂1 − D̂2 −D1 +D2)21{Ē}]

=E
[(
A+B + C +D

)2

1{Ē}

]
≤E
[(
A+B + C +D

)2
]

=E
[
E2
(
A+B + C +D

∣∣∣I1, I2, I
′
1, I
′
2

)
+ Var

(
A+B + C +D

∣∣∣I1, I2, I
′
1, I
′
2

)]
,

(E.17)

where the last step follows from the conditional variance formula. For the

second term in (E.17),

Var
(
A+B + C +D

∣∣∣I1, I2, I
′
1, I
′
2

)
≤4Var

[ ∑
i∈I1∩I′1

(
D̂1,i − D̂2,i

)∣∣∣∣∣I1, I
′
1

]
+ 4Var

[ ∑
i∈I2∩I′1

(
D̂1,i − D̂2,i

)∣∣∣∣∣I2, I
′
1

]

+ 4Var

[ ∑
i∈I1∩I′2

(
D̂1,i − D̂2,i

)∣∣∣∣∣I1, I
′
2

]
+ 4Var

[ ∑
i∈I2∩I′2

(
D̂1,i − D̂2,i

)∣∣∣∣∣I2, I
′
2

]
.

(E.18)

Furthermore, we define E1, E2 and E ′ as follows:

E1 ,
∑

i∈I1∩(I′1∪I′2)

(D̂2,i − Pi logQi), (E.19)

E2 ,
∑

i∈I2∩(I′1∪I′2)

(D̂2,i − Pi logQi), (E.20)

E ′ ,
∑

i∈(I1∪I2)∩(I′1∪I′2)

(D̂1,i − Pi logPi). (E.21)
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Then, the first term in (E.17) can be bounded by

E2
(
A+B + C +D

∣∣∣I1, I2, I
′
1, I
′
2

)
=E2

(
E ′ − E1 − E2

∣∣∣I1, I2, I
′
1, I
′
2

)
≤2E2

(
E ′|I1, I2, I

′
1, I
′
2

)
+ 2E2(E1 + E2|I1, I2, I

′
1, I
′
2)

≤2E2
(
E ′|I1, I2, I

′
1, I
′
2

)
+ 4E2[E1|I1, I

′
1, I
′
2] + 4E2[E2|I2, I

′
1, I
′
2]. (E.22)

Following steps similar to those in [13], it can be shown that

E2
(
E ′|I1, I2, I

′
1, I
′
2

)
.

k2

m2 log2 k
. (E.23)

Thus, in order to bound (E.17), we bound the four terms in (E.18) and

the two terms in (E.22) one by one.

E.1 Bounds on the Variance

E.1.1 Bounds on Var
[∑

i∈I1∩I ′1(D̂1,i − D̂2,i)
∣∣∣I1, I ′1]

We first show that

Var

[ ∑
i∈I1∩I′1

(D̂1,i−D̂2,i)

∣∣∣∣∣I1, I
′
1

]
≤ 2Var

[ ∑
i∈I1∩I′1

D̂1,i

∣∣∣∣∣I1, I
′
1

]
+2Var

[ ∑
i∈I1∩I′1

D̂2,i

∣∣∣∣∣I1, I
′
1

]
.

(E.24)

Following steps similar to those in [13], it can be shown that

Var

[ ∑
i∈I1∩I′1

D̂1,i

∣∣∣∣∣I1, I
′
1

]
.

k2

m2 log2 k
. (E.25)

In order to bound Var[
∑

i∈I1∩I′1
D̂2,i|I1, I

′
1], we bound Var(Mi

m
gL(Ni)) for each

i ∈ I1 ∩ I ′1. Due to the independence between Mi and Ni,
Mi

m
is independent
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of gL(Ni). Hence,

Var

[ ∑
i∈I1∩I′1

D̂2,i

∣∣∣∣∣I1, I
′
1

]

=
∑

i∈I1∩I′1

Var
(Mi

m
gL(Ni)

)
=
∑

i∈I1∩I′1

[(
Var(

Mi

m
) + E(

Mi

m
)2
)

Var
(
gL(Ni)

)
+ Var(

Mi

m
)
(
E
(
gL(Ni)

))2
]
.

(E.26)

We note that Var(Mi

m
) = Pi

m
, and E(Mi

m
) = Pi. We need to upper bound

Var(gL(Ni)) and
(
E
(
gL(Ni)

))2

, for i ∈ I1 ∩ I ′1. Recall that gL(Ni) =∑L
j=1

aj
(c1 log k)j−1 (Ni)j−1 − log n

c1 log k
. The following lemma from [13] is also

useful, which provides an upper bound on the variance of (Ni)j.

