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Abstract

Overset grids provide an efficient and flexible framework for implementing high-order finite difference meth-
ods to simulate compressible viscous flows over complex geometries. Although overset methods have been
widely used to solve time-dependent partial differential equations, very few proofs of stability exist for them.
In practice, the interface treatments for overset grids are stabilized by adding numerical dissipation without
any underlying theoretical analysis, impacting the accuracy and the conservation properties of the original
method. In this work we discuss the construction of a provably time-stable and conservative method for
solving hyperbolic problems on overset grids as well as their extension to solve the compressible Navier-
Stokes equations. The proposed method uses interface treatments based on the simultaneous approximation
term penalty method, and derivative approximations that satisfy the summation-by-parts property. Two
cases of the method are analyzed. In the first case, no artificial dissipation is used and an eigenvalue analysis
of the system matrix is performed to establish time-stability. The eigenvalue analysis approach for proving
stability fails when the system matrix is not of a block triangular structure; therefore, we investigate the
second case of the method where a localized numerical dissipation term is added to allow the use of energy
method for stability proof. A framework for examining the conservation properties of the proposed method
is discussed. Error analyses are performed to determine the order of interpolation that retains the accuracy
of spatial finite difference operator.

The performance of the proposed method is assessed against the commonly used approach of injecting the
interpolated data onto each grid. Several one-, two- and three-dimensional, linear and non-linear numerical
examples are presented to confirm the stability and the accuracy of the methods. The extension of the
method to solve the three-dimensional compressible Navier-Stokes equations on curvilinear grids is examined

by performing a large-eddy simulation of flow over a cosine-shaped hill.
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Chapter 1

Introduction

The application of high-order finite difference methods for fluid flow computation over complex geometries
usually requires a body-conforming curvilinear grid. It is, in general, difficult to create a single optimally-

clustered grid with smooth variation and low cell skewness around a complicated shape. Multiblock grids,

Figure for example, offer an useful tool for mesh generation in such a case (see [Flores & Chaderjianl,

[1990} [Rizzi et all,[1993). In the multiblock approach, the computational domain for a complex configuration

is subdivided into several simple sub-domains or blocks on which mesh generation is straight-forward. The
adjacent blocks in a multiblock grid share a common boundary, referred to as the interface, and the grid
lines at the interface may or may not join together or have a common slope. A more flexible approach

than using multiblock grids for mesh generation around complex geometries is the overset grid approach (see

[Benek et al.l 1985} [Steger & Benekl |1987)). Overset methods allow the individual grids to overlap as shown in

Figure [I.2]and, unlike the multiblock methods, do not require the interfaces of the sub-domains to align with
each other. It further simplifies the block shapes and potentially allows for a smoother body-fitted grid.
Another advantage associated with the overset and the multiblock methods is that their block structure
provides a default parallelism where each block could be assigned to a separate set of processors with data

communication needed only to update the interface grid points.

Overset grids have been used for a variety of time-dependent fluid flow problems (see Prewitt et al.l 2000}

Magnus & Yoshiharaj, [1970; 11987} |Sengupta et al.,[2010) and aeroacoustic problems (see Bodony et al/,

[2011} Kim et al) 2010; Tam & Hu, 2004), among other applications. Several codes, for e.g. PEGSUS (see

[Suhs & Tramel, |1991} |[Rogers et al., [2003)), CMPGRD (see Brown et al., [1989; |Chesshire & Henshawl, 1990),

DCF3D (see 1991)) etc. are available for assembling overset grids. Improvements with regards to

hole-cutting, donor search algorithms, higher-order implementations have also received wide attention (see

(see [Petersson, 1999allb; [Sherer & Scott, 2005; Wang et al., 2000) but the theoretical analysis for these

methods still remain limited. Computational schemes for partial differential equations, in order to converge,
should be consistent and stable. Moreover, for flows with discontinuous solutions, like shocks and slip

surfaces, the method must be conservative in order to capture the correct strength and speed of propagation



of the discontinuities (Lax & Wendroff| (1960)). Considerable literature exists on conservative interface

treatments for overset grids (see Berger} 1987} |1986} |Chesshire & Henshaw, [1994; Wang] [1995) but no

such results exist for the stability of the methods. In most cases, the numerical instabilities due to the
interface treatment are dealt with by adding artificial dissipation or using numerical filters in an ad hoc

manner.
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Figure 1.1: An example of multiblock grid Figure 1.2: An elzxample of overset grid
(source: www.pointwise.com) (source: www.pointwise.com)

A common source of instability for the overset methods are the dispersive numerical waves that get
trapped due to repeated reflections from one interface to another [1985)). If not dissipated, these
waves grow with time and eventually corrupt the solution on the entire computational domain. It makes
these methods unsuitable for simulations over long time durations, a common need in fluid dynamics. It
also indicates the importance of assessing long-time behavior of the methods for overset grids. The classical
definition of stability (Lax stability) allows a non-physical growth of solution in time as long as the growth
diminishes with grid refinement and, therefore, does not guarantee the desired long-time
behavior. Time-stability, on the other hand, ensures a non-growing solution and provides a suitable criterion
to evaluate the robustness of the overset methods.

The typical methods for studying stability of difference methods for initial boundary value problems
(IBVPs) are the normal mode analysis, using the Laplace transform, and the energy method (see
. Each of the approaches have their advantages and limitations. We provide an overview of these
methods in chapter Normal mode analysis is a general method applicable to difference approximations

but it can be algebraically challenging to show if the Godunov-Ryabenkii or the Kreiss condition is satisfied.



Several convenient stability criterions have been developed over the years (see for e.g. |Goldberg & Tadmorl,

(197811981}, /1985] [1987)) to simplify the analysis but still the application of these methods to analyze problems

with complex grid configurations, such as the one dealt with in this thesis, remains challenging.

The energy method, on the other hand, is simpler to apply if one is able to construct a suitable scalar
product and a norm that does not grow in time for the given problem. But the lack of a systematic procedure
for finding the norm restricts the application of the method. The energy method is based on integration by
parts and, therefore, only works for the problems with Hermitian (symmetric, if real) coefficient matrices.

Fortunately, the coefficients of the Euler and the Navier-Stokes equations are simultaneously symmetrizable

by a similarity transformation (see /Abarbanel & Gottliebl [1981), which makes them amenable to the energy

method. We discuss in chapter [3| the summation by parts-simultaneous approximation term (SBP-SAT)

methodology, which has been used to develop time-stable discretizations of IBVPs for the Euler and the

Navier-Stokes equations (see Carpenter et al.l [1994; |Svérd et al., 2007).

As an example of using the Godunov-Ryabenkii condition for proving stability, (2006) analyzed

the interface conditions of a model problem for Maxwell’s equation. Henshaw & Chand| (2009) analyzed

the interface conditions for the diffusion equation to model the fluid flow coupled with heat transfer in
solids. Both references considered an overset grid with collocated grid points in the overlapping region.
The Godunov-Ryabenkii condition provides a necessary but not sufficient condition of stability (see section

2.1.1). Moreover, the stability results for the simplified case of collocated grid points at the interface do not

extend to the more general overset configuration with an arbitrary overlap. Reichert et al| (2012) used the

SBP-SAT formalism with generalized SBP operators (Abarbanel & Chertock, 2000; |[Abarbanel et al., [2000)

to develop time-stable methods for hyperbolic problems on overset grids. Their proof of stability required the
grid configurations to have interpolation donor points located at the end of the donor grid which restricts the
amount of overlap and requires the length of the grid to be readjusted if the grid is refined. It becomes even
more restrictive for solving a system of equations where multiple grids could act as donor grids. Moreover,

the use of generalized SBP operator complicates the extension of the analysis to problems with diffusion.

The present work tries to eliminate most of the limitations of the method in [Reichert et al|(2012)) by using

SBP operators and a different approach to proving stability.
In this thesis we treat the difference approximations in semidiscrete form, also called as the method of

lines, where the spatial derivatives are discretized to obtain a system of ODEs which are then advanced in time

using a standard ODE integration method. Strikwerdal (1980) outlined the necessary and sufficient conditions

for stability of the semidiscrete approximation of IBVP analogous to the GKS theory for fully discrete case

(Gustafsson et all [1972). Levy & Tadmor| (1998) showed that for a well-posed spatially discretized system




of ODEs, u; = Mu with Re(Mu,u) < 0, the third and the fourth order Runge-Kutta methods for time
integration retain the stability of the semidiscrete approximation if Re(Mu,u) < —n||M u||2 for a fixed
1 > 0, where (-,-) denotes an appropriate discrete inner product and ||-|| denotes the corresponding norm.
Therefore, the semidiscrete analysis with the third or fourth order R-K method for the time integration can
be used to study the stability of the fully discrete system. Numerical results in this thesis use the standard

fourth-order Runge-Kutta method (RK4) for time integration (Butcher, [2008)).

1.1 Thesis Structure

The thesis is organized as follows:

e Chapter[ddescribes different approaches of analyzing the numerical stability of difference methods and

highlights the advantages and limitations of each. It also discusses the different definitions of stability.

e Chapter [J provides the basics of the SBP-SAT approach, the theoretical tool used to develop stable
methods for overset grids. 1D and 2D single grid examples are presented to illustrate the method and
how the proof of stability works for them. The sufficient conditions for time stability of a semidiscrete

approximation are then discussed.

e Chapter []] presents the first case of the SBP-SAT-based overset method investigated. It is proven
stable using an eigenvalue analysis. The shortcomings of the approach of eigenvalue analysis for
stability proofs are highlighted. Numerical results are discussed for linear and non-linear problems.
Error comparisons with the commonly used “injection method” of overset interface treatment are made

to evaluate the performance of the SBP-SAT based method.

e Chapter[j examines the stability of the second case of the method where a localized numerical dissipa-
tion is introduced. The energy method is used to establish time-stability for all problems that have a
bounded energy norm. The performance of the method is then evaluated against the first case of the

method as well as the “injection method”.

e Chapter[f discusses conservation for overset methods. The approach of imposing the interpolated data
in SBP-SAT based method differs from the “injection method” in that only the downwind domain
receives information from the other grid(s), based on the characteristic direction, as compared to a
both-way exchange in the “injection method”. It influences the quantity that ought to be conserved by
the full computational domain. This chapter will derive the parameter values that make the method

discussed in Chapter[j conservative.



e Chapter[7 analyzes the stability of a SBP-SAT method for parabolic problems and provides the exten-
sion of the approach discussed in Chapters [§}{f] to solve the compressible Navier-Stokes equations on

overlapping grids.

e Chapter[§ provides the conclusions and suggestions for future work.

1.2 Accomplishments

Proving stability for overset methods offers a challenging problem and theoretical results on it are, therefore,
scarce. To the best of our knowledge, none of the existing works address time-stability on overset grids with
arbitrarily overlap. Moreover, stability with conservation for an overset method has not been previously

analyzed. In light of this, the accomplishments of the dissertation could be summarized by the following:

1. High-order, provably time-stable overset grid methods have been developed for hyperbolic problems
using the SBP-SAT approach. The proof of stability is provided for 1-D scalar and system of equations.
The proof is general in that it poses no restrictions on the amount of overlap between the grids. The

method is logically extended to two- and three-dimensions for overset grids with arbitrary overlap.

2. Long-time simulations were performed using the developed method to assess its behavior. It shows
significantly better performance than the commonly used “injection method” of interface treatment.
Inviscid simulations that require using numerical filters or artificial dissipation with “injection method”

to run, can run indefinitely in a stable manner with the SBP-SAT based method.

3. A conservation analysis of the overlapping grids were performed to determine the values of the free
parameters in the proposed method that ensure both time-stability and conservation. Closed form
expressions of the parameters could be obtained for the second-order scheme but higher-order schemes

require a case-by-case analysis for different grid overlaps due to algebraic complexity.

4. For application to the Navier-Stokes equation, the developed method for hyperbolic equations is sup-
plemented with a viscous interface treatment analogous to that of the SBP-SAT based multiblock
method discussed in |[Nordstrom et al| (2009). The combined method has been implemented in a
parallel, three-dimensional compressible Navier-Stokes solver which was used to perform a large-eddy

simulation of the flow over a hill, with a Reynolds number based on hill height of 500, 000.



Chapter 2

Analysis of Difference Methods

A numerical scheme for solving a partial differential equation (PDE) is useful only if its solution converges
to the solution of the corresponding PDE in the limit of grid spacing and time step tending to zero. It is
generally difficult to show convergence directly, therefore, the Lax-Richtmeyer equivalence theorem (Lax &
Richtmyer} |1956)) is used to show convergence from the consistency and stability of the method. We formally
define these concepts below.

Consider the Cauchy problem for a linear scalar partial differential equation in one dimension

ou 0
T A(x,t,ax)u, co<x<oo, t>0, (2.1)
u(,0) = f(z).

0
A (a:, t, 8) is a differential operator of order ¢ given by
x

0 o
A (x,t, m) = Zai(x,t)%, (2.2)
i<q
where i is a non-negative integer. We assume that the coefficient a;(x,t) € C°°(z,t) and that the initial
o0
data f(z) satisfies || f]|* = Il |f|? dz < oo and completely determines a unique solution. Let us define a
— 00
discrete spatial domain x; = jh (where j is an arbitrary integer and grid spacing h = Az) and temporal

domain t,, = n/At (where n is a non-negative integer). We denote the approximate solution of problem ([2.1])

on the discrete domain by the grid function

V(tn) = [ cey ’Ujfl(tn), Uj(tn)7 Uj+1(tn)7 .. .]T.
Using the method of lines (see Heath) 2001)), the semidiscrete approximation to Eq. (2.1)) is given by

dv
— =M 2.
dt v (2:3)

v(0) = f(2),



0 00
where M is a difference operator approximating A (x, t, 8) and [[f]|, = > 1£i1? h < .
T ,

j=—o00
Definition 2.1 The difference approximation in Eq. is consistent with the differential equation

if there exists a constant K, independent of h, and p > 0 such that for all smooth functions u(x,t),
|Au — Mu||, < Kh?,

where || . ||, denotes the discrete norm and p is the order of accuracy of difference operator M.
The definition of Lax stability is given by:

Definition 2.2 (Lax stability) The approximation is called stable (or Lax stable) if there are con-

stants K and o, independent of h and f, such that

VIl < Ke* [I£]], (2.4)

The above definitions are important in the study of finite difference methods for initial value problems
because of the Lax-Richtmeyer equivalence theorem, stated below without proof. The proof can be found in

Lax & Richtmyer] (1956) or [Strikwerda; (2004)).

Theorem 2.1 (The Lax-Richtmeyer Equivalence Theorem) A consistent finite difference scheme for
a partial differential equation for which the initial value problem is well-posed is convergent if and only if it

is stable.

2.1 Stability of Finite Difference Methods for IBVPs

The first stability result in the form of Courant-Friedrichs-Lewy (CFL) condition was discussed in |Courant
et al.| (1928)), which stated that the domain of dependence of the difference method must contain the domain
of dependence of the differential equation. It provides a necessary condition for stability. A few years later
the von Neumann theory was developed based on Fourier analysis for periodic problems. Stability theories
on difference methods for IBVPs started appearing in 1960s by the pioneering mathematicians at Moscow

University and Uppsala University. We discuss, briefly, the relevant results from those theories below.

2.1.1 The Godunov-Ryabenkii Condition

First presented in |Godunov & Ryabenkii| (1963)), the methodology treated the difference methods for an

IBVP in a fully discrete form. Let us consider an IBVP for the partial differential equation in Eq. (2.1)) with

7



constant coefficients, on the half line {0 < z < oo} with boundary condition at x = 0,

%_A((?)u’ 0<z<oo, t>0,

ot or
u(z,0) = f(x), (2.5)
B (52 ) w00 = 900

where B is a differential operator of order p < ¢. Assuming a homogeneous boundary condition (g(t) = 0),

the discretization using an explicit one-step method can be written as,

vl = Quv™, n=0,1,.... (2.6)

where v = [vg, v1, Vg, ...]T. |Godunov & Ryabenkii (1963) observed that the spectrum of the operator lying
in the disk
IA(Qr)] < 1+ cAt,

where ¢ is a positive constant independent of h and At, provides a necessary condition for stability but not
a sufficient condition. A series of observations led the authors to introduce a new concept of the spectrum

of a family of operators {Q} to determine a stricter stability criterion.

Definition 2.3 A point A is a spectral point of {Qn} if for any € > 0 and ho > 0, there exists a h < hg
such that the inequality ||Qru — Au|| < €|lul| has a solution w. The aggregate of all spectral points is called

the spectrum of {Qp}.

The stability criterion, now called as the Godunov-Ryabenkii condition, was given by:

Theorem 2.2 For the stability of a problem of the form @ it is necessary that the spectrum of {Qn}

should lie in the unit disc.

The spectrum is usually determined from a normal mode analysis, based on the Laplace transform (see
Gustafsson et al., [1995). In engineering applications, it is common to first discretize the spatial derivatives
to obtain a semidiscrete problem, also called as the method of lines, and then use standard ODE integration

methods to advance in time. The semidiscrete approximation of the initial boundary value problem ([2.5) is

given by
d—v = Mv,
dt
v(0) = f(z), (2.7)
Bov = ¢(t),



0 0
where M is a difference operator that approximates A <8>’ By approximates B ((9) and |f||, < oo.
x x
Note that the first equation in (2.7]) is used to advance the solution at all grid points except vg, which is
advanced using Byv = ¢(t). Assuming f = 0, the Laplace transformation of Eq. (2.7), with § = sh, yields

the eigenvalue problem

50 = hM9,
¥l < oo

For the homogeneous problem (Eq. (2.8) with ¢ = 0), the Godunov-Ryabenkii condition is satisfied if the
problem has no eigenvalue § with Re § > 0. For the non-homogeneous problem (12.8)), the Godunov-Ryabenkii

condition is satisfied if there is a unique solution for every fixed j that satisfies
0] < K(5)l4], (2.9)

for all § with Re § > 0. The Godunov-Ryabenkii condition provides a necessary, but not sufficient, condition
for stability since the constant K, in Eq. (2.9)), is a function of § and to ensure stability it must be shown
to be bounded for all § with Res > 0. The Kreiss condition, given below, provides the sufficient conditions

for stability.

2.1.2 The Kreiss Condition

The Kreiss condition is satisfied if there is a unique solution to problem ({2.8)) that for every fixed j satisfies
|05 < K91, (2.10)

for all § with Res > 0, where K is independent of 5. Using Parseval’s relation, Eq. (2.10) leads to the

estimate

T T
/ oy (0 dt < Ky / l9(t) 2 dt,
0 0

for any fixed j for a finite time T" by integrating along the line Re s = 0. The Kreiss condition is satisfied for
the homogeneous problem (Eq. (2.8) with § = 0), if the problem has no eigenvalue or generalized eigenvalue

5 with Res > 0.



Definition 2.4 If there exists a non-trivial solution v, for 5o with Re(50) = 0, of problem (@ such that

[I¥]l,, = oo then 3¢ is called the generalized eigenvalue of the problem.

A connection between the Godunov-Ryabenkii condition and the Kreiss condition is discussed in |Gustafsson
(2001). The equivalent conditions that satisfy the Kreiss condition can be found in |Gustafsson| (2007). A

numerical scheme that satisfies the Kreiss condition is, popularly, referred to as a G-K-S stable scheme.

2.1.3 The Energy Method

The energy method is based on constructing a norm, for the given problem, that does not grow in time

(Kreiss, |1963; Richtmyer & Morton, [1994). We illustrate the method for the simple advection problem,

Oou  Ou
— = — 0<x<1 t>0
ot Ox’ == -
u(z,0) = f(z), (2.11)
u(l,t) = g(t).
Assume a discrete domain z; = jh, j = 0,1, ..., N, with grid spacing h = 1/N. Let the semidiscrete

approximation to (2.11]) be given by

d’l}j - Vj41 — Vj-1

dt 2h
d’l)() V1 — Vg
un (t) = g(t),
U](O):fj7 ]207 1u 7N
Assuming g = 0 and denoting the solution vector as v(t) = [vg(t), ... ,on_1(t)]T, we get
N-1
d dv dv
GV = (v %)+ (F) —we-w+ Tnea-u=—d<o @)
j=1

where the discrete scalar product and norm for the real-valued grid functions v and w are defined by

N—-1
(v W)h = Zvouwo + > wvjwsh, |[v[E = (v, V)
j=1
On integration (2.13) yields
2 2
v, < Il , (2.14)

10



which implies (2.12)) is a stable approximation as discussed below.

Let us consider an IBVP for a linear system of partial differential equations given by

au—A(a>u+F(:c,t), a<xz<b t2>0,

ot Ox
u(z,0) = f(z), (2.15)
0
B — =g(t
(52 ) um = sto
where u = [ul(z, 1), ..... , u"(x,t)]T, Ais a r x r matrix of linear differential operators with constant coeffi-

cients and B(9/0z)up = g(t) denotes the complete set of boundary conditions required for the PDE system

to determine a unique solution. For example, if A(aﬁ) = Aag where A = diag(A1, Ao, ooy Ak, Aty ooeee , Ar)
2 x
such that
A< A< <A <0< A1 < e < A,
then B = I, up = [u'(a,t), ..... s ub(a,t), uF (b, t), ... ,u" (b, 1)) and g(t) = [g1(t), ..... , gr(1)]T provides

a set of well-posed boundary conditions based on the characteristic direction. The norm of g, used in the

following discussion, is then defined as

T
2 2
g = lail”- (2.16)
i=1

Consider a semidiscrete approximation to problem (2.15)) of the form

dv

i Mv +F(t),

v(0) = f(z), (2.17)
BVB = g(t)

Definition 2.5 The approzimation is stable (or Lax stable) if for F = g = 0 the solution v(t)
satisfies

Vil < Ke* [I£]],, (2.18)

Since the estimate (2.14]) satisfies (2.4)), (2.12)) is a stable approximation of ([2.11]).
Definition 2.6 The approximation is strongly stable if the solution v(t) satisfies

t

V@)l < Ke*(IE]; + /(IIF(T)IIi + lg(m)*)dr), (2.19)
0

11



where K and « are constants independent of h, £, g and F.

2.2 Time Stability

Attempts at developing stable boundary treatments for high-order finite difference schemes (Carpenter et al.,
1993)), led to the observation that many of the schemes that were G-K-S stable showed exponential growth in
error for long time integrations. It was also noted that although a G-K-S stable scheme ensures convergence
to the exact solution in the limit Az — 0 for a fixed time, it does not exclude growth in time for a given

grid size. This motivated the concept of time stability (also referred to as strict or asymptotic stability).

Definition 2.7 The approximation is time-stable if for F =0 and g = 0 the solution v(t) satisfies
vl < K £, (2.20)

where K is independent of h, f and t.

