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ABSTRACT

Quantitative ultrasound (QUS) imaging represents a set of techniques for

estimating acoustic properties of tissue microstructure that have confirmed

potential for identifying disease and monitoring therapy. In one approach to

QUS, the backscatter coefficient (BSC) from a tissue is utilized to quantify

and classify tissue state. The BSC is a fundamental property of a tissue

based on the frequency power spectrum estimated from the RF signals cor-

responding to ultrasonic backscatter. From the BSC, parametric models can

be constructed to relate the frequency-dependent BSC to geometrical prop-

erties of the underlying tissue. However, most of these parametric models

are based on analytic expressions (e.g., Gaussian function) and not on actual

tissue morphology.

The three-dimensional impedance map (3DZM) is a computational tool

to create tissue specific form factor models directly from tissue histology.

3DZMs are constructed from a series of adjacent histological tissue slides that

have been stained to emphasize acoustic impedance structures. The power

spectrum of a 3DZM can be related to the BSC. Therefore, ZMs can be used

to create tissue specific form factors. However, the process of constructing a

3DZM is expensive in terms of slide preparation time, computational time,

and financial cost. In addition, there are multiple opportunities for large

distortions to be introduced when constructing 3DZMs. A method based on

analyzing two-dimensional impedance maps (2DZMs) would avoid many of

the shortcomings of the 3DZM method. The proposed 2DZM method ex-

ploits the properties of isotropic media to estimate the correlation coefficient

from slices before estimating the 3D volume power spectrum.

Simulations were used to verify that 2DZMs could be used to estimate

correlation coefficients and 3D power spectra having low error. The studied

media had known correlation coefficients and power spectra so it was possible

to verify that estimation of the correlation coefficient and power spectrum
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was possible. First, collections of sparse scatterers (e.g., spheres and ellip-

soids) were studied. These studies indicated that correlation coefficients with

RMSE less than 1% resulted when the 2DZMs contained 15 object cross sec-

tions. Second, media having a spherical Gaussian correlation coefficient and

power spectrum were studied. This study indicated that correlation coef-

ficients with RMSE less than 3% and power spectra with RMSE less than

11% resulted when using a single 2DZM having a size that was 50 times the

scatterer size. Third, collections of dense spheres were studied. This study

indicated that correlation coefficients with RMSE 1.5% resulted when using

a single 2DZM having a size that was 25 times the scatterer size. Power

spectra with RMSE 25% resulted when using 20 2DZMs having size that

was 25 times the scatterer size.

ZMs created from healthy rabbit livers were studied. An analysis of bias

was carried out to determine the smallest size 2DZM that could be used

without biasing the correlation coefficient and power spectral estimates. The

results of this study indicated that correlation coefficients with RMSE 0.9%

and power spectra with RMSE 1.4% resulted when using 2DZMs with side

length 150 µm. An analysis of variance was carried out to determine the

number of 2DZMs that needed to be used to reduce variance in the correlation

coefficient and power spectral estimates. The results of this study indicated

that correlation coefficients with RMSE 0.9% and power spectra with RMSE

1.4% resulted when estimating the correlation coefficient using 10 2DZMs.

The 2DZM approach was tested on simulated media having known corre-

lation coefficients and power spectra. The simulation results demonstrated

that the 2DZM method was able to capture information about the size, shape,

and 3D spatial locations of the scatterers. The rabbit liver results demon-

strated the 2DZM method working with actual histology. These findings

demonstrate that 2DZMs can be used to model ultrasonic scattering.
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CHAPTER 1

INTRODUCTION

1.1 Ultrasound imaging

Ultrasound imaging has achieved widespread use for internal imaging of the

human body over the past several decades. The following characteristics of

the ultrasound imaging modality have contributed to its success: ultrasound

images can be formed in real-time, ultrasound machines are inexpensive and

can be made to be portable, and ultrasound uses non-ionizing radiation. Fu-

ture technological development of ultrasound image processing techniques

will continue to expand its use in diagnostic and therapy monitoring appli-

cations.