Lemma 6. [13, Lemma 6] If X ∼Poi(λ) and (x)j = x!
(x−j)! , then the variance

of (X)j is increasing in λ and

Var(X)j ≤ (λj)j

(
(2e)2

√
λj

π
√
λj
∨ 1

)
. (E.27)

Furthermore, the polynomial coefficients can be upper bounded as |aj| ≤
2e−123L [24]. Due to the fact that the variance of the sum of random vari-

ables is upper bounded by the square of the sum of the individual standard

deviations, we obtain

Var
(
gL(Ni)

)
= Var

( L∑
j=2

aj
(c1 log k)j−1

(Ni)j−1

)

≤

(
L∑
j=2

aj
(c1 log k)j−1

√
Var
(
(Ni)j−1

))2

≤

(
L∑
j=2

2e−123L

(c1 log k)j−1

√
Var
(
(Ni)j−1

))2

. (E.28)
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By Lemma 6, we obtain

Var
(

(Ni)j−1

)
≤
(
c1 log k(j − 1)

)j−1

(
(2e)2

√
c1 log k(j−1)

π
√
c1 log k(j − 1)

∨ 1

)

≤ (c1c0 log2 k)j−1

(
(2e)2

√
c1c0 log2 k

π
√
c1c0 log2 k

∨ 1

)
. (E.29)

Substituting (E.29) into (E.28), we obtain

Var
(
gL(Ni)

)
≤ L

L∑
j=2

( 2e−123L

(c1 log k)j−1

)2

Var
(

(Ni)j−1

)
(E.30)

. k2(c0 log 8+
√
c0c1 log 2e) log k. (E.31)

Furthermore, for i ∈ I1 ∩ I ′1, we bound
∣∣E(gL(Ni)

)∣∣ as follows:

∣∣∣E(gL(Ni)
)∣∣∣ =

∣∣∣∣∣
L∑
j=1

aj
(c1 log k)j−1

(nQi)
j−1 − log

n

c1 log k

∣∣∣∣∣
≤

L∑
j=1

2e−123L

(c1 log k)j−1
(c1 log k)j−1 + log

n

c1 log k

. kc0 log 8 log k + log n. (E.32)

So far, we have all the ingredients we need to bound Var
(
Mi

m
gL(Ni)

)
. Note

that Pi ≤ f(k)Qi, and Qi ≤ c1 log k
n

for i ∈ I1. First, we derive the following

bound:

Var(
Mi

m
)Var

(
gL(Ni)

)
.
f(k) log2 kk2(c0 log 8+

√
c0c1 log 2e)

mn
.

kf(k)

mn log2 k
, (E.33)

if 2(c0 log 8 +
√
c0c1 log 2e) < 1

2
.

Secondly, we derive

E(
Mi

m
)2Var

(
gL(Ni)

)
.
f 2(k) log3 kk2(c0 log 8+

√
c0c1 log 2e)

n2
.

kf 2(k)

n2 log2 k
, (E.34)

if 2(c0 log 8 +
√
c0c1 log 2e) < 1

2
.
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Thirdly, we have

Var(
Mi

m
)
(
E
(
gL(Ni)

))2

.
f(k) log3 kk2c0 log 8

mn
+
f(k) log k log2 n

mn

.
kf(k)

mn log2 k
+
k1−εf(k) log k

mn

.
kf(k)

mn log2 k
, (E.35)

if 2c0 log 8 < 1
2

and log2 n . k1−ε.

Combining these three terms together, we obtain

Var

[ ∑
i∈I1∩I′1

D̂2,i

∣∣∣∣∣I1, I
′
1

]
.

k2f(k)

mn log2 k
+
k2f 2(k)

n2 log2 k
. (E.36)

Due to the fact that k2f(k)

mn log2 k
. k2f2(k)

n2 log2 k
+ k2

m2 log2 k
,

E
[
Var
[ ∑
i∈I1∩I′1

D̂2,i

∣∣∣I1, I
′
1

]]
.

f 2(k)k2

n2 log2 k
+

k2

m2 log2 k
. (E.37)