In contrast to Definition [2.5] the above definition bounds the solution uniformly in time. Analogous to

Definition [2.6] strong stability in the context of time stability can defined as follows.

Definition 2.8 The approximation is strongly time-stable if the solution v(t) satisfies

t

IVl < KCIENT + /(IIF(T)IIi + lg(r)[*)dr), (2.21)
0

where K is a constant independent of h, £, g, F and t.

Definition 2.9 The approzimation is exponentially time-stable if for FF = 0 and g = 0 there exist

constants o > 0 and K, independent of h, £ and t, such that the solution v(t) satisfies
v, < Ke  |If]],,- (2.22)

In section we discuss the sufficient conditions for time stability of a semidiscrete approximation.

12



Chapter 3

Derivative Approximation and
Boundary Conditions

In this thesis, we use the summation-by-parts (SBP) approximation for %. Kreiss & Scherer| (1974)) pre-
sented the method which was later used by [Strand| (1994]) to construct the high-order spatial derivative

approximations that satisfy the summation-by-parts property.

3.1 Summation-by-Parts (SBP)

Consider the problem (2.1)) on a < 2 <b. The Ly-scalar product and norm are defined by

b

(u,v) = /u*v dz, (u,u) = ||ull® . (3.1)

a

The notation u* denotes the complex conjugate of u. Using the above with integration by parts yields

ou ou 9w
(u, é)x) + (f)x’u> =u”|, . (3.2)

Let us consider a discrete domain z; = a+nh, h = (b—a)/N, n = {0,1,..., N}. The discrete scalar product

and norm for real-valued grid functions is given by

N
(u7v)h = Zujvjhv ||uHh =V (uau)h'
=0

The SBP difference approximation D to d/0x must satisfy
(0, Du)y + (D, u), = u3y — u, (3.3)

which is a discrete analogue to Eq. (3.2). Commonly the derivative operator is written as D = P~1Q so

that
ou
Pi =
o Qu,

13



denotes a compact approximation of the first spatial derivative. In this thesis, we work only with the explicit
spatial derivative operators to ensure that the stability results are applicable to computation over curvilinear
grids (see (Svard, 2004). For explicit operators, P is a diagonal positive definite matrix which allows the

following definition of a discrete scalar product and norm,
(wv)p=uPv,  [ul,={wwp.
Using the above in Eq. yields
(0, P7'Qu)p + (P'Qu,u)p = u”(Q + Q" )u, (3.4)

which requires Q + QT = diag(—1,0, ...., 1) to satisfy the SBP property (3.3).

3.2 Simultaneous Approximation Term (SAT)

For initial boundary value problems the SBP operators require a stable boundary treatment to ensure
time stability. The SAT methodology has been widely used, with SBP operators, to prove time stability for
problems on single grids (Carpenter et al., [1994; Svard et al.,2007)) as well as on multiblock grids (Carpenter
et al., [1999; Nordstrom & Carpenter}, [1999; |[Nordstrom et all 2009; [Kramer et al., [2009). The SAT method
imposes the physical boundary conditions weakly, as penalty terms added to the derivative operator. The
penalty terms contain a free parameter whose value is adjusted to allow for a discrete energy estimate of the

problem.

3.2.1 1D Example: The Advection Problem

Let us consider the right moving advection problem

ou Ou
=0 0<a<l t>0,
u(z,0) = f(x), (3.5)

u(0,2) = g(t).

14



The semidiscrete approximation using the SBP-SAT methodology, on a discrete domain z; = nh, h =

1/N,n=1{0,1,...,N}, is given by

du _ _
-7 'Qu — 7P teg(ug — g(t)),
u(0) = £(2), (3.6)
e =[1,0,...,0",
where u(t) = [ug(t), ... ,un(t)]7. The semi-discrete problem (3.6) has an energy estimate in the P-norm

given by

d|Jul7 d d
lullp =(u, e I —u, u) =-ul(Q+QMu—27ul + 27g9(t)up = (1 — 27)ud — uir + 27g(t)uo.
dt dt ) p dt P

If g(t) =0 and 7 > 3,
d 2
Mle < o fuly < K1)

which proves time stability (see Definition [2.5)). For the case of non-zero boundary data we have

d||la 2 72 T
Ve _ (1~ gryd — a2+ 2rg(t)uo = ——g(8)? — u — (27 — 1)(up — ().

dt -1 2r — 17
Ifr> %,
dlufp o
dt  — 2r—1 ’
which on integration yields
t
2 2 2
Jullp < K [ £l + / lg(T)|"dr |, (3.7)
0

where K = max(1, %) This proves that the method 1' is strongly time-stable (compare Egs. 1}
and (2.21)).
3.2.2 2D Example: The Euler Equations

The two-dimensional Euler equations, in conservative form, is given by

0Q  OF  9G

o T os T oy 0, (3.8)
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where

P pu pv
2
pu pu” +p puv
Q = R F = G — ;
pv puv pv? + P
E u(E +p) v(E +p)
E=—L_ 11wt
y—1 2 '

The proof of stability uses the result from [Strang| (1964)) which shows that for a sufficiently smooth solution
a consistent difference approximation for a non-linear partial differential equation converges if the linearized
difference approximation is stable. Moreover, the use of energy method requires a set of linear equations
with symmetric coefficient matrices. Therefore, we transform the Euler equations to primitive variables
V = [p,u,v,p]T, freeze the coefficient matrices (equivalent to linearizing about a uniform state) and then

symmetrize them to obtain

ot ox Ay (3:9)

s 00 0 p Nals
0 10 0 " u
w:S;IV: — 7
0 01 0 v v
——=< 0 0 /= R S a1
L 5v/A0-D T B U I e Ly

where S), is the “parabolic” symmetrizer matrix from |Abarbanel & Gottlieb| (1981]), v denotes the ratio of the
specific heats (assumed to be a constant) and the quantities with overbar (7) indicate the frozen variables.
A and B are real symmetric matrices, which can be diagonalized by orthogonal matrices. We denote the
matrices T}, and 7, such that A = T,A, T, ! and B = TyAT, ! and from the property of orthogonal
matrices 7, ! =TI and Ty_1 = TyT.

Let us consider an IBVP for the Euler equations ([3.9)) on the spatial domain [0, 1] x [0, 1] with initial condition

w(x,y,0) = f(z,y) and boundary conditions in terms of characteristic variables C;, = 7Y w and C}, = wa

given by
mf)cx(x = O,y7t) = gl(yvt)q M%Cz(x = 17y7t) = 92(y7t)7 (310)
Ay +A A=A
w&,(‘r,y =0,t) = g3(z, 1), WC’ZJ(I,ZJ =1,t) = ga(x,t). (3.11)
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Numerical Discretization

Let us denote the solution field by w;;; where the first two indices denote the z and y index of the grid point
and the last index, ranging between 1 and 4, denotes the symmetrized variable. We assume n, + 1 and
ny + 1 grid points in the x and y direction respectively therefore, the spatial indices 7 and j range from 0
to n, and 0 to n,, respectively. We define the vector w = (woo1, Woo2, ----- , wnwny4)T. The finite difference
operators are given by

D,=D,®I,®L, Dy=I1®D,aIl,

where the matrix at the first position in the Kronecker product is of size (n, + 1) x (ng + 1), the one at
the second position is of size (n, + 1) x (n, + 1) and the one at the third position is 4 x 4. I denotes an
identity matrix with a size consistent with its position in the Kronecker product. D, and D, denote the

first derivative approximation given by P~'(Q). We denote the norm matrices as
P,=P,®I,®I4, P,=1,® P, ® I, P=P,P,,

and coefficient matrices as
A=1,0I,®A, B=I1,®I,®B.
Moreover we define

E(]x:EO®Iy®I4, Enx:En®Iy®I47

Eoy:Ix@EO@Ll, Eny:Im®En®I4a

where Fy = diag(1, 0, ...., 0) and E,, = diag(0, ...., 0, 1) are of appropriate sizes based on their position in
the Kronecker product.
The semidiscrete approximation to (3.9) using the SBP-SAT methodology, ignoring boundaries other than

x =0, is given by
d
chtV = —AD,w — BDyw — 7 (Py) ' TxEox(Ajcx — g1), (3.12)
where ¢, = TLw is the discrete analogue of C, in Eq. (3.10) and

A:I: _ |AX| + AX

x o Ax=LoLeA, Ty=LoLsT.
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Assuming g; = 0, pre-multiplying (3.12) by w’ P and adding it to its transpose yields

dlwld
dt

~w![PAD, + (PAD,)"Jw — w'[PBD, + (PBD,)”|w — 2rw’ P, TxEoxAfcyx.  (3.13)

Now,

PADy = (P, @ Py @ I1)(I, ® I, ® A)(P;'Q, ® I, ® I) = (Q, ® P, ® A),

and since A and P, are symmetric,

PAD, + (PAD,)” = (Q. + Q1) ® P, ® A = ~EoxP,A + ExP A, (3.14)

and using cx = TTw,

21wl P, Ty EoxAfcy = 21w Egy Py (Tx AT )w. (3.15)

Substituting (3.14)) and (3.15) in (3.13)) after using A = TxAxTL = T (A — AL)TL in (3.14) we get

d 2
% = (1= 27)W  Eox Py (Tx AL TL)w — W Eoy Py (Tx AL TD)w — W Eny PyAw (3.16)
—w'[PBDy + (PBDy)"]w,

which with the SAT implementation for other three boundaries yield d Hw||§, /dt < 0 for the value of penalty

parameter 71 > % Note that in Eq. |D WIEoP,(TxALTL)w > 0so it has a non-positive contribution.

3.3 Proving Time Stability

The semidiscrete approximation to the general problem (2.15]) can be written as

dv
= Mv+b, (3.17)
v(0) = £(),

where b contains all the boundary data and the forcing function. With SAT boundary condition implemen-
tation, the solution vector v in Eq. comprises solution values at all grid points (even the ones where
physical boundary condition is imposed) as shown in the previous section. For methods, which impose the
boundary condition strongly, Eq. denotes the reduced set of equations obtained by substituting the

physical boundary condition at the appropriate grid location.
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We discuss below some sufficient conditions for time stability that will be used in chapters[/] and [5 to assess

the stability of overset methods (see |[Antsaklis & Michel, 2006, 2007, for more details). For proving time

stability of (3.17)) it is sufficient to consider the case with b = 0.

Lemma 3.1 The approximation 18 time-stable if there exists a real, symmetric and positive definite

matriz H such that the matrizc L = MTH + HM is negative semidefinite.

Proof. Let the the solution of (3.17), with b = 0, at time ¢ > 0 be given by v(¢), then
t d
/ E[V(T)THV(T)]dT =v(t)THv(t) — v(0)T Hv(0). (3.18)
0

Using ‘fi—‘t’ = Mv and that the matrix L is negative semidefinite we have,

d dv dv
— V(T)THV(T)] = (d—)THV + VTH(d—

y [ y=vI(MTH + HM)v =vTLv <0. (3.19)
T T T

Using (3.19) in (3.18) we get,
vy Hv(t) < v(0)THv(0),

for all ¢ > 0. Using the equivalence of norms and that H is positive definite we get
2 2 2 2
cr|[vlly < vl = v(t) " Hv(t) < v(0)" Hv(0) = [[f]}; < c2 [If]l},, (3.20)
where ¢; and ¢y are constants independent of h. Eq. (3.20) implies
C2
vl < /= lIfll, forallt > 0.
¢

Therefore, the approximation ([3.17)) is time-stable as per Definition

Lemma 3.2 Using a similarity transformation the matriz M could be taken to a Jordan canonical form

J =S"'MS, so that the change of variable w = S~'v transforms Eq. to

dw
dt
w(0) = S'f(x).

= Jw, (3.21)

The problem is time-stable if and only if the problem is time-stable.
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Proof. If the problem is time-stable then from Definition
w (@, < Ky [lw(O)l,,
where K7 is a constant independent of h, w(0) and ¢. For a given matrix M, S is a constant matrix therefore
ISH W @ < Ko (1S, [ (0)], »

where ||S]|, denotes a matrix norm defined as [|S||, = sup{||Sx||, : ||x]|, = 1}. The inequality ||[Sw||, <

151, Iwll,, with w = S~!v yields,
vl < 311, 1157, v O)].

Since S is a constant matrix we have

VOl < K £,

where constant K = K1 ||S]|, ||S_1Hh is independent of h, f and t. We have demonstrated that if problem

(3.21)) is time-stable then so is problem (3.17)). A similar analysis can be used to show the opposite, i.e., the

time stability of problem (3.17) implies the time stability of (3.21)).

Lemma 3.3 The approximation s time-stable if and only if all eigenvalues of M have nonpositive
real parts, and the geometric multiplicity of every eigenvalue with zero real part is equal to its algebraic

multiplicity.

Proof. Assume M in Eq. (3.17) is of size m x m. The solution to Eq. (3.17) is given by v(t) = e™*v(0)

where
M =T+ ZEMk‘ (3.22)
k=1
The solution to (3.21)) is given by
w(t) = e’'w(0) (3.23)

and therefore v(t) = Se’tS~1v(0). Two cases need to be evaluated to understand the stability of this
solution:
Case I - M has m linearly independent eigenvectors: In this case the matrix J will be diagonal with

eigenvalues of M as the diagonal elements i.e. J = diag(\1, ..., A\p). The eigenvectors of M will form the
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columns of S. The matrix exponential, using (3.22), is given by

eAlt

elt = ' . (3.24)

eAmt

If all the eigenvalues of M have non-positive real parts then, from (3.23]) and (3.24)), w;(t) < w;(0) for all 4,
which implies ||w(t)]], < [|[w(0)|,, and from Lemma

VOl < K £, -

Therefore, for this case, if all eigenvalues of M have non-positive real part then the approximation is
time-stable.

Case II - M does not have m linearly independent eigenvectors: In this case the matrix M cannot be
diagonalized. However, it can still be transformed into the Jordan canonical form where J is a block

diagonal matrix given by

Jo

J1
J= , (3.25)

Js

and S constitutes m linearly independent vectors (not all eigenvectors). Jy is a diagonal matrix, Jo =
diag(A1, ..., Ax), whose diagonal elements are the eigenvalues with corresponding linearly independent

eigenvectors. J; is an m; X m; matrix of the form

MNewi 10 o 0]
0
Ji= 1| : oo o |, i=1,...,s (3.26)
1
0 0 My

such that & +mj + --- +ms = m. Note that the eigenvalues \;;; may not be distinct for different Jordan

blocks J;. The matrix exponential for the diagonal matrix Jy is e’o? = diag(eM?, ..., e*?), and for the

Jordan blocks J; using (3.22) is
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0 1 ¢ e
oTit — it . di=1,...,s (3.27)
t
0 -+ --- 0 1

If Re(Apys)=0v, it can be shown that ||e”s

|h <C ||e(°‘+6)t||h for any value of ¢ > 0, where C is a constant
independent of t. Therefore any eigenvalue Agy; (associated with J; for ¢ > 1) with non-negative real part,
«, leads to an exponentially growing bound. But if all eigenvalues of M have non-positive real part and
if the eigenvalues with zero real part only appear in Jy (i.e. their geometric multiplicity is equal to their
algebraic multiplicity) then He'] t|| < K; which proves time stability.

Conversely assume that the approximation (3.17)) is time-stable and has an eigenvalue with positive real

part or has an eigenvalue with zero real part that does not belong to Jy, then either a term in e/of =
diag(eM?, ..., e*?!) or in Eq. (3.27) is unbounded as t — oo, which is a contradiction if the approximation

is time-stable. This proves the lemma. a

From Lemmas [3.1] and [3.3] we can state the following theorem.
Theorem 3.1 The approximation is time-stable if either of the following conditions are satisfied,

1. There exists a real symmetric positive definite matriz H such that xT HMx < 0 for all x, or that the

symmetric matric MTH + HM is negative semidefinite.

2. All eigenvalues of M have non-positive real part and the geometric multiplicity of every eigenvalue with

zero real part is equal to its algebraic multiplicity.

If all eigenvalues of M have negative real part then the approximation ([3.17)) is exponentially time-stable.

22



Chapter 4

Stable Overset Methods for
Hyperbolic Problems-1I

In this chapter, we present the first case of our SBP-SAT based overset method for hyperbolic problems. We
provide the proof of time-stability for a one-dimensional scalar problem (Section and a one-dimensional
system of hyperbolic equations (Section . The proposed method uses the SAT approach, discussed in
chapter [3] for the interface treatment, which is different from the commonly used strategy of imposing the
interface conditions where the computed solution at the interface is overwritten by the interpolated value
from the underlying grid (see Berger & Colellal, [1989). We will refer to the latter approach as the “injection
method”.

The time-stable 1-D overset method is then extended to solve the 2-D Euler equations, and a comparative
study against the injection method is conducted to assess the performance of the new method. Proving
stability of the overset method for the constant coefficient 2-D Euler equations, while possible for simple
overlapping grid configurations, is difficult for an arbitrary two-dimensional overlap. Therefore, we perform

the analysis for the 1-D problems and then logically extend the method for a 2-D setup.

4.1 The Scalar Problem

We discuss the construction of a time-stable scheme for the one-dimensional advection equation,

oU U

= = 1<z < > )
o T =0, for 1<z<1,t>0, (4.1)

on an overlapping grid as shown in Figure Initial condition and the boundary condition is given by
U(x,0) = f(x), (4.2)

U(=1,t) = g(t). (4.3)
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4.1.1 Grid Configuration and Interpolation

The overlapping mesh configuration considered here is shown in Figure The left and right domain
contain equally spaced m + 1 and n+ 1 grid points, respectively. Let the grid functions on the left and right
domain be denoted by u(t) = [ug(t), ... ,un(t)]T and v(t) = [vo(t), ... ,v,(t)]T, respectively. We need to
specify a numerical boundary condition (NBC) at the interface, which is imposed based on the characteristic
direction at the first grid point of the right domain (z{%) by interpolation from k grid points of the left

domain, as shown by the red arrow in Figure The numerical boundary condition is given by

vg = Tl u, (4.4)
Tr=1[0..0 ljj1 o ljyg 0.... 0], (4.5)
where T}, is a vector of size m + 1 and [ 41, -- {4, are the interpolation coefficients.
0 1 j j+1 *
( 1 1 // 1 L // 1 /7 I
f —7/ f —7/ f 7/ 1
L
X l_Y_)
1
v
I i vda } } >
0 1 n-1 n xR

Figure 4.1: Schematic diagram of overlapping grids on which Eq. (4.1)) is solved. Downward pointing red arrow
denotes the interpolation.

4.1.2 Numerical Scheme

The semidiscrete approximation of Eq. (4.1) with the boundary and interface condition is given by

du _ _

i -P; 1QLU—TLPL 1eOL(u0 - 9), (4.6)
dv -1 -1_R .

i —PL Qrv — TRPg eq (vo — 10), (4.7)

e =[10...07,
where el and elf are vectors of size (m + 1) and (n + 1) respectively. The subscripts L and R denote that
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the operator corresponds to the left and the right domain respectively, and is appropriately sized. Whenever
the group “L, R” appears as a subscript or a superscript in an expression it implies that the expression is

valid for the L or R operators. Egs. (4.6)—(4.7) could be rewritten as

u
(%V:MWer, w=| |. (4.8)

For time stability it is sufficient to consider the case with ¢g(¢) = 0 which yields

~P;'Qp — 1P 'El 0
M = 5 b= of (4 9)
TP efIT —Pp'Qr — TrPREf
Ef =ef(ef)”,  Eff =eli(ef)T.

As discussed in section [3:3] the above numerical scheme is time-stable if we can show that the real part of
all eigenvalues of M are non-positive and the geometric multiplicity of every eigenvalue with zero real part

is equal to its algebraic multiplicity.

4.1.3 Stability Analysis

The matrix M in Eq. (4.9) is block lower triangular therefore its eigenvalues are same as that of the matrix

-P;'Qr — 1P, 'EY 0
M= : (4.10)

0 ~Pr'QRr — TrRPR'Ef

If we assume a symmetric positive definite matrix

= , (4.11)
Pr

we have
—(Qr + Q1) — 21LE} 0
HM + M*H = 7 (4.12)

0 —(Qr + QF) — 27rEf
where, * denotes the conjugate transpose of the matrix.
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Using the SBP property @ + QT = diag(—1,0, ...., 1), Eq. (4.12) yields

1—2711

HM + M*H =
1—27R

-1

For 7o p > %, the matrix HM + M*H is negative semidefinite. We use the following result from [Corless &

Frazho, (2003):

Lemma 4.1 If HM + M*H is negative semidefinite, then the real part of all eigenvalues of M must be

non-positive.
Proof. Suppose \; is an eigenvalue of M and let v; be the corresponding eigenvector, then
VI(HM + M*H)v; = viH(Mv;) + (Mv)*Hv; = v:iH\v;) + Ovi) Hvy = O\ + A viHv,.
Since HM + M*H is negative semidefinite,
VIHM + M*H)v; <0= (A + A\)viHv; <0 = Re(\;) <0.

The last inequality holds since H is positive definite. This proves the lemma. O

The eigenvalues of M are same as that of M , therefore the real part of all of the eigenvalues of M are also
non-positive. Next we show that there are no eigenvalues with zero real part. In order to prove that, we

need the following lemma.

Lemma 4.2 A matriz of size p X q (for ¢ < p) of the form
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_am . _
a1 a2 O
a22 013
Ak az3
A= 0 ag; 2 0
0 args a1,q
0 a2 q
L ak’q_

where a; ; are non-zero real or complex numbers, has linearly independent columns and therefore the null
space of A contains only the zero vector.

Proof. The reduced row echelon form for the above matrix A is

1 0
0 1 0
0 1
0 . . I
R= ol = (4.13)
1 0
0

where I is an identity matrix of size g x ¢q. Therefore, rank(A) = ¢ and hence the solution of Az = 0 is only

the trivial solution x = 0. This proves the lemma. a0

An alternative way of looking at Lemma[4.2]is that since each column vector, compared to other column
vectors, has at least one component in a dimension in which the other vectors have zero component it must
be linearly independent of the other vectors. In our subsequent analysis, we denote the first derivative SBP
operators based on a diagonal norm as p — 2p — p, where p gives the order of accuracy at the boundary and

2p in the interior.