The most common ultrasound imaging mode is the B-mode image, which

is formed from a collection of adjacent envelope detected radio frequency

(RF) voltage traces, called A-lines. Ultrasound signals are created when an

ultrasound system causes a pressure wave to propagate through a medium.

Inhomogeneities in the medium cause the ultrasonic energy to scatter in

different directions, including back to the ultrasound transducer where it is

detected and used to create A-lines. The contrast mechanism in these images

is the change in acoustic properties (compressibility and density) encountered

by the propagating ultrasonic waves. In soft tissues of the human body, these

changes in acoustic properties often occur at the interfaces between different

organs and small inhomogeneities inside organs.

B-mode images are useful in some applications for characterizing disease

[1]. B-mode images are highly dependent on machine settings, so different

users with different systems may produce vastly different images for the same

scan target. B-mode images are mostly qualitative in nature, restricting the

ability to perform quantitative analysis that is hypothesized to markedly im-

prove disease detection. Finally, B-mode images are devoid of the frequency-
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dependent information originally contained in the raw (unprocessed) RF data

that is lost during envelope detection. Several quantitative ultrasound imag-

ing methods have been developed to overcome some of these limitations and

to mine the discarded ultrasound RF signal frequency content for diagnostic

purposes.

1.2 Quantitative ultrasound imaging

Quantitative ultrasound (QUS) imaging is a set of techniques for estimating

acoustic properties of tissue microstructure that have confirmed potential

for identifying disease and monitoring therapy. For example, QUS methods

based on estimating the backscatter coefficient (BSC) have been used in the

eye [2], prostate [3], heart[4], kidney [5], liver [6], breast [7], cancerous lymph

nodes [8], monitoring cell death [9], and evaluating disease treatment [10].

The BSC is a fundamental property of a tissue akin to the sound speed and

attenuation. The BSC is based on the frequency power spectrum estimated

from the RF signals corresponding to ultrasonic backscatter. From the BSC,

form factor models can be constructed to relate the frequency-dependent

BSC to geometrical properties of the underlying tissue. Feature extraction

is performed on the form factor using parametric models and the estimated

parameters used in a classification task for the case of disease diagnosis or in

a regression task for the case of therapy monitoring.

The BSC modeling problem is fundamentally ill-posed because an infinite

number of models could be designed to capture the frequency-dependent

behavior of the BSC (e.g., splines). Therefore, the model space is usually

constrained to parametric models derived from scatterer geometries such as

the fluid-filled sphere [11], spherical shell [12], two concentric spheres [13],

etc. Using these models, acoustic properties related to tissue microstruc-

ture such as the effective scatterer diameter (ESD) and the effective acoustic

concentration (EAC) can be estimated.

When examining complex biological tissues, constraining the model space

in the described manner can be a major deficiency. Failure modes include

the existence of large errors between the actual and modeled BSC or histo-

logical observation that does not agree with the estimated ESD and EAC. In
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addition, the BSC is usually estimated for a finite frequency range, so differ-

ent parametric models may fit the BSC equally well while providing different

parameter estimates. It is clear that improved methods are needed for fea-

ture extraction that agree with histological observation and that reduce error

between actual and modeled BSC.

1.3 Impedance maps

A promising approach to the described problems is to correlate directly his-

tological observation with ultrasonic measurement. In early work, Fields

correlated B-mode image characteristics with histological analysis in breast

tumors [14]. In later work, Waag et al. proposed estimating the volume power

spectra from the two-dimensional (2D) power spectra of optically rendered

planar tissue sections for the purpose of predicting ultrasound scattering from

tissues. However, in that study, the analyzed optical images were not com-

pared to acoustic scattering predicted by theory or ultrasound measurement

[15]. Insana et al. used histological analysis of the kidney in order to select a

correlation function for modeling ultrasound backscatter measurements [5].

Czarnota et al. observed changes in ultrasound backscatter due to cell death

and correlated these changes to histological observations [9]. Mamou et al.

constructed three-dimensional (3D) impedance maps (ZMs) from planar his-

tology sections and compared BSC estimates predicted from the 3DZMs with

BSC estimates from ultrasound measurements in animal models for breast

cancer [16–18]. Similarly, Gyöngy et al. simulated ultrasound B-mode im-

ages for canine mastocytoma tumors based on histology and compared the

results to actual ultrasound B-mode images [19].