E.1.2 Bounds on Var
[∑

i∈I2∩I ′1

(
D̂1,i − D̂2,i

)∣∣∣I2, I ′1]
Note that for i ∈ I2 ∩ I ′1, Qi >

c3 log k
n

and Pi ≤ c′1 log k

m
. Following steps

similar to those in [13], it can be shown that

Var

[ ∑
i∈I2∩I′1

D̂1,i

∣∣∣∣∣I2, I
′
1

]
.

k2

m2 log2 k
. (E.38)
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We further consider Var
[∑

i∈I2∩I′1
D̂2,i

]
. By the definition of D̂2,i, for i ∈

I2 ∩ I ′1, we have D̂2,i = Mi

m

(
log Ni+1

n
− 1

2(Ni+1)

)
. Therefore,

Var

[ ∑
i∈I2∩I′1

D̂2,i

∣∣∣∣∣I2, I
′
1

]

=
∑

i∈I2∩I′1

Var

[
Mi

m

(
log

Ni + 1

n
− 1

2(Ni + 1)

)]

≤2
∑

i∈I2∩I′1

Var

[
Mi

m

(
log

Ni + 1

n

)]
+ 2

∑
i∈I2∩I′1

Var

[
Mi

m

( 1

2(Ni + 1)

)]
. (E.39)

The first term in (E.39) can be bounded as follows:

∑
i∈I2∩I′1

Var

[
Mi

m

(
log

Ni + 1

n

)]

≤
∑

i∈I2∩I′1

E

[(
Mi

m

(
log

Ni + 1

n

)
− Pi logQi

)2
]

=
∑

i∈I2∩I′1

E

[(
Mi

m

(
log

Ni + 1

n

)
− Mi

m
logQi +

Mi

m
logQi − Pi logQi

)2
]

≤
∑

i∈I2∩I′1

2E

[(
Mi

m

)2(
log

Ni + 1

n
− logQi

)2
]
+

∑
i∈I2∩I′1

2E

[(
Mi

m
− Pi

)2

log2Qi

]
.

(E.40)

Note that for i ∈ I2 ∩ I ′1, Qi >
c3 log k
n

and Pi ≤ c′1 log k

m
. We then have the

following bound on the first term in (E.40):

∑
i∈I2∩I′1

E
[(

Mi

m

)2(
log

Ni + 1

n
− logQi

)2 ]

=
∑

i∈I2∩I′1

mP 2
i + Pi
m

E
[(

log
Ni + 1

n
− logQi

)2 ]

=
∑

i∈I2∩I′1

Pi(1 +mPi)

m
E
[(

log
Ni + 1

n
− logQi

)2

1{Ni≤
nQi
2
}

+

(
log

Ni + 1

n
− logQi

)2

1{Ni>
nQi
2
}

]
(a)

.
k2

m2 log2 k
+

1

m
, (E.41)
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where (a) holds if c3(1−log 2)
2

+ 1−C > 0, and can be shown as follows. First,

∑
i∈I2∩I′1

Pi(1 +mPi)

m
E
[(

log
Ni + 1

n
− logQi

)2

1{Ni≤
nQi
2
}

]
(a)

.
∑

i∈I2∩I′1

Pi log k

m
(log2 n)P (Ni ≤

nQi

2
)

(b)

.
k log k

m
P (Ni ≤

nQi

2
)

(c)

.
k log k

m
k−

c3(1−log 2)
2

(d)

.
k2

m2 log2 k
, (E.42)

where (a) is due to the fact that Pi ≤ c′1 log k

m
, Ni+1

n
∈ [ 1

n
, 1], Qi ∈ [ c3 log k

n
, 1];

(b) is due to the assumption that log2 n . k1−ε and
∑

i∈I2∩I′1
Pi ≤ 1; (c) is

due to the Chernoff bound: P (N1 ≤ nQi
2

) ≤ k−
c3(1−log 2)

2 ; and (d) is due to the

assumption that logm ≤ C log k and c3(1−log 2)
2

+ 1− C > 0.