Lemma 4.3 Real part of all eigenvalues of My = —PL_lQL — TLPL_1E§ is negative if T, > % and PL_lQL

is the 1 —2 — 1 SBP operator for the first derivative approximation (see Appendiz .
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Proof. We have

PLML+MEPL = . (4.14)

-1

Let v; = [vig, ..., vivm]T be the eigenvector corresponding to an eigenvalue \; of My, then from Eq. 1)

and Lemma, ,

Vi(PLMp + M;Pp)v; = (1 —271)v? 0 — v, = 2Re(\;) Vi PLv;. (4.15)

Py, is positive-definite, and hence Eq. (4.15)) gives

2 2
(]. — 2TL)V 4,0 — v i,m
QV;-'CPLVi

L > % implies Re(\;) < 0, where Re()\;) = 0 if and only if v; o = v;,, = 0. This result implies that we

should have (ML — /\lI)Vz = 0 with V; = [0, Viily s Vim—1, O]T or

-1
=\ _% Vil
% -\ —% Vi2
b f
(ML 7>\ZI)V7 = =0.
1 i 1 :
2 2
-\ ,%
1
2 7>\i _Vi,m—l_
1
Using Lemma@ the above implies v;; = ... = v;,—1 = 0 i.e. the eigenvector corresponding to eigenvalue

Ai, with Re()\;) = 0, is a zero vector and hence Re()\;) # 0. Therefore the real part of all eigenvalues of M,

is negative. This completes the proof. ad

Lemma 4.4 Real part of all eigenvalues of My, = —PL_lQL — TLPL_lEOL is negative if T, > % and PngL

is the 2 — 4 — 2 SBP operator for the first derivative approzimation (see Appendix .

Proof. Using a similar approach as Lemma for the 2 — 4 — 2 SBP operator gives
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(1=2710)v%0—V3im
R )\z = - . s
() oviPLv;

where v; is the eigenvector, corresponding to an eigenvalue \; of M. Similarly, Re(\;) = 0 if and only if

Vi 0 = Vim = 0, which implies (M, — A;I)v; =0 or,

_59 4 3 0
34 17 34
1
-\ —3 0 0
59 —\, 59 4 _ -
86 1 86 43
g
59 ). _32 4 b1
98 i 49 49
g
12y 2 L “2
12 3 i 3 12
1 2 _ _2
12 3 Ai 3
1 2 1
12 3 =i 12
_ 1 2 _2 1 =0
12 3 3 12
1 .2 1
T 12 —Ai 3 12
2 ) 2 1
3 —Ai 3 12
1 2 2 1
12 3 —Ai 3 12
4 32 )\ 59
19 49 ( 98
Vim—1
_4 59 W1 - -
43 86 g 86
0 Y
_3 _4 5
L 34 17 34

It can be shown, by computing the reduced row echelon form, that the columns of My — \;I are linearly

independent for any value of A\; and therefore v; 1 = ... = v; ;,—1 = 0 and hence Re();) # 0. This concludes

the proof for the 2 — 4 — 2 scheme. a

Theorem 4.1 The numerical scheme given by Eq. @f for the left and the right domain, respectively,
to solve , is time-stable with the 1 —2 — 1 SBP operator and Tp, r > %

Proof. Analysis similar to Lemma shows that the real part of all eigenvalues of Mp = —Pp 'Qr —
TrRPR 'EE are negative for Pp and Qr operators corresponding to 1 — 2 — 1 SBP scheme with 7 > 1
Therefore, the real part of all eigenvalues of M , (see Eq. (4.10)), are negative and consequently the same

holds for M. Use of theorem then shows that the method (4.6) and (4.7)) for the left and the right

domain, respectively, is time-stable. ad

Since in this case all eigenvalues of M have negative real part the method is exponentially time-stable

and there exists a positive definite matrix H such that HM + MTH < 0 (see Chapter 3 in |Corless & Frazhol,
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2003, for proof) which implies
d

£||w||%{ =wl(HM +M"H)w < 0.
Theorem 4.2 The numerical scheme given by Eq. (@— for the left and right domain respectively, to
solve , is time-stable with 2 — 4 — 2 SBP scheme and T g > 4.

Proof. The proof follows from Lemma [4.3]in exactly the same manner as Theorem ]

The analysis also shows that the method could be extended to any number of overlapping 1D domains. If the
domain contains k overset grids then the matrix M will have k£ diagonal blocks each having all eigenvalues
with negative real part. M will be block upper triangular if the direction of propagation is right-to-left and
block lower triangular if the propagation is left-to-right. Since the off-diagonal blocks, which contain the
interpolation coefficients, do not influence the eigenvalues of the system, the above proof of stability holds
regardless of the amount of overlap between domains and the interpolation method used. A similar approach

could be used to analyze the stability of a scheme with, for example, 3 — 6 — 3 and 4 — 8 — 4 SBP operators.

4.2 Hyperbolic System in One Dimension

In this section, we discuss the extension of (4.6)—(4.7) to a system of hyperbolic equations and show that the
resulting scheme is time-stable. Consider the same grid configuration as Section [4.1.1 and let the system of

differential equations be given by

% = A%, (4.16)
where
w=[u', u?, ..., uk WFt ,u] T, A = diag(A1, A2y ooy Aky Apat, coee A,
such that
A <A< ot KA <0< Apg1 < e < Ap.

Well-posed set of boundary conditions based on the characteristic direction is given by

u'(a, t) = g(t), 1<i<k (4.17)

u'(b, t) = gi(t), k<i<r (4.18)

The semidiscrete approximation of the system of equations (4.16) with the above boundary condition is
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for 1 <i<k:

dui — i — i

o = NP Quu’ — [N L P eg (uh — 1),
dv? . i “1. R/ i 1T
e XNiPr Qrv' — |Ni| TRPR ey (vg — I ),

fork<i<r:

du? _1 i 1Ly T
ﬁ = )\lPL QLU - |Ai|TLPR em(um - IR“’)’

dv? 4 i —1_Ry i

W = )\iPR QRV - |)\z| TRPR €n (Un - gi)'

We can collectively write the above as

du’ - i . - i . - i

e NP lQru’ — Hlk —i]|\i| TPy 166‘(U0 —g;) —H[i—k—1]|N\| TP} 1eﬁL(um - Igu),
dv' , , ;

dlt = NP Qrv' — Hlk — i) |\i| 7P el (v — TFu) — HIi — k — 1] |\g| 7o Py eB (0], —

where H[n] denotes the Heaviside step function,

0, n<0
Hin] =
1, n>0
Egs. (4.23) and (4.24) could be rewritten as
dw’ o , , u
CZ’ — lel + B?;7 W’L — . ,
v
where
Mj, Hli — k= 1]\ 7o P el TE
M= ,
Hlk —i]|\i| TrPg el IT M,
Hlk — i [Xi| L Py ef gi
B' =

H[i — k —1]|\i| 7rPr el g;
M} = \P;'Qp — Hl[k — i) |Ni| 7o Py 'EY — H[i — k — 1] |\i| o Py 'EE,
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(4.20)

(4.21)

(4.22)

(4.23)

(4.24)

(4.25)

(4.26)



Mph = NPr'Qr — H[k —i] |\i| TRPR ' EE — H[i — k — 1] |\i| TR PR ' EE,

L,R _ LR/ L,R\T L,R
EO =€ (60 )a E n

It must be noted that for a given 4, M? is either block upper or block lower triangular and hence the
eigenvalues of M are determined only by the diagonal blocks. The numerical scheme, given by Eq. (4.25)),

for individual ¢’s could be combined as follows

M? wl B!

M? : :
. we= ., B= : (4.27)

M" w” BT

to obtain the semidiscretized equation for Eq. (4.16]) as

dw
— =M B. 4.2
T w + (4.28)

Theorem 4.3 The numerical scheme defined by FEjq. is a time-stable approximation of hyperbolic

system, Fq. , with boundary conditions FEq. and .

Proof. M, in Eq. (4.28)), is a block diagonal matrix composed of M* on the diagonal therefore the eigenvalues
of M are the eigenvalues of individual M* matrices. From Theorem and Theorem we know that real
part of all eigenvalues of each M? is negative for 1 —2 — 1 and 2 — 4 — 2 SBP operator therefore the same

should be true for M. Hence M is exponentially time-stable and there exists a positive definite matrix H

such that HM + MTH < 0 (see (Corless & Frazhol, [2003, for proof), which implies

d
$||W||§{:WT(HM+MTH)W<O. O

4.3 Numerical Results

In this section, we discuss the numerical results for the overset method discussed above and the shortcomings

of the above approach for proof of stability.

4.3.1 Scalar Advection Problem

Consider the problem
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— 4+ — =0, -1<z <1, t >0, 4.29
ot ' ox =T= (4.29)
¢ TNED T g <z <b
u(z,0) = f(z) = ) -1<z<1, (4.30)
0 r<a, x>0b
u(-1,t) =0, t>0. (4.31)
We choose a = —0.95 and b = —0.05, which ensures f(x) goes to zero smoothly at the left boundary.

The domain z € [—1,1] is split into the left and the right overlapping subdomains, z; € [—1,0] and
TR € [f%hL, 1], where hj, denotes the grid spacing on the left domain. Figure shows the solution at
different times to the above problem with the 1 — 2 — 1 SBP first derivative approximation. There are 100
grid points on the left domain and 50 on the right. Figure [£.3] gives the eigenvalues of the system matrix
M, see Eq. , for the 1 — 2 — 1 SBP first derivative approximation. As proven earlier, all eigenvalues
have negative real part. Figures [I.4] [£.5] and [£.6] show the convergence on the left and the right grid of
the method with the 1 —2—1,2 -4 —2 and 3 — 6 — 3 SBP first derivative approximation, respectively.
Table shows the L?-error and the convergence rate for the full computational domain. Linear Lagrange
interpolation was used with the 1 — 2 — 1 operator and cubic Lagrange interpolation with the 2 — 4 — 2
and 3 — 6 — 3 operators. For all calculations the classical fourth-order Runge-Kutta (RK4) method was
used for the temporal integration. In convergence plots, Az (on the z-axis) denotes the grid spacing of the
respective domain i.e. for the blue line Az = h;, and for the red line Az = hgr, and ¢y denotes the time at
which the error was computed for each refinement. The refinements carried out for the convergence analysis
maintained a grid point ratio of 2/V : IV between the left and the right domain. The convergence rate in each
case asymptotes to a value one order higher than the order of accuracy of the boundary stencils, consistent

with the theory in |Gustafsson| (1975)).
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Advection Solution . .
Eigenvalues of the system matrix

1.2
t=0 t=05 t=1 o |eft 100 T
L + right|]
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0.6 s 9 & o+ 7 : >
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o ° 5 ; + o] * *
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0.2r S o9 +/ + ]
S H 3
é % + % 50}
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-1 -0.5 0 0.5 1 -100 : ‘
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Figure 4.2: Solution to problem (4.29) using the . .
method " with 1 —2 — 1 operators. Figure 4.3: Eigenvalue spectrum of the system ma-
Blue circles mark the solution on the left subdomain trix M, .g1v<.en by Eq. . ' , for the 1 —2 -1 SBP
and red pluses on the right. first derivative approximation.
Advection Solution ) )
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Figure 4.4: Convergence plot of the method (4.6)- .
(4.7) with 1—2—1 SBP first derivative approximation Flgurg 4.5: Convergence plot. of tche metho.d ‘ R
at i = 0.5 (4.7) with 2—4—2 SBP first derivative approximation
o at ty = 0.5.
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Advection Solution

—=—left ——right

-3 —215 —é -1 15 —i -0.5
Iog10 (Ax)

Figure 4.6: Convergence plot of the method (4.6)-
(4.7]) with 3—6—3 SBP first derivative approximation
at ty = 0.5.

1-2-1 2—-4-2 3—-6—-3

N | logio ||€]l, | Rate | logio €], | Rate | logio |le|l, | Rate

20 | -1.372494 -2.074846 -2.156269

40 | -2.024602 | 2.127 | -3.141376 | 3.479 | -3.400320 | 4.058

80 | -2.671394 | 2.129 | -4.320283 | 3.881 | -4.770536 | 4.511

160 | -3.297982 | 2.072 | -5.479973 | 3.835 | -6.087828 | 4.356

320 | -3.911992 | 2.035 | -6.522413 | 3.455 | -7.361104 | 4.220

Table 4.1: Logio(L*-error) and the convergence rate with the 1 —2 — 1,2 —4 —2 and 3 — 6 — 3 SBP first derivative

approximation. Error calculations performed at ¢ty = 0.5 with 2V grid points on the left domain and N on the right
domain.

4.3.2 Inviscid Burgers’ Equation

We solve the inviscid Burgers’ equation with a Gaussian initial pulse,

ou ou
bt - “1<z< > .
o Tz =0 1<z<1, t>0, (4.32)

u(z,0) = e,

An implicit relation that determines the solution to the Cauchy problem, provided the characteristics do not

intersect, is given by
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’U,(.T, t) _ e—3(m—ut)2 .

It was solved using the Newton’s method to specify the boundary condition and to compute the error of the

ez
75~ 0.6731.

Figure shows the solution at different times on a domain = € [—1,1] with the overlapping subdomains,

solution. For the given initial condition, the time at which shock first forms is given by t* =

zp € [-1,0] and zg € [~Zhy,1]. Table shows the convergence of the method with different SBP first

derivative approximations. ¢y denotes the time at which the error was computed for each refinement.

Inviscid Burgers’ Solution

1.2

—o—|eft

t=0 t=03 t=05

Figure 4.7: Solution to the problem lb

1-2-1 2—-4-2 3—6—-3

N | logio |lell, | Rate | logio |lell, | Rate | logio|lell, | Rate

20 | -2.576613 -3.738387 -3.856417

40 | -3.207787 | 2.059 | -4.931214 | 3.891 | -5.286009 | 4.663

80 | -3.826177 | 2.036 | -6.002457 | 3.526 | -6.708011 | 4.681

160 | -4.437252 | 2.021 | -6.979866 | 3.232 | -7.917851 | 4.019

320 | -5.043937 | 2.011 | -7.906194 | 3.070

Table 4.2: Loglo(LQ-error) and the convergence rate with the 1 — 2 — 1 and the 2 — 4 — 2 SBP first derivative
approximation. Error calculations performed at ¢ty = 0.25 with 2N grid points on the left domain and N on the right
domain.
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4.3.3 The Euler Equations

We solve the two-dimensional Euler equations (see Eq. (3.8)) for the propagation of a compressible vortex

under isentropic conditions. Initial and boundary conditions are determined from the exact solution given

by
2(~v =1 52,2
p= (1 - 6(8:;27)61—621“2)%7 U = Uug — %ﬂ(y_yO_UOt)e%v
< i S D G O ) (4.33)
v=—pB(x — o — uot)e = PYAC :
o 0 0 , -1 2/) ,
p=p", r? = (z — 20 — uot)® + (y — yo — vot)?,

where (g, yo) denotes the initial position of the vortex, (ug,vg) denotes the vortex convective velocity, v is
the ratio of specific heats, 8 controls the size of the vortex and e denotes the non-dimensional circulation.
Unless otherwise stated, we use v9 = 0, v = 1.4, § = 11 and ¢ = 1. All quantities in (4.33) are non-

dimensional, obtained from the density scale = p{j, velocity scale uj = unit length scale and pressure

<
Wl
scale = pjuj?, where * denotes the dimensional quantities. The non-dimensional ambient speed of sound is
co = +/7-

Consider a simple two-grid overset configuration as shown in Figure [4.8] where the interface conditions
are needed only on one edge of each gird. We refer to the domain with black grid as the left domain and
the domain with red grid as the right domain. Following a similar notation as section |3.2.2] we denote the
solution field by qiLj’lR where the first two subscript indices ¢ and j represent the x and y index of the grid
point and the last index [, ranging between 1 and 4, represents the conservative variable, the superscript
denotes the domain to which the grid function belongs. We assume nZ® + 1 and an*R + 1 grid points in
the x and y direction of the left and right grid. Define the vector QX = (quf, quf R , qﬁﬁy )T, For

the configuration shown in Figure [{.8| the discretization for the left and right domain, ignoring the physical

boundaries, is given by

L
d‘; = -DyF" —DyG" — i (PY)'EL, KL (QF - TRQY), (4.34)
LQR RpR RmR R\—11R 1R+ /R LAL
o = ~DIFT—DJG" — (P 'EGKI(Q - T QY), (4.35)

where TR denotes the interpolation operator and

Ax| £ A\ o
Kfsx(||2>sx1, Sk =1, 1, ®S,, Ax=1,0 I, ®A,.

37



A, and A, are diagonal matrices with the eigenvalues of A and B as the diagonal elements, where A= g—g

and B = g—g (see Eq. (3.8))) such that
A, = S;YAS,, A, =S,'BS,.

We use tilde (7) over A and B here to highlight the fact that the matrices A and B are different from the

matrices A and B of Section The eigenvalue matrices are given by

u v

u—+c v+c

u—=c v—cC

The right eigenvector matrices are given by

1 0 1 1 1 0 1 1
U 0 u+c u—c U 1 u U
Sw = 5 Sy = )
v -1 v v v 0 v+c v—c
¢2 2+62 ¢2 +C2 ¢2 ¢)2 +02 2+C2
oy v e ted G2 —cul) o v IEE el (5 - el

and the corresponding left eigenvector matrices by

1- % (y-1)% (r-1% -5
) 0 -1 0
St = ,
B(¢* —cu) Ble—(y—1u] —B(y—-1v B(y—-1)
862 +ew) —Blet (=1l —Bly— 1w Bly—1)]
1% (-nE (-nm -]
—u 1 0 0
S;l - )
B(¢? —ev) —B(y—1u  Ble—(y—1)] Bly-1)
B(&* +cv) —Bly=Du —Blet+ (v = 1] Bly-1)]

with ¢ = 22, § = 7z and ¢ = (v — 1)(u? + v?).
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Figure 4.8: Two-grid overset configuration that requires interpolation along just one edge of the either grid.

Grid Configuration-1

We use ug =1 in Eq. (4.33) to compute the convection of vortex over time on the grid configuration shown

in Figure with following number of points on the left and right domain:

Left Right
n | nf | nf | nf

101 | 101 | 151 | 101

Figure [4.9] shows the solution at different times. Figure [£.10] shows the convergence of the method with
second order accurate difference operator and linear interpolation with ¢; denoting the time at which the

error is computed for each refinement. For convergence study, each grid is refined in both directions by the

same ratio in subsequent refinements and the error is defined as e; ; = pj ;" uted _ p§teet and,
M [y ok
lleto)ll, = | D [ DD ((eh)?AzeAyr)) |, (4.36)

k=1 \ j=0i=0

where M is the number of subdomains, and n¥ + 1 and n’yc + 1 denote the number of grid points in x and y
direction of the k-th subdomain. Here M = 2. Figures[{.11]and [£.13|show the convection of vortex over time
on an overlapping rotated grid configuration and Figures [£.12] and [£.14] are the corresponding convergence
plots. All the convergence results are plotted against Ax = Axy. One would get the same trend if the error
is plotted against Az g or Ayy, or Ayg since we refine both left and right grid in each direction by the same

ratio.
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Figure 4.9: Contours of density showing convection of vortex over time.

2—-d Vortex convection
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Figure 4.10: Convergence of method 1) with 1 —2 — 1 SBP operator at t; = 1 with Az = Axy.
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Figure 4.11: Contours of density showing convection of vortex over time on the rotated grid configuration.

2—-d Vortex Convection
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Figure 4.12: Convergence of method (4.34)) with 1—2—1 SBP operator at t; = 0.5, on the rotated grid configuration
shown in Figure [f.11] with a grid spacing ratio of 2 : 3 between left and right grids in each direction and Az = Axy.
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Figure 4.13: Contours of density showing convection of vortex over time on the rotated grid configuration.
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Figure 4.14: Convergence of method (4.34)) with 1—2—1 SBP operator at t; = 0.5, on the rotated grid configuration
shown in Figure[£:13] with a grid spacing ratio of 2 : 3 between left and right grids in each directions and Az = Axy.

Grid Configuration-2

The above numerical tests examined the robustness of the overset method proposed in Section for 1-D
and 2-D, linear and non-linear problems. But in all the previous cases we considered two-grid configurations

with BCs that allowed the Gaussian pulse or the vortex to cross over the interface just once, which is not
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sufficient to assess the long-time behavior of the interface treatment. Therefore, in this section, we consider
a computational domain as shown in Figure the grid for which is shown in Figure 4.16| The base
Cartesian grid of size 201 x 201, shown in black in Figure has a rectangular hole that is covered by
a square patch (rotated Cartesian grid) of size 101 x 101 shown in red. The square patch is aligned at an
angle 6 with respect to the base Cartesian grid and its dimension for different values of 6 are listed in Table
The hole on the base grid is created by blanking out a set of grid points denoted by [is, ic] X [js, je] in
Table 3]

0 Patch side length Hole indices
(L) [is,ie] X [Js) Je]
0 0.76 [68,134] x [30,172]
/12 0.76 [75,127] x [49, 154]
/8 0.68 [80,123] x [62, 141]
/6 0.68 [78,125] x [66, 137
/4 0.64 [84,119] x [61, 142]

Table 4.3: Grid specifications for different values of § in Figurem [is,ic] denotes the range of grid point indices in
the z-direction that are blanked out and, similarly, [Js, j.] denotes the range of blanked out indices in the y-direction.
Note that 1 < 14,5 < 201 for the base grid.

The solution on the base grid is assumed to be periodic in z-direction to let the vortex cross over the patch
as many times as desired. We use ug = 2 in Eq. to compute the convection of vortex over time. The
initial condition is shown in Figure The norm of density error, using Eq. , for time 0 <ty < 4
is shown in Figure for different values of 6. The error profile is approximately the same for different

values of 8 in Figure therefore the method is not sensitive to the orientation of the grids.
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Figure 4.15: Overset grid configuration with a base and a patch grid. The patch grid shaded in red is rotated at
an angle 6 with respect to the base grid.

Figure 4.16: Grid for the overset configuration shown in Figure m
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Figure 4.17: Initial condition on the grid configuration shown in F igure
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Figure 4.18: Norm of the density error with time for different values of 6 (see Figure |4.15)), using 2 — 4 — 2 SBP
operator with cubic interpolation.

Figure compares the long-time performance of the method (4.34)—(4.35), hereafter referred to as the
SAT method, against the “injection method” for § = 7 (see Figure |4.15) using the third-order scheme. The
“injection method” is the most commonly used approach of interface treatment for overset grids where the
computed solution at the interface grid points are overwritten by the interpolated value from the underlying

grid at each time (sub-)step. Figures and compare, for supersonic and subsonic convective speed
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respectively, the Lo-error with time between the SAT method and the “injection method”. The vortex flow

specifications were same as that used to obtain Figure . The SAT method clearly produces lower error,

but more importantly the error does not grow exponentially in time as the results from the injection method.