Of the described methods, ZM analysis has the advantage of quantitatively

and directly connecting optically based histology with ultrasound measure-

ment. Using ZM analysis, the structure observed in histology can be quan-

titatively related to the structure observed using ultrasound [16–18, 20]. In

addition, the ZM provides estimates of the correlation coefficient for the

medium, a quantity that is not accessible from the BSC measured over a

finite frequency range using ultrasound. Different parametric models can

produce the same BSC over a finite frequency range, which is a problem

that does not affect the correlation coefficient. For a particular tissue, once
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the relationship between histology and ultrasound observation has been es-

tablished, more complex model-based feature extraction techniques may be

designed by incorporating additional information about the medium into the

models (e.g., assume a distribution for scatterer sizes or a structure factor

for the spatial distribution of the scatterers) [21–23].

Assuming weak scattering, the three-dimensional (3D) volume power spec-

trum of a 3DZM can be related to the BSC estimated from the received RF

ultrasound backscatter signal [24]. Currently, 3DZMs are created from a se-

ries of adjacent histological tissue slides that have been stained to emphasize

acoustic impedance structures. The slides are digitized using a camera, a

realignment process is applied to the series of images, and each pixel is as-

signed an impedance value based on color. The impedance value images are

stacked on top of each other to form a 3D computational model of acoustic

impedance. In the case of an isotropic medium, the 3D power spectrum of

the 3DZM can be radially averaged and related to the power spectrum of

the ultrasound backscatter signal. In the case of an anisotropic medium, the

ultrasound propagation direction must be known relative to the orientation

of the 3DZM. The k-space line of the 3DZM power spectrum that is parallel

to the ultrasound propagation direction can be extracted and related to the

power spectrum of the ultrasound backscatter signal.

The process of constructing a 3DZM is expensive in terms of slide prepa-

ration time, computational time, and financial cost. The weaknesses of the

3DZM method are manifold. A large set of histological slides need to be

meticulously stained, optically scanned, and digitized. After loading the op-

tical images to a computer, adjacent slides must be registered and aligned

using a computationally intensive search over a large transformation set (i.e.,

rotations, translations, etc.). If the actual physical transformations experi-

enced by the slides during ZM preparation are not included in this set, it

is impossible to correctly align the slides. Sometimes slides are lost during

the ZM preparation process and these missing sections must be interpolated.

The histology sections may take up different amounts of the applied stain,

so the image colors need to be adjusted and contrast equalized. Large dis-

continuities can be introduced at multiple stages in the 3DZM processing

pipeline and these discontinuities can lead to distortions in the estimated

power spectrum. Furthermore, there is a sampling issue with the 3DZMs. A
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single 3DZM typically represents a resolution cell size or smaller of a medical

ultrasonic imaging system. Therefore, large numbers of 3DZMs need to be

constructed to accurately represent backscattered signals representing tissue

volumes, such as a tumor.

1.4 Dissertation goals and proposed research

The primary goal of ZM analysis is to discover the anatomical structures

in a biological medium that are responsible for ultrasonic scattering and to

model the contribution from the scattering structures. The identification

of the underlying mechanisms that cause ultrasonic scattering in biological

tissues will aid in the design of new scattering models for analyzing BSCs.

Improved BSC modeling will improve feature extraction and ultimately the

diagnostic utility of BSCs.

The weaknesses of the 3DZM method as described above motivate the

development of improved ZM analysis methods. A method based on analyz-

ing 2DZMs would avoid many of the described shortcomings of the 3DZM

method. For example, registration of adjacent slides is not necessary when

using 2DZMs, which reduces computational cost, avoids introducing errors to

the ZM spectral estimate if the transformation introduced by slicing cannot

be undone, and avoids the problem of missing slices. In addition, 2DZMs can

be constructed from many slices and used for averaging results from many

independent samples. The potential to overcome the shortcomings of the

3DZM motivates the development of the 2DZM method.