Secondly,

∑
i∈I2∩I′1

mPi(1 +mPi)

m2
E
[(

log
Ni + 1

n
− logQi

)2

1{N1>
nQi
2
}

]

.
∑

i∈I2∩I′1

Pi log k

m
E
[(

log
Ni + 1

n
− logQi

)2

1{N1>
nQi
2
}

]
(a)

.
∑

i∈I2∩I′1

Pi log k

m
E
[
(
Ni + 1

n
−Qi)

2 1

ξ2
1{Ni>

nQi
2
}

]
(b)

≤
∑

i∈I2∩I′1

Pi log k

m
E
[
(
Ni + 1

n
−Qi)

2 4

Q2
i

1{Ni>
nQi
2
}

]

≤
∑

i∈I2∩I′1

Pi log k

m
E
[
(
Ni + 1

n
−Qi)

2

]
4

Q2
i

≤
∑

i∈I2∩I′1

Pi log k

m

nQi + 1

n2

4

Q2
i

.
∑

i∈I2∩I′1

Pi log k

m

1

log k

=
1

m
, (E.43)
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where (a) is due to the mean value theorem, with ξ satisfying min(Ni+1
n
, Qi) ≤

ξ ≤ max(Ni+1
n
, Qi); (b) is due to the fact that ξ ≥ Qi

2
.

We next bound the second term in (E.40).

∑
i∈I2∩I′1

E

[(
Mi

m
− Pi

)2

log2Qi

]
=
∑

i∈I2∩I′1

Pi log2Qi

m

≤
∑

i∈I2∩I′1

Pi log2 Pi
f(k)

m

≤
∑

i∈I2∩I′1

2Pi(log2 Pi + log2 f(k))

m

(a)

≤ 2 log2 f(k)

m
+

2k
c′1 log k

m
log2(

c′1 log k

m
)

m
(b)

.
log2 f(k)

m
+

k2

m2 log2 k
, (E.44)

where (a) is due to the facts that x log2 x is monotone increasing when x is

small and Pi ≤ c′1 log k

m
, and (b) is due to the assumption that logm . log k.

Substituting (E.44) and (E.41) into (E.40), we obtain

∑
i∈I2∩I′1

Var

[
Mi

m

(
log

Ni + 1

n

)]
.

log2 f(k)

m
+

k2

m2 log2 k
. (E.45)

We then consider the second term in (E.39).

∑
i∈I2∩I′1

Var

[
Mi

m

( 1

2(Ni + 1)

)]

=
∑

i∈I2∩I′1

(
E2[

Mi

m
]Var[

1

2(Ni + 1)
] + Var[

Mi

m
]E2[

1

2(Ni + 1)
] + Var[

Mi

m
]Var[

1

2(Ni + 1)
]

)
.

(E.46)

In order to bound (E.46), we bound each term as follows. Note that

Mi ∼Poi(mPi), and Ni ∼Poi(nQi). Therefore, E2[Mi

m
] = P 2

i , Var[Mi

m
] = Pi

m
,
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and

Var[
1

2(Ni + 1)
] + E2[

1

2(Ni + 1)
] = E[

1

4(Ni + 1)2
]

≤ E[
1

(Ni + 1)(Ni + 2)
]

=
∞∑
i=0

1

(i+ 1)(i+ 2)

e−nQi(nQi)
i

i!

=
∞∑
i=0

1

(nQi)2

e−nQi(nQi)
i+2

(i+ 2)!

≤ 1

(nQi)2
. (E.47)

Therefore, (E.46) can be further upper bounded as follows:

∑
i∈I2∩I′1

Var

[
Mi

m

( 1

2(Ni + 1)

)]

≤
∑

i∈I2∩I′1

(
P 2
i

1

(nQi)2
+

Pi
m(nQi)2

)

.
f(k)

n log k
+

1

m log2 k

.
f(k)

n
+

1

m
. (E.48)

Substituting (E.48) and (E.45) into (E.39), we obtain

Var

 ∑
i∈I2∩I′1

D̂2,i

∣∣∣∣∣I2, I
′
1

 .
f(k)

n
+

log2 f(k)

m
+

k2

m2 log2 k
. (E.49)

Therefore,

Var

[ ∑
i∈I2∩I′1

(
D̂1,i − D̂2,i

)∣∣∣∣∣I2, I
′
1

]
.
f(k)

n
+

log2 f(k)

m
+

k2

m2 log2 k
. (E.50)

E.1.3 Bounds on Var
[∑

i∈I1∩I ′2

(
D̂1,i − D̂2,i

)∣∣∣I1, I ′2]
We first note that given i ∈ I1∩I ′2, Pi >

c′3 log k

m
, Qi ≤ c1 log k

n
, and Pi

Qi
≤ f(k).