Table [£.4] shows the convergence of the method with 1 —2 — 1,2 —4 —2 and 3 — 6 — 3 SBP difference

approximation with ||e||, given by Eq. . Linear Lagrange interpolation was used at the interface with

1 —2 — 1 operator and cubic Lagrange interpolation with 2 —4 — 2 and 3 — 6 — 3 operators. The error was
1

computed for subsequent refinements with N = nj = n, = n2 = ni at t; = 1.0 with a constant CFL of 0.5,

0.25 and 0.15 for 1 —2 — 1,2 —4 — 2 and 3 — 6 — 3 operators respectively.
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Injection method SAT method

“ ‘r'W I

Figure 4.19: Surface plots for the density error comparison between the injection method and the SAT method.
The plots show the error at the following times: a) ¢ = 0.5, b) t = 1.5, ¢) t = 3.0, d) t = 5.5, ) t = 8.0.
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Figure 4.20: Error comparison of the injection method against the SAT method for uo = 2.0. (a) Density error,
(b) Entropy error, (c) Velocity magnitude error, (d) Pressure error.
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Figure 4.21: Error comparison of the injection method against the SAT method for up = 0.5. (a) Density error,
(b) Entropy error, (c) Velocity magnitude error, (d) Pressure error.
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1-2-1

2—-4-2

3—-6—-3

N

logio |le]|, | Rate

logio |le]|, | Rate

logio |le]|, | Rate

50

-2.551

-3.011

-2.970

100 -3.009 1.501 -3.935 3.028 -3.895 3.029

150 -3.399 1.971 -4.516 3.271 -4.534 3.601

200 -3.615 2.044 -4.955 3.492 -5.054 4.134

Table 4.4: Convergence, for different SBP first derivative approximations, of the SAT method for the grid configu-
ration shown in Figure with § = 7 . The density error ||e||, is given by Eq. (4.36).

4.3.4 Cyclic Hyperbolic System

To prove time-stability of the method and we analyzed the system matrix M and showed stability
in terms of its eigenvalues. This approach was successful since we had system matrices in a block lower- or
block upper-triangular form, whose eigenvalues could be estimated from the diagonal blocks. For problems,
such as that discussed next, where the system matrix is not of a block lower- or block upper-triangular form
the approach discussed in chapter 4] does not lead to a time-stable scheme.

Consider the hyperbolic system discussed in (Carpenter et al., (1994, Section 3),

ou ou

A = 4.
D + 7 0, (4.37)
where
U1 1 0
U = 3 A= y
U2 0 -1

on the domain z € [0, 1] with the initial and the boundary conditions given by

uy(x,0) = sin 27z, ug(x,0) = —sin 27z,
ul(O,t) = ’UQ(O,I&), Ug(l,t) == Ul(l,t). (438)
The exact solution for the problem is uj(z,t) = sin 27 (x — t) and ug(z,t) = — sin 2x(x + t). Let the

domain x € [0,1] be comprised of two overlapping subdomains, z;, € [0, b.] and zg € [ag,1]. Denote the

T T
grid function on the left and the right subdomain by u = [ul UQ} and v = [V1 Vz] respectively. The
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semidiscrete approximation of (4.37)-(4.38)) can be written as

dw
— =M 4.
n w, (4.39)

T
where w = [wl Wz] with wq = [u1 vl} and wy = |:112 vz}, and

My1 Mo
M = ,
Ms1 Moo
-P;'Qr — 1P B} 0 T PLIEE 0
My = 5 My = ) (440)
TRPR el TF —Pp'Qr — TrRPR'Ef 0 0
0 0 P;'Qr — 1P 'EL TPy tel TE
My = ; Moy = )
0 TrPR'EF 0 Py'Qr — TRPR'EE
where E} and EJ are given by Eq. (4.9)), and
Bl = eh(eh)T, Bl = ef(el)".
T T
eTLn = {0 1] is a vector of size m + 1 and eﬁ = {0 1] is a vector of size n + 1. T} and

Tr denote the vectors with interpolation coefficients such that the numerical boundary conditions at the

interface are given by (see Figure [4.22)),

(‘71)0 = Tguh

(ﬁg)m = TEVQ .

u(x,t)
0 1 i i+1 i+k m
( 1 1 Vyi 1 L Vyi 1 // l
T —7/ 1 —7/ J 7/ 1
xt \—'—} A
: f_*_\

yAn 1 /7 1 1 Vyi 1
I 7/ T 7/ T T 7/ T
0 i j*+1 itkg  jtkgt1 n-1

v(x,t)

Figure 4.22: Schematic diagram of overlapping grids on which Eq. (4.37)-(4.38)) is solved. The red arrow denotes
the interpolation.
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Figure shows the eigenvalues of the system matrix M for 60 grid points on the left domain and 30 on
the right with 1 —2 — 1 SBP first derivative approximation, linear Lagrange interpolation and ag = % — %7
br = % The maximum real part among all eigenvalues is 0.0107 which implies that the method is
not time-stable for this problem. For large times, the eigenvalues with positive real part will dominate the
solution resulting in an exponential growth.

The system matrix, in this case, does not have a block lower- or a block upper-triangular structure
and, therefore, estimating the sign of the real part of the eigenvalue is not straight-forward. Without the
knowledge of the eigenvalues, it is difficult to comment whether a different value of 7, or 7, or a matrix
other than Py g in the SAT implementation would yield a time-stable scheme. Lemma can, therefore,
be used only in limited number of cases. In the next chapter, we discuss the second case of the method
which uses the energy method and Lemma [3.1] to prove time-stability on the overset grids for all problems
that have a bounded energy norm. In anticipation of the upcoming results, Figure [£.24] shows for the above

problem the eigenvalue spectrum of the system matrix from the method discussed in the next chapter. The

maximum real part among all eigenvalues is less than zero in Figure [£:24] indicating a time-stable behavior.

150 ‘ ‘ : :
60 L % %
*
100} a0l *** i
%
501 - * 20t ]
> K KK
IS ****** g
c c
> 0 . S o i
*’** o]
E Pkt =
-50 * 20} 1
*,
%
-100} : a0l " #* gy |
. #* *
-150 . . . . 60 ) * ¥ *
-20 -15 -10 - 0 5 0.2 -0.15 0.1 -0.05 0 0.05
Real Real

Figure 4.23: Eigenvalues of the system matrix M from the method (4.39). (a) All eigenvalues. (b) Magnified view
near the imaginary axis. Max(Re(\;)) = 0.0107.
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Figure 4.24: Eigenvalues of the system matrix from the method discussed in Chapter [5| (a) All eigenvalues. (b)
Magnified view near the imaginary axis. Max(Re(\;)) = —6.7347 x 10715,
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Chapter 5

Stable Overset Methods for
Hyperbolic Problems - 11

In this chapter, we discuss the same method as the previous chapter but with a localized dissipation term
that allows the use of energy method for proof of stability. Like in the previous chapter, we will first discuss

the proof of stability for a scalar problem before analyzing the extension to the Euler equations.

5.1 The Scalar Problem
We consider the simple advection equation (4.1)) with the initial and the boundary condition given by (4.2))

and (4.3 respectively.

5.1.1 Numerical Scheme

For the overlapping grid configuration and the numerical boundary condition discussed in Section the

proposed semidiscrete approximation for the left and the right subdomains is given by,

du

E=—P51QLu—TLSL(uO—g)+TLu7 (51)
dV -1 ~
E:—PR QRV—TRSR(U()—U()), (52)
Spr=Hpgres™, e =[10...0", (5.3)

where the vectors e} and ef are of sizes (m + 1) and (n + 1) respectively. T in (4.6) denotes a dissipative
operator whose exact structure will be determined from the stability analysis. The reason the dissipation
term appears only on the discretization for the upwind domain will become clear once we examine the

stability of the method. Hy and Hpg constitute a norm matrix H given by

H = , Hp=CpP,, Hg=CgrPg, (5.4)
Hp
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where Cp, = diag(ck, ..... ck) with ciL > 0 for all 7, and Cr = Brlr where Iz denotes an identity matrix

rm
of size (n+1) x (n+ 1), and Bg > 0 is a scalar constant.
For time-stability it is sufficient to consider the case with ¢g(¢t) = 0. Applying the energy method to (5.1)—

(5.2)), with g = 0, using the H norm yields

d
a”u”%{L = 7uT(CLQL + (CLQL)T)U - QTLU% + QUT(HLTL -+ (HLTL)T)U, (5.5)

d
&HVH%{R = —BRVT(QR + Qg)v — 2731)% + QTR(vTe{f)TEu. (5.6)

The above equations can be collectively written as

d d d
Sl = Sl + SV, (57)

T
where w = [u v} . To prove time-stability, we need to show that £ ||w|3 < 0. Since involves
Ty, which contains the interpolation coefficients and the information about the location of donor points, the
proof of stability will depend on the interpolation method used and the amount of overlap between the grids.
We will have to proceed on a case-by-case basis for different orders of the first derivative approximation and

the overlap position. The overlap positions will be classified as:
e Interior overlap - if all the donor points for interpolation are the interior points
e Boundary overlap - if at least one donor point is a boundary point.
In this chapter, we use Lagrange interpolation for all the proofs; a similar approach may be used with other

interpolation bases.

5.1.2 Stability of the Second-Order Scheme

In this section, we provide the proof of time-stability for the second-order accurate scheme of the method
7, for which the operator P~1(Q denotes the 1 — 2 — 1 SBP first derivative approximation. Linear
interpolation (k = 2 in Eq. ) is used to retain the second order of accuracy globally. We choose the
dissipative operator YT of the form

Y, =TLRy, (5.8)

where T'y, = diag(yo, v1, - , ¥Ym) and Ry, is an approximation of hL% given by
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The non-zero entries of the diagonal matrix I'y, will determine the grid points where the dissipation is added
as well as the weight of the dissipation term for each grid point. In all cases, the term would be active only
at the donor grid points. The dissipation term upwinds the difference stencil at the donor points with v; (in
matrix I'p) denoting the amount of upwinding influence at the i-th grid point.

Boundary Overlap

First we discuss the scenario where the left-most grid point on the right grid (z{%) lies between the two right-
most grid points of the left domain (i.e. zZ ; and zZ) as shown in Figure Therefore the numerical

boundary condition at zf, using the Lagrange interpolation, is given by
Dy = TLTu = apum—1+ (1 — ap)um, (5.10)

Tp,=00...0 ar (1—ar)]?, (5.11)

where T}, is a vector of size (m + 1).

0 1 m-2 m-1 m
( 1 1 /. 1 1 1
L L] // 1 T 1

// 1
7/ I

v

Figure 5.1: Schematic diagram of overlapping grids for linear interpolation.

Our aim is to determine the values of the parameters 71, 7r, CL, I' and i for ay € [0,1] such that
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SIwllF <0 (see Eq. (5.7)).

Theorem 5.1 The method 7 for the overlapping grid configuration shown in Figure with the

1—2—1 SBP first derivative approximation, linear Lagrangian interpolation and a dissipative operator given

by Eqs. (@7@/ is time-stable if

o =1, ck =1- ek =et+(1—-ap)? (5.12)

for all values of ¢ >0 and 0 < e < 1.

Proof. Consider Cf, = diag(1, ---,1,c¢k _;,ck) and 'y, = diag(0, ..... ,0,7,0). Substituting them in (5.7)

»*m—15*m

using (5.9), (5.11)) and the 1 — 2 — 1 SBP first derivative approximation yields

qllwllfy = =11 = 1+ 29)cf g Jum—stm—1 — dvep,_yup, 1 = [(1 = 2y)ef, ) = cflumtm-1 — cpui,
+ 27RO L VU1 + 2TR(1 — ap)VoUm + (Br — 27R)vE + (1 — 271)ud — BrvZ. (5.13)
If we take,
§ = [tm—2 Um—1 Um o], TL>3,
Eq. (513) yields,
d
Siwliy <
0 —3(1= (1 +29)eq ) 0 0
1 L L 1 L L
—5(1 =1 4+2v)cy;,_ —4ve,, —5((1 =2v)e,,_1 — ¢y, TRO
oo |72 (T4 29)e ) Vem_1 5((1=27)c ) ROL s
0 —5((1=29)cp 4 —cfy) —cp Tr(1 —ag)
I 0 TROL TrR(1 —or) Br —27R |

o7



1
2c

L
Choosing v = — =2 to cancel the (1, 2) and (2, 1) entries, proving stability requires we show that

m—1

—2(1—cf 1) —5(2ck =, - 1) TROUL
K=|-1@2ct _,—ck-1) —ck TrR(1 —ayp)| <0, (5.15)
TR, Tr(1 —ag) Br —27R

i.e., that the matrix K should be negative semi-definite. That is true if all principal minors, Ay of order

k=1,2,3, obey (—1)*A; > 0. From first-order principal minors we have

l—cp >0, ¢, >0, 73> %R (5.16)
Therefore, let us introduce a change of variables
L _ L _ _ Br
Cm1=1—2z, ¢, =2y, 7Tr=— +PBrq (5.17)

2

where z, y and ¢ are non-negative numbers, and c%_; > 0 implies < 1. Inserting (5.17) in (5.15)) yields

—2x x+y—% BR(%—kq)aL
K=| g+4y-1 —2y Br(3+a)(1—ar)|- (5.18)
Br(3 + QoL Br(z+q)(1—ag) —26Rrq

The second-order principal minors give the following three conditions:

(x—y)* - (x+y)+i <0, (5.19)
1 2
4rq — Br (2 + q) aj >0, (5.20)
1 2
4yq — Br (2 + q) (1—ap)*>0, (5.21)

If we assume z = 9'*'7" and y = 9_7’7, 1) gives 0 >n? + 1 or

1
0:e+772+1, for €>0. (5.22)

2 1 2 1
Therefore, § = n? + i or, r = % and y = % represent the boundary (in the z-y plane) of the

solution required for numerical stability. The shaded region in Figure [5.2] shows the admissible values of x
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and y.

Figure 5.2: Shaded region shows the admissible values of z and y for det(K2x2) > 0.

Two cases exist for the conditions from the other two second-order principal minors, Egs. (5.20) and (5.21]),

Case 1: ¢q=0

Setting ¢ = 0 in Eq. || and 1) yields %a% < 0and %(1 —az)? < 0 respectively. Since Sz > 0 and

the inequality must hold for all values of ay, € [0,1], ¢ cannot equal zero.

Case 2: ¢ >0
Egs. (5.20) and (5.21) yield, respectively,
Br

sz<2b§+ﬁ)2ai7 y24<2\1@+\/§>2(1—%)2~

Now, the condition on third order principal minor implies,

1+ 2n)?
AgSO:»—8qe+ﬁR(1+2q)2{ai+e—aL(1+2n)+(4”)}

Rearranging (5.24)) gives
8q
1-—21 )4 <0,
(1= gty ) + fla) <

where,

2
flar) = a} —ap (14 2n) + B0 = (o — H20)2,
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Three cases exist for Eq. (5.25):

. 8
Sub-case 1: 1 — Wj?q)z >0

Eq. (5:25) gives

e < —flaw)
o
Br(1+29)?
Since f(ar) > 0 and e > 0, this case will not provide an allowable value of e.

Sub-case 2: 1 — =0

8g
Br(1+29)?

Eq. (5.25) provides

Eq. (5.23) results in

(1—ap)®
y > Uzen)l

Therefore, for all admissible values of g (i.e., ¢ > 0),

8q €+ a2 e+ (1—ar)?
- =___ L = 7 2
Br T+ 2g72 x 5 Y 5 , (5.26)

for 0 < e < 1, since < 1. Inserting « and y in Eq. (5.17)) completes the proof. O

The third Sub-case, 1 — m < 0, provides additional solutions as Eq. 1] for this case yields

flar)

€> —
__8 4
<5R(1+2q)2 )

2
where f(aL) = (aL — %) .

The admissible values of x and y can then be obtained from,

e+ +n+ g e+n?—n+;
ogx=%<1, y:%>0. (5.27)

Another set of values that make the method (|5.1)—(5.2)) time-stable is then given by

> 2 Br < =B s
L Z 27 R (1+2q)23 TR* R 2 q )

cy = = = Cﬁz—Z =1, c#_l =1-uz, Cm = 2y,
1—ck_
I' = diag (O, ,0, Lm 170>»
2Cm—l



for all ¢ > 0 and x and y given by Eq. (5.27).
Interior overlap

In this section, we discuss the time-stability of the method (5.1)-(5.2)) for a grid configuration, as shown in
Figure where the donor grid points lie in the interior of the domain. The numerical boundary condition

in this case is given by,

Vg = Tgu =apujt+1 + (]. - OZL)'LLJ'+2, (528)
T =[0---0ay (1-az)0---0]T. (5.29)
\—/\—/
0 1 i+ j+2
<« —//— : —//—

: 7/ : —>
1 n-1 n R

Figure 5.3: Schematic diagram of the overlapping grids where interpolation is needed from the interior points of
the left domain.

Theorem 5.2 The method 7 for the overlapping grid configuration shown in Figure with the
1 —2—1 SBP first derivative approrimation, linear Lagrange interpolation and a dissipative operator given

by Eq. (@ is time-stable if

1 8¢ 2py > <1 >
TL = = 0< < ) TR = -t+al,
L=73 Pr < o <p—2paL+(p+y)a2L ®=Pr {5+
, c]ﬂ_1 =1-p, C,7L+2 =y+2z, cJL_‘_3 = . =c =z (5.30)

1—cb ek, —ck
T J+1 J+2 m
I'y = diag (0, ..... ,0, 90l . " 9ol ,0, ... ,0
j+1 j+2

withz=1—-2p—2y andp+y < % forp,y,z,q > 0.
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Proof. Consider C, = diag(1, --- ,1,c§‘+1,c§‘+2,z, ---,z) and Ty = diag(0, ..... 0,741, %j+2,0, - ,0).
Substituting them to (5.7) using (5.9)), (5.29) and the 1 — 2 — 1 SBP first derivative approximation yields

d
&HWH% = —[1 = (14 2vj51)cfy 1 Jujuipn — dyjpacrul g — [(1—2y551) ek — cfo(1+ 295 40) w1042

—Ayj 40t oud o+ (ch —cfy o (1=29;40) ujouj 3 — chun, +2TRaLVOU 1+ 2TR(1— o )vouj 12+ (Br — 27R)V)

+ (1 — 277)ud — Brv?. (5.31)
Using
1—ck ok —c, T 1
Vi+1 = Qle_itlv Vi+2 = ];szu ) s=[ujy1 ujp2 vl', 1L >3,
Eq. (5.31) becomes,
L
2(—1+ck, ) —cf ek, -+ 3 TROL
gHWII2 <s’ |k L, Gyl 2cL — ¢k 1 s=s"Ks (5.32)
az HS —Cip1 FClp — B+ 5 Crm, — 2C540 Tr(1 —ar) ; .
TROL TrR(1 —ayr) Br —27r

For time-stability, the matrix K must be negative semidefinite, i.e. all principal minors, Ay of order

k =1,2,3 must obey (—1)¥/A; > 0. From first-order principal minors we have,

Br

1- CJLH >0, ch+2 >ck g > 5 (5.33)
Therefore, let us assume that
Br
ckiy=1-p F=chty ch=z  TR="2+Pna, (5.34)

2

where p, y and ¢ are non-negative numbers, z > 0, and p < 1 to ensure c]L 1 > 0. Inserting the change of

variables ([5.34)) into (5.32) yields

—2p pPry+3—3 Br(3 + 9o
K=|p+y+5-3 ~2y Br(z +q)(1—aL)| - (5.35)
Br(3 +q)ar  Br(3 +q)(1—ar) —20Rrq

If we take z = 1 — 2p — 2y, the second-order principal minors give the following three conditions:

dpy > 0, (5.36)
1 2
4pq — Br (2 + q) ai >0, (5.37)
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2
4yq — Br (; + q> (1—ap)*>0, (5.38)

and the third order principal minor yields

8¢ 2py )
< . 5.39
Pr < (14 2q)? (p — 2pag + (p+y)od (5.39)

Values of p,y > 0 such that p+y < % and ¢ > 0 satisfies Eqs. 1]1) for all values of ay, € [0, 1]. This

completes the proof. a

5.1.3 Stability of the Third-Order Scheme

In this section, we discuss the proof of time-stability for the globally third-order accurate version of the
method (5.1)—(5.2). The operator D = P~1Q, in this case, denotes the 2 — 4 — 2 SBP first derivative

approximation. Cubic interpolation is used to retain third order global accuracy.

Boundary Overlap

First we discuss the scenario where the left-most grid point of the right grid (zf!) lies between the points
b 5 and 2% | of the left grid as shown in Figure Therefore, the numerical boundary condition at

m—2

is given using the cubic Lagrange interpolation by,
4
v =Tfu= Zli(x(}f)um_“_i = L () um—s + Lo (@) um—2 + 3@ um—1 + L@ tm, (5.40)
i=1
Ty =10....0 1y Iy I3 14]", (5.41)
where T7, is a vector of size (m+1). The interpolation coefficients I;(x{?) for the cubic Lagrange interpolation

are obtained from

a2l —ak 4
L) = [[7—272—, fori=1,2,34 (5.42)
p= T—a+i — Tm—dvyp
pFi
To simplify the notation in proofs we substitute in 1) Sx=aff —zL ,and ap =1— }%, where hp, is

the grid spacing on the left domain, to get
R 1 R 1
hizg) = —gor(l—ar)(I+ar),  bzg)=j0r2-ar)(1+ar),

Is(zd) = %(1 —ar)2—ar)(1+ayr), ly(zlt) = f%aL(l —az)(2—ay). (5.43)
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© T<--—

Figure 5.4: Schematic diagram of overlapping grids for boundary overlap case of cubic interpolation.

We use a dissipative operator Ty, given by Eq. (5.8)) where

1 0 0 0 0 0 0
T, = . (5.44)
11 Ti2 T3 Ti4a Tis Tie

T21 T22 T23 T24 T25

31 T32 733 T34

T41 T42 T43 T44

For consistency of the discrete approximation , Dy = Py Q1 — Y1, must be an approximation of the
first spatial derivative and for a global accuracy of third-order the derivative stencils of Dy, at the donor grid
points must be at least second-order accurate (see |Gustafsson, [1975]).

Our aim is to satisfy %HW| |2, <0 (see Eq. by determining the suitable values of the parameters 7,

Tr, Cp, Y1, and SR for oy, € [0,1].

