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Abstract 

Arbuscular mycorrhizal fungi participate in a widely conserved symbiosis with a majority 

of land plants which provides plant hosts with increased capability for soil nutrient uptake. These 

endosymbiotic fungi are themselves colonized by a diverse group of bacteria, including both 

parasitic and symbiotic species. Recently several obligate endosymbionts of the arbuscular 

mycorrhizal fungi have been identified, and these bacteria have been shown to modulate both the 

metabolism and morphology of the fungal symbionts. However, molecular and functional 

characterization of these bacterial endosymbionts has been limited by an inability to isolate and 

culture such obligate symbionts, which have significant metabolic dependencies on the host 

fungi. In this work, a metatranscriptomic approach is applied in order to determine the 

transcriptional mechanisms underlying this multilayered symbiosis. Different mycorrhizal fungal 

species were found to be colonized by distinct communities of bacteria, and the study identified 

bacterial genes with significant differential abundance in mycorrhiza-inoculated plant roots as 

well as bacterial genes with varying abundance across the life cycle of the symbiosis. Overall, 

arbuscular mycorrhizal fungi harbor a diverse and metabolically active community of bacteria, 

and metatranscriptomics provides a capable tool to uncover the functional basis of such complex, 

obligate symbioses.
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Introduction 

Arbuscular mycorrhizal (AM) fungi are a group of endosymbiotic fungi associated with 

the roots of a majority of plants belonging to the phylum Glomeromycota. They participate in a 

mutual symbiosis with over 80% of species of terrestrial plants (Lee et al. 2013), providing 

plants with essential nutrients such as phosphorous. In return, the AM fungi receive 

photosynthesis-derived carbon. Arbuscular mycorrhizal fungi confer these benefits by greatly 

expanding plant access to soil phosphorous. The fungi penetrate root cortical cells and form 

dense, branched structures called arbuscules within root cells to allow for nutrient exchange. 

Outside of the roots, AM fungi form extensive networks of hyphae that protrude into the soil. 

These hyphal networks provide greatly increased absorption of soil-derived nutrients by both 

exploring a greater volume of soil and by increasing the surface area over which these nutrients 

may diffuse (Bolan 1991). The fungi also provide more efficient nutrient uptake in a variety of 

nutrient-deficient conditions, primarily due to the increased surface-to-volume ratio of the 

mycorrhiza and a fungal capacity for rapid growth (Tuomi, Kytoviita, and Hardling 2001). This 

symbiosis is highly conserved, and it is believed that the arbuscular mycorrhiza evolved in 

conjunction with the first land plants (Brundrett 2002). With the ability to increase plant access 

to nutrients in deficient soils, the mycorrhizal symbiosis is of direct importance to maximizing 

crop yield and resilience for the global food supply and bioenergy feedstocks. 

 Full description of the mycorrhizal symbiosis must consider the microbial community 

associated with the fungi. The AM fungi are readily colonized by several bacterial species, 

including both parasitic and symbiotic organisms. Several species of the Burkholderia genus, 

which are largely soil based pathogens that can also infect humans, are able to invade AM fungal 

spores (Levy et al. 2003). Additionally, an endosymbiont of the AM fungi has been identified 
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(V. Bianciotto et al. 1996). Candidatus Glomeribacter gigasporarum, which relies on its fungal 

host for survival, can modulate the metabolic profile of the mycorrhiza (Salvioli et al. 2010) and 

may influence hyphal branching in the fungi (Lumini et al. 2007) by enhancing responsiveness to 

branching signals from the plant host. As hyphal branching directly affects nutrient uptake by the 

fungi, an understanding of these bacteria and the mechanisms of their symbiosis with the fungi is 

essential. A second group of obligate endosymbionts of the mycorrhizal fungi has been described 

more recently (Naumann, Schüßler, and Bonfante 2010). Unlike the Ca. G. gigasporarum, which 

exclusively colonize arbuscular mycorrhizal fungi of the family Gigasporaceae, the Mollictures-

related endobacteria (MRE) are able to colonize arbuscular mycorrhizal fungi from a much more 

diverse lineage. These endobacteria are similarly nutritionally dependent on their hosts and show 

a much reduced genome (Naito, Morton, and Pawlowska 2015). 

The obligate nature of the bacterial symbiosis, however, has made the study of these 

communities challenging, as the bacteria cannot be cultured. Indeed, a genomic sequencing 

survey of Ca. G. gigasporarum showed a greatly reduced genome with a metabolic dependence 

on the fungal host (Ghignone et al. 2012). The bacteria have a reduced metabolic capacity for the 

synthesis of several amino acids as well as the degradation of complex sugars. This results in an 

inability to propagate in host-free media, although the bacteria can be kept alive after removal 

from the host (Jargeat et al. 2004). The evolutionary trajectory of the Ca. G. gigasporarum 

genome suggests an ancient symbiosis with the AM fungi (Castillo and Pawlowska 2010) and it 

is likely that Ca. G. gigasporarum became increasingly metabolically dependent on the host as 

the symbiosis evolved. Although the symbiosis exacts an energetic cost on the host fungi, the age 

and extent of the symbiosis indicates that the fungi enjoy a selective benefit from the 

morphological influence of these bacteria.  
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In order to determine the molecular mechanisms involved in the AM fungal-bacterial 

symbiosis, we conducted a metatranscriptomics study on the root system of Brachypodium 

distachyon. The study included three different arbuscular mycorrhizal symbioses with the fungal 

symbionts Gigaspora gigantea, Glomus intraradices, and Glomus versiforme. Transcriptomic 

approaches provide a survey of the full complement of genomic products (transcripts) being 

transcribed in a particular tissue sample. Although ideal transcriptomic experiments require 

isolation of an individual species’ tissue and the exclusion of all contaminants and associated 

organisms, there exist situations where this may not be feasible or possible. The symbiosis of Ca. 

G. gigasporarum with arbuscular mycorrhizal fungi is a clear example of such a situation, as 

both the bacteria and its fungal host are obligate symbionts of their respective hosts, and both 

cannot be isolated and cultured individually. To accommodate this inability to sequence the fungi 

alone, a metatranscriptomic approach was utilized wherein RNA from all species present in an 

environment is sampled together, and transcriptomic sequencing is applied to this agglomerate 

sample. This type of analysis benefits from an ability to easily sample gene expression in 

complex environments from any number of known or unknown species. However, it entails the 

additional difficulty of computationally post-processing the sequences to individually analyze 

gene expression for the constituent species. In the present study, both root and shoot samples 

were studied. Root samples included RNA sequences from the host plant B. distachyon, one of 

the three fungal symbionts studied, as well as an undetermined number of bacterial symbionts or 

parasites of the fungal host. Although metatranscriptomic sequencing allowed observation of the 

yet-unexamined plant-fungal symbiosis as well as the fungal-bacterial symbiosis, functional and 

expression pattern analysis required robust isolation of sequences from the individual organisms 

present.  
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There are a large number of tools available that attempt to resolve the problem of 

separating metagenomic (or the derivative metatranscriptomic) sequencing reads into the 

respective taxonomic bins. This problem, known as taxonomic binning, is largely defined by the 

difficulties resulting from extensive sequence homology throughout the tree of life due to 

conservedness as well as convergent evolution. These homologous regions make it challenging 

to confidently place sequences within a particular taxonomic group, as high levels of similarity 

or even perfect identity may exist between sequences of sometimes widely divergent species. 

Therefore, the most robust approaches to the problem attempt to place the sequences in bins that 

are at higher levels of the taxonomic tree, resulting in less specific but more confident taxonomic 

assignments. The desire to place sequences in the most specific (lowest) taxonomic bin possible 

while maintaining a high level of confidence in the assignment has led to a number of tools being 

developed to address this problem, with differing focuses.  

These tools can be placed into two overarching categories: similarity-based and 

composition-based binning. In similarity based binning, sequences are first compared to a 

comprehensive database of sequences, such as NCBI’s nr database, which contains sequences 

from across the tree of life for which the taxonomic annotations are available. For each query 

sequence with matches in the database, the taxa of the database sequences for which there were 

matches is compiled, and a most-likely taxonomy for the query is chosen based on this set of 

taxa. Composition based binning techniques do not rely on the sequences themselves, but rather 

consider features of the sequences such as GC content, kmer abundance, and codon usage. Using 

a set of taxonomically-annotated sequences from across the tree of life, a model is trained using 

these features as predictors, and each query sequence is placed in the taxonomy based on its 

values for these features. Although these composition based techniques work well for longer 



 

5 

sequences, short sequences such as the reads produced by modern high-throughput sequencing 

machines do not contain enough compositional information to be accurately binned using these 

methods (Peabody et al. 2015). Therefore, similarity based methods are usually used for 

taxonomic annotation of short reads.  

Similarity based binning methods, however, generally require a computationally 

intensive and time consuming alignment of the query sequences to a reference database. As the 

methods rely on matches to query sequences for taxonomic assignment, increasingly 

comprehensive databases may allow assignment of a greater proportion of queries. For this 

reason, widely inclusive databases such as the NCBI nr database are often used that contain 

hundreds of millions of reference sequences, resulting in a vastly increased computational 

workload. In addition, the alignment of query sequences to such a database requires an aligner 

capable of aligning fairly dissimilar sequences, and so aligners such as BLASTx and BLASTn 

are commonly used. Although capable of generating informative alignments between sequences 

of relatively low identity, these aligners usually require a costly dynamic programming step and 

are therefore incapable of processing the massive number of sequences produced by current high 

throughput sequencing runs in a reasonable amount of time. More recent tools have been 

developed to alleviate this problem in the large-scale sequencing projects currently being 

conducted, but the adoption of these tools in taxonomic binning software has been limited. 