Hence,
c′3 log k

m
< Pi ≤ c1f(k) log k

n
. Following steps similar to those in [13], it
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can be shown that

Var

[ ∑
i∈I1∩I′2

D̂1,i

∣∣∣∣∣I1, I
′
2

]
≤ 4

m
+

12k

m2
+

4k

c′3m
2 log k

+
∑

i∈I1∩I′2

2Pi
m

log2 Pi. (E.51)

Consider the last term
∑

i∈I1∩I′2
2Pi
m

log2 Pi in (E.51), under the condition

that
c′3 log k

m
< Pi ≤ c1f(k) log k

n
. Then,

∑
i∈I1∩I′2

Pi
m

log2 Pi ≤
∑

i∈I1∩I′2

c1f(k) log k

mn
log2 c

′
3 log k

m

≤ c1kf(k) log k

mn
log2 c

′
3 log k

m
(a)

.
kf(k) log k

mn
log2m

(b)

.
kf(k) log3 k

mn
.

k2f(k)

mn log2 k
(c)

.
f 2(k)k2

n2 log2 k
+

k2

m2 log2 k
, (E.52)

where (a) is due to the assumption thatm & k
log k

, (b) is due to the assumption

that logm ≤ C log k, and (c) is due to the fact that 2ab ≤ a2 +b2. Therefore,

we obtain

Var

 ∑
i∈I1∩I′2

D̂1,i

∣∣∣∣∣I1, I
′
2

 .
log2 f(k)

m
+
f 2(k)k2

n2 log2 k
+

k2

m2 log2 k
. (E.53)

Following steps similar to those in Appendix E.1.1, we can show that

Var

[ ∑
i∈I1∩I′2

D̂2,i

∣∣∣∣∣I1, I
′
2

]
.
f(k)

n
+
f 2(k)k2

n2 log2 k
+

k2

m2 log2 k
. (E.54)

Hence,

Var

[ ∑
i∈I1∩I′2

(
D̂1,i − D̂2,i

)∣∣∣∣∣I1, I
′
2

]
.

log2 f(k)

m
+
f(k)

n
+
f 2(k)k2

n2 log2 k
+

k2

m2 log2 k
.

(E.55)
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E.1.4 Bounds on Var
[∑

i∈I2∩I ′2

(
D̂1,i − D̂2,i

)∣∣∣I2, I ′2]
We note that for i ∈ I2 ∩ I ′2, Pi >

c′3 log k

m
, Qi >

c3 log k
n

, and

D̂1,i − D̂2,i =
Mi

m
log

Mi

m
− 1

2m
− Mi

m

(
log

Ni + 1

n
− 1

2(Ni + 1)

)
. (E.56)

It can be shown that

Var

[ ∑
i∈I2∩I′2

(
D̂1,i − D̂2,i

)∣∣∣∣∣I2, I
′
2

]

≤2Var

[ ∑
i∈I2∩I′2

Mi

m
log

Mi

m
− Mi

m
log

Ni + 1

n

∣∣∣∣∣I2, I
′
2

]

+ 2Var

[ ∑
i∈I2∩I′2

Mi

m

1

2(Ni + 1)

∣∣∣∣∣I2, I
′
2

]
. (E.57)

Following steps similar to those used in showing (E.48), we bound the second

term in (E.57) as follows:

Var

[ ∑
i∈I2∩I′2

Mi

m

1

2(Ni + 1)

∣∣∣∣∣I2, I
′
2

]
.
f(k)

n
+

1

m
. (E.58)

We next bound the first term in (E.57) as follows:

Var

[ ∑
i∈I2∩I′2

Mi

m
log

Mi

m
− Mi

m
log

Ni + 1

n

∣∣∣∣∣I2, I
′
2

]

≤
∑

i∈I2∩I′2

E

[(
Mi

m
log

Mi

m
− Mi

m
log

Ni + 1

n
− Pi log

Pi
Qi

)2
]

=
∑

i∈I2∩I′2

E

[(
Mi

m
log

Mi

m
− Mi

m
log

Ni + 1

n
− Mi

m
logPi +

Mi

m
log

Pi
Qi

+
Mi

m
logQi − Pi log

Pi
Qi

)2
]

≤
∑

i∈I2∩I′2

(
3E

[(
Mi

m
(log

Mi

m
− logPi)

)2
]
+ 3E

[(
(
Mi

m
− Pi) log

Pi
Qi

)2
]

+ 3E

[(
Mi

m
(log

Ni + 1

n
− logQi)

)2
])

. (E.59)
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We further bound the three terms in (E.59) one by one. Note that log x ≤
x− 1 for any x > 0. Therefore,