Theorem 5.3 The method 7 for the overlapping grid configuration shown in Figure with the

2—4—2 SBP first derivative approximation, cubic Lagrangian interpolation and a dissipative operator given

by Eq. is time-stable if

4
Br>0, TR> —gR, (5.45)
A
L=, 6= =ck = k.= T (1122 + 43¢k, —59ck | +51ck),
43 N 215ck 5 —1121ck | +1207cE 8\ —9lck 5 +236ck | —153ck
r J— T = )
Y7 1176 T 56(43¢L,_, — 59k, + b1k, + 112)) » 516¢L
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43ck 5 +118cE | —153ck — 8 43¢k, —236¢k | +201ck —8A

_ , _ : 5.46
s 708cL,_, = 612¢L (5.46)
s =N 32em—3 = A) 611 — 3 811+ 3r12 + 3
= ——e—, Ti2=— , T3 = —6r11 —3r12 —rig, 714 =87 r 16,
11 19¢L 12 19, 13 1 12 =716, T4 11 12 16
Alcpa —N)
Ti5 = —3r11 —T12 — 316, Tl = —— 7, T2 = —3T21 —T25, T23 = 3(r21 +725),
43¢y _,
To4 = —To1 — 325, T31 = —T34, T3 =334, T33= =334, T4l = —Ta4, Taz =344, T43= —3T44,
where
L 160135+ 2V/3) Lo 16(27 + 4v/3) N NP (5.47)
m=2 1161’ met 1593 ™ 153v/3] 9v3

Proof. Using (5.54) and (5.58) in (5.5)) and (5.6) with

. A
Cp, = diag(, ..., A, CTLn_B, CTZ;L_Q, cﬁl_l, c,Ln)7 L > 5 (5.48)
_ Alefs =) _ 32(ch_3 = A) _ Acha =)
Ti=—0c > Me2=——0F1 > 1= Q01 > (5.49)
49¢cy 49cy 4 43¢y, _o
we get
d. o _ .1
Wl < sT K,
where
_ T
S = [um—3 Um—2 Um—1 Um UO} )
%:5@737”13 9%(07%173(—59 + 98r14) + 05272(59 + 86722))
o= (Crm3(—59 + 98714) + cry—2(59 + 86722)) 2 a2
K= = (49¢), 3715 + 59c,_1731) o= (ch—o(—59 + 86r24) + 59(cr—1 + 25, _1732))
%(Cfn_3(3 + 987‘16) + Cfn(—g + 347‘41)) é(CTLn_Q(Zl + 437’25) + Cf‘n(—él + 17’!’42))
Trl1 Trl2
= (49¢h, _3m15 + 59¢h,_1731) o= (cr—3(3+ 98716) + iy (—3 + 34741)) Trl1
o= (ch_o(—59 + 86724) + 59(ch_1 +2¢k_1732)) A (ch_2(4+43ras) + ch(—4 4 17r42)) Trls
3—20#717"33 %(59(0# + cfn,l(—l + 2r34)) + 34C7Ln7“43)) Trl3
%(59(&,[;1 + Cf’n_l(—l + 27‘34)) —+ 346,,[;17‘43)) C,I.,/.L(—l + 5714) Trl4
Tng TRl4 ﬂR—QTR
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A second-order accuracy of the first derivative approximation Dyu = (Pp Q-7 r)u at the donor points

requires
r13 = —6r11 — 3112 — 7186, 714 = 8r11 + 3112 + 3716, T15 = —3T11 — 12 — 3r16,
rog = —3ra1 — 725, r23 = 3(721 + 725), T4 = —T21 — 3T25, (5.50)
T31 = —T34, T32 = 3734, r33 = —3r3q4,
T4l = —T44, T42 = 3144, T43 = —3T44.

Substituting the above accuracy conditions in K with (5.49) yields

—3A+ ch_3(3 — 2r16) o= (152X + cfy_5(— 187 + 294716) + ¢, —2(35 — 86725))
o= (152X + cfy_5(— 187 + 294716) + cf,—2(35 — 86725)) (AN + ¢ (44 43r25))

K= = (—20X + ¢}, —3(20 — 147716) — 59k, _1734) = (8X\ — cf_2(67 + 258725) + 59ck, 1 (1 + 6734))

& (ch_3(3 4 98716) — ¢ (3 + 34r44)) L(ch_o(4 4 43r25) + Ly (—4 + 51ras))
Trl1 Trl2

= (=20X + ¢}, _3(20 — 147r16) — 59c,_1734) o= (cr—3(3 4+ 98r16) — c1y (3 + 34744)) Trl1 ]
o= (8N — ¢ o(67 4 258r25) + 59ch, 1 (1 + 6r34)) = (ch—2(4+43r25) + cf(—4 4 517r44)) Trl2
f%cfn_lru %(59(6,{‘” + k(=14 2r34)) — 102¢k744) Trl3
o= (59(ck, + ch1 (=1 + 2r34)) — 102¢),744) e (=1 + Lryy) Tria

Trl3 TRl4 Br — 2Tr |

To prove time-stability, we need to show that the above symmetric matrix K is negative semidefinite.

Substituting
Lo 43 N 215¢k o —1121¢k,_; + 1207cE, S 8\ —91ck,_5 +236¢E_; — 153c¢k,
"7 1176 T B6(43cL_, — 59cL_, + blck + 112X0)° 20 516cL,_, ’
- 43¢k, +118¢E | — 153¢E — 8 i 43¢k, —236¢E | +201cE — 8
M 708ck _, b 612¢L, ’
1
ek o= m(nzx + 43¢k, 5 —59ch, 1 +51ck),

in K simplifies the matrix to

k11 0 0 0 TRll
0 koo 0 0 TRIQ
K=o 0 ksz O mrls | > (5.51)

0 0 0 kaa Trl4

|TrRlr  Trl2 Trl3 TRls SR —27R]
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where

o (=568 + 731ck _, — 826¢L | +663cL) o (—40X — 43¢k, +236¢E_, —153ch)
11 — 364 9 22 — 96 )
(8\ — 43¢k, —118cL | 4+ 153ck) (—8\ +43ck _, —236¢k | —663ck)
kaa = 96 » k= 864 '

For cubic Lagrangian interpolation, given by Eq. (5.43)), where oy, € [0, 1] we have

117 ly € [—

4
1 5
——.0], Iy, 13 € [0,1], LiDmas = 5.52
sl b0 (b= g (5.52)

From the Gershgorin circle theorem, all eigenvalues of the matrix K are non-positive for ay, € [0, 1] if

4
Br >0, Tp2> %7 —k11, —kag > TR —kaa, —k33z > TR, (5.53)

9v/3’
for k11, kaa, kss, kaa < 0. Solving k11, kaa, k33 and kyq in (5.53)) with equality gives

16(135 + 2v/3) I 16(27 + 44/3) I 16 2

CL 2 = —7 C 1 = 7) C = 7’ 77
m-— 1161 - 1593 ™ 153V3 93

which completes the proof. O

Interior Overlap

Here we discuss the case where the left-most grid point of the right grid (x{) lies between the points xf ‘Lo
and xF, 5 of the left grid as shown in Figure where all the donor grid points «%, ,,---,xF,, lie in the
interior of the left subdomain. Therefore, the numerical boundary condition at x{ is given using the cubic

Lagrange interpolation by
4

b0 =TEu="Y Li(ed)ujri = li@f)ujr1 + L@ )ujo + (@) w3 + la(ag) w44, (5.54)
1=1

Ty =[0....011 I3 1314 0....0]", (5.55)

where T, is a vector of size (m+1). The interpolation coefficients I;(z.{?) for the cubic Lagrange interpolation

are obtained from

R Loaf gl ,
li(fl'o) = | | I L for i = ]., 273,4. (556)
p=1Ti+i ~ Titp
pF#i
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To simplify the notation in proofs we substitute in || §

grid spacing on the left domain, to get
R 1
hzg) = —gar(l —ar){ +ag),

Is(ell) = 51— an)(2 — ar)(1 + ),

I (x)

Ly(aff

.’I;:xo

R

) = —%aL(l —an)(2— ap).

/L

1
2aL(2 — aL)(l + aL),

- 3

— = T

7/

—xf+2 and ap, =1 — g—f, where hp, is the

(5.57)

o T< -~

Figure 5.5: Schematic diagram of overlapping grids for cubic interpolation.

We use a dissipative operator T given by Eq. (5.8) where

0 0 0 0
i1 Ti2 Ti13
1 T21 T22
TL == hi
L 31

The non-zero rows correspond to the donor grid points zj41, ---

T14

723

32

T41

T15

T24

33

T42

725

T34

743

Yy 1
7/ I
n-1

T35
T44 T45
0 0 0

-~

(5.58)

, Zj4+a. For consistency of the discrete

approximation 1} Dy = Py Q1 — Y1 must be an approximation of the first spatial derivative and for

a global accuracy of third-order the derivative stencils of Dy at the donor grid points must be at least

second-order accurate (see |Gustafsson) [1975)).

Our aim is to satisfy <||w||% <0 (see Eq. [5.7) by determining the suitable values of the parameters 7,

Tr, Cr, Y1, and Bg for ar, € [0, 1].
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Theorem 5.4 The method 7 for the overlapping grid configuration shown in Figure with the

2—4—2 SBP first derivative approzimation, cubic Lagrangian interpolation and a dissipative operator given

by Eq. 1s time-stable if

A 48R
> a5 > 07 > T
L2 g Br TR 3
L L L 1 L 1
Co = e =cj =\ ch:E(l?)\—&—u), Cj+2:§(2)‘+:“)7
L 1 L 1 L L
cj+3:§()\+2,u), cj+4:1—8()\—i-17,u)7 Cilhy = v =cy = [,
k=X 2(ck, = N)
T = JlgliL, T2 = —%7 rig = —6ri1 — 3r12, 714 = 8r11 +3r12,  T15 = —3r11 — T2,
G+ G+
C]l-’+2 - A
Tol = =1, ro2 = —4ray, rog = Ora1, roq = —4ra, To5 = T21, (5.59)
120j+2
L
T31 = T35, T3z = —4r3s, r33 = 6r3s, T34 = —4r3s, 7"352%7
Cj+3
2(cyq — 1) —cl 1
r41 = —T44 — 3745, Tazg = 3raq +8ras, T4z = —3raa — Ora5,  Taa = 4?2 —, T45 = 41]2+4L —,
Cjta Cj+a
with choices of X and p such that A — p > 31g for A\, u > 0.
Proof. Using (5.54]) and (5.58)) in (5.5) and (5.6 with
: L L L L A
CL = dlag()\, s 7)‘7 Cj+1» Cj+2u cj+37 cj+47 s 7,“1)7 TL 2> 57 (560)
7 ek — A - 2(ck = N) 7 g — A
=5 Ti=——F0 1 Ta=—"o71 (5.61)
12¢74 3cihy 12¢i4
- 7_‘7LI/+3+/’[/ 72(CJL-I+4_/“L) 7_31'3,-4"',“
= TM=—07 — T4= o (5.62)
12¢5, 5 3cihy 12¢i, 4
we get
Cwliy < s™Ks
g HE = ’
where

T
s =[ujt1 ujre Uiz ujpa vl
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QCJL+17“13 CJLH(—% +714) +CJI-’+2(§ + 722) CJI-’H(% +7°15)+CJL+3(—% +731)
cir(=2 +ria) + cfa(3 + ra2) 2¢} 42723 Fra(—3 +r2a) + ciis(3 + 732)
K =1 cfii(gg +71s) + cfya(—15 +731)  Fya(=3 +720) + ya(3 +732) 2¢f} 3733
0 ciya(fs +725) +efpa(—95 +ra)  cfys(=F +7aa) + a3 + )
Trl TRl2 TRl3
0 TrRl1 ]
Cﬁ-z(% +7ros) + C§+4(_% + 7ra1) Trl2
cia(=2 +73a) + cfa(3 +142) Trl3
2k, 4ras Trl4
Trla Br — 27R |

We apply an accuracy of 2 — 3 — 3 — 2 for the first derivative approximation Dpu= (PL_lQL —Tr)u at the

donor grid points i.e. we constrain the elements of the operator YT, such that the derivative approximation

(Dpu);41 is second-order accurate, (Dpu)jio and (Dpu)jis are third-order accurate and (Dpu);i4 is

second-order accurate. We chose 2 — 3 — 3 — 2 since it was the highest order of approximation for which a

solution could be found. The accuracy conditions,

r13 = —6711 — 3712, r14 = 8711 + 3712, r15 = —3T11 — T12,
rog = —4ro1, r93 = 6721, ro4 = —4r01, T25 = T21,
r31 = T35, r32 = —4735, r33 = 6735, r34 = —4r35,

T41 = —T44 — 3745, T4 = 3744 + 8rys, r43 = —3T44 — 6745,

substituted in K with (5.61) and (5.62)) yields

3(ci —A) 5(=6¢f11 + ¢fpa + 5N 75 (6c41 — 26543 — 5A + p)
5(=6cj1 + el +5X) 2 — A 5(=3ciya +3¢fs + A — p)
K= L6k —2cii3 —B5A+p) 2(=3cii2+3chis+A—p) —ckis+p
0 75 (26512 — 6514 — A+ 5p) 3(=¢fs +6cf s —5p)
Trl1 Trl2 Trl3
0

75(2¢f42 — 6¢f4 4 — A+ 5p1)
3(—cfhs +6cjsa — 5p)
—3cfia+ 31

Trl4

70

(5.63)

Trl1
Trl2
Trl3
Trla

Br — 27Tr




To prove time-stability, we need to show that the above symmetric matrix K is negative semidefinite.

Substituting,
L 1 L 1 L 1 L 1
CJ+1:T8(17A+H), CJ+2:§(2)\+,LL), CJ+3:§()\+2/L), CJ+4:T8(A+17M),

in K simplifies the matrix to,

Hp =N 0 0 0 Trl1
0 Hw—AN) 0 0 Trl2
K = 0 0 Hu—N) 0 Trl3 (5.64)
0 0 0 su=2X 7Rl
Trly Trl2 Trl3 Trla  Br — 27R|

Using (5.52)) and the Gershgorin circle theorem, all eigenvalues of the matrix K are non-positive for az, € [0, 1]
if

4
TRZE7

)‘_MZSTR7 3

which completes the proof. a

5.1.4 Stability of the Fourth-Order Scheme

In this section, we discuss the proof of time-stability for the globally fourth-order accurate version of the
method (4.19)-(4.20). The operator D = P~'Q, in this case, denotes the 3 — 6 — 3 SBP first derivative

approximation. Cubic interpolation is used to retain the global fourth order of accuracy.

Interior Overlap

We use a dissipative operator Ty, given by Eq. (5.8)) where

i1 Ti2 T3 T4 Tis Tie Ti7

1 21 T22 T23 T24 T25 T26 T27
YT, = e (5.65)
L T3l T3y T3z T34 T35 T3 T37
T41 T42 T43 T44 T45 T46 T47
0 0 0 0 0 0

71




The non-zero rows correspond to the donor grid points. For consistency of the discrete approximation (4.19)),
Dy = —-P; Q1 + Y must be an approximation of the first spatial derivative and for a global accuracy of

fourth-order the derivative stencils of Dy, at the donor grid points must be at least third-order accurate.

Theorem 5.5 The method 7 for the overlapping grid configuration shown in Figure with the
3 — 6 — 3 SBP first deriwative approximation, cubic Lagrange interpolation and a dissipative operator given

by Eq. 1s time-stable if T, > %,

1 1
ch=... =cl =), ko= 2—0(180(:]4+1 — 161X+ p), kg = 5(18ch+1 — 17\ + p),
L 1 L L L
Cita = %(QOCj_H — 19X+ 19p),, Cilbs = oo =c,, = [,
L L L
cEo = 2(ck , — A 3(ck , — A
11 = %, r12 = —#, r13 = —#, 14 = —2(107"11 + 57‘12 + 27‘13), (566)
12¢5,4 3ciy dejy
r15 = 45T11 + 207‘12 + 67"13, T16 = —36’/‘11 — 157’12 — 4’/“13, r17 = 10’/“11 + 4’/’12 + 13,
L L
—Cig+ A 3(ciig — A
ro1 = 7J+QL ; Tog = 7( j+2L ), ros = —10ra1 — 4rog + 1o, rog = 20791 + 6129 — 4727,
60c;y o 20c5y o
L
iy —n
ro5 = —15rg1 — 4199 + 6127, ro6 = 4ra1 + 122 — 4ra7, ro7 = %,
60c;y o
_ A _ _
T3l = — 71—, r32 = —4rs1 + 136 + 4737, r33 = 6r31 — 4rge — 15737,
6Ochr3
3(cfis — 1) Chia— M
r34 = —4rzy + 6136 + 20737, r35 = 131 — 4r3e — 10737, 36 = —%, r37 = %,
Ochr3 600]-+3
r41 = ra5 + 4rae + 10747, r4g = —4rys — 15r46 — 36147, r43 = 6145 + 20746 + 45747,
3(ciya — 1) 3(cfya — 1) kg —p
r44 = —4rgs — 10r46 — 20747, T45 = $, T46 = *$, r47 = %,
dejiy 20¢7, 4 60cy, 4

with choices of cﬁ_l, A and i such that the matriz K given by Eq. is megative semidefinite.

Proof. Using (5.54) and (5.65) in (5.5) and (5.6) with,

. A
OL = dla’g(Aa te 7>\7 le"-}—l? C]L-‘,-Qa C§+3’ C§+47 My oee alu)7 TL Z §a
—ck A (e, — X 3(ck =\ —ck o, + A
m=—2—",  rp= (]LL), T3 = —#, ry = — 2=, (5.67)
600j+1 200j+1 4cj+1 606j+2
T22 = LCJLH — 31 = 7_0'%+3 e 27 = Lﬂ - 36 = —73(C]L+3 ) (5.68)
2OCJL+2 600.7L+3 GOCJL+2 200f+3



L L L L
Cjt3 — H 3(Cjyq — 1) 3(cjyq — 1) _Cpa T M
37T = T60¢L L Ta5 = T4l Ta6 = T T o0l Tar = “60cL (5.69)
€j+3 Cjta Ci'ra Cita
we get,
d 2 T
%”WHH <s KS)
where,
_ T
s =[ujy1 wjra ujys wjpa vo],
QC]L+17"14 CJL'H(*% +r15) + Cf+2(% + ra3) CJLH(% +ri6) + CJL+3(*% +732)
CJLH(*% +715) + CJL+2(% + r23) 2¢74 2724 CJL+2(*% +725) + CJL+3(% + 733)
K= | cfia(o5 +716) + cfha(—g5 +132)  cfaa(—F +r2s) + cys( + raa) 2¢]4 5734

cir1(—g5 +717) + cirals +ra1)  iralag +r26) + ciral—55 +1a2)  cipa(=5 +75) + ¢fa(§ +ras)

TrRl1 Trls Trl3
cii(—o +717) + cfyalas +7ra1) TRl
cFio(Z +r26) + cipa(—2 +raz) Trl2
ciia(—2 +7rss) + cfa(E +ra3) Trl3
2k 4ras TRl4
Trl4 Br—2Tr |

An accuracy of third-order at the donor grid points for the first derivative approximation Dyu = (—P; 'Qr+
T )u yields

r14 = —2(10r11+5r12+27r13), 715 = 457114+207r12+6r13, 716 = —36r11—15r10—47113, 717 = 10r11+4ri2+713,

ro3 = —10rgy —4ran +1o7,  Tog = 20721 + 6122 —4ra7, 195 = —15791 —4rog + 6197, 126 = 4121 + 12 — 47107,
r3g = —4r31 +r36+4r3y, 133 = 6731 —4r36 —15r37, 134 = —4r31 +6r36+20r37, 135 = 131 —4rze — 10737,
Ta1 = Tas+4r4e+10r47, Tan = —4ry5—15746—36T47, T43 = 6745+20746+45747, Tag = —4r45—10726—20747.

Its substitution in K with Egs. (5.67H5.69) provides,

w g6 (—180cf41 +20c7 5 + 161X — p) 15 (1841 — 2cf43 — 1TA + p)
o5 (—180cf 1 + 20cf, 5 + 161X — p) CFio+ 1= (—17TA +2p) —chg+ b+ 2358
K= 15 (I8¢ — 2¢f4 3 — 17TA + p1) —clg + iy + 25 L(—15cf 5 — 22X+ 17p)
L(=20ck, +20ck, + 190N — ) S (2ck, —18ck, —A+170) & (—20¢k 5 + 180ck,, — A — 161p)
Trl1 Trl2 Trl3
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a5 (—20ck, +20cf, 4 + 19N —p))  7rh
(20 — 18cky — A+ 17p) Trl2
a5 (—20cf4 5 + 180cf4 4 — A — 161p) Trls

%(CJLH — ) Trls

TRl4 Br — 27TRr

To prove 4||w|[3, < 0, we need to show that the above symmetric matrix K is negative semidefinite.

Substituting,
L 1 L L 1 L L 1 L
Cito = %(1806j+1 — 161N+ ), cjys= 5(180j+1 —1TA+p), cjpy= 2—0(200J-Jrl — 19X + 19p),
in K simplifies the matrix to,
S -
D= 0 0 0 _—
0 9¢ii1 4 a5 (—551A + 11p) 0 0 Trl2
K= 0 0 —9¢f11 + 55 (251X + 19u) 0 Trl3
0 0 0 —41(20cf,, — 19X — p) Trl4
TRl Trl2 Trl3 Trla Br — 27R

(5.70)

From Eq. (5.57) for ar, € [0,1] we have,

4
llv l4 S [_ﬁ70}7 l27 l3 S [071]7 (Z”Z )mam - g

i=1
Use of Gershgorin circle theorem on matrix K provides all the admissible values of chH, A, i, Br and TR

for oy, € [0,1]. One such set of values used in this report is,

2143 1439 659 11V3 11V3
= a0 ,uzia Cj-l,-l:ia BRZia TR = — o -
1440 1440 450 640 480

5.2 Numerical Results

In this section, we discuss the numerical results for the overset method (4.19)—(4.20) and its extension to

solve the Euler equations.

5.2.1 Scalar Advection Problem

We solve the advection problem discussed in section The domain x € [—1,1] is split into the left and

the right overlapping subdomains, x;, € [-1,0] and zg € [712—5hL, 1], where hj, denotes the grid spacing on
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the left subdomain. Figure shows the solution at different times to the above problem with the 2 —4 —2
SBP first derivative approximation using A = %, uw= %, Br = % and 7 = 1in || Figureshows the

eigenvalues of the system matrix. Table shows the error (¢) and the convergence rate with the 1 —2 —1,
2 — 4 — 2 and the 3 — 6 — 3 SBP first derivative approximation. p = i and y = % in |D was used for

3and 7p = 1in |D was used

the computation with the 1 — 2 — 1 operators, A = %, = 2%, Br = §
for the computation with the 2 — 4 — 2 operators and A\ = %ﬁg , = %Zg, C]L_H = %7 R = % and

= 1LV3 4y 1) was used for the computation with the 3 — 6 — 3 operators. For all calculations, the

TR = 7180
classical fourth-order Runge-Kutta (RK4) method was used for the temporal integration. The convergence

rate in each case asymptotes to a value one order higher than the order of accuracy of the boundary stencils,

consistent with the theory in |Gustafsson| (1975).