Several available similarity based binning methods, such as CARMA3 (Gerlach and Stoye 2011) 

and DiScRIBinATE (Ghosh, Monzoorul Haque, and Mande 2010), provide excellent precision 

and sensitivity in their taxonomic assignments (Peabody et al. 2015), but they rely on the 

BLASTx software that is essentially unusable for aligning sequencing libraries numbering in the 

millions or tens of millions of reads. One similarity based tool for taxonomic binning, MEGAN 
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(Huson et al. 2007), provides moderate precision and sensitivity, and uses the DIAMOND 

(Buchfink, Xie, and Huson 2014) aligner to identify matches in the reference database. This 

aligner allows the alignment of dissimilar sequences at a very high rate, and is appropriate for 

aligning libraries numbering in the tens of millions. Very recent methods, such as KRAKEN 

(Wood and Salzberg 2014) and CLARK (Ounit et al. 2015), abandon the alignment step entirely 

and select taxonomic bins based on kmer distributions, but these generally show reduced 

sensitivity or precision compared to alignment based methods (Peabody et al. 2015). In order to 

assign a taxonomic annotation to the greatest proportion of reads with the highest accuracy 

possible in a reasonable amount of time, MEGAN was used for taxonomic binning in this 

experiment. 

With a robust method for separating sequences in a metagenomic or metatranscriptomic 

study by their taxonomy of origin, it is possible to conduct standard genomic or transcriptomic 

analyses independently on each operational taxonomic unit (OTU). In the current study, bacterial 

sequences were separated from eukaryotic sequences and functional and differential expression 

analyses were conducted on the bacterial population in order to characterize genomic activity in 

the mycorrhizal microbiome. Additionally, the population structure of the fungal-root 

microbiome was determined using phylogenetic methods aided by the robust taxonomic binning 

provided by MEGAN. These analyses show a complex microbial community providing an array 

of functions related to symbiosis and endosymbiotic colonization in the mycorrhizal 

environment. 
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Methods 

Experimental design 

Brachypodium distachyon roots were inoculated with spores of either Glomus 

intraradices, Glomus versiforme, or Gigaspora gigantea. In addition, control treatments were 

grown which were not inoculated with any fungal symbionts. Plants were grown in a greenhouse 

at Cornell University in the Harrison lab. Tissue samples were collected from roots and shoots 

for each treatment at five and nine weeks after inoculation. Roots were washed to remove soil 

and surface-associated fungi and bacteria prior to sample preparation. Three biological replicates 

were collected for each treatment, and in total 48 samples were collected. Tissue samples were 

then ground under liquid nitrogen using mortar and pestles, and RNA was extracted from ground 

cell matter. Samples were sequenced using pyrosequencing from the Roche 454 protocol.  

cDNA was also prepared from the RNA samples using the Illumina TruSeq SBS 

sequencing kit v3 and quantitated using qPCR before sequencing . These libraries were 

sequenced on an Illumina HiSeq2000 using 100 cycles. Root samples were using paired-end 

sequencing with an average insert size of 250bp, while shoot samples were sequenced using 

single-end sequencing. Sequences were first trimmed of any Illumina adapter sequences 

remaining, and reads were quality trimmed to remove low-quality bases from the 3’ ends. After 

reads were trimmed of adapters and low-quality bases, libraries were filtered to remove reads 

shorter than 25 bases. Adapter trimming, quality trimming, and length filtering were performed 

using a Perl script written by Gopal Battu in the Hudson laboratory. 
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Assembly using Roche 454 reads 

 Contigs were assembled from the Roche 454 sequencing reads using the ABySS 

sequence assembly software, and this work was performed by Liudmila Mainzer. As a high 

quality B. distachyon genome has already been published, assembly of Brachypodium transcripts 

was not the intent of this project, and so contigs were aligned to the Brachypodium genome and 

those with high confidence Brachypodium alignments were removed from further analyses. 

Taxonomic composition 

  To determine the taxonomic composition of species present in the root and shoot tissue 

systems, samples were compared against a comprehensive database of one highly conserved 

gene, chaperonin 60 (Cpn60). Although 16S ribosomal RNA (rRNA) genes are commonly used 

to assess population structure in metagenomic samples, metatranscriptomics does not reliably 

capture these sequences due to the polyadenylation filtering used in mRNA library preparation. 

Cpn60 is a protein-coding gene and has been shown to have nearly universal coverage among the 

bacterial and eukaryotic domains of life as well as some coverage among archaeal lineages, and 

so it represents an ideal marker gene for transcriptomic phylogenetic analysis. Additionally, 

cpn60 genes may provide greater discriminatory power between closely related bacterial 

genomes (Brousseau et al. 2001) than 16S rRNA. To identify the population structure of the 

mycorrhizal microbiome, reads were aligned to a database of chaperonin 60 sequences (Hill 

2004) from a diverse collection of organisms representing a large portion of the tree of life. 

STAR aligner (Dobin et al. 2013) was used with a minimum of 70% similarity required. Initially, 

these alignments themselves were used for assessing OTU abundance in the samples, but this 

showed a very high type I error rate likely due to sequencing errors. For this reason, the more 

robust taxonomic predictions provided by the Lowest Common Ancestor (LCA) algorithm, as 
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implemented in MEGAN (Huson et al. 2007), were assessed. LCA assignments using the cpnDB 

alignments were conducted using a “top-percent” filter of 10% (default). 

 Additional taxonomic classification was conducted using taxonomic binning with 

the comprehensive NCBI nr database. MEGAN’s LCA algorithm was used for its ability to 

produce robust and efficient taxonomic assignment of the reads, and sequences annotated as 

bacterial were separated from eukaryotic sequences in order to exclude Brachypodium and 

fungal reads from expression analysis. Although more robust methods for this task exist 

(Peabody et al. 2015), such as CARMA3 (Gerlach and Stoye 2011) and DiScRIBinATE (Ghosh, 

Monzoorul Haque, and Mande 2010), the LCA algorithm was chosen for its ability to process 

tens of millions of sequences while providing acceptable Type I and Type II error rates for short 

reads. Blast2lca, a command line tool provided with MEGAN, was used to process the reads in 

parallel on a cluster. The DIAMOND aligner was used with the “fast” setting to compare the 

sequences against the NCBI nr database, and these alignments were processed using Blast2lca. 

In order to maintain specificity while using the more inclusive NCBI nr database, a minimum 

bit-score threshold of 15% of the top hit score (“--topPercent 15”) was used to balance the 

precision and sensitivity of assignments. Default parameters used include an absolute minimum 

bit-score of 50 (“-ms 50”) required for annotation as well as a 0.01 cutoff for the E-value of 

alignments (“-me 0.01”). 

Taxa to which reads were assigned were then filtered to retain only those taxa with a high 

likelihood of being truly present. The filtering of taxa was performed by first compiling counts-

per-million (CPM) of the reads present in each taxonomic bin, normalizing raw read counts by 

the total number of reads in each respective library. Taxa were then selected which had a 
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minimum abundance at least 1CPM in at least three libraries. Specifically, only reads from side 1 

of the paired-end reads from root samples were used in this portion of the study.  

As LCA binning allows quantification of taxa at all levels, many of the taxa output are 

redundant, less-specific higher level parent taxa to lower taxa. If these taxa occur in the lineage 

of only one significantly abundant descendant taxon, then they are uninformative, since the 

lower taxon provides a more specific description of the lineage’s presence in the sample. For this 

reason, these uninformative higher-level parent taxa were removed from further analysis to avoid 

assessing extraneous information as well as to maximize power while correcting test results for 

multiple comparisons. Taxa were selected for removal if they contained only one descendant 

taxon with significant abundance, as determined above, and if the total CPM across all libraries 

for the parent taxon was within 30% of the total CPM for the descendant taxon. This relative-

abundance filter was included to ensure that parent taxa with high numbers of descendant taxa 

present in a sample, yet only one significantly abundant descendant taxon, were retained for 

further analysis, as the abundance of these higher level parent taxa may be of interest on their 

own. Due to the nature of output of the MEGAN Blast2lca utility, taxa which do not fall into a 

canonical rank (superkingdom, kingdom, phylum, class, order, family, genus, or species) could 

not be removed regardless of their redundancy. 

With this filtered set of taxonomic abundances, expressed as CPM quantities, tests were 

performed to identify those taxa whose mean abundance varied significantly between different 

conditions. Two-sided Student’s t-test, as implemented in the R function “t.test”, was used for 

these comparisons, and p-values for each test were corrected using the False Discovery Rate 

(FDR) (Benjamini and Hochberg 1995) correction for multiple comparisons, implemented in the 

“p.adjust” function in R. Comparisons performed included those between individual mycorrhizal 
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fungal treatments and non-inoculated (control) treatments, as well as those between individual 

fungal-inoculated treatments at nine weeks-post-inoculation and five weeks-post-inoculation. 

Further, a comparison of mean CPM between root and shoot samples was conducted, and those 

taxa with significantly higher binned read counts in shoots were excluded from the results of the 

root-focused comparisons. Radial plots from MEGAN were used to visually survey microbial 

populations for various treatments. 

Taxonomic binning of contigs 

  In order to study the cellular function of mycorrhizal endobacteria, the contigs produced 

by assembly of the Roche 454 reads were filtered to retrieve a set of contigs for which bacterial 

origin could be confidently assigned, and these are referred to as “bacterial contigs”. This was 

done by first aligning all of the taxonomically annotated Illumina reads to the contigs. STAR 

aligner was used, aligning sequences with at least 70% identity (“--

outFilterMismatchNoverLmax 0.3”) and providing at most 20 alignments for multimapped 

sequences (“--outFilterMultimapNmax 20”). With the taxonomically binned read alignments, 

contigs were selected which had only alignments from reads assigned to the bacterial bin by 

Blast2lca and none from reads assigned to the eukaryotic bin. 