Mi

m
− Pi ≤

Mi

m
log

Mi

m

Pi
≤ Mi

m
− Pi +

(Mi

m
− Pi)2

Pi
, (E.60)

which implies that(
Mi

m
log

Mi

m

Pi

)2

≤ 2(
Mi

m
− Pi)2 + 2

(Mi

m
− Pi)4

P 2
i

. (E.61)

Taking expectations on both sides, we have

E
[(

Mi

m
log

Mi

m

Pi

)2]
≤ 2Pi

m
+

6

m2
+

2

m3Pi
≤ 2Pi

m
+

6

m2
+

2

m2c′3 log k
, (E.62)

where the last inequality is due to the condition that Pi ≥ c′3 log k

m
. Therefore,

∑
i∈I2∩I′2

E

[(
Mi

m
(log

Mi

m
− logPi)

)2
]
.

1

m
+

k

m2
. (E.63)

For the second term in (E.59), we derive the following bound:

∑
i∈I2∩I′2

E

[(
(
Mi

m
− Pi) log

Pi
Qi

)2
]

=
∑

i∈I2∩I′2

Pi
m

log2 Pi
Qi

.
log2 f(k)

m
, (E.64)

where the last inequality is because

∑
i∈I2∩I′2

Pi log2 Pi
Qi

=
∑

i∈I2∩I′2

(
Pi log2 Pi

Qi

1{ 1
f(k)
≤ Pi
Qi
≤f(k)} +Qi

Pi
Qi

log2 Pi
Qi

1{ Pi
Qi
≤ 1
f(k)
}

)
. log2 f(k). (E.65)

where the last inequality is because the function x log2 x is bounded by a

constant on the interval [0, 1].

We next bound the third term in (E.59). Note that x̂−x
x̂
≤ log x̂

x
≤ x̂−x

x
,
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and therefore

∑
i∈I2∩I′2

E

[(
Mi

m
(log

Ni + 1

n
− logQi)

)2
]

=
∑

i∈I2∩I′2

E

[(
Mi

m
(log

Ni + 1

nQi

)

)2

1{Ni≤
nQi
2
} +

(
Mi

m
(log

Ni + 1

nQi

)

)2

1{Ni>
nQi
2
}

]
(a)

≤
∑

i∈I2∩I′2

E

[
M2

i

m2

]
E

[(
Ni + 1− nQi

1

)2

1{Ni≤
nQi
2
} +

(
Ni + 1− nQi

nQi
2

)2

1{Ni>
nQi
2
}

]
(b)

≤
∑

i∈I2∩I′2

(P 2
i +

Pi
m

)

(
2nQiP (Ni ≤

nQi

2
) +

8

nQi

)

≤
∑

i∈I2∩I′2

(P 2
i +

Pi
m

)

(
2nQie

−nQi(1−log 2)

2 +
8

nQi

)
(c)

.
∑

i∈I2∩I′2

(P 2
i +

Pi
m

)
1

nQi

.
f(k)

n
+
kf(k)

mn
. (E.66)

where (a) is due to the mean value theorem and the fact Ni + 1 ≥ 1; (b)

uses the Chernoff bound of Poisson distribution; (c) is due to the fact that

x2e−
x(1−log 2)

2 is bounded by a constant for x > 0.

Combining (E.58), (E.63), (E.64) and (E.66), we obtain

Var

[ ∑
i∈I2∩I′2

(
D̂1,i − D̂2,i

)∣∣∣∣∣I2, I
′
2

]
.

k

m2
+

log2 f(k)

m
+
f(k)

n
+
kf(k)

mn
.

(E.67)

E.2 Bounds on the Bias:

Consider the first term in (E.22). Based on the definition of the set I1, E1

can be written as follows:

E1 =
∑

i∈I1∩(I′1∪I′2)

(
Mi

m
gL(Ni)− Pi logQi

)
. (E.68)
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Hence,
∣∣E[E1|I1, I

′
1, I
′
2)]
∣∣ =

∣∣∑
i∈I1∩(I′1∪I′2) E[Mi

m
gL(Ni) − Pi logQi

∣∣I1, I
′
1, I
′
2]
∣∣.