The goals of the proposed research were:

1. To identify and/or develop methods for conducting ZM analysis using

planar sections. Normally planar sections are insufficient for character-

izing volumetric structure; however, properties related to volumetric

structure may be estimated using planar sections in the setting of an

isotropic medium.

2. To demonstrate the 2DZM method using simulations. The simulation

studies were designed to study practical issues related to ZM analy-

sis such as planar section size, spacing, and thickness. The simula-
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tions consisted of collections of discrete objects (e.g., spheres, ellip-

soids, cylinders) or continuous media (spherical Gaussian impedance

distribution) such that the simulated medium had a known correlation

coefficient and power spectrum.

3. To demonstrate the 2DZM method using ZMs created using optical

microscopy. ZM analysis was conducted using 3DZMs, repeated us-

ing 2DZMs, and the results of the two analyses were compared. ZMs

created from rabbit livers were examined.

1.5 Scientific contributions

The scientific contributions in this work can be summarized as follows:

1. Existing methods for estimating volume scattering from planar scat-

tering were reviewed.

2. A new method for estimating volume scattering from planar scattering

was developed.

3. Simulations were used to demonstrate that 2DZMs can replace 3DZMs

for sparse and dense collections of objects and for continuous media.

The simulations were designed to address practical issues related to ZM

analysis. These issues included:

(a) Determining the effects of 3D windowing on ZM analysis. A ZM

is a finite section of a random process and the effects of applying

a container to this random process before computing the power

spectrum were examined. Two characteristics of the 3D window

were examined including size and shape.

(b) Sections of the tissue are cut in a sequential manner and mounted

on histology slides. The effects of using regularly spaced slices

with spacing less than the correlation length of the medium was

studied.

(c) The sections of the tissue cut for histology are not infinitesimally

thick and if this thickness is large relative to the correlation length
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of the medium it can lead to distorting effects on the estimated cor-

relation coefficients and power spectra. These effects were studied

and quantified.

4. A method for estimating volume scattering from planer scattering was

developed for transverse isotropic media. A transverse isotropic medium

is isotropic in only two dimensions. If such a medium is sliced parallel

to the plane that exhibits isotropy, then 2DZMs are a natural choice

for studying volume scattering.

5. Simulations were used to demonstrate that for some anisotropic media,

2DZMs were successful at estimating correct correlation coefficients and

power spectra.

6. ZMs provide access to the correlation coefficient of a tissue. The BSC

estimated using ultrasound is band limited and therefore it is not pos-

sible to study the tissue correlation coefficient. However, this problem

does not affect ZM analysis as the correlation coefficient and power

spectrum can be studied and modeled. These two methods of ZM

analysis were compared and contrasted.

7. A structure function model that includes the effects of a container was

developed. Several applications exist where container effects may be

important, including ZMs, estimating BSCs using ultrasound (focal

region is the container), and hierarchical structure function modeling

involving clustering of scatterers (e.g., red blood cell aggregates).

1.6 Organization

The remaining chapters of this dissertation are organized as follows. Chap-

ter 2 reviews the theory of weak acoustic scattering of plane waves, modeling

BSCs and correlation coefficients and structure functions, and it introduces

the structure function with container effects. Chapter 3 reviews the con-

struction and analysis of ZMs, builds intuition for 2DZM analysis, presents

the equations that make 2DZM analysis possible, and discusses methods for

estimating volume power spectra from 2DZMs. In Chapter 4, simulations
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are used to validate the structure function with container effects, and prac-

tical issues related to using 2DZMs to estimate volume power spectra are

studied. In Chapter 5, ZMs created from actual histology are used to show

that 2DZMs can significantly reduce the number of slices necessary to esti-

mate form factors. Chapter 6 summarizes the contributions of this work and

outlines the results and future work.
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CHAPTER 2

ACOUSTIC SCATTERING THEORY

The primary goal of ZM analysis is to use maps of acoustic properties created

using optical or scanning acoustic microscopy to study the BSC, a quantity

that is estimated from ultrasound backscatter and is a fundamental property

of tissue microstructure [12, 25–27]. ZM analysis relies on the theory of weak

acoustic scattering by plane waves. The theory of weak scattering by plane

waves is now reviewed briefly and the reader is referred to the textbook by

Morse and Ingard [24], the paper by Insana et al. [12], and the book chapter

by Insana and Brown [28] for a more complete treatment of this subject.