 Contigs with a high likelihood of being of bacterial origin were also identified using 

direct taxonomic assignment with MEGAN. For this, contigs were aligned to NCBI-nr with 

DIAMOND, and a top percent filter of 15% (“--topPercent 15”) was used. This provided a set of 

contigs for which assembled-kmer information could be included to enhance taxonomic 

assignment. 
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Functional enrichment 

 Contigs selected as being of bacterial origin were then functionally annotated using the 

software package Blast2GO (Conesa and Götz 2008, 2). This software package annotates 

sequences by (1) aligning reads to the NCBI nr database using blastx (Altschul et al. 1990), (2) 

mapping GO terms to hits in the database, and (3) selecting the high-confidence GO terms based 

on alignment similarity, GO term quality, and GO term graph structure. Additionally, the 

software performs an InterProScan (Jones et al. 2014) annotation to predict protein function. 

Differential expression of contigs 

 The edgeR package (M. D. Robinson, McCarthy, and Smyth 2010) was used to compare 

bacterial gene expression between time points, tissues, and fungal symbioses. The STAR 

alignments of the reads to the contigs were used to quantify contig expression levels, and read 

counts were compiled using the eXpress (Roberts and Pachter 2012) tool, which applies an 

expectation-maximization algorithm to more accurately quantify RNA-Seq gene expression from 

short read sequencing. Effective read counts from eXpress were used to quantify gene expression 

for downstream analyses. However, raw read counts were used to the filter bacterial contigs 

expressed at lower levels in order to remove contigs whose expression could not be accurately 

quantified. This filter required that at least 5 reads be aligned in at least 3 samples for a contig to 

be retained for further analysis. Significantly expressed bacterial contigs meeting this criterion 

were then assessed for differential expression using edgeR. The effective counts were 

normalized using the TMM normalization (Mark D. Robinson and Oshlack 2010). Differential 

expression tests were conducted between root samples for each fungal symbiosis and the mock 

symbiosis, between root samples at 9 weeks and root samples at 5 weeks for all symbioses, and 

between root samples and shoot samples in all symbioses and time points. A false discovery rate 

of 0.1 was used to identify significantly differentially expressed bacterial contigs.
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Results 

Sequencing levels 

Illumina HiSeq sequencing of the 48 samples collected yielded 1,039,663,930 total reads. 

After removing adapter sequences, low quality bases, and length filtering, 1,035,181,767 reads 

remained across all libraries. Sequencing runs had an error rate ranging from 0.42% to 0.51%, 

indicating an overall high level of quality. Single-end libraries from the shoot samples had a 

mean read count of 13,878,151, while paired-end libraries from root samples had a mean read-

pair count of 7,254,049.  

 

 

Taxonomic classification of samples 

 Phylogenetic classification of the samples using the naïve approach of simple alignment 

to cpnDB and use of the top hit taxon resulted in a large number of spurious alignments 

identified from the taxa predicted. For example, a significant number of reads were aligned to the 

cpn60 gene assigned to the genus Alligator, large animals unlikely to be responsible for the 

contamination of these samples grown in a Cornell greenhouse. After refining these cpn60-based 

taxonomic predictions using MEGAN, the number of predicted taxa reduced significantly, and a 

large portion of the most suspect taxa were removed. However, due to the relatively low number 

of alignments to cpnDB (Table 2), as well as the more limited coverage of the tree of life in 
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cpnDB compared to other sequence repositories (Table 3), the cpn60 alignment did not allow 

adequate characterization of the bacterial population in the samples.  

 

 

 To obtain a more informative survey of the taxonomic makeup of the microbial 

population in the root samples, taxonomic characterization using the comprehensive NCBI nr 

database was conducted. This showed much greater sensitivity than the cpn60-based 

characterization, with bacterial taxa containing a significant number of assigned reads (Table 2). 

Due to the higher sensitivity, a minimum threshold filter was used to remove low abundance taxa 

which removed more than 80% of taxa identified by MEGAN (Table 4). Removal of redundant, 

non-informative taxa further reduced the taxa count by 4.5%. 
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The non-redundant, significantly abundant taxa remaining provide a census of the 

transcriptionally active species present in the intracellular mycorrhizal environment. It is difficult 

to make direct conclusions about the relative proportions of individual taxa from a survey that 

strictly considers RNA transcripts, as individual cells may have differing total RNA productivity 

under different conditions (Traganos, Darzynkiewicz, and Melamed 1982) and different clades 

can vary considerably in their total RNA production per cell. However, such a survey does 

provide an informative, although qualitative, view of the overall taxonomic makeup of an 

environment. The existence of a significant number of reads assigned by the LCA algorithm to a 

taxon is often strong evidence that the taxon is present and transcriptionally active in the sample 

environment. Therefore, observation of these high-confidence taxa gives an approximate census 

of the members present in the mycorrhizal community. In the root samples which were 

inoculated with mycorrhizal fungi in this study, plant taxa contained the overwhelming majority 

of short read assignments (Figure 1). Expectedly, fungal taxa were assigned the next greatest 

number of reads, while Metazoan taxa contained the fewest predicted read assignments of the 

eukaryotic kingdoms. Bacterial taxa comprised a lower fraction of the assigned reads than any 

eukaryotic kingdom. The relative reduction in transcript abundance between host and 

endosymbiont for both the plant-fungal and fungal-bacterial symbioses was approximately 30 

fold. 
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In addition to qualitatively surveying the taxa present in the mycorrhiza, a quantitative 

comparison of transcriptome abundance levels between various taxa across samples can be made 

with robust taxonomic read assignments. Although transcriptome abundance does not directly 

correlate with organismal abundance as genome abundance does, it does measure the relative 

transcriptomic activity of the various clades within an environment. Because proteins translated 

from transcripts are responsible for the biomolecular activity in an environment including 

structural and metabolic processes, an organism’s transcriptome can have significant effects on 

the environment and other organisms present. For this reason, it is still of interest to compare the 

transcriptome abundances of the organisms in an environment across different conditions, and 
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the abundances of taxonomically binned reads provide a good measure of these transcriptome 

abundances. 

In the root samples studied, several bacterial taxa showed elevated transcriptome levels, 

as measured by binned-read counts, in samples treated with arbuscular mycorrhizal fungi 

compared to those that were not. Of the 751 minimally abundant, non-redundant bacterial taxa, 

649 did not have significantly higher mean binned read abundances in shoots at an FDR of 0.05, 

and these taxa were considered for differential transcriptome abundance comparisons in the root 

samples. Student’s t-tests comparing the mean CPM of all inoculated root samples to that of all 

control root samples showed that 190 (29.3%) of the 649 taxa had significantly differentially 

abundant transcriptomes at a FDR of 0.05. All of these taxa had higher numbers of reads 

assigned to them in the fungal inoculated samples than in the control samples. The twenty taxa 

with the most significant differences in mean binned read counts in inoculated roots is presented 

in Table 5.  
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There were several clades that were heavily represented in the taxa with the most 

elevated transcriptome abundance in the roots. The Bacteroidetes phylum contains a large 

portion of these taxa, with the children classes Cytophagia, Flavobacteriia, and Sphingobacteriia 

containing all of the ten most significantly different taxa. Several Proteobacteria clades were 

also among these taxa with transcriptome abundances elevated in roots, including the Dickeya 

genus, which contains several plant pathogens Rhodopseudomonas palustris, a ubiquitous 

microbe notable for its diverse metabolic capabilities, Marinobacter, a sea water-based genus 

able to degrade hydrocarbons, and Bacillus cereus, a common food-borne pathogen in humans 

which is also associated with the rhizosphere of certain plants (Halverson, Clayton, and 

Handelsman 1993).  

To determine which bacterial taxa exhibit different transcriptome abundances in the 

mycorrhiza of different fungal symbionts, comparisons were made of the read counts of taxa 

between the individual fungal treatments and the mock non-inoculated treatment. Taxa which 

showed increased transcriptome abundances in only a subset of the fungal symbioses were then 

examined further, as these taxa may show selective transcriptomic responses or colonization in 

certain mycorrhizal fungal symbioses. Overall, G. gigantea symbioses showed the greatest 

number of unique transcriptomically over-abundant taxa, as well as an overall larger number of 

taxa with over-abundant transcriptomes, while G. versiforme showed the fewest in both 

categories (Figure 2)  
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Figure 2. Fungal treatment-specific counts of bacterial taxa with significant differential 

transcriptome abundances in inoculated roots relative to control roots 
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The full results of the comparisons between bacterial transcriptome abundances in the 

various fungal inoculations with those in the control treatment for all bacterial taxa, excluding 

those with a higher transcriptome abundance in shoots, are provided in Appendix C, and the 

results for a selection of these tests is shown in Table 6. The G. gigantea symbiosis was uniquely 

enriched in transcriptome sequences for the Actinobacteria genera Mycobacterium and 

Amycolatopsis, the Proteobacteria families Methylobacteriaceae, Bradyrhizobiaceae, 

Rhodobacteraceae, and Xanthomonadaceae, and the Proteobacteria genera Citrobacter and 

Pseudomonas. Root samples inoculated with G. intraradices were uniquely enriched for 

transcriptomes of the Bacteroidales order, Streptococcus mutans and the Lachnoclostridium 

genus from the Firmicutes phylum, the Neisseriaceae family from the Proteobacteria phylum, 

and the Spirochaetales order.  
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Taxonomic binning of the assembled contigs 

Isolation of bacterial contigs using taxonomically-binned reads 

 The assembly of Roche 454 reads contained 31,612 contigs after the removal of B. 

distachyon contigs. Reads from side 1 of the paired-end Illumina libraries were used to separate 

these taxonomically and perform differential expression comparisons. After selecting only those 

contigs which had bacterial read alignments but no eukaryotic read alignments, 278 contigs 

(0.88%) remained (Figure 3). Of these, 10 contigs met a minimum abundance threshold of 1 

CPM for bacterial read mappings in at least 3 libraries. 9,922 (31.4%) of the contigs had 

alignments to only eukaryotic reads, and 2,850 of these met the minimum abundance threshold. 