1.2 120
t=0 t=05 t=1| © left
om e e
+ + *
0.8 c % g £ '
' S o & + 4 40
o % o * + * >
0.61 o > ° H ¥ b ©
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= o o [} : + je2) 0 *
0.4f ° ° o Tt v : £
. b ° 5 A + E
5 & -
g o 8 + g * -40r
o 3 +
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i -80f
-0.2 L —12 . . . .
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Figure 5.6: Solution to problem (4.29) at times t Figure 5.7: Eigenvalues of the system matrix M
=0, 0.5 and 1. Blue circles show the solution on the with 75 grid points on the left domain and 50 grid
left domain and red pluses on the right domain. points on the right domain.
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1-2-1 2—-4-2 3—6—3

N | logio |lell; | Rate | logio|lell; | Rate | logio |lel|; | Rate
20 | -1.393317 -1.890376 -1.834638

40 | -2.096629 | 2.294 | -3.076089 | 3.868 | -3.320550 | 4.847
80 | -2.767374 | 2.208 | -4.329113 | 4.125 | -4.766798 | 4.760
160 | -3.408065 | 2.119 | -5.580261 | 4.137 | -6.146200 | 4.562
320 | -4.030452 | 2.063 | -6.762682 | 3.919 | -7.464454 | 4.369
640 | -4.642814 | 2.032 | -7.846195 | 3.595 | -8.740561 | 4.234

Table 5.1: Logio(error) and the convergence rate with the 1 —2 — 1,2 —4 — 2 and 3 — 6 — 3 SBP first derivative
approximation. Error calculations performed at ¢ty = 0.5 with 2V grid points on the left domain and N on the right

domain.

5.2.2 Inviscid Burgers’ Equation

We solve the inviscid Burgers’ equation with an initial Gaussian pulse, as discussed in Section Figure
shows the solution at different times on a domain « € [—1,1] with the overlapping subdomains, z; €
[-1,0] and zg € [-22h,1]. Table shows the convergence of the method with the 1 —2—1,2—4—2

and the 3 —6 — 3 SBP first derivative approximations. ¢; denotes the time at which the error was computed

for each refinement.
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Figure 5.8: Solution to the problem 1)
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1-2-1 2—-4-2 3—6—-3
N | logio |l€]l, | Rate | logio €], | Rate | logio|le|l, | Rate
20 | -2.541474 -3.621003 -3.762557
40 | -3.203759 | 2.160 | -4.884568 | 4.122 | -5.289465 | 4.981
80 | -3.831964 | 2.068 | -5.996491 | 3.660 | -6.699774 | 4.643
160 | -4.447700 | 2.036 | -6.995166 | 3.303 | -8.031767 | 4.385
320 | -5.056985 | 2.019 | -7.954203 | 3.172 | -9.297876 | 4.187

Table 5.2: logio(L?-error) and the convergence rate with the 1 —2—1, 2—4—2 and the 3 —6 —3 SBP first derivative
approximation. Error calculations performed at ¢y = 0.25 with 2N grid points on the left domain and N on the right

domain.

5.3 Extension to the two-dimensional Euler Equations

In this section, we discuss the extension of the method (4.19))-(4.20) to solve the two-dimensional Euler equa-

tions. The extension to three-dimensions follows a similar approach. The two-dimensional Euler equations

in generalized coordinates are given by

P

u 1
P 7 o :
PV
pE

U= ft +§azu+§yvu

pE

pU
pul + Exp
poU + &yp
|PEU + & uip)

2
u

v—1

pV
puV + 1D
poV +nyp

_pEV + nxiuip_

V= Tt +77:z:u+77yv7

+ 02
5 .

(5.71)

(5.72)

The coordinate transformation between the physical domain x = (z,y) and the computational domain & =

(&,m) is € = E(x,t) with the inverse transformation x = X(&,7) and the metric Jacobian J = det(9€/0x)

= (zeyn — Tyye) "

velocity components, p denotes the density, p the pressure and E is the total energy per unit mass.

7

We assume the time to be invariant, therefore, 7 = ¢. Here, u, v are the Cartesian



5.3.1 Numerical Discretization

To make this discussion concrete, we consider the two-grid overset configuration on the rectangular domain
[-1,1] x [-0.5,0.5] shown in Figure The left domain [—1,0] x [—0.5,0.5] (shown in blue) and the right
domain [—0.13, 1] x [-0.5,0.5] (shown in green) overlap. A numerical boundary condition (via interpolation)
needs to be imposed at the grid points on the right boundary (z = 0) of the left domain and the left boundary
(z = —0.13) of the right domain. The region in red denotes the donor grid points for interpolation of solution
from left to the right grid and, similarly, the region in orange denotes the donor grid points for interpolation
from right to the left grid. Following the notation used in Nordstrom et al.| (2009); Svard et al.| (2007)), the
solution field is denoted by qiLj’lR7 where the first two subscripts ¢ and j denote the ¢ and 7 index of the grid
point and the last index 0 < [ < 3 denotes the elements (different fields) of the vector ). The superscript
L, R denotes the domain (left or right) to which the grid function belongs. With this convention, we define
a composite vector QX = (q(i;é:c7 qOLO’f‘, ..... , qu\f;}vng)Tv where NfL’R + 1 and NnL’R + 1 are the number of
grid points in the £ and 7 direction of the left and the right grid, respectively. The difference operators are
given by,

D/ =pifeIltern, DER=IMeDEReI,

where the matrix in the first position in the Kronecker product is of size (NgL’R +1) x (NgL’R +1), the one in
the second position is of size (N,]L’R +1) x (NUL’R + 1), and the one in the third position is 4 x 4. I denotes
an identity matrix with a size consistent with its position in the Kronecker product. D¢ and D,, denote the
SBP first derivative approximation. The norm matrices are denoted as,

L,R _ pL,R L,R L,R _ yL,R L,R
Pl =pliorltern,  PLE=Tepligl,

HLE — HgL’R ® I#,R ® I, HLE — IfL’R ® H#,R @ 1,

3 n
and define,
Egf=E fellfen, ERF=Eytellfel,
Epfi=1feErfen, ERi=I"eEytel,
where EOL’R = diag(1, 0, ...., 0) and Eﬁ,’R = diag(0, ...., 0, 1) are of appropriate sizes based on their position

in the Kronecker product. The numerical boundary condition can then be written as,

QL _ TRQR and QR _ r:[\chL7
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where T* is of size 4(N& +1)(NF +1) x 4(NF +1)(N,¥ 4 1) and T* is of size 4(NF +1)(N,F +1) x 4(N{ +
1)(N77L + 1), and their rows contain the interpolation coefficients for the respective grid points.
The semi-discretization for the left and the right domain in Figure|5.9] including the interpolation in the

overlapping region but not considering the physical boundary conditions, is given by

dQr _ _ A

—— -D{F" - D}/G" — 7, (H{) 'Eg K{(Q" - QM) + K¢ riQF, (5.73)
dQR R R RAR R\—1pR R+ R AR R—~rRANR

o = -D{F - DG — 7a(H) ' Eg KT (Q" - QF) + K TRQR. (5.74)

For discussions hereafter, we shall refer to the method 7 as the SAT method with dissipation.
The SAT method without the dissipation term was discussed in Section KL-F (k = ¢ or ) denotes
the similarity transform of the flux Jacobian matrix (see [Pulliam & Chaussee, [1981)) and,
KLRE — (SER) <|A£7R| + A#R) (LR~
" K B) .
ensures that only the incoming characteristics are penalized at the interface and only the outgoing char-

acteristics are subjected to numerical dissipation, consistent with the one-dimensional semi-discretization

(4.6)-(4.7). The eigenvalue and the eigenvector matrices are given by,
LR _ 7L,R o 7L,R LR _ yL,R o, 7L.R
ALF = [P Rg [ER g A, SLE=[lR eIl s,,

where the expressions for A, and S, can be found in |[Pulliam & Chaussee| (1981)). In all our calculations, we
use the Roe-averaged quantities that satisfy F(Q)—F(Q) = K:(Q, Q)(Q—Q), to compute the eigenvectors
and the eigenvalues, which may be beneficial in an extension of the method to accommodate for discontinuous
solutions. For the grid configuration shown in Fig. the operators in the dissipation term of the SAT
method is given by YHF = TI:E g I,’;*R ® I, where the structure of the matrix T is shown in Egs.
7 and for the interior overlap configuration of the second, third and the fourth-order
method, respectively. The one-dimensional analysis in Sec. showed that for time-stability the non-zero
rows in TX® should correspond to the donor grid points used for interpolation at the interface. Using
that as a guideline for the overset configuration in Fig. the dissipation should be added to the region
shown in red/orange in the figure. The red/orange band is two-points wide for the second-order (bilinear
interpolation) and four-points wide for the third- and the fourth-order (bicubic interpolation) methods. In

all our calculations, we use the skew-symmetric split form of the convective derivatives (Pirozzoli, |2011).
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Figure 5.9: Two-grid overset configuration with 51 x 51 grid points on the left domain and 101 x 101 grid points
on the right domain. The red and orange bands denote the donor grid points on the left and right grid, respectively.
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Figure 5.10: Density contours for the convection of vortex over time obtained from the third order version of the
SAT method with 51 x 51 grid points on the left domain and 101 x 101 grid points on the right.
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5.3.2 Isentropic Vortex Convection

To demonstrate the performance of the method, we solve the two-dimensional Euler equations (Eq. (5.71))
for the propagation of a compressible isentropic vortex with the exact solution given by Eq. . Figure
shows the density contours at different times for the grid configuration shown in Figure for ug = 0.5.
The third-order version of the SAT method with dissipation, using operators corresponding to Sr = %7
TR=1 A= % and p = % in Theorem was used with the classical fourth-order Runge-Kutta (RK4)
method with a CFL of 0.25 for time integration. Figure shows the density and the entropy error on the
centerline (y = 0) at ¢t = 2 for the “injection method” and the SAT method with and without the dissipation
term. When the vortex crosses over from the left domain to the right it generates numerical reflections that
travel leftward from the right boundary of the left domain. These reflections are subsequently weakened by
the dissipative term in and therefore we see lower error on the left domain in Figure for the SAT
method with dissipation. The error on the right domain, where the vortex resides at ¢ = 2, is dominated
by the truncation error of the convection terms in the bulk of the domain and therefore the error profiles
for different methods are similar to each other and it is harder to distinguish the interface treatment errors
between the methods. For this short-time simulation, the errors from the “injection method” are similar to

those of the SAT method without dissipation. Next, we examine the long-time performance of the methods.
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Figure 5.11: Centerline error comparison of the “injection method” and the SAT method with and without the
dissipative term at ¢t = 2.0. (a) Density error, (b) Entropy error.

A common difficulty with overset grid methods is their inability to prevent repeated numerical reflections
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off sub-domain boundaries from growing unboundedly in time and therefore we need to assess the long-time
behavior of the overset methods. In Section the long-time performance of the method f
without the dissipation term was examined. We consider the same overset configuration as shown in Figure
with 6 = 7 and a base Cartesian grid of size 201 x 201 covered by a square patch (rotated Cartesian
grid) of size 101 x 101. Figure shows the donor grid points for interpolation, where the dissipation is
added, on each grid. Figures and show density, entropy, velocity magnitude and pressure error
comparisons between the “injection method” of interface treatment and the SAT method with and without
the dissipation for advection at a supersonic (ug = 2.0, My ~ 1.69) and subsonic (up = 0.5, My ~ 0.42)

velocity, respectively. See Appendix[C|for comments on the performance of the SAT method with dissipation

in Figures and

83



057

0.25

057

0.25

Figure 5.12: Red bands denote the grid points where dissipation is added. (a) Base grid, (b) Patch grid.
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Figure 5.13: Error comparison of the injection method against the SAT method with and without dissipation for
ug = 2.0. (a) Density error, (b) Entropy error, (c) Velocity magnitude error, (d) Pressure error.
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Figure 5.14: Error comparison of the injection method against the SAT method with and without dissipation for
uo = 0.5. (a) Density error, (b) Entropy error, (c) Velocity magnitude error, (d) Pressure error.

5.3.3 Acoustic Scattering

To examine the performance of the methods on a curvilinear grid, we determine the scattered sound field
generated from a time-periodic acoustic source reflecting off a circular cylinder. The Euler equations (5.71)
are solved with a source term given by

0Q , OF G _

5t oE o =5
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where

T
—In (x=1)2 442
S=10 0 0 Lle 2 ( S5 >sinwt} : (5.75)

Dimensionless variables with respect to the length scale = cylinder diameter, D*, velocity scale = speed of
sound, cf, density scale = undisturbed density, p§, and pressure scale = pici? are used, where * denotes
the dimensional quantities. We consider a two-grid overset domain as shown in Figure The Cartesian
grid, on the domain [—10,10] x [—10, 10], has 401 x 401 grid points whereas the polar grid, with an outer
radius of 2, has 51 and 301 grid points in the radial and the azimuthal direction, respectively. The acoustic
source is located at (xs,ys) = (4,0) and the solution of the resulting scattering problem, governed by the
linearized Euler equations, is discussed in [Tam & Hardin| (1997)) as Problem 1 of Category 1. The solution

for pressure, with the source term (5.75)), is given by

p(z,y,t) = (v = 1) Im(p(z, y)e ™),

where

p(x,y) = pi(x,y) + pr(z,y).

p; denotes the incident wave generated by the acoustic source, given by

w

pl(xﬂy> == / .Ze_bng(TSag)dé-a
0

where rs = \/(z — 25)2 + (y — ys)2, b= % and the Green’s function is,

— T Jo (e HS (wry), 0 <€ <y,
G(Taf) =

— g Jo(wrs) HYV (w€), g <€ < o

Jo and Hél) denote the zeroth order Bessel and Hankel functions of the first kind, respectively. The reflected

wave from the cylinder, p,, is given by

pr(r,0) :Z CkH,ﬁ” (rw)cos(kB),

k=0
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where H lil) is the Hankel function of the first kind of order k and,

s

o B6)cos(s) s
: WW[%H]E )(w/2) - H1§+)1(W/2)} ‘Z

€0 =1 and €, = 2 for k # 0. B(¢) denotes the boundary condition at the cylinder surface given by

api 5 w 12 oG
B(¢) = — :/ —e ¢ 2 de.
o l—os ! 4 I |05
For (x4,ys) = (4,0),
oG T oo (w€) HY (wreo) 5@ | 0 < ¢ <y
5 = - ) —3COoSs
=05 | Zw i (wrao) HiY (w8) 58 g <€ <00

where 759 = 1/16.25 — 4cos(¢).

Figures and show the surface plot of pressure perturbation from simulations performed using the

injection method and the SAT method without dissipation term, respectively, at t = t*¢}j/D* ~ 30 with w =

w*D*/c§ = m and the globally third-order accurate spatial discretization. The plots from injection method

simulations clearly show non-physical perturbations at the inner boundary, where the overset interface

treatment is applied. In contrast, the SAT method ensures smooth transfer of pressure perturbations from

one domain to the other. Figure shows the pressure perturbation with time at x = 2, y = 0 (an

inner boundary point of polar grid) using the injection method as well as the SAT method with and without

dissipation. Figure shows the grid points where dissipation is added for the SAT method with dissipation.

There is no noticeable difference between the results from the SAT methods, with/without dissipation, for

this problem and they both match very well with the exact solution but the results from the injection method

diverge for long-time simulations.
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Figure 5.15: Overset domain for the acoustic scattering problem. (a) Circular cylinder with a body conforming
polar grid (shown in red) overlapping on a Cartesian square grid (shown in gray), (b) Overlapping region showing
the hole (inner boundary) on the Cartesian grid and the amount of overlap.
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Figure 5.16: Surface plot of pressure perturbation, p’, using the injection method for overlapping interface treatment
at t ~ 30. (a) Pressure perturbation on both domains, (b) Pressure perturbation on the polar grid.
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Figure 5.17: Surface plot of pressure perturbation, p’, using the SAT method without dissipation for overlapping
interface treatment at ¢ =~ 30. (a) Pressure perturbation on both domains, (b) Pressure perturbation on the polar
grid.
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Figure 5.18: Time history of pressure perturbation at x = 2, y = 0 using different methods for overset interface
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Figure 5.19: Red-colored band denotes the interpolation donor grid points where dissipation is added for the SAT
method with dissipation. (a) Cartesian grid, (b) Polar grid.
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Chapter 6

Conservation Analysis

In this chapter, we discuss the conservation properties of the overset method presented in the previous
chapter. More generally, let us consider a hyperbolic system given by
dq

A§+VuF:Q on xeQCRY t>0. (6.1)

where ¢ : Q x R — RF such that ¢ = {ql qk]T and F; = {Fjl FJR}Tfor 1<j<d If F]l are
non-linear functions of ¢, for example the Euler equations, the solution of the conservation equations can
develop discontinuities such as shocks. In such a case one seeks weak (or generalized) solutions to that
satisfy the integral form of the conservation law

4 qd:c—i—/F-ndS:O. (6.2)

dt
Q o0

It can be shown that if ¢ is a weak solution across a discontinuity then the speed s of the discontinuity is
given by the Rankine-Hugoniot condition (see [Laxl [1973)
[] - m
§==—
[¢']
where the bracket [-] denotes the jump in the quantity across the discontinuity and n denotes the direction
of propagation of the discontinuity. Therefore, for a numerical scheme to correctly estimate the speed of
propagation of the discontinuity it must discretely satisfy Eq. (6.2)).
For a one-dimensional version of Eq. (6.1)),

@+ fo =0, (6.3)
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on a single domain z € [a, b] as shown in Figure Eq. (6.2) becomes,

Q.‘&

b
;[ ado= 1@ - f0) (6.4)

b
i.e., the time rate of change of the conserved quantity S; =/ ¢ dz equals the difference of flux entering and

leaving the domain.

Figure 6.1: One-dimensional single grid on a domain z € [a, b].

In case of an overlapping domain as shown in Figure for g—’; > 0, the flux enters the computational

domain at x = ay, and exits at x = by, and x = bg. At x = ag, the flux is duplicated from the left sub-domain

to the right. We introduce the integral quantities

aRr bL bR
Ua:/uda:, Ub:/ud:c, V:/vdz, (6.5)
ar, aRr aRr

where u(z,t) and v(x,t) denote the solution of (6.3]) on the left and the right sub-domain respectively. Let
us denote the flux on the left and the right sub-domain by f,(z,t) = f(u(z,t)) and f,(z,t) = f(v(z,1))

respectively. The time rate of change of the integral quantities in (6.5)) is given by

dU, dUy av

dt :fu(aLat)_fu(aRat)v H:fu(ath)_fu(bLat)a E:fv(aRat)_fv(bRat)'

If we consider a quantity Sz = 11Uy +1m2Up+13V where 1 2 3 are non-negative constants such that n; = 72+ns3
then

dSs

W = nlfu(alnt) - 7]2fu(bL7t) - n3fv(bR7t)a (66)

using fu(ag,t) = fy(agr,t) since the flux is duplicated at ar. Eq. shows that the quantity So is

conserved except for the fluxes at the physical boundaries of the domain in Figure [6.1
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OR v(x,t) br

Figure 6.2: Overlapping grid setup with the left domain « € [ar, br] and the right domain z € [ar, br]. Downward
pointing arrow denotes the interpolation.

It is important to highlight that, in practice, the overlapping grid configuration shown in Figure [6.2] is a
substitute for the physical domain shown in Figure[6.1) with a = ay, and b = bg. The conservation statement
for the physical domain is given by Eq. , and for the overlapping grid conservation statement to
mimic we must use 71 = n3 = 1 and 12 = 0, which implies Sy = U, + V.

The conservation statement for the overlapping domain, Eq. , does not equal Eq. because of an
extra physical boundary at x = by, on the left domain, see Figure which loses or gains flux. If, instead,
x = by, on the left domain was an internal boundary, like x = ar on the right domain where numerical
boundary condition (via interpolation) is imposed, the two conservation statements would match as we show
below. When the interpolated data is imposed on both the domains, i.e., at * = ar on the right domain
and at x = by, on the left domain in Figure the flux enters the computational domain at x = ay, and

leaves at © = by for % > 0. If we split the the integral V in 1) as

bL bR
Va:/vdx, Vb:/vdx,
aRr br,
then
dvy, dvy
= Jolant) = fuobL ), F = fulbrot) = folbr.b).

For a quantity S = U, + aUy, + 5V, + V; such that o + g =1,

% :fu(aL,t)_fv(vat), (67)

using fu(agr,t) = fy(ar,t) and fu(br,t) = f,(br,t) since the flux is duplicated at © = ar and = = by.
Eq. is equivalent to the conservation statement for the single domain, Eq. . In the SAT method,
discussed here, the interpolated data is applied only to the downwind domain based on the characteristic
direction as shown in Figure whereas in references that use the injection method, for e.g., |Berger| (1987,
Figure 4.1) and |Chesshire & Henshaw| (1994, Figure 5), it is applied to both the domains.
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6.1 Boundary Overlap

In this section, we derive the values of the free parameters in the method (5.1)—(5.2]) that make it conservative

for a boundary overlap configuration.

6.1.1 Second-Order Method

In Theorem we provided the values of 7p, 7, Cr, Y1 and Bg in the method (5.1)—(5.2)) that made it
time-stable. The parameter values were expressed in terms of ¢ > 0 and 0 < € < 1. The following theorem

derives a single fixed value of ¢ and € that makes the method time-stable and conservative.

Theorem 6.1 The method 7 for the overlapping grid configuration shown in Figure with the
1—2—1 SBP first derivative approzimation, linear Lagrangian interpolation given by Eq. and the
dissipative operator given by Eq. @) is time-stable and conservative if ¢ = % and € =0 in .