The material in these sources forms the foundation for the 3DZM method

developed by Mamou et al. [16] and for the 2DZM method proposed in this

thesis.

2.1 Weak scattering of plane waves

Consider an infinite homogeneous medium having compressibility κ0 and

density ρ0. In this medium, inhomogeneities exist having compressibility

and density values that vary from the infinite medium and are given by

κ(r′) and ρ(r′), where r′ is used to denote a point inside an inhomogeneity.

Let the smallest sphere that can be drawn to contain this inhomogeneity

be labeled as V and have a radius a. The inhomogeneity could be a single

particle (e.g., a sphere), a collection of particles, or a region with continuously

varying compressibility and density. Assume an acoustic plane wave with unit

amplitude is incident on the inhomogeneity as shown in Fig. 2.1. Scattering

of the incident plane wave arises due to variations in compressibility and

density, and the scattered pressure due to the inhomogeneity and at a position

r that is far from the inhomogeneity behaves like a spherical wave and is given

by [24]
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ps(r) =
ejkR

R
Φ(K) (2.1)

where Φ(K) is called the complex scattering amplitude, k is the wavenumber,

and the magnitude of the position vector is R = |r|. The vectors î and ô

are called the incident and observer vectors, respectively. The scattering

amplitude describes the spatial frequency dependence of the scatterer and

depends on the scattering vector K = î− ô. The magnitude of the scattering

vector is |K| = 2k sin (θ/2) and in the case of backscatter becomes K = 2kî.

Figure 2.1: Scattering geometry for an inhomogeneity.

Define the relative compressibility and density of the inhomogeneity as

γκ(r
′) =

κ(r′)− κ0

κ0

(2.2)

and

γρ(r
′) =

ρ(r′)− ρ0

ρ(r′)
(2.3)

and finally

γ(r′) = γκ(r
′) + γρ(r

′) cos(θ) (2.4)

where θ is the angle between the incident and observer vectors as indicated
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in Fig. 2.1. If the medium is weakly scattering and the size of the structures

is much smaller than the wavelength, the Born approximation applies and

the scattering amplitude can be approximated by [28]

Φ(K) ≈ k2

4π

∫
V

γ(r′)ejK·r
′
d3r′. (2.5)

In addition, the assumption of small density and compressibility fluctuations

allows γ(r′) to be approximated as

γ(r′) ≈ −2
z(r′)− z0

z0

(2.6)

where z(r′) = ρ(r′)c(r′) =
√
ρ(r′)/κ(r′) is the plane wave acoustic impedance.

The differential scattering cross section for the inhomogeneity is

σds = |Φ(K)|2 = Φ(K)Φ∗(K). (2.7)

The development so far is for a deterministic medium with a known com-

pressibility and density map specified by γ(r′). Practically, the goal is not

to determine the BSC for a specific realization of γ(r′), but to determine it

for a class of biological tissue (i.e., an organ in the body such as the liver).

Therefore, the single realization γ(r′) must be replaced with a spatial random

process {γ(r′)} that describes an ensemble collection of possible compress-

ibility and density maps for the examined biological tissue. In addition, when

characterizing this random process using the BSC estimated using ultrasound

or using ZMs, a spatially confined section of the random process {γ(r′)} is

examined. Therefore, the differential scattering cross section is replaced with

the differential scattering cross section per unit volume which can be written

in terms of an ensemble average for the random process {γ(r′)} as

σd =
1

V
〈Φ(K)Φ∗(K)〉 (2.8)

where 〈·〉 indicates an ensemble average with respect to {γ(r′)}. The differ-

ential backscattering cross-section per unit volume, or the BSC, is

σb =
1

V
〈Φ(2kî)Φ∗(2kî)〉. (2.9)

Assuming that {γ(r′)} is weakly stationary and zero mean, i.e., 〈{γ(r′)}〉 = 0,
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the BSC can be related to the 3D correlation coefficient, bγ(∆r), for the

random process {γ(r′)}. The correlation coefficient for a random process

is a statistical quantity that describes the spatial fluctuations in acoustic

properties that can be estimated using ZMs. The BSC in terms of this

correlation coefficient is [28]

σb =
k4

16π2

[
γ2

0

∞∫
−∞

bγ(∆r)e−j2kô·∆rd3∆r

]
(2.10)

where γ2
0 are the mean-square fluctuations in tissue properties and the depen-

dence on the incident vector î is given by ô = −î for the case of backscatter.