887 (2.81%) contigs had both bacterial and eukaryotic reads align, while 20,525 (64.9%) had no 

alignments from bacterial or eukaryotic side 1 reads with the STAR parameters used. 
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Isolation of bacterial contigs using MEGAN 

 An alternative method for selecting the contigs likely to be of bacterial origin used 

MEGANs LCA algorithm to bin the contigs themselves. This resulted in 20,406 of the 31,612 

original contigs being labeled as either eukaryotic or bacterial in origin, with 7,202 (35.3%) of 

these labeled as bacterial and 12,867 (63.1%) labeled as eukaryotic. Figure 4 shows the 
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taxonomic distribution of the contigs labeled as either bacterial or eukaryotic to the kingdom 

level. Of the 7,202 bacterial contigs, 41 had a minimum abundance of 1 CPM among side 1 reads 

which had been annotated as bacterial in at least 3 root samples.  

Figure 4. Taxonomic assignments of all contigs to kingdom level, after filtering 

Brachypodium contigs 
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 Among the contigs predicted to be bacterial, an overwhelming majority (6,288; 87.3%) 

were assigned at or below the Burkholderia genus ( Figure 5). Of these, Burkholderia gladioli 

was the most highly represented species (670; 9.3%). Interestingly, the only taxonomic unit 

outside of the Burkholderia clade with significant representation among the bacterial contigs was 

the recently discovered Mollicutes-related endobacteria (MRE), which is shown to be an obligate 

symbiont of a majority of arbuscular mycorrhizal fungi. Although it contained significantly 

fewer taxonomically annotated contigs than B. gladioli, the Dentiscutata heterogama MRE 

(DhMRE) clade included 83 contigs, representing over 1% of the annotated bacterial contigs. 

Between the Burkholderiaceae family (containing Ca. G. gigasporarum) and the DhMRE clades, 

both of the two bacterial groups known to participate in obligate endosymbioses with AM fungi 

are represented among the contigs assembled (Valeria Bianciotto et al. 2003; Naumann, 

Schüßler, and Bonfante 2010). Blast2GO gene ontology maps for the DhMRE contigs are 

provided in  Appendix A (molecular function) and  Appendix B (biological process). 
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Concordance between two methods for isolating bacterial contigs 

 Overall, identifying contigs likely to be of bacterial origin by direct annotation using 

MEGAN proved to be much more sensitive than selecting those contigs with only bacterially-

annotated short reads aligning. The two methods did agree on their predictions for most of the 

bacterial contigs predicted by compiling bacterial read-counts, and 228 of the 278 contigs 

identified by this method were also annotated as bacterial by MEGAN. Fifty contigs were not 

binned as bacterial by MEGAN, but contained reads annotated as bacterial and none as 

eukaryotic. Of the 10 contigs identified using the bacterial read-count method and meeting the 

minimum abundance threshold among bacterial reads, all were also annotated as bacterial in 

MEGAN. For this reason, differential abundance tests comparing contig abundance at various 

treatments was performed once, using the more inclusive set of minimally-abundant contigs 

predicted by MEGAN. Contigs that were predicted to be bacterial by both MEGANs LCA 

algorithm as well as by having alignments strictly to bacterially-binned reads are marked in 

Table 7 with bold contig names. 
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Differential abundance of contigs annotated as bacterial across treatments 

Comparison of roots inoculated with mycorrhizal fungi with control roots  

 Roots which were inoculated with fungal symbionts showed enrichment for several of the 

bacterial contigs annotated by MEGAN. All fungal symbioses showed significantly more 

abundant RNA of a contig annotated as a type I glyceraldehyde-3-phosphate dehydrogenase in 

Blast2GO for at least one time point when compared to the non-inoculated samples. 

Additionally, a serine acetyltransferase was overexpressed in G. versiforme roots at both five and 

nine weeks post-inoculation (WPI). In G. gigantea, a carbonic anhydrase, an 

aminocarboxypropyltransferase, an alpha galactosidase, a glycosyl hydrolase, and an alpha 

mannosidase were more abundant in roots at both five and nine WPI. When all mycorrhizal 

symbioses were jointly compared against mock-inoculated roots, a cell wall associated hydrolase 

showed significantly increased abundance only at week nine. 
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Of the minimally abundant bacterial contigs that were differentially abundant between 

treatments in this comparison, two were placed into the Proteobacteria phylum by MEGAN, two 

were assigned to the Firmicutes phylum, including a contig annotated to the genus Clostridium, 

and one was assigned to the Actinobacteria class. Another contig differentially abundant in one 

of these comparisons was annotated as belonging to the Terrabacteria group, which includes the 

Firmicutes and Actinobacteria phyla, among others. The majority of these contigs showed 

significantly higher abundance in the inoculated roots relative to the non-inoculated hosts, but 

four of these contigs showed reduced abundance relative to control. Two annotated only as 

Bacteria had reduced abundance in G. intraradices mycorrhiza compared to control roots at 

week nine. Interestingly, one of these contigs also showed significantly increased abundance in 

G. gigantea roots at week five relative to control. Another contig annotated as belonging to the 

Terrabacteria group showed reduced abundance in G. gigantea treated roots at week five, and 

the contig assigned as Clostridium showed reduced abundance in G. gigantea roots at week nine. 

Mycorrhiza across time points 

 To observe changes in the mycorrhizal microbiome through the progression of the plant 

life cycle, fungal inoculated root metatranscriptomes were compared at five and nine weeks after 

inoculation. In all three symbioses studied, a type I glyceraldehyde-3-phosphate dehydrogenase 

and one cell wall-associated hydrolase were present at higher levels in roots at nine WPI. 

Additionally in all three symbioses, a gene that highly conserved among many bacterial species, 

including several Burkholderia species, and involved in dehydration response had significantly 

lower abundance in roots at nine WPI compared to roots at five WPI. Another cell wall-

associated hydrolase had increased abundance at the later time point in both the G. intraradices 

and G. versiforme mycorrhiza, while a third cell wall-associated hydrolase showed increased 
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abundance at the later time point in G. versiforme and G. gigantea treatments. Another contig 

with similarity to a dehydration responsive protein had reduced abundance at nine weeks in only 

G. versiforme. Contigs annotated for a type I glyceraldehyde-3-phosphate dehydrogenase, a 

serine acetyltransferase, and an O-acetylhomoserine aminocarboxypropyltransferase were more 

abundant only in the G. versiforme symbiosis at 9 weeks. Of these, however, both the type I 

glyceraldehyde-3-phosphate dehydrogenase and the O-acetylhomoserine 

aminocarboxypropyltransferase showed the same significant differential abundance pattern in the 

non-inoculated roots. Contigs with differential abundance in only the G. gigantea symbiosis 

include a cell wall-associated hydrolase, a leucine-rich protein, a carbonic anhydrase, an alpha-

galactosidase, an O-glycosyl hydrolase, and an alpha-mannosidase, all with decreased abundance 

at the later time point.  

Contigs with more abundant RNA at nine WPI relative to five WPI which had taxonomic 

assignments specific below the superkingdom level were all annotated as belonging to the 

phylum Proteobacteria. One of these contigs was assigned more specifically to the species 

Magnetospirillum gryphiswaldense, a freshwater sediment-inhabiting Gram-negative bacteria 

with the unusual ability to orient along Earth’s magnetic axis.  

The contigs with reduced abundance at nine WPI compared to five WPI represented taxa 

from the Firmicutes (2 contigs), Actinobacteria (2 contigs), and Proteobacteria (4 contigs) 

phyla. In G. gigantea inoculated roots, contigs with significantly reduced abundance at the later 

time point included one contig annotated as belonging to Clostridium, one annotated as 

Streptomyces, one annotated at the class level as a Betaproteobacteria, another annotated at the 

class level as Actinobacteria, and one annotated at the phylum level as Firmicutes. In G. 

versiforme inoculated roots, a contig predicted to have been produced by Xanthomonas citri, a 
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common pathogen of both citrus and cotton plants, showed reduced RNA abundance at nine 

weeks. In all three symbioses, a contig annotated to the Betaproteobacteria class had decreased 

abundance at nine weeks. Interestingly, one of the contigs present at lower levels in both G. 

versiforme and G. gigantea at nine weeks was placed into the Magnetospirillum gryphiswaldense 

by MEGAN, in contrast to another contig annotated as Magnetospirillum gryphiswaldense but 

more abundant at nine weeks in the G. intraradices symbiosis. 
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Discussion 

Taxonomic characterization of a metatranscriptomic sample 

 A natural first step in any meta-omics survey is to determine which operational 

taxonomic units (OTUs) are present in the samples and what the overall population structure of 

the community is. Many methods exist for this task, and the most common generally involve the 

use of a highly conserved taxonomic marker gene to survey taxa and estimate genome 

abundances. While 16S rRNA genes are commonly used for this task in metagenomic studies, 

where both coding and non-coding sequences are represented in the sequenced material, 

metatranscriptomic surveys require the use of polyadenylated coding sequences since current 

mRNA sequencing protocols use an oligo-dT purification step. Numerous transcribed candidate 

genes are available for this purpose, which are both extensively conserved yet still variable 

enough to be able to differentiate between closely related taxa. One transcribed gene useful for 

this task is the chaperonin 60 (cpn60) gene, which has been found to exist in virtually all bacteria 

and eukaryotes and a number of archaeal species (Hill 2004). Indeed, for closely related 

prokaryotic populations, the use of the cpn60 gene as a taxonomic marker may provide greater 

power than the conventional 16S rRNA markers even when those genes are available to use, 

since cpn60 is significantly less conserved than 16S rRNA genes (Brousseau et al. 2001; Lan, 

Rosen, and Hershberg 2016).  