Proof. A discrete approximation of (6.5 can be written as

m m n
Ua ~ wauihb Ub ~ wauihL, V = wavihR, (68)
i=0 =0 =0

where w >V denotes the quadrature weights that are determined by assuming
n

u(z,t) = Y o (@)ui(t), v(a, t) =Y o (@)uilt), (6.9)
=0 =0

in (6.5) and matching the coefficients with (6.8). hz and hg denote the grid spacing on the left and the

right sub-domain, respectively, and (;SZ-L’R(@ denotes the piecewise linear interpolants

T—Ti—1
T TE o, ml,
L.R .
7 = it1 T ) ) )
¢ (x) = x € |zi, Tit1], (6.10)
0, otherwise.
The quadrature weights, so obtained, are
1 042 (1 N )2
8= ¢ = = w? = a — L a L
Wo = 5> wy = _wm72_17 ’U)mfl—l——’ Wy, ,
2 B B
2 2
b _ _ b o b o7 b 53
Wy = _wm—Q_O? wm_1_77 wm_aL_77
1 1
v v v
w0:§, wy = =w,_, =1, w":i
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The semidiscrete approximation to (6.3)) with a homogeneous BC can be written as q; = Mf, where q =
T T

[u v} ,f= [fu fv} and M is the system matrix of the method 1'1) Forny =n3=1andn, =0

in , the discrete approximation of dSs/dt, where Sy = U, + V, can be written as

Sz X~ 4 ~
o gow (M£);hr + ;w (Mf)iymi1hp. (6.11)
Substituting the quadrature weights and the values of 71, 8gr, Tr, Cr and Y given by (5.12) in (6.11)

requires k =0, ¢ = % and € = 0 to eliminate the interface terms. This completes the proof. a

Using the derived values of the parameters, a modified derivative operator can be defined as ﬁL_ 1@ L=

PL_lQL — T, where

_1 ] i 1 1 i
3 -3 3 0 0
1 1
1 19 1 0
Pp=Hp=hg ; Qr = ) )
2 1 a2 1 OL2
-5 0 —3 3 77
(1—ayp)? 0 _(-ap)® (-op)?
I fge) | I N - 72|
(6.12)

For ap = 0, i.e. a multiblock grid, the above operators become the traditional SBP P and @) operators for
the first derivative approximation D = P~1Q of second-order accuracy. For o, = 1, they again are the SBP
operators where the last grid point is ignored.

An important observation from the above result is that the norm matrix H, used for the SAT implemen-
tation and for proving time-stability in Section [5.1.1] is a quadrature for discrete approximation of integral
So in order for the method to be conservative. In the above result, the norm matrix

P,
H:L

)

Pr

is a quadrature for an approximation of the integral So = U, + V. See Hicken & Zingg| (2013) for the

implications of H being a quadrature on SBP-based discretizations.
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6.1.2 Third-Order Method

In theorem we provided the values of the parameters that make the method (5.1)—(5.2]) time-stable
for a boundary overlap configuration with the 2 — 4 — 2 first derivative approximation and cubic Lagrange

interpolation. In this section, we discuss the conservation properties of the method.

Lemma 6.1 The method f for the overlapping grid configuration shown in Figure with the
2—4—2 SBP first derivative approximation, cubic Lagrangian interpolation given by FEgs. — and
the dissipative operator given by Fq. , 18 conservative if

1
TL2§, 05: ....... :c,Ln_4:1, A=Br=7r =1,
—3ck s+ ck(3+34ru) 4ck 5 — k(4 — 5lraq) 40 — 49ck, 5 + ¢k (9 +102744)
T16 = T ) T25 = — 2 ) T34 = — T )
98¢y, 5 43¢y, _o 708¢cy;,_4
4(ch 5 —1 2(ch 53—\
rin = 7(273;273 ), rig = _32m—g = A) (Z;nc%is )7 r13 = —6r11 — 3r12 — 716, T4 = 8r11 + 3112 + 3116,
4ch_o—1)
r5 = —3r11 —ri2—3re, 21 = T3k 0 2T —3ra1 —ra5, 723 = 3(ra1+725), To4 = —Ta1—3ras,
3cm—2
r31 = —T34, T32 = 3raq, T3z = —3ra4, T41 = —T44, ra2 = 344, T43 = —3T44,

where

, 148 —98¢h 54+ 17¢) — 2407 L —28+49ck 5 —34ck + 240 (—2+ay)

m—2 = 13 e 59 ’

*3(1 + CTL;L) + QCVL(Q + aL(3 — 20[[,))
T44 = L i
34cy,
for
2371 + 9460, — 76802 Lo 13367 — 374, — 201602 oL 2276¢k 5 + 76802 — 9460, — 2371
2276 s 8572 ’ "o 4156 '

Proof. Fornyy =n3 =1 and ny =0 in , the discrete approzimation of dSs/dt is given by where,
assuming the diagonal norm matrix H = diag(Cr,Pr, BrPr) as quadrature with Cr, given by , the

quadrature weights are,

a _ 17 a _ 59 a _ 43 a _ 49 a __ — 2@ _
wh = ggA, wi = gA, wy = GEA, w§ =N, wi = =wyp, g = A
(6.13)
a __ 49 L a __ 43 L a _ 59 L a _ 17 L
Wip—3 = 48 *m—3> Wip—2 = 48 “m—2> Wip—1 = 48 m—1» Wy, = Tscmv



and, similarly, for the right subdomain,

17 9 43 49
wov == TS /8R7 wU] - 0187/BR’ ’LU2U == TSBR’ wg - 48 /8R7 w’g = ’LU})W 4 — BR’

v _ 49 v _ 43 v _ 59 _ 17
Wy 3 = @ﬂR, Wy = @ﬂRa W1 = @ﬂRa Wy, = @ﬁR-

For (6.14)) to provide a quadrature for calculating V' (see (6.5)), Sr must equal 1 and (6.13) provides a

quadrature for U, if A =1 and ig ek o+ jg ek o+ ig ek + ig ck =3 — ay. Substituting the quadrature

weights and the values of 77, Cr, and Y, given by (5.48)-(5.50)) in the system matrix M of (6.11)) with

—3ck o+ L (34 34ry) dek 5 —cl(4 —51ry)

Ti6 = i3 ) o5 = — i
98¢y, _a 43¢y, _o

40 — 49cE o+ cL (94 102r44)
T34 = —
o 1185,

requires

TR:].,

1
?(—136 +98ck o4 43cE , — b (5 —136r4)) + TRl1 =0,

96( 49¢k 4+ 59ck | —2(4 + ¢k (14 204744))) + Trl2 = 0,
96 (88 98¢k, — 43¢k , + L (53 4+ 408r44)) + TrI3 = 0,
o (490m 5 —59ck | —2(20 + & (23 4+ 68r44)) + Trls = 0,

with A = Sr = 1 to cancel out the interface terms. Solving the above equations with interpolation coefficients

for cubic Lagrangian interpolation, Eq. (5.43)), yields

148 — 98¢k o +17cL — 2402 I —28 +49ck o —34ck + 240 (24 ar)
2T 43 fm1 = 59

)

L
Cm

*3(1+CL)+204L(2+O£L(3 2aL))
= 34ck

Imposing the constraint of CJLH, c]LjL27 C][-’+37 le-’+4 > 0 for a, € [0, 1] requires,

2371 + 9460, — 76802 _ oL . o 13367 —37Tday — 201602 o 2276¢L o + 76802 — 9460, — 2371
2276 =3 8572 ’ me 4156 '

This completes the proof. a
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6.2 Interior Overlap

In this section, we analyze the conservation properties of the method f for overset configurations
where the donor grid points for interpolation lie in the interior of the domain. We stated in the previous
section that the norm matrix H provides a quadrature for approximating the integral Ss which, for the
boundary overlap case, was taken to equal U, + V while ignoring U,. It was possible to ignore U, because
the quadrature weights for approximating U,, w{ for 0 <1 < m, were sufficient to provide a positive-definite
Hj; = Cp Pr. This is not the case in an interior overlap configuration where ignoring U, results in Hy, having
zero diagonal entries. It amounts to blanking out the overlapping grid points on the left subdomain, thus,
reducing the configurations in Figures 5.3 and [5.5] to boundary overlap configurations of Figures [5.1] and [5.4]
respectively. In practice, however, overset grids with interior overlap are commonly used and, so, they must
be independently analyzed.

As discussed, we cannot ignore U, for the interior overlap configurations therefore the quantity conserved
in this case would be S = U, + n2Uy, + n3V such that n1 = ny + 13, see Eq. , and, therefore, the

parameter values will depend on the choice of 71 2 3.

6.2.1 Second-Order Method

In theorem|5.2} we provided the range of parameter values that make the method (5.1))—(5.2) time-stable. The

following theorem provides a fixed value of the parameters required to make it time-stable and conservative.

Theorem 6.2 The method 7 for the overlapping grid configuration shown in Figure with the
1 —2—1 SBP first derivative approzimation, linear Lagrangian interpolation given by Fq. and the

dissipative operator given by Eq. @) is time-stable and conservative for 0 < ayp <1 if

1 1 1
P=§(1—772)0<L, y = 5(1—772)(1—0%)7 z =12, =3 Br =13 (6.15)

Proof. Following Eq. (6.11)), the discrete approximation of d.Ss/dt for So = n1U, +n2Up+ 13V can be written
as
dS m m n
2~ > wi (ME)hy + Y w? (ME)ih, + > wf (ME)iymi1hr. (6.16)
i=0

dt ; ,
=0 1=0

where, assuming the diagonal norm matrix H = diag(Cy, Py, BrPr) as quadrature with C, given by (5.30)),
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the quadrature weights are assumed as

wf‘)’:%, wy = =wj=1, w;+1:klcf+1, w?+2:kgcf+2, wipg = =wy =0,
(6.17)
wg = :w? =0, w?_H =(1 fkl)ch_H, w?“ =(1 fkg)cf_m, w?+3 =..=uwd =2 w = %,
(6.18)
where ki, ko > 0. The weights are such that Cp P, = hy diag(w§ + w, - -+ ,w? + wb,). Similarly for the
right subdomain,
wy = %{, wy =---=w,_; = Pr, wy, = %%. (6.19)

(6.19) provides a quadrature for calculating n3V', see (6.5)), if Bg = n3, and (6.17) and (6.18]) provide a
quadrature for m,U, and nyUy, respectively, if z =13, 1 = 1 and cJL+1 + c]L+2 = (% — aL) + z (% + aL). hr,

denotes the grid spacing on the left domain.

We substitute the quadrature weights (6.17)—(6.19) in (6.16) with system matrix M formed from the

1 —2—1 SBP first derivative approximation, linear Lagrange interpolation and a dissipative operator given

—ck L —ck
by Eq. 1) as discussed in Section (|5.1.2]). Substituting I';, = diag <0, ..... ,0, IQCCL’“, CJ;EL fm 0, .. ,0)
i+ 2
and change of variables (5.34) requires

1 N2 1
il 1 == 2
Y D) p 9 ( n2)ar, q 9’ (6.20)

to eliminate the interface terms, thus conserving Sy = n U, + n2Up + 13V for n1 = 12 +n3 = 1. Using
(6.20) in the matrix K, given by (5.35), with p = (1 — n2)a, makes it negative semidefinite establishing
time-stability. This completes the proof. O

The modified derivative operator, ISE IQV =P, QL — Y1, in this case is given by
57

~ 1
PL:HL:hLdiag( B

~ ~ 72
]-7 Tty ]-7 Dj+15 Pj+25 125 =5 12 ) ’ (62]‘)
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where ﬁjﬂl =1~ %(1 —n9)ay, and ;BJLH =ny+ %(1 —1n2)(1 —ayr), and @L equals

1 1
2 2
1 1
-3 0 3
1 1
- 0 3
S SR 12 1—=—1
2 (—1+m)or 2+(=1+n2)ar 24 (=14m)or
_ 12 _ 212 2
It e | T T -ivmier TPmt(-1Fmar
1 1
—1 0 5
1 1
—1 0 :
_1 1
L 2 2

If g is assumed to be zero, i.e., if Uy is ignored in Sa, the entries corresponding to the overlapping grid
points of the left domain become zero in ]BL, and the norm matrix Hy, ceases to be positive-definite. Hence
Uy cannot be ignored for an interior overlap configuration. One can discard the trailing zero entries of Hp,
to keep it positive-definite by blanking out the grid points corresponding to the zero entries which results in
a boundary overlap configuration. Note that is not a unique solution, additional solutions could be

obtained by considering p # %(1 —n9)ay,.

6.2.2 Third-Order Method

In theorem [5.4] we provided the values of the parameters that make the method 7 time-stable
for an interior overlap configuration with the 2 — 4 — 2 first derivative approximation and cubic Lagrange
interpolation. In this section, we discuss the conservation properties of the method. Theorem applied
an accuracy of 2 — 3 — 3 — 2 for the first-derivative approximation at the donor grid points, see Eq. .
In the following results, we assume an accuracy of 2 —2 — 2 — 2 to allow for extra free parameters to satisfy

both the stability and conservation constraints.

Lemma 6.2 The method — for the overlapping grid configuration shown in Figure with the
2—4—2 SBP first derivative approximation, cubic Lagrangian interpolation given by Egs. — and
the dissipative operator given by Eq. s conservative if

L > —, Br=Tr =11 —12,
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C]L+1 - 2(c 3L+1 —m)

T = > T2=——77——; Ti3=—0r1—3r2, 7r4a=8r1+3re, ris=-3r1—ri2,
12¢4 3cg+1
oL
- —24ck, | +5ck, , + 19
ro1 = ”77 ro5 = Eas s ,  Tog = —3ra1 —Ta5, 723 = 3(ra1 +7as), (6.22)
12¢F,, 12¢f
—Gejty + CJL+3 +5m s 12
To4 = —T91 — 3T25; r31 = 12 ’ T35 = 127’
Cirs €+
2(cfyy —12)
r39 = —3T31 — T35, r33 = 3(r31 + 735), T34 = —Ts1 — 335, Taa = ]3277
Jt+4
L
—Ci M2
T45 = f;iL, T4 = —T44 — 345, Taz = 3r44 + 8ry5, 143 = —3ry4 — 6745,
Cj+4
. L L R, L _ L 7 100, + 61
Co = weuenen _Cj =M, Cj—‘,—l_nl_? 1, Cj+2_cj+4+ﬁ(771_772) 12( 1+ 3)
cfg=—2ck, + 15 (23771 + 13n2 — 27R(1101 + 1213 + 913)), Cllps = e = =

where l; for 1 <1 <4 is given by FEq. and

1
(15m1 + 932 — 27Rap (17 + (=9 + ar)ar),

0<c]+4<7

for 0 < mp < np < 37no.
Proof. The discrete approximation of dSs/dt for So = mU, + 12Uy + 03V is given by (6.16]), where using
the diagonal norm matrix H = diag(Cp P, SrPr) as quadrature with Cy, given by (5.60)), the quadrature

weights are assumed as

a_ 17 a _ 59 a _ 43 49 a_ _oa
wh = g5 A Wi = A, wi = RA, ws=gA, wi=-=wj = A

(6.23)

a _ L a _ L a _ L a _ L a _ @

wiig *klcj+1a Wi, —k26j+2, wj+3fk30j+3, wj+4fk4cj+4, wiis = =wp, =0,
b _ b _ b
wp = =wy =0, wiyy =1 =k)efy, wiy =1 —ko)efys, wipg = (1—ks)cfys,
a p—
wipa =1 —k)efry, wis=-=wh ,=p (6.24)
b _ 49 b _ 43 b _ 59 b 17
Wyp—3 = Ts/jﬂ Wpp—9 = Isﬂla W1 = RN; Wy, = Tg;ua

for ki, k2, ks, ks > 0. The weights are such that Cp P, = hy diag(w§ + w87 <o wd 4+ w?)). Similarly for

the right subdomain,
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v __ 17 v __ b9 v __ 43 v __ 49 v o I} _
wy = xPr, wi=3gBr, wi=330r, wi=3Br, wi=--=w,_4=Pk,

(6.25)

Wiy = {Pr, wh_o=R{Pr, wi_i =R wj=Hhr
provides a quadrature for calculating n3V, see , if Br = n3, and and provide a
quadrature for 71U, and 12Uy, respectively, if A = n;, p = 19, and CJLH + CJL+2 + c]LJrS + ch+4 = (g — aL) A+

(% + OéL) .
We substitute the quadrature weights (6.23)—(6.25)) in (6.16)), where the system matrix M is formed

using the 2 — 4 — 2 SBP first derivative approximation, the dissipative operator given by Eq. (5.58)) and
the interpolation vector lb An accuracy of 2 — 2 — 2 — 2 for the first-derivative approximation Dyu =

(Py 'Qr — T1)u at the donor grid points is imposed which required

r13 = —6711 — 3712, r14 = 8111 + 3712, T15 = —3T11 — T12,
T99 = —3T21 — T25, rog = 3(r21 + 7a5), T94 = —T21 — 3725, (6.26)
r33 = —3T31 — T35, r33 = 3(r31 + 735), T34 = —T31 — 3735,
T4l = —T44 — 3745, r49 = 3744 + 8rys, T43 = —3T44 — 6745,
and we choose
—24¢L o+ 5¢l ., + 192 —6¢k 4+l o+ 5N
_ j+1 Jj+2 _ Jj+1 Jj+3
To5 = 12 i3 ) 31 = 12 i3 )
itz €j+3

to simplify the stability analysis, discussed in the next theorem. Further, substituting (5.60)—(5.62) in M
with Br =n3 =11 — 12 = A — u requires

TR = A— Hy
3(cfy — A) + TRl =0,
1
6(—39c§+1 +9ck o+ 3k g — 3cky + 28X +2u) + Trly =0, (6.27)

23 7
5CJL+1 - 2C]L+2 + 2C]L+4 - 6)\ ~ M + 7rl3 =0,

1

5 (7961 +3¢jhy = 3¢jiy = ¢y + TA+ 1) + 7rls = 0

to eliminate the interface terms. Solving for CJL 15 c]L L2 CJL+3 and CJL+4 from 1) we get

L TR L L 7 TR
Gl =A— gll’ Ciha =Chat 1*2()\ — )+ 5(71011 + 6l3),

103



1
chig=—2ck, + 15 (28X + 13p — 27 (1111 + 1205 + 913)). (6.28)

Substituting the interpolation coefficients for cubic Lagrangian interpolation from (5.57) provides the ad-
missible values of cﬁ_l, ch+2 and cf+3 in terms of cf+4. Imposing the constraint of A, u, Bg, cf+17 CJL+2, cf+37

iy > 0 for ay, € [0,1] requires
I 1
0< Ciys < 5(15)\+ 93u — 2TR04L(17+ (—9+aL)aL),

for 0 < p < A < 37u. Substituting A = n; and p = 12 completes the proof. a

Note that the parameter values provided in this section for the third-order scheme ensure conservation
but not time-stability. The parameter values that ensure both conservation and time-stability were found for
certain overlapping configurations, for example when the receiver point is at the center of a donor cell, but
no general solutions applicable to all overlapping scenarios, such as the one provided for the second-order

scheme, was found.
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Chapter 7

Application to the Compressible
Navier-Stokes Equations

In this chapter, we discuss the extension of the overset SAT method, analyzed in Chapters and [0} to solve
the viscous fluid flow problems governed by the Navier-Stokes equations. Our focus in the previous three
chapters was on hyperbolic equations but, since, the unsteady compressible Navier-Stokes equations are of
mixed hyperbolic-parabolic (or incompletely parabolic) nature we first discuss the interface treatment for the
simplest parabolic equation, the heat equation. Section proposes a SBP-SAT based method to solve the
heat equation on overlapping grids that is shown to be time-stable for the second-order accurate operators.
The approach is general in that it allows proving stability for higher-order versions but we have had limited
success in extending this approach of proof of stability to incompletely parabolic problems. Therefore for
the three-dimensional turbulent flow simulation discussed in Section we use viscous interface treatment
analogous to those derived by [Nordstrom et al.| (2009)) for multiblock grids with inviscid treatment discussed

in Chapter 4 The detailed formulation is provided in Section

7.1 The Heat Equation

Consider the IBVP,

ou  O%u

a:ﬁ, agxﬁb,tZO, (71)
g

with Dirichlet boundary conditions and initial condition given by,
’U/((l7 t) =01 (t)a U(b, t) = gQ(t)a

u(z,0) = f(z), (7.2)

on an overlapping domain as shown in Figure The left and the right domain contain equally spaced
m—+1 and n+ 1 grid points respectively. Let the grid functions on the left and the right domain be denoted

by u(t) = [ug(t), ... ,um(t)]T and v(t) = [vo(t), ... ,v,(t)]T respectively.
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Figure 7.1: Schematic diagram of overlapping grids on which Eq. (7.1)) is solved. The red arrow denotes the
interpolation.

For the grid configuration shown in Figure the interface treatment for a parabolic problem differs from
the one for a hyperbolic problem in that it requires a bi-directional coupling. We saw for a hyperbolic
problem in sections and that the interpolation was needed only for the right grid to advance
the solution. The left domain was decoupled in the sense that the solution on it advanced independent
of the right domain. This is consistent with the character of the hyperbolic equations, where information
propagates along the characteristic directions at a finite speed. For parabolic equations, the information
travels at infinite speed to all spatial points and, therefore, interpolation is needed at each grid interface to

advance the solution. The numerical boundary condition is, therefore, given by

Uy = TEV, tp =Tl u, (7.3)
Tr=10....01j41 - Ljgrg 0. 0T, Tp=1[0..0 Lz - Ling, 0.... 0]7, (7.4)
where T7, and Tg are vectors of sizes m + 1 and n + 1, respectively, and l;11,--- ,litg, and lj41,--+ Lty

denote the corresponding interpolation coefficients.
The semidiscrete approximation to the IBVP (4.I))-(7.2) on the two sub-domains of Figure[7.1]can be written,
using the SBP-SAT methodology, as

du _ _ _

E = D2Lu + O'1HL 15{65(11,0 — 91) + O'QHL 1Sgea(um — TEV) + O’3HL 1’LUL{(SRV)0 — TE(SLU)} (75)

dv _ _ _

i Div + mHR' Steli(vo — TEw) + o Hy ' Shel (v, — g2) + s Hy'wp{(Spw)m — Tk (Srv)}  (7.6)
where,

wp =Ty, wp=Tg,  eyf=[0...0". (7.7)

The vectors wy,, el and ek are of size (m + 1), and, similarly wg, el and ef are vectors of size (n + 1).

DQL B denotes the SBP second derivative approximation, derived by [Mattsson & Nordstrom| (2004]), which
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mimics the integration by parts formula,

Py, (P N 0
U 922 o2 ") T Moz

where the scalar product (-,-) and the norm ||| is defined by Eq. (3.1). Mattsson & Nordstrom| (2004])

b 2

ou

Ox

)

_2‘

a

proposed an operator of the form Dy = P~!(—A + BS) where S is an approximation of the first derivative

and B = diag(—1,0, ..... ,0,1). Hy, and Hpg constitute a norm matrix H given by
Hy
H = , Hp=CrPy,, Hpg=CRgPp, (7.8)
Hp
where C, = diag(cf, ... ,ck) and Cr = diag(cf, ... ,cBY with ¢&® > 0 for all 4.

7.1.1 Stability Analysis

For the proof of time-stability it is sufficient to consider the case of homogeneous BC: ¢;(¢t) = 0 and g2 (t) = 0.