Equation 2.10 shows that the BSC is a frequency-dependent term multiplied

by a k-space line from the 3D Fourier transform of the 3D correlation co-

efficient for the random process {γ(r′)}. The term inside the brackets of

Eq. 2.10 is called the power spectrum of the random process {γ(r′)} and is

denoted by S. The BSC can be written in terms of this power spectrum as

σb =
k4

16π2
S(2kî) (2.11)

where the dependence on the incident vector has been included to indicate

that the BSC depends on the plane wave angle of incidence in an anisotropic

medium. The BSC can be found for different angles of incidence by extracting

the correct line from the 3D power spectrum of the random process {γ(r′)}.
If the random process {γ(r′)} is anisotropic and the correlation coefficient

varies as the spherical coordinate angles vary, Eq. 2.10 serves as the basis for

ZM analysis. In this case, knowledge of the incident/observer wave direction

relative to the analyzed random process (e.g., the examined ZM) is required

to use a ZM to estimate S(2kî).

If the random process {γ(r′)} is isotropic, the correlation coefficient is

rotationally symmetric, i.e., bγ(∆r) = bγ(∆r), and the BSC can be written

as [28]

σb =
k4

16π2

[
γ2

0

4π

k

∞∫
0

bγ(∆r) sin(2k∆r) ∆r d∆r

]
(2.12)

and in terms of the power spectrum as
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σb =
k4

16π2
S(2k). (2.13)

In this case, the power spectrum does not depend on the incident direction

of the plane wave relative to the random process {γ(r′)}. The rotational

symmetry of the correlation coefficient and power spectrum in the case of an

isotropic medium suggests that radial averaging may be used to reduce the

3D correlation coefficient and power spectrum estimates from a ZM to 1D

functions.

If the random process {γ(r′)} is transverse isotropic, the correlation coef-

ficient and power spectrum exhibit cylindrical symmetry. The axis of sym-

metry is given by t̂ and aligning the axis of symmetry with the r1-axis as

shown in Fig. 2.2, the correlation coefficient is separable into two functions,

i.e., bγ(∆r) = bγ,1(∆r1)bγ,2(τ) with τ defined as τ 2 = ∆r2
2 + ∆r2

3. In this

case, the correlation coefficient is isotropic in the ∆r2-∆r3 plane. Let the

angle between the scanning axis and the axis of symmetry be defined as

cos (φ) = t̂ · ô; then the BSC can be written as [5, 29]

Figure 2.2: Scattering geometry for transverse isotropic medium.

13



σb =
k4γ2

0

8π

[ ∞∫
−∞

bγ,1(∆r1)e−j2k∆r1 cosφ d∆r1

][∫ ∞
0

bγ,2(τ)J0(2kτ sinφ)τ dτ

]
(2.14)

where J0(x) is the zero order cylindrical Bessel function of the first kind and

the Fourier transform relationship for a 2D rotationally symmetric function

has been used. In terms of power spectra, the BSC is given as

σb =
k4γ2

0

8π

[
S ′γ,1(2k cosφ)

][
S ′γ,2(2k sinφ)

]
(2.15)

where S ′γ,1(2k cosφ) and S ′γ,2(2k sinφ) are called normalized power spectra.

In this case, assuming that the incident direction is perpendicular to the axis

of symmetry, i.e., φ = 90◦, 2DZMs created from the r2-r3 plane can be used

to estimate S ′γ,2(2k).