Unfortunately, the use of single marker genes for taxonomic characterization proved to 

be difficult in this study for a few reasons. Firstly, the sheer volume of sequencing output in 

RNA-Seq experiments causes a large number of false positive hits to be made to the cpn60 

database. A standard protocol for taxonomic characterization of a sample using marker genes 

involves the use of universal PCR primers, whose products are amplified and then sequenced. 
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This specific targeting and sequencing of the marker genes allows for a much more robust 

characterization, as sequencing errors and other noise will be vastly reduced relative to the -

marker signal. An RNA-Seq characterization, however, sequences the total RNA of a sample, 

and because of this many marker genes will make up only a small fraction of the sequenced 

output. In this study, only 107,824 of the 1,035,181,767 total reads (0.01%) aligned to any 

marker in cpnDB. At these low absolute abundance levels, sequencing errors and subsequent 

imprecise alignments will produce problematic numbers of spurious taxonomic predictions as an 

increasing number of markers are matched to. Indeed, a sizeable number of alignments to the 

alligator cpn60 sequence in the current study caused the taxa to be fairly highly ranked among 

the predicted taxa, and this suggested the limitations of this type of population characterization 

for a metatranscriptomic dataset.  

One tool for limiting the impact of spurious matches to a conserved database is the 

Lowest Common Ancestor (LCA) algorithm (Huson et al. 2007). This algorithm takes all the 

alignments of a query sequence to a taxonomically-annotated database, and it uses these to push 

the predicted taxonomy for the query up the tree until it is inclusive of all the taxa to which the 

sequence aligned in the database. By making the taxonomic prediction less specific, the LCA 

algorithm can reduce the number of false positive predictions for a sample.  

However, applying this filter on the alignments to the cpn60 database still failed to 

produce acceptable taxonomic predictions because of the overall low number of alignments for a 

majority of the taxa in the samples. While taxa belonging to the Viridiplantae clade had over 

75,000 reads binned by the LCA algorithm, and Brachypodium distachyon was correctly 

predicted to be the most abundant plant species, fungal taxa had only 941 reads binned to them, 

and bacterial taxa had only 8. Even though 941 reads may have provided adequate coverage for 
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taxonomic characterization of the fungal population, the cpnDB database contains only one 

cpn60 sequence from the entire Glomeromycota phylum, to which all of the fungal symbionts 

studied here belong and to which all mycorrhizal fungal reads will be binned. Marker-based 

taxonomic classification therefore suffers from two major limitations to its applicability in 

metatranscriptomic studies, even if measures are taken to limit spurious predictions. Taxa with 

low levels of abundance, such as the bacteria studied here, may be absent or inadequately 

represented in the resulting taxonomic predictions if the marker gene is not extremely highly 

expressed. Furthermore, although such marker databases are routinely updated with sequences 

from newly characterized taxa, the inherent incompleteness of a database can lead to 

unacceptable biases for a particular taxonomic group of interest (Table 3).  

For these reasons, a full taxonomic characterization of all reads was conducted using 

alignments to the NCBI-nr database and the LCA algorithm. A comprehensive sequence 

database like NCBI-nr will be significantly less biased towards well-studied species than a 

manually curated, single-marker specific database like cpnDB. This increases the specificity of 

taxonomic predictions. Additionally, the presence of genes from across entire genomes allows 

the identification of lowly abundant or lowly transcriptionally active taxa, since this increases the 

sequence space over which sequencing reads may be sampled from for use in the taxonomic 

characterization. This increased sensitivity can be seen in Table 2, where taxonomic 

characterization of the samples using the full set of all reads provided taxonomic assignments for 

a much greater portion of reads from the lowly-abundant bacteria than did characterization with 

the cpn60 marker gene. 

It is important to consider exactly what is being represented by the abundance estimates 

provided by counting reads binned to various taxa in a metatranscriptomic experiment. Although 
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metagenomic surveys are able to use marker or read abundances to approximate taxon 

abundances, read abundances in metatranscriptomic experiments are affected by more than just 

the abundance of the originating organism. While the genome count-per-cell is effectively 

invariant or minimally variable when considering a randomly dividing population of a specific 

organism, the total RNA output per cell can vary significantly across treatments (Traganos, 

Darzynkiewicz, and Melamed 1982). It is also expected that certain taxa can be more or less 

transcriptionally active at any given time relative to other taxa, as when organisms of different 

trophic capabilities occupy the same environment through changes in nutritional availability. 

Lastly, the abundance of RNA-Seq reads binned to a particular taxon can of course vary with the 

differential expression of a small number of highly abundant genes, because the distribution of 

reads along a transcriptome is not uniform or constant like it generally is with genomic reads. 

Therefore, the most accurate description of the phenomenon estimated by metatranscriptomic 

read counts for a taxon is the proportion of the total transcribed RNA in the sample contributed 

by the taxon’s transcriptome. Importantly, RNA abundance can be affected either by alterations 

in the abundance of an organism, and / or by gene expression levels. Thus, RNA does not 

provide information on the taxon’s cellular abundance in the sample beyond presence or absence. 

It also does not necessarily suggest anything about the taxon’s transcriptomic activity per cell, 

which is what read counts are commonly interpreted as representing in standard RNA-Seq 

experiments.  

Despite this ambiguity in the cause for a particular read count for a particular taxon in a 

metatranscriptomic experiment, the phenomenon represented by the read count is still of value 

for the survey. The significant abundance of metatranscriptomic reads binned to a particular 

taxon is good evidence that both the taxon is present and that a given gene is transcriptionally 
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active in the environment. This evidence can therefore be used to form a qualitative 

characterization of the taxonomic makeup of the environment to determine which taxa are 

present and transcriptionally active in the environment. There is another measure, however, that 

can be quantitatively compared in this type of dataset and also provides useful information about 

the environmental biota. 

An organism’s proteome can have significant effects on the biochemical activity in an 

environment, and this is true whether the elements of that proteome are produced by a few 

individuals or by many. Because a proteome derives from the transcriptome, the same may be 

said of an organism’s transcriptome. There is not necessarily a correlation between the 

abundance of a transcriptome and the abundance of a proteome; in the case of individual 

transcripts and proteins, this is generally a weak correlation (Maier, Güell, and Serrano 2009), 

but the correlation becomes significant and positive when considering only differentially 

expressed transcripts (Koussounadis et al. 2015). Regardless, given the lack of a direct high-

throughput measure of even a single taxon’s proteomic output, changes in the transcriptomic 

output of the various taxa in a community provide interesting insight into the relative 

contributions of the taxa to the biochemical activity in an environment. For this reason, the 

transcriptomic abundance of individual taxa was compared quantitatively using Student’s t-test 

between fungal inoculated roots and the mock (control) roots. As stated above, changes in this 

transcriptomic abundance for a taxon are equally efficacious from a biochemical standpoint 

whether they derive from a fixed number of individuals transcribing a greater number of 

transcripts or whether they are caused by an increase in the number of individuals expressing 

transcripts at a constant rate. 
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Overall, several taxa showed higher transcriptome abundance in inoculated compared to 

non-inoculated roots (Table 5). The Bacteroidetes phylum was highly overrepresented among the 

taxa with the most differentially-abundant transcriptomes. Bacteria of this phylum are prevalent 

environmental bacteria, and one notable sub taxa is the soil-inhabiting Cytophagaceae. These 

bacteria possess novel mechanisms to digest insoluble cellulose, and they may use cell-surface 

proteins for the initial cellulose digestion (McBride et al. 2014).  