Applying the energy method to (7.5) and (7.6) gives

d ~ ~
%HUH%L = —UT(AL + Ag)u + 2(0’1 — Cé‘)uo(SLu)O + 2(0’2 + c#)um(SLu)m — QOQ(SLu)m(T§V)

+ 20‘3(SRV)Q(TEU.) — Gg{uT[TLTgSL + (TLTESL>T]11}, (79)
d IO
&HVH%{R = fvT(AR + Ag)v +2(m — cé%)vo(SRv)o +2(m0 + cff)vn(SRv)n - ZTl(SRv)O(TLTu)

+ QTS(SLu)m(Tgv) — T3{VT[TRTI€SR + (TRTESR)T]V} (710)

where AL,R = OL,RAL,R- Assuming,

o1=ck, oy=—ct =1, (7.11)
n=c) =03, T2=—cf, (7.12)

and adding Egs. (7.9) and (7.10)), we get

d ~ ~ ~ ~
%HWH%I = —uT{AL "‘v‘Cé%TLTESL + (AL+C(I)%TLTESL)T}U—VT{AR—C#TRT};SR—F (AR—C#LTRT};SR)T}V,
(7.13)

T
where w = [u v] . To prove time-stability, we need to determine the coefficients of the matrix Cf, g such
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that Ry, = Ap+cET TS+ (AL +cBTTESL)T > 0and Rp = Ag—cL TrTE Sp+(Agr—cL TrTESR)T > 0.

We determine that next for the second-order scheme on a boundary overlap grid configuration as shown in

Figure [7.2]

u(x,t)
0 1 m-2 m-1 m
< —/— ; |
xt |' 4
v
1 // 1 1 1
T 7/ T T T
0 1 n-2 n-1
v(x,t)

Figure 7.2: Schematic diagram of overlapping grids on which Eq. l} is solved .

The operators in ([7.13)) for the second order scheme and the overlapping grid configuration shown in Figure

.2| 18 given by
[7.2]1s given b,
TL:[()'"OOéL (1—0(L)}T, TR:[()"'O()(R (1—0[R)]T,

P— 71 .' .o T, —_— 1
ALR= 7,7 ST T ; SL.R= 7,7

|

—_

=

|=

|

[\
Nl Nl

The Rj, matrix then comprises of (the subscript ‘L’ has been dropped from ‘ay,’ to simplify notation),

0o .. . . . 0

0o .. . . . 0
nrto | . . 7

o .. .. 0 a? a(l —a)

0 0 al—a) (1-a)
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EL-"-C(})%ILI};SL =

R —
76% 201L 7(:1L
1
he —Cha 2¢p, s
R S
0 c§(1;u)2 _ Céa a(l;a) _CTLn

Ry = EL + C(I)%ILI}:SL + (EL

L
—Cr—2 .
2 | seflali-a)

2

1 *QC(J)QQ(l*a) 7C7Ln71 +C§QT+

3cft(1-a)?
3

—2cf(1—a)® b+ +cfratizal |

+ C(I)%ILIESL)T.

Similarly we obtain the Rr matrix. For R;, and Rp to be positive semidefinite all its eigenvalues must be

greater than or equal to zero. Using the Gershgorin circle theorem, all eigenvalues of Ry, and Ry are greater

than or equal to zero, if the coefficients of the matrices C';, and Cr are chosen as

L
r1, T2 ER+, Cm:kl,
L L L L
g =c¢' =¢5 =..... =c,,_o = k1 + ko,
R __ 1 R __
cy —k1(§+a3)+k2, Ccy =

7.1.2 Numerical Results

R
Ch = k27

Riul

3
=kt k2(§ —arg),

CTIL% = ky + ko.

(7.14)

We solve the heat equation (7.1))—(7.2]) with homogeneous Dirichlet boundary conditions and initial condition

f(x) = sin(nzx). Figure|7.3[shows the solution at different times which compares well with the exact solution

shown as dotted black line in the figure. Figure [7.4] shows the eigenvalue spectrum of the system matrix

for method ([7.5))-(7.6)). As desired for time-stability, all eigenvalues lie in the left half of the complex plane.

Figure shows the convergence result for the second-order scheme discussed in the previous section. The

classical fourth-order Runge-Kutta (RK4) method was used for the temporal integration with a constant

CFL of 0.25 in error calculations. The refinements carried out for the convergence analysis maintained a

grid point ratio of 3 : 2 between the left and the right doma
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Figure 7.4: Eigenvalues of the system matrix M
with 45 grid points on the left domain and 30 grid

Figure 7.3: Solution to the heat equation with an points on the right domain.

initial sine profile. Blue circles show the solution on
the left domain and red pluses on the right domain.
Dotted black line shows the exact solution.

-2.6 -2.4 -2.2 -2 -1.8 -1.6
Iog10 (AX)

Figure 7.5: Convergence plot for the method 1' l} for the second-order accurate scheme. Az denotes the grid

spacing on the left domain.

7.2 Overset Interface Treatment for the Compressible
Navier-Stokes Equations

The three-dimensional Navier-Stokes equations for compressible fluid flow is solved in generalized coordi-

nates. The coordinate transformation between the physical domain x = (x,y,z) and the computational
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domain & = (¢,n,() is € = E(x,t) with the inverse transformation x = X(&,7) and the metric Jacobian
J = det(0€&/0x). We assume the time to be invariant, therefore, 7 = ¢. The transformed governing equations

are then given by

9Q | 9 pr_ pvy_

T
where Q = J7! p pu pv pw pE| . Additionally, p denotes the density, u = (u1,ug,u3) = (u,v,w)

are the Cartesian velocity components, p denotes the pressure and F is the total energy per unit mass given

by
P

F=20

1
+ §(u2 + 0% + w?).

The flow variables are non-dimensionalized by a reference length scale L*, velocity scale ¢, (ambient speed
of sound), density scale pZ_, pressure scale p;océi, temperature scale ci /Cy o = (v — 1)T%, and viscosity
pae- A dimensional variable is denoted by * whereas co denotes a ambient quantity. v = Cj /C is the ratio
of the specific heat at a constant pressure to the specific heat at a constant volume. Reynolds number and
the Prandtl number are defined as Re = pZ,c5 L*/us, and Pr = pu*Cj /k*, respectively, where k* denotes

the thermal conductivity. The inviscid fluxes are given by

[ pU ] [ pV ] [ pW ]
pulU + p&, puV + pn, puW + pCy
F{:% pvU + p&, ) FQI:% poV + pny ’ F;:% pvW + pG ’
pwU + p€. pwV + pn. pwW + pC.
L(pE +p)U — & | L(pE +p)V — mp] L(PE +p)W — Gp ]

where the contravariant velocities are

U:£t+§xu+€yv+§zw7 V=77t+77wu+77yv+77zuh W:Ct+Cxu+<yv+Czwa

and the viscous fluxes are FY = J (&, FY), FY = J '(n,,FY) and FY = J~Y(¢,, FY) where

0 0 0
T11 T21 731
Flv = T12 ) FQV = T22 ) ]3}:/ = T32
T13 T23 733
| UiT1j — 41 | | UjT25 — 42 | | UjT3j — 43|
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The stress tensor and the heat flux is given by

Tij =

wo(Ou;  Ouy A Ouy, uw o oT
= + + = ij) qi = — y

Re \0z;  Ox; Re Oz, Re Pr Ox;

where the viscosity is modeled as a power law p = [(y — 1)T]™ with n = 0.666 to model air and the second
coefficient of viscosity is A = up — %u where up = 0.6p is chosen as a model for bulk viscosity of air. The
non-dimensional ideal gas law is

v—1
p=—0pT.

v
For more details on the governing equations used in the solver employed to perform the simulation discussed
in the next section, see |[Kim/ (2012} Section 3.1).

In order to simplify the presentation, let us consider a single grid point on an overlapping interface, say
a kT boundary where k = £, or (. & is the direction normal to the face on which the interface point lies
and =+ indicates an inflow (4) or an outflow (—) boundary. If the interface point lies on an edge or a corner
then the interface terms for each normal direction (2 for an edge and 3 for a corner) must be added. Let the
solution at the grid point be denoted by q;;, and the interpolated value at the grid point, from the donor
grid, be given by q;;x. For the viscous interface treatment, we also need the interpolated viscous flux given
by 13’;/ = /@mﬁ’lv + IinQV + nzﬁ}}/ , where Flv , FQV and F?}/ are the interpolated values from the underlying
grid. The discretization at the interface point can then be written as

dqijk
dt

= — (De, . Fin) iy — 1o (0" K + 01 I5) (qijk — Gij) + 05 ((FX)ijk - (F;/)ijk) :

where (Dg,, Fm)ijk denotes the derivatives of the fluxes, F,, = F! — FY at the interface point, po is the
(1,1) element of the P matrix (see 7 I5 is an identity matrix of size 5 x 5 and K = S, (‘A“‘%) St
The expressions for A, and S, can be found in [Pulliam & Chaussee, (1981)). (F,X)ijk denotes the viscous flux

at the interface point; FY = FY if k =& FY = FY if k =n; FY = Fy if k = (. The penalty parameters,

assuming that the same derivative approximation is used on both the donor and the receiver grid, are given

by of > 1, 0f = g5 (k2 + K2+ £2) and 0 = +1 for an inflow(+)/outflow (—) interface point. For an

inviscid flow, the above method reduces to the SAT method of Section without the dissipation term.

7.3 LES of Flow Over a Hill

In order to test the interface treatment discussed in the previous section, we perform a numerical simulation

of the flow over a cosine-shaped hill with geometry as described in [Bell et al.| (2012). The flow has several
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interesting features such as a three-dimensional boundary layer separation, reattachment of a turbulent
shear layer and recirculating flow which are critical to the design and analysis of aircraft wings, fuselage,

fan, turbine and compressor blades, among other applications.

7.3.1 Computational Domain

The overset domain used for the simulation is shown in Figure Since most of the interesting flow behavior
occurs in the wake of the hill, we use a small block shown in red in Figure with a fine grid and a relatively
coarser base block, shown in black. The base domain extends from —8H to 14H in the x-direction, —4H to
4H in the y-direction and upto 4H in the z—direction, whereas the finer domain extends from —0.4H to 6 H
in the a-direction, —2H to 2H in the y-direction and upto 3H in the z—direction. H denotes the height of
the hill, centered at the origin. 401 x 151 x 151 grid points are used on the base grid, whereas 201 x 101 x 201
grid points are used on the finer grid. Figure shows the grid on a slice near centerline. The overlapping

grid points on the coarser grid are blanked out, which shows up as a hole in Figure on the base grid.

7.3.2 Flow Parameters and Numerical Simulation

We perform a large-eddy simulation with Reynolds number based on the hill height Re = Heo, /v = 500, 000
and free stream Mach number M., = Uy /¢ = 0.145. The dynamic Smagorinsky eddy viscosity model for
compressible turbulence (Moin et al., [1991)) with Lilly’s improvement (Lilly} [1992) is used to determine the
subgrid scale contributions. The detailed formulation implemented in the solver, used for the simulation, can
be found in [Kim| (2012} Section 4.1.7). In order to prevent the denominator in the calculation of the model
coefficients from being zero, both the numerator and the denominator are often averaged in the direction(s)
of flow homogeneity. But the flow over the hill lacks homogeneity in all directions, therefore we perform a
local Gaussian averaging in directions parallel to the wall. See Appendix[B]for the stencils used for averaging.
The flow is initialized using uniform density p/pso = 1 and pressure p/psoc’, = 1/7, and a Polhausen

boundary layer velocity profile

” 1 Zz2—1290>0

Uee 3n— 30 z—zo<(57

where 7 = (2 — 2z9)/d and 6 = H/4. zy is the hill elevation at the (z,y) location given by

H(cos(Er)+1) r<R
ZO($7y) = )
0 r>R
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where R = % and 7 = /22 + ¢2.

Figure shows the streamwise momentum and the vorticity magnitude contours at different times on
a slice with an overset interface. In order to validate the overset interface treatment, we performed a single
grid simulation with 501 x 181 x 201 grid points on the domain shown with black outline in Figure
Figure [7.9] shows the pressure coefficient comparison along the wall on the centerline y = 0 between the

time-averaged results from the single grid and the overset grid simulation.

4
T
=

N

(b)

Figure 7.6: Overlapping domain for the hill simulation. Red outline shows the domain with finer grid downstream
of the hill. (a) x — z view at the centerline y = 0. (b) 3-D view.
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Figure 7.7: Grid on a slice near the centerline y = 0. (a) Coarser base grid. (b) Overset grid.
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Figure 7.8: Contours of streamwise momentum (pu/pocCoo) on the left column and vorticity magnitude (JwH/coo|)
on the right column at different times: a) tcoo/H = 43, b) tcoeo /H = 62.4, ¢) teoo/H = 73, d) teeo /H = 82.9.
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Figure 7.9: Comparison of pressure coefficient along the hill surface at the center plane.
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Chapter 8

Conclusions and Perspectives

Time-stable overset methods based on the SBP-SAT methodology were developed for hyperbolic problems.
We looked at the sufficient conditions for time-stability and discussed two cases of the SAT method for
interface treatment on overset grids. In the first case, we proved stability by analyzing the eigenvalues of the
system matrix. This approach was successful for the hyperbolic problems since they have a characteristic
direction of propagation which yielded system matrices whose eigenvalues could be estimated. As discussed
in section the system matrix may not always be in a form amenable to the eigenvalue analysis and
therefore a more general treatment using the energy method was needed where a dissipative operator was used
to locally upwind the derivative stencils at a few grid points on the donor grid to ensure stability. The solution
error comparison between the injection method and the SAT methods showed a superior performance of the
SAT-based approach, and the convergence tests confirmed that the interface treatment with the appropriate
order of interpolation does not lower the accuracy of the spatial finite difference operator. It is also extremely
straightforward to incorporate the SAT method of interface treatment in an existing SBP-SAT based solver.

The SAT method without dissipation, discussed in Chapter 4] was proven time-stable regardless of the
interpolation method used and the location of the donor points and therefore one can choose appropriate
interpolation coefficients to ensure global conservation. The proof of stability was also independent of the
order of accuracy of the derivative operators, provided they satisfied the SBP property. Therefore, the SAT
method without dissipation permits the use of different orders of approximation in different subdomains of
the computational domain.

The proof of stability for the SAT method with the dissipation term, discussed in Chapter [5] depends
on the interpolation details and the derivative approximation used. Therefore, the analysis was categorized
into the boundary overlap and the interior overlap scenarios for each order of the scheme. We showed
time-stability for a boundary overlap case of the second- and the third-order accurate scheme and for the
interior overlap case of the second-, third- and the fourth-order accurate schemes. Using the same procedure,
stability for the remaining boundary overlap cases and for the fifth or higher-order schemes could also be

shown. This case-by-case approach for overset grids differs from the analysis of the SBP-SAT methods for

118



the single and the multiblock grids where one proof of stability, conveniently, worked for all orders of the
schemes. It is a consequence of the fact that in imposing the boundary conditions (physical or numerical)
for a single or a multiblock domain only the boundary points of each (sub-)domain are involved and the SBP
property of the derivative operators on each (sub-)domain provides the quadratic terms for the boundary
points, required to obtain an energy estimate. In contrast, on overlapping domains, the interior points are
involved in imposing the numerical boundary conditions (via interpolation), and the quadratic terms for
the interior points can only be obtained by altering the derivative stencils since the central difference first
derivative approximation does not generate quadratic terms, in stability analysis using the energy method,
owing to a zero entry on the diagonal. In this work, a dissipation term was used to alter the stencils of the
interior points. No general criterion, like the SBP property, yields a quadratic term of the interior points for
all orders and therefore a case-by-case analysis becomes unavoidable for obtaining an energy estimate.

The energy bound for the SAT method in Chapter 5] was shown in the H-norm which provides a quadra-
ture, as discussed in Chapter [6] for approximating the conserved quantity of the domain. All proofs in this
work were for one-dimensional domains. Though the performance benefits were observed in the proposed
extension to higher dimensions, it is tempting to attempt a two-dimensional proof. The 2-D space offers
a much wider range of overlapping scenarios than 1-D. The one-dimensional results of Chapters [4}j6] may
readily apply to simpler 2-D overlapping configurations, for example, when the grids are aligned such that
a 1-D interpolation suffices. But for arbitrary overlaps, the complete analysis may have to be redone. The
biggest challenge in proving stability in Chapter [p| was the complexity of the algebraic equation that had
to be analyzed to ensure the negative semi-definiteness of the matrix HM + MTH. For the third- and
the fourth-order scheme with cubic interpolation, a 5 x 5 matrix (see Egs. and ) had to an-
alyzed. Fortunately, we had enough free parameters in the problem that allowed us to make most of the
off-diagonal terms zero to simplify the analysis. In the process it provided a single set of values that work for
all overlapping configurations. But when additional constraints from the conservation analysis in Chapter
[l was imposed, the cancellation of the off-diagonal terms was no longer possible for the third-order scheme
and hence a closed-form expression for the parameter values could not be obtained. Similar, if not greater,
challenges of algebraic complexity should be expected in the analysis of the 2-D overlapping configurations.

Future work in the increasing order of perceived difficulty may include the following tasks:

1. Analyze and show conservation for the SAT method without dissipation. The framework for analyzing
the conservation was provided in Chapter [6] where it was highlighted how the characteristic direction
based interface treatment of the SAT method differs from the injection method, and its influence

on the conserved quantity of the domain. The first step in establishing conservation would be to
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identify the quantity that must be conserved followed by determining a quadrature for the domain.
The interpolation coefficients then will have to be determined such that the interface terms cancel
out. Since the SAT method without dissipation was proven time-stable regardless of the interpolation
method used, the interpolation coefficients act as free parameters in the analysis. The conservation
analysis in two- and three-dimensions for this method is a much more feasible proposition than the
stability analysis since conservation requires solving a set of linear equations as compared to non-linear

algebraic equations for stability.

. Show 1-D stability for incompletely parabolic equations on overlapping grids. In this work, we showed
the time-stability for hyperbolic (Chapters and parabolic (Section equations but the norms
in which the energy bound for each was shown was different which means that the time-stability of
the advection equation and the heat equation individually does not guarantee the time-stability of the
linear advection-diffusion equation. [Sharan & Bodony] (2013) discussed an approach for construction
of a time-stable SBP-SAT based method for linear advection-diffusion equation but the proof there

was found to depend on the cell Reynolds number.

. 2-D stability analysis for overlapping grids. As discussed earlier, this is a challenging task due to the
algebraic complexity of examining the definiteness of the HM + M7 H matrix. One can simplify the
analysis by considering simpler overlapping configurations to begin with, such as a patch refined mesh
as discussed in [Kramer et al.| (2009), before tackling the case of arbitrary overlaps. One approach, not
investigated in this thesis, that may be helpful is the application of Sylvester’s Theorem, discussed in
Carpenter et al|(2010)), to rotate a symmetric matrix into a diagonal form without changing the signs

of the eigenvalues.
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Appendix A

SBP First Derivative Approximations

This appendix contains the SBP operators for first derivative approximation denoted by D = P~!Q. In

this thesis, we used only the explicit operators which are based on a diagonal norm. They are referred to as

r — 2r — r operators, where r denotes the order of accuracy at the boundary points and 2r is the order of

accuracy in the interior.

Al

A.2 2-4-2 Operators

1
2

1-2-1 Operators

[N

N= N

[N

N

N[

N[

N= N

For 2 —4—2 and 3 — 6 — 3 operators, we show the stencil for one side of the boundary. The other boundary

will be the mirror-opposite for the norm matrix P and negative of the mirror-opposite for the operator Q.
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Appendix B

Stencils for Numerical Filter and
Gaussian Averaging

B.1 Tenth-Order Implicit Filter (Visbal & Gaitonde, 2002)

2 2 A 2(193 + 126 105 + 302
2 (affz‘—l + fi+ oszz'+1) - X ;56 af)fz’ + —556 Y (fisr + fior)
15(—1+4+2 45(1 — 2
+%(ﬂ+2 + fi—2) + %(ﬁ-‘rs + fi—3)
5(—14+2 1-2
(TGO[JC)(fi+4 + fica) + ( 512af)(f¢+5+fi75)
1 s
0.8} 0
Y
IRy
— 1
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......... af = 0.45 \
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Figure B.1: Transfer function for the implicit filter.

B.2 Local Gaussian Averaging (Cook & Cabot, 2004)

_ 3565 3001 1997 149 107
Fi= 1038t T 12960(f1+1 fim1) + 25920(f”2+f’ 2) + 12960(f”3+f1) 103680
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Appendix C

Comments on the SAT Method with
Dissipation

In Section [5:3.2] we discussed the results of the SAT method with dissipation, where the dissipation was
added to the interpolation donor points. Figures [6.13| and show that adding dissipation to the SAT
method marginally increases the Lo-norm of the error of some flow quantities for the convecting vortex flow
on the grid configuration shown in Figure with 0 = 7. The introduction of dissipation to the donor grid
points creates a zone that influences the error in the domain in the following two ways: a) It suppresses the
numerical reflections from the internal (subdomain) boundaries, as observed in Figure for the overset
configuration of Figure b) It emits radiated waves on interaction with an incident wave. |Trefethen
(1985) and the references therein discuss the numerical reflections from interfaces of similar kind.

In general we have observed that when the dissipation is added along grid lines, as in the case of grid
configuration shown in Figure the radiated waves from the dissipation zone are minimal and therefore a
considerable reduction of error was observed in Figure for the SAT method with dissipation. In contrast
when the donor grid points criss-cross through the grid lines, for e.g. in Figure the errors due to the
radiated waves tend to exceed the reduction in error from suppression of the numerical reflections from
internal (subdomain) boundaries. Therefore a higher error was observed for some flow variables in Figures
and To verify whether adding dissipation along the grid lines may assist in error reduction, we
added dissipation to the grid points shown in red in Figure where each of the red bands are located 10
grid points away from the respective internal boundaries. Figures and show the density, entropy,
velocity magnitude and pressure error comparisons between the “injection method” of interface treatment
and the SAT methods, where dissipation was added to the grid points shown in red in Figure for
advection at a supersonic (ug = 2.0, My &~ 1.69) and subsonic (ug = 0.5, My ~ 0.42) velocity, respectively.
A comparison with Figures and shows the improvement in performance due to the reduced radiated

waves from the dissipation zone when dissipation is added along the grid lines.
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Figure C.1: Red bands denote the grid points where dissipation is added. (a) Base grid, (b) Patch grid.
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Figure C.2: Error comparison of the injection method against the SAT method with and without dissipation for
ug = 2.0. (a) Density error, (b) Entropy error, (c) Velocity magnitude error, (d) Pressure error.
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Figure C.3: Error comparison of the injection method against the SAT method with and without dissipation for
uo = 0.5. (a) Density error, (b) Entropy error, (c) Velocity magnitude error, (d) Pressure error.
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