For i ∈ I1 ∩ (I ′1 ∪ I ′2), we have 0 ≤ Qi ≤ c1 log k
n

and
∣∣∣Pi µL(Qi)

Qi
− Pi

Qi
Qi logQi

∣∣∣ .
f(k)
n log k

. Therefore,∣∣∣∣E[Mi

m
gL(Ni)− Pi logQi

∣∣∣I1, I
′
1, I
′
2

]∣∣∣∣ =
∣∣∣PiµL(Qi)

Qi

− Pi logQi

∣∣∣
.

f(k)

n log k
. (E.69)

Hence, |E[E1|I1, I
′
1, I
′
2]| can be bounded as follows:

∣∣E(E1|I1, I
′
1, I
′
2)
∣∣ =

∣∣∣∣ ∑
i∈I1∩(I′1∪I′2)

E
[Mi

m
gL(Ni)− Pi logQi

∣∣∣I1, I
′
1, I
′
2

]∣∣∣∣
.

kf(k)

n log k
. (E.70)

Therefore,

E
[
E2
[
E1|I1, I

′
1, I
′
2

]]
.

k2f 2(k)

n2 log2 k
. (E.71)

Now consider the second term in (E.22). Based on how we define I2, E2

can be written as follows:

E2 =
∑

i∈I2∩(I′1∪I′2)

(
Mi

m

(
log

Ni + 1

n
− 1

2(Ni + 1)

)
− Pi logQi

)

=
∑

i∈I2∩(I′1∪I′2)

(
(
Mi

m
− Pi) logQi +

Mi

m
log

Ni + 1

nQi

− Pi
2(Ni + 1)

)
. (E.72)

Taking expectations on both sides, we obtain

E
[
E2|I2, I

′
1, I
′
2

]
=

∑
i∈I2∩(I′1∪I′2)

E
[
Pi log

Ni + 1

nQi

− Pi
2(Ni + 1)

∣∣∣∣I1, I
′
1, I
′
2

]
. (E.73)

Consider
∑

i∈I2∩(I′1∪I′2) E
[
Pi log Ni+1

nQi

∣∣∣I1, I
′
1, I
′
2

]
. Note that for any x > 0,

log x ≤ (x− 1)− 1

2
(x− 1)2 +

1

3
(x− 1)3. (E.74)
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Since Ni ∼Poi(nQi),

E

[
Pi log

Ni + 1

nQi

]
≤ PiE

[(
(
Ni + 1

nQi

− 1)− 1

2
(
Ni + 1

nQi

− 1)2 +
1

3
(
Ni + 1

nQi

− 1)3

)]
= Pi(

1

2nQi

+
5

6(nQi)2
+

1

3(nQi)3
). (E.75)

It can be shown that

E
[

Pi
2(Ni + 1)

]
=

Pi
2nQi

(1− e−nQi). (E.76)

Hence, we obtain

E
[
E2

∣∣I2, I
′
1, I
′
2

]
≤

∑
i∈I2∩(I′1∪I′2)

Pi(
1

2nQi

+
5

6(nQi)2
+

1

3(nQi)3
)− Pi

2nQi

(1− e−nQi)

(a)

.
∑

i∈I2∩(I′1∪I′2)

Pi
n2Q2

i

.
kf(k)

n log k
, (E.77)

where (a) is due to the fact that xe−x is bounded by a constant for x ≥ 0.

We further derive a lower bound on E
[
E2

∣∣I2, I
′
1, I
′
2

]
. For any x ≥ 1

5
, it can

be shown that

log x ≥ (x− 1)− 1

2
(x− 1)2 +

1

3
(x− 1)3 − (x− 1)4. (E.78)

Define the following event: Ai = { Ni
nQi

> 1
5
}. We then rewrite E

[
E2

∣∣I2, I
′
1, I
′
2

]
as follows:

E
[
E2

∣∣I2, I
′
1, I
′
2

]
=

∑
i∈I2∩(I′1∪I′2)

E
[
Pi log

Ni + 1

nQi

1{Ai} + Pi log
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nQi

1{Aci} −
Pi

2(Ni + 1)

∣∣∣∣I2, I
′
1, I
′
2

]

≥
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E
[
Pi log

Ni + 1

nQi

1{Ai} −
Pi

2(Ni + 1)

∣∣∣∣I2, I
′
1, I
′
2

]

−
∑

i∈I2∩(I′1∪I′2)

∣∣∣∣E[Pi log
Ni + 1

nQi

1{Aci}
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′
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′
2

]∣∣∣∣ . (E.79)
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Using (E.78), we obtain

E
[
Pi log

Ni + 1

nQi

1{Ai}

∣∣∣∣I2, I
′
1, I
′
2

]
≥E
[
Pi

((Ni + 1

nQi

− 1
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− 1

2

(Ni + 1

nQi

− 1
)2

+
1

3

(Ni + 1

nQi

− 1
)3 −

(Ni + 1

nQi

− 1
)4
)
1{Ai}

∣∣∣∣I2, I
′
1, I
′
2

]
. (E.80)