Among the Proteobacteria, both the Dickeya genus and Bacillus cereus are pathogenic, 

with Dickeya causing soft rot in certain plants while B. cereus can infect the rhizosphere of 

soybean plants (Halverson, Clayton, and Handelsman 1993). However, two other Proteobacteria 

with significantly differentially-abundant transcriptomes, Rhodopseudomonas palustris and 

Marinobacter are both noteworthy for their unique metabolic capabilities. R. palustris has 

extremely versatile metabolic capabilities, able to grow as a photoautotroph, photoheterotroph, 

chemoheterotroph, or as a chemoautotroph and able to thrive in both aerobic and anaerobic 

environments (Larimer et al. 2004). It is also known to degrade plant biomass. Marinobacter is 

notable for comprising a genus that includes species which possess the metabolic capacity to 

degrade hydrocarbons (Brito et al. 2006). Overall, these bacterial taxa whose transcriptomes may 

be enriched in fungal-symbiotic roots show a variety of unique metabolic features, and often 

share the ability to degrade cell walls. This trend is supported by Blast2GO annotation of the 

differentially abundant contigs in Table 7, which includes multiple contigs annotated as “cell 

wall-associated hydrolases” and with significantly increased expression in at least one symbiosis 

relative to mock roots. 
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 Tests for differential transcriptome abundances between individual mycorrhizal 

symbioses and mock-inoculated roots showed that G. gigantea mycorrhiza are enriched for the 

most diverse microbial communities, while G. versiforme mycorrhiza harbor very few microbial 

taxa with transcriptomic abundance significantly different from mock roots (Figure 2). The 

reason for this is not an overall low level of transcriptomic read counts in G. versiforme-

inoculated roots; mean transcriptomic abundances for the minimally-abundant bacterial taxa was 

actually higher in G. versiforme mycorrhiza than it was for the other two symbionts. Therefore, it 

seems that G. versiforme harbors a set of microbial taxa which truly show less selectivity for the 

mycorrhizal environment over the mock-inoculated root environment. It is interesting that G. 

versiforme mycorrhiza are colonized by fewer selective taxa than G. intraradices mycorrhiza; 

previous surveys (Naumann, Schüßler, and Bonfante 2010) have shown that G. intraradices is 

actually ones of very few arbuscular mycorrhizal fungi which do not harbor the Mollicutes-

related endobacteria (MREs) that are highly prevalent among other AM fungi, including those in 

the Glomus genus to which G. versiforme falls within and which G. intraradices has been 

removed from (Krüger et al. 2012). Simultaneously, an explanation for the very high prevalence 

of taxa with significantly overabundant transcriptomes in the G. gigantea symbiosis may come 

from the unique ability for arbuscular mycorrhizal fungi in the Gigasporaceae family to be 

colonized by both MRE species as well as the Gigasporaceae-specific endosymbiont Candidatus 

Glomeribacter gigasporarum (Desirò et al. 2014). Indeed, the Burkholderiaceae clade under 

which Ca. G. gigasporarum has been assigned was highly represented among the contigs which 

MEGAN annotated as bacterial ( Figure 5), indicating a high level of transcriptomic sequence 

diversity amongst the clade in the mycorrhizal community. 
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Another potential reason that G. gigantea mycorrhiza may harbor such a diverse 

microbial community is that the fungus may reduce plant host defenses against bacterial 

infection. B. distachyon plants inoculated with G. gigantea spores had the lowest biomass 

between the three mycorrhiza tested (personal communication from Liudmila Mainzer). This 

reduction in plant biomass production may be due to general health detriment caused by the 

nutritional and metabolic stresses of increased microbial infection in plants colonized by G. 

gigantea. 

Specific taxa which exhibited increased transcriptomic abundance in the G. gigantea 

symbiosis included a number of taxa spanning three different phyla. Some, such as 

Xanthomonadaceae, are common plant pathogens, while others are unrelated to plant or soil 

environments, including the human pathogen Mycobacterium and the seawater microbial family 

Rhodobacteraceae. Both the Bradyrhizobiaceae family and Citrobacter genus include species 

roles in the soil nitrogen cycle. Bradyrhizobiaceae includes endophytic nitrogen fixing species, 

and so transcriptomes of these organisms would necessarily be sampled with the collection 

mechanisms used in this study. It is noteworthy that such an important microbe is providing 

higher levels of transcriptomic products in one of the mycorrhizal symbioses studied, although 

there does not appear to be any published evidence for interactions between a mycorrhizal fungal 

population and microbial endophytes. Such interactions have, however, been reported between 

mycorrhizal fungi and fungal endophytes (Park and Eom 2007). Citrobacter species, when found 

in soil, are not located within plant tissue. Their presence in the root samples may be due to 

partially incomplete washing of the soil from root samples, which will necessarily be less than 

perfectly efficient. Most interestingly, the Pseudomonas genus was among the taxa which were 

significantly more transcriptomically abundant in only the G. gigantea symbiosis. At least two 
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species of Pseudomonas, Pseudomonas fluorescens and Pseudomonas montelilii, have been 

shown to modulate the morphology of mycorrhizal fungi. The effects of Pseudomonas species on 

mycorrhizal fungi have been observed in both ectomycorrhizal fungi (Deveau et al. 2007) and 

arbuscular mycorrhizal fungi (Duponnois and Plenchette 2003), and the specific morphological 

changes caused by Pseudomonas in these fungi warrants further attention to this microbe. 

Treatment with the bacteria was observed to correlate with an increase in nodulation and 

colonization of plant roots by mycorrhizal fungi as well as increases in hyphal growth. 

Specifically, P. fluorescens has been shown to enhance the hyphal extension, branching angle 

and branching density of mycorrhizal fungi. As the mycorrhizal hyphae are the morphological 

trait which provides the plant with increased nutrient uptake by increasing the available 

absorptive surface area, this modulation of the length, shape, and density of the hyphae has 

important implications for the effectiveness of a particular mycorrhizal symbiosis.  

Isolation of bacterial contigs 

 As the focus of this study was limited to the microbiota of the arbuscular mycorrhizal 

symbiosis, differential expression analysis and functional annotation was conducted on only 

those contigs which were likely to be of bacterial origin. Two methods were used to isolate this 

set of contigs. The first compiled the number of alignments of taxonomically-binned short reads 

to all contigs, and then selected only those contigs which had reads from the bacterial bin align 

and none from the eukaryotic bin align. A second method taxonomically binned the assembled 

contigs directly using MEGAN, selecting those contigs which the LCA algorithm assigned at or 

under the bacterial node. Of the two methods, the LCA-binned contig method proved to have 

much greater power for separating the contigs at the superkingdom level, assigning over twenty 

times more contigs to the bacterial group than the binned-read method. However, the LCA-
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binned contig method may have also assigned a greater fraction of chimeric contigs to the 

bacterial bin, since a majority of the contigs assigned by this method had alignments to short 

reads which were binned as eukaryotic and were therefore not placed in the bacterial bin by the 

binned-read method. However, due to the both the significant type I error rate of the taxonomic 

binning of short reads and the potential for incorrect and ambiguous alignments caused by 

sequencing errors and the conservedness of sequences, the binned-read method for isolating 

bacterial contigs may be overly conservative for this purpose, and many of the contigs predicted 

to be chimeric by the binned-read method may actually be homophyletic. Indeed, after applying 

a minimum bacterial read-abundance filter to the bacterially-binned contigs, the number of 

contigs remaining for the LCA-binned method was reduced to within an order of magnitude from 

the number produced by the binned-read isolation method.  

Taxonomic binning of bacterial contigs 

 In a metatranscriptomic assembly, ideal contigs provide a deduplicated representation of 

all of the transcripts produced by organisms in the sample environment. The taxonomic makeup 

of the set of all contigs, therefore, depicts the relative transcriptomic sequence diversity of each 

clade in the environment, assuming that no two clades share identical transcripts. For example, a 

clade that includes one species with a genome containing 100 transcribed genes will produce half 

the number of contigs as a clade that includes two species each with a genome of 100 transcribed 

genes or a clade that includes one species with a genome of 200 transcribed genes. However, it 

should be noted that taxa with very low transcriptomic output with likely be underrepresented 

among the assembled contigs, as their transcripts will be under-sampled in the sequencing and 

may not be able to assemble with adequate quality.  
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 In the mycorrhizal root environments studied, fungi produced a more diverse set of 

transcripts than bacteria, as seen in Figure 4. Additionally, bacteria produced a more diverse set 

of transcripts than the Metazoa, which contribute only 514 unique transcripts to the 

metatranscriptome. This indicates that the relatively high proportion of reads binned to Metazoa 

in Figure 1 originate from only a few highly expressed genes. 

 Among the bacterial contigs, an overwhelming majority were assigned to the 

Burkholderia genus. This genus contains a number of soil and fungal pathogens and symbionts, 

notably including the obligate endosymbiont of Gigasporaceae mycorrhizal fungi, Ca. G. 

gigasporarum. Additionally, the clade containing the other well-described obligate 

endosymbionts of the arbuscular mycorrhizal fungi, the Mollicutes-related endobacteria (MRE), 

contributed a substantial number of contigs. Together, these two clades, the Burkholderia and 

MRE, provided over 75% of the contigs annotated as bacterial in this study. 

Functional annotation, differential expression of bacterial contigs 

 A number of functions were encoded by the bacterial contigs present in these samples at 

a minimal level of abundance, as identified by bacterial read counts. Among these were contigs 

involved in amino acid synthesis, carbohydrate metabolism, and cell wall-associated hydrolases. 

A number of these showed statistically significant differential expression between inoculated and 

control treatments and between time points. One contig was annotated as an O-acetylhomoserine 

aminocarboxypropyltransferase gene. This protein is involved in the synthesis of both 

methionine and cysteine, and the contig was expressed at significantly higher levels in all three 

of the fungal symbioses studied as well as in roots at nine weeks-post-inoculation. A serine 

acetyltransferase coding gene was also expressed higher in G. versiforme symbioses when 

compared to non-inoculated roots as well as across time points. There were also several contigs 
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annotated as being involved in carbohydrate metabolism, including starch, mannose, galactose, 

and glucose metabolism. Both alpha-galactosidase and alpha-mannosidase genes were 

overexpressed in G. gigantea roots at both time points relative to control, and were expressed 

significantly higher in roots at 5 weeks-post-inoculation. Previous characterizations of the 

obligate endosymbionts of the mycorrhizal fungi indicate that the bacteria are heavily dependent 

on the host fungi for nutritional needs, and the presence of bacterial genes involved in certain 

essential biochemical pathways, including certain carbon utilization and amino acid synthesis 

pathwayss, communicate important information about the specific metabolic capabilities of the 

endosymbionts in a particular mycorrhiza. 

 A number of contigs were annotated as coding for cell wall-associated hydrolases. As 

endosymbionts, these proteins would be essential for colonization of the host. Additionally, these 

have been shown to be used by certain bacteria as anti-microbial agents, allowing control over 

the local microbiome. Interestingly, two of these cell wall-associated hydrolases code for 

cytoplasmic, transmembrane, and non-cytoplasmic domains, suggesting that these are 

extracellular hydrolases. Of these contigs, two were expressed significantly higher in only the G. 

versiforme symbiosis compared to control roots, but both were expressed higher in nine-week 

roots relative to five-week roots. One of the cell wall-associated hydrolases showed the opposite 

time-dependent expression pattern in G. gigantea, being expressed higher in five week roots. 

 The presence of a secreted protein among the bacterial contigs is of particular interest. It 

is known that plant hosts control arbuscular mycorrhizal fungi using the secreted strigolactone 

hormones__, and more recently it has been shown that Ca. G. gigasporarum can modulate the 

responsiveness of these fungi to this hormone (Salvioli et al. 2010). The mechanism for this 
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modulatory function is not currently known, and the presence of secreted bacterial proteins in the 

metatranscriptome suggests that bacterial exudates may potentially be involved.  

 

Gene ontology characterization of DhMRE contigs 

 There was a significant presence of contigs which were taxonomically annotated 

specifically to the DhMRE endosymbionts of Dentiscutata heterogama. To determine the 

specific genes and functions that were encoded by transcripts present in the metatranscriptome of 

this survey, gene ontology annotation of these contigs was performed. A large number (75.9%) 

of the contigs were annotated for kinase activity, indicating that functional regulatory 

mechanisms play a significant role in the activity of these bacterial symbionts. A large portion 

were annotated as exhibiting hydrolase activity, of which a number were specifically predicted to 

act on carbon-nitrogen, but not peptide, bonds. This family of proteins is believed to be involved 

in the reduction of organic nitrogen compounds (Bork and Koonin 1994), and the presence of 

these contigs suggests that the bacterial symbionts may be participating in the nitrogen cycle. 

This is a function that arbuscular mycorrhizal fungal symbiosis has recently been shown to act in 

(Whiteside et al. 2012), and the existence of genes encoding parts of this pathway in the bacterial 

symbionts suggest that this process may involve multiple members of the mycorrhizal symbiosis.  

 Biological process annotations of the DhMRE contigs showed that a majority were 

involved in both metabolic and cellular processes. Of those involved in cellular processes, 

phosphate-containing compound metabolic processes were the major functional group, 

supporting the involvement of bacteria in the phosphate-uptake pathway.  Additionally, contigs 

annotated as containing metabolic activity were all involved in macromolecule modification, 
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protein metabolic processes, and cellular macromolecule metabolic processes. As the 

endobacteria are heavily nutritionally dependent on the host, these contigs may encode for genes 

involved in the bacterial metabolic processes as well as the host-invasion processes.  

 

Challenges with a metatranscriptomic analysis of a multilayered symbiosis 

Extremely skewed abundance distribution 

Metatranscriptomic experiments hold great promise to expose the molecular activity of 

diverse populations, but a number of challenges remain. In this study, three levels of symbiotic 

organisms were studied, including plant, fungal, and bacterial clades. The complexities of 

analyzing the transcriptomic activity of such divergent organisms pooled together is 

compounded by the extreme differences in RNA abundances between the three clades. Although 

the sequencing depth of the RNA-Seq libraries used in this study was fairly high, the 

overwhelmingly higher number of reads from the plant host compared to the fungal symbiont, as 

well as for the fungal host compared to its bacterial symbionts, results in a vast range of 

sequencing coverage for each clade. These differences are a result of the orders of magnitude 

differences in cellular abundance between the different symbionts, with the bulk of the 

mycorrhiza consisting of root tissue, a lesser portion of consisting of fungal spores, and an even 

lesser fraction containing bacterial cells. As the power to detect expression and changes in 

expression of genes in an RNA-Seq experiment increases with the number of reads, and requires 

a minimum number of reads due to error rates in sequencing__, this stratified population structure 

makes the detection of bacterial, and to smaller extent fungal, gene expression much less 

sensitive. In the symbioses studied here, the root mycorrhizal samples provided 700,439,111 
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total reads, of which 408,390,641 could be reliably annotated by taxonomic assignment. Of these 

408,390,641 reads, an overwhelming 96.5% were assigned to Viridiplantae, likely originating 

from the B. distachyon host. This provides more than adequate coverage for analysis of the plant 

host. However, the fungal symbionts contributed only 3.23% of the taxonomically-annotated 

reads in the root samples, effectively reducing the coverage of their genes several fold. The 

bacterial symbionts merely provide 0.094% of the taxonomically-annotated root sample reads, so 

the detection of bacterial genes will necessarily be limited to only the most highly abundant 

genes expressed by the most abundant bacterial species in the samples. This problem is 

exacerbated by the existence of genes in all organisms with an overall higher level of expression 

than most genes, causing the coverage of other low expression genes to be further depressed.  

In this study, 31,612 contigs had no significant matches to Brachypodium, and therefore 

could be presumed to be of either fungal or bacterial origin. However, of these contigs only 

33.4% could be confidently predicted to be of either bacterial or eukaryotic origin. This leaves 

21,042 contigs whose gene products provide potentially significant contributions to the 

mycorrhizal symbiosis for which the transcriptional activity cannot be confidently credited to 

one taxon, even between two different domains of life. Again, due to the obligate natures of both 

the fungal-plant symbiosis and the bacterial-fungal symbiosis, neither the fungi nor the bacterial 

endosymbionts may be cultured or enriched independently of the plant host, and so this problem 

can only be alleviated with increased sequencing depth. The realities of current generation 

sequencing set limits on this, as the cost of increasing the depth by several fold may be 

prohibitive in many cases.  
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High conservation of short read sequences 

 It is important to note that a major limitation to accurate taxonomic analysis in 

contemporary metagenomic or metatranscriptomic studies is the short read lengths available with 

current sequencing techniques. Illumina HiSeq and MiSeq sequencing protocols allow for 

between 100 and 250 cycles, depending on the machine used, and reads of this length often do 

not contain enough information for accurate taxonomic assignment. In this study, which used 

100 cycles of Illumina HiSeq sequencing, over 41% of filtered, high quality reads could not be 

confidently assigned to either the bacterial or eukaryotic domains. Although some of this can be 

caused by sequencing errors resulting in unsuccessful alignments, the major cause of this lack of 

sensitivity is the existence of extensive conserved regions in the genomes of all species__. Short 

read sequencing is generally motivated by a desire to assemble full length sequences of genes 

from a single organism using high, redundant coverage and the resulting overlap of short read 

fragments. Metagenomic sequencing, however, relies largely on divergent regions of genes and 

genomes in order to differentiate genetic elements belonging to particular species in a pooled 

sample. Although short read sequencing can and has been applied to metagenomic 

characterizations, its utility is significantly limited by the fact that although short read fragments 

contain enough sequence information for kmer and overlap-based assembly, they are often of 

insufficient length to span across highly conserved regions in genes and genomes. This results in 

vast regions of the genes of organisms present in metagenomic samples being unable to be 

reliably assigned a taxonomic origin. While it is informative to observe transcriptional activity as 

a holistic representation of the genetic activity of a local environment, it is often significantly 

more useful to assess the genetic activity of individual clades present in an environment 

independently. This is especially true of environments containing organisms spanning multiple 
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domains, as was the case in the current mycorrhizal survey, where both fungal and bacterial 

genic function were of interest as separate cladistic entities operating in different symbioses. 

 Although it may initially seem that conserved regions of a gene provide little insight into 

the genetic activity of a metagenomic sample, as their sequence and protein structure is by 

definition minimally variable across taxa, these regions do in fact convey unique information 

about individual species’ cellular function if this taxonomic identity is known. In the current 

study, several bacterial contigs were annotated as coding for cell wall hydrolases. This function 

is known to be present in the mycorrhizal fungi, which invade the plant root cells in a concerted 

mutually catalyzed process. Therefore, it is expected that the fungi also express cell wall 

hydrolase transcripts. However, the existence of cell wall hydrolases with high likelihood of 

originating from a bacterial transcriptome depicts an aspect of the bacterial invasion of the fungal 

spores, which is an independent and complementary process to the fungal invasion of plant roots. 

Fortunately in the case of this protein family, genic sequences were divergent enough to allow 

their taxonomic separation into the clades of their respective species. Still, a majority of the 

contigs either did not align to any bacterial- or eukaryotic-binned reads (63.3%) or aligned to 

both bacterial and eukaryotic reads (3.27%) and therefore could not be included in this bacterial-

focused transcriptomic survey, demonstrating the limitations conferred by high levels of 

conservation and sequence ambiguity. This problem may be alleviated by more sensitive and 

precise taxonomic binning methods, and there are significant improvements that can be made to 

the LCA algorithm as implemented by MEGAN. However, even optimal taxonomic binning 

algorithms cannot correct for perfect conservation among genes and genic regions in distantly 

related species, and with short reads there will always be a significant number of reads falling in 
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such perfectly or near-perfectly conserved regions which cannot be taxonomically annotated to 

low ranks.  

The single molecule sequencing methods currently being introduced offer significant 

promise for metagenomic studies, as they will greatly reduce the challenges caused by the 

conservation of gene sequences and the potentially massive differences in DNA or RNA 

production between pooled organisms. The likelihood of mutations in a genomic region is 

proportional to the length of that region, and so longer sequences will tend to be less conserved. 