Note that

E
[
(
Ni + 1

nQi

− 1)1{Ai}

∣∣∣∣I2, I
′
1, I
′
2

]
=E
[
(
Ni + 1

nQi

− 1)
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′
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′
2
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− 1)1{Aci}
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′
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]
(a)

≥E
[
(
Ni + 1

nQi
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∣∣∣∣I2, I
′
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′
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]
=

1

nQi

, (E.81)

where (a) follows because (Ni+1
nQi
− 1)1{Aci} ≤ 0. Similarly,

E

[(
Ni + 1

nQi

− 1

)3

1{Ai}

∣∣∣∣I2, I
′
1, I
′
2

]
≥ E

[(
Ni + 1

nQi

− 1

)3
]

=
4

(nQi)2
+

1

(nQi)3
.

(E.82)

For the term E
[(

Ni+1
nQi
− 1
)2

∣∣∣∣I2, I
′
1, I
′
2

]
, it can be shown that

E
[(Ni + 1

nQi

− 1
)2
1{Ai}

∣∣∣∣I2, I
′
1, I
′
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]
≤E
[(Ni + 1

nQi

− 1
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′
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′
2

]
=

1
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+
1
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. (E.83)

Similarly, it can be shown that

E
[(Ni + 1

nQi

− 1
)4
1{Ai}

∣∣∣∣I2, I
′
1, I
′
2

]
≤ E

[(Ni + 1

nQi
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′
2

]
=

1 + 3nQi
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+
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(nQi)3
+

1

(nQi)4
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Combining these results together, we obtain

E
[
Pi log

(Ni + 1

nQi

)
1{Ai}

∣∣∣∣I2, I
′
1, I
′
2

]
≥ Pi

2nQi

− 13Pi
6(nQi)2

− 32Pi
3(nQi)3

− Pi
(nQi)4

.

(E.85)

From the previous results, we know that

E
[
− Pi

2(Ni + 1)

∣∣∣∣I2, I
′
1, I
′
2

]
= − Pi

2nQi

(1− e−nQi). (E.86)

Combining (E.85) and (E.86), it can be shown that

∑
i∈I2∩(I′1∪I′2)

E
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We further bound the absolute value of the right-hand side of (E.87) as

follows:∣∣∣∣∣∣
∑

i∈I2∩(I′1∪I′2)

(
− 13Pi

6(nQi)2
− 32Pi

3(nQi)3
− Pi

(nQi)4
+

Pi
2nQi

e−nQi
)∣∣∣∣∣∣ . kf(k)

n log k
,

(E.88)

where we use the facts that Pi
Qi
≤ f(k), nQi > c3 log k, and nQie

−nQi is upper

bounded by a constant for any value of nQi.
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For the E
[
Pi log Ni+1

nQi
1{Aci}

∣∣I2, I
′
1, I
′
2

]
, it can be shown that

∑
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kf(k)
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where (a) is due to the fact that Ni + 1 ≥ 1, and the fact that Qi >
c3 log k
n

,

hence | log Ni+1
nQi
| ≤ log(nQi) for large k; (b) is due to the Chernoff bound,

where 1− log(5e)
5

> 0; c is due to the fact that (nQi)
2 log(nQi)e

−(1− log(5e)
5

)nQi is

bounded by a constant for nQi > 1, and the fact that nQi > c3 log k. Thus,

(E.88) and (E.89) yield

E
[
E2

∣∣I2, I
′
1, I
′
2

]
& − kf(k)

n log k
. (E.90)

Combining (E.77) and (E.90), we obtain,

∣∣E[E2

∣∣I2, I
′
1, I
′
2

]∣∣ . kf(k)

n log k
. (E.91)

For the constant c0, c1, c2 and c3, note that logm ≤ C log k for some

constant C, and we can choose c1 = 50(C + 1), c2 = e−1c1, c3 = e−1c2, such

that c1− c2 log ec1
c2
− 1 > C, c3− c2 log ec3

c2
− 1 > C and c3(1−log 2)

2
+ 1−C > 0

hold simultaneously. Also, we can choose c0 > 0 sufficiently small, satisfying

condition 2c0 log 8 < 1
2

and 2(c0 log 8 +
√
c0c1 log 2e) < 1

2
. Thus, we show the

existence of c0, c1 and c2.
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