Indeed, although there will exist many conserved regions of the size range of shotgun sequencing 

reads (100-250bp) in any given genome, the number of such regions spanning the multikilobase 

sizes of current single molecule sequencing technologies will be orders of magnitude lower. 

These sequencing technologies do, however, tend to have higher error rates. Increased error rates 

can reduce the alignment scores of query sequences to reference databases that similarity-based 

taxonomic binning methods depend on for assignment, and therefore may make taxonomic 

assignment more difficult. However, some single molecule sequencing technologies, such as the 

SMRT sequencing system by Pacific Biosciences, have random error profiles, and therefore 

these errors will systematically affect alignment scores more or less equally across all hits to 

reference databases. As the parameters of taxonomic assignment based on these alignment scores 

are adjusted either manually, as in MEGAN, or algorithmically, as in CARMA3 and 

DiScRIBinATE, based on alignment properties, it is possible for taxonomic binning methods to 

account for increased error rates while still benefiting from the increased read lengths proffered 

by single molecule sequencing technologies. Also, although these technologies provide lower 

coverage of the DNA or RNA in a sample, the massively increased proportion of non-conserved 

sequences within each long read allows for a much more robust and sensitive taxonomic 
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identification, and the proportion of metagenomic or metatranscriptomic reads able to be 

taxonomically annotated will be significantly higher with these technologies. Additionally, while 

increased coverage will still be required to compensate for a greater abundance of host DNA or 

RNA in symbioses, the fold change increase in sequencing depth required will be lower due to 

this increased sensitivity of taxonomic assignment.  

Convolution of differential expression with changes in population structure 

Figure 6. Scenarios producing particular gene read counts in metatranscriptomic samples 

 

 

 

 

 An additional challenge exists for metatranscriptomic experiments which does not 

significantly affect metagenomic studies. In transcriptomics, the focus lies on gene expression, 

and the abundance of aligned reads is expected to proportionally represent the cellular 

production of a particular transcript in the particular sample treatment. However, additional 

factors, systematic to individual samples, may affect the abundance of sequencing reads which 

are unrelated to the transcriptional activity of a gene and therefore violate this assumption of 

proportional abundance for individual transcripts. Such systematic factors include differences in 

the total read counts produced by sequencing runs as well as differences in the total RNA output 

of certain samples. Several normalization techniques exist in single-species transcriptomic 

studies which aim to constrain the effects of such technical variation between sequencing 



 

56 

libraries. In particular, the TMM normalization (Mark D. Robinson and Oshlack 2010) uses the 

assumption that a majority of genes will show constant expression between samples to mitigate 

technical effects caused by differences in both sequencing output and overall transcriptional 

activity. However, an additional confounding factor is found in metatranscriptomic studies which 

is caused by the varying taxonomic makeup of individual samples. When RNA-Seq samples 

contain multiple species, the assumption that differential read abundances represent proportional 

differences in transcript abundances between treatments cannot be made, even after correcting 

for total sequencing output and overall transcriptional activity. The reason for this is the potential 

for variance in the proportion of cells of different taxa in metatranscriptomic samples. For 

example, if a particular transcript from some species X has double the read alignments in 

treatment A compared to treatment B, it is difficult to determine whether the transcript is 

differentially expressed in species X between the treatments or whether the transcript shows 

constant expression between the treatments but the taxonomic proportion of species X is doubled 

in treatment A. This causes some difficulty in interpreting differential read counts for genes in 

different samples, as these differences may be caused by changes in either transcriptional activity 

or the taxonomic distribution of cells in the samples. While this challenge exists to some degree 

in metagenomic studies, as genes or entire genomic regions may be present in duplicate copies in 

genomes, the extent of the problem is more limited as many genes are expressed in one or 

relatively few copies. This is especially true of microbial genomes, which are of relatively 

limited size and complexity compared to eukaryotic genomes. In addition, metagenomic studies 

are generally focused on the simple presence of individual genes, and quantification is limited to 

a census survey of taxa present among samples.  
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One available solution to this problem in metatransciptomics involves sequencing the 

genomic DNA of pooled samples alongside RNA sequencing. Because transcriptomic studies 

seek to characterize changes in the regulation of gene expression between treatments, effects on 

transcript abundance caused by differing source organism abundance must be removed for 

appropriate interpretation of observed changes. Unlike metatransciptomic RNA, genic DNA 

content will not vary with transcriptional activity in different treatments. Rather, DNA 

abundance varies solely as a function of the cellular abundance of a species. For this reason, 

performing genomic DNA sequencing in addition to RNA sequencing of metatranscriptomic 

samples allows the removal of abundance effects due to differing cell populations in the samples. 

One simple computational protocol for using genomic DNA sequencing to reducing population 

abundance effects requires aligning DNA short reads, ideally using taxonomically binned reads, 

to assembled contigs, and then normalizing RNA read counts by these DNA read counts. 

Another method made available through DNA sequencing involves using 16S rRNA sequences 

to characterize the taxonomic makeup of a sample and then normalizing transcript counts by the 

relative abundance of their respective taxonomic units. Using these measures of transcripts-per-

gene or transcripts-per-genome, it becomes possible to compare transcript production per cell 

between samples of different treatments. 

 The current study, however, was performed using solely RNA sequencing, as a genome 

sequence for the arbuscular mycorrhizal fungi which motivated the study was not available at the 

design stages of the experiment, and the original focus of the study did not include 

metatranscriptomic objectives. Although this necessarily alters the interpretation of differential 

transcript abundances, informative results may still be obtained. While changes in transcript-

aligned read abundances may be caused by either population changes or transcriptional changes 
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in this survey, the end effect of these variations in transcript abundances is still a proportional 

change in the abundances of the translated proteins. Therefore, metatranscriptomic sequencing 

can be considered here to provide a quantitative survey of the overall transcriptomic production 

of an operational taxonomic unit in a sample’s environment. While it is difficult to assign a 

regulatory mechanism for differential transcript abundances in this case, a picture of the 

molecular and cellular mechanisms driving the symbiosis is still provided. For example, cell 

wall-associated hydrolases are clearly a major component of this symbiosis, and the importance 

of these genes in the symbiosis can be inferred strictly from their differential abundance, 

regardless of whether their increased abundance is caused by constant expression amongst an 

increased proportion of cells or by increased expression in a constant proportion of cells.
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Conclusion 

 The microbiome has been shown to be an important component of a diverse range of 

environments, and it plays a heavy role in the plant root ecosystem, forming complex 

interactions with all members of the community. In this study, metatranscriptomics was applied 

to elucidate the composition and mechanisms of the microbiome of the mycorrhizal fungi that 

colonize plant roots. Characterization of the taxonomic composition of the different mycorrhiza 

showed that different species of mycorrhizal fungi are colonized by both distinct communities 

and unique diversities of bacteria, with certain species of mycorrhizal fungi being colonized by 

different and orders of magnitude more numerous bacterial taxa than others. Specifically, 

Gigaspora gigantea is enriched for certain Actinobacteria and Proteobacteria clades and is 

colonized by over one hundred unique taxa, while Glomus intraradices specifically shows 

colonization by Bacteroidales, Spirochaetales, Proteobacteria, and Firmicutes bacteria among 

the three fungal symbionts and is colonized by less than fifty unique taxa. Glomus versiforme, on 

the other hand, shows evidence of colonization by only ten total bacterial taxa, suggesting its 

microbiotic diversity is greatly reduced compared to the other symbionts. In addition to 

characterizing the taxonomic composition of the mycorrhizal microbiome, metatranscriptomics 

allowed the assembly of transcript-derived contigs from both of the bacterial groups known to 

participate in obligate endosymbiosis with the mycorrhizal fungi, including species from 

Burkholderiaceae and the DhMRE clades. The bacterial contigs showed differential abundance 

patterns, as measured by bacterially-annotated read counts, suggesting that transcripts coding for 

a range of metabolic and structural proteins are present at different levels between roots 

colonized by mycorrhizal fungi and non-colonized roots as well between fungal-colonized roots 

at different times in the life cycle of the symbiosis. Contigs taxonomically assigned to a major 
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obligate endosymbiont of the mycorrhizal fungi, the DhMRE, were annotated for several 

functions with significant implications for the mycorrhizal symbiosis, including phosphate 

uptake, nitrogen reduction, regulatory mechanisms, and host-derived nutrient processing. Of 

particular note is the potential role of the endobacterial symbiosis in nitrogen and phosphate 

uptake to the plant roots, which may be of direct significance to the adaptability of agricultural 

crops to diverse environments and conditions. Overall, metatranscriptomic approaches hold great 

promise for the study of communities which may be difficult or impossible to study through 

traditional genomic means, and although several challenges still exist, methods and technologies 

currently under development will likely increase the power and accessibility of such studies in 

the future. 
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Appendix A: Molecular Functions Represented by DhMRE Contigs 

 The Gene Ontology map of molecular functions predicted for the contigs assigned to the 

DhMRE clade by the Blast2GO software package may be found in a supplemental file named 

contigs_DhMRE_GO_Molecular_function.png. 
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Appendix B: Biological Processes Represented by DhMRE Contigs 

The Gene Ontology map of biological processes predicted for the contigs assigned to the 

DhMRE clade by the Blast2GO software package may be found in a supplemental file named 

contigs_DhMRE_GO_Biological_process.png. 
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Appendix C: Differential Transcriptome Abundance Tests 

Full results of the tests for differential transcriptome abundance for bacterial taxa 

between fungal inoculations and the control treatment may be found in a supplemental file 

named differential_transcriptome_abundances.xlsx. This list excludes those bacterial taxa 

with a higher transcriptome abundance in shoots compared to roots. 