Equations 2.10, 2.12, and 2.14 form the basis for ZM analysis using varying

assumptions about the correlation coefficient. The key observation from this

section is that the BSC is related to the Fourier transform of the correlation

coefficient for the random process {γ(r′)}, which is also called the power

spectrum for this random process. Therefore, the goal of ZM analysis is to

estimate the correlation coefficient and/or the power spectrum of the random

process {γ(r′)} using maps of acoustic tissue properties created using optical

or scanning acoustic microscopy. Practical issues related to the estimation

of the correlation coefficient and the power spectrum from real 2D slides are

discussed in Ch. 3.

2.2 Modeling correlation coefficients and power spectra

Once the correlation coefficient and power spectrum have been estimated

for the random process {γ(r′)} using ZMs, they are usually modeled using

simple scattering models, such as the fluid-filled sphere, spherical Gaussian,

or exponential models. These models assume that a medium is filled with

a single type of scatterer having spatial description given by its 3D spatial

correlation coefficient. The Fourier transform of this correlation coefficient is
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called the form factor for the model. For a random medium filled with a col-

lection of inhomogeneities, where each individual inhomogeneity is described

by the same isotropic model correlation coefficient, the BSC for the medium

can be given in terms of the form factor as

σb = σ0FF (2k) (2.16)

where σ0 is the BSC in the Rayleigh limit and given as [12]

σ0 =
k4V 2

s n̄γ
2
0

16π2
(2.17)

where Vs is the volume for one scatterer which can be written in terms of

aeff and n̄ is the number density of the scatterers.

Several isotropic models for simple scatterers exist, e.g., fluid sphere, spher-

ical Gaussian and exponential models. These models have correlation coef-

ficients that are rotationally symmetric, so there is no dependence on the

incident vector. The correlation coefficients and form factors for each of

these models are shown in Fig. 2.3

Figure 2.3: Example correlation coefficients and form factors for fluid-filled
sphere, Gaussian, and exponential models.

The fluid-filled sphere model has correlation coefficient given by [28]

b(∆r) =

1− 3∆r
4a

+ (∆r)3

16a3
, 0 ≤ ∆r ≤ 2a

0, ∆r > 2a
(2.18)
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where a is the radius of the modeled sphere and the corresponding form

factor is

FF (2k) =

(
3

2ka
j1(2ka)

)2

(2.19)

where j1(x) is the first order spherical Bessel function of the first kind.

The spherical Gaussian model consists of a particle of infinite support

with impedance variation governed by a 3D Gaussian function. Because of

its infinite support, this model is not physically realizable; however, this

model is used frequently to estimate parameters related to tissue properties

[7]. The correlation coefficient for this model is given by [28]

b(∆r) = e−∆r2/2d2 (2.20)

and the corresponding form factor is

FF (2k) = e−2k2d2 . (2.21)

The correlation length of the Gaussian function is given by d. The scatterer

volume for a model is Vs =
∫∞
−∞ b(∆r)dv∆. An effective scatterer radius can

be found by setting this volume equal to the volume of a sphere with radius

aeff

Vs =

∫ ∞
−∞

b(∆r)dv∆ =
4

3
πa3

eff (2.22)

and solving for aeff . The effective scatterer radius for the spherical Gaussian

model is aeff = d/(3
√
π/2)1/3.

The exponential model is also not a physical model because it has infinite

support. The correlation coefficient for the exponential model is [28]

b(∆r) = e−∆r/d (2.23)

and the corresponding form factor is

FF (2k) =
1

(1 + 4k2d2)2
. (2.24)

The correlation length of the exponential function is given by d and the
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effective scatterer radius for this model is aeff = d 3
√

48/2.

The most common estimator used for fitting the discussed model functions

is the minimum average squared deviation (MASD) [12]

θ̂ = argmin
θ

∫ smax

smin

(X(s, θ)− X̄)2ds, (2.25)

X(s, θ) = 10 log10(f(s)/fmodel(s, θ)) (2.26)

where f is the modeled correlation coefficient or form factor, fmodel is the

model that depends on θ which is the size parameter for the model (e.g.,

a for the fluid sphere model or d for the spherical Gaussian or exponential

models), X̄ is the mean value of X in the analysis range [smin, smax], s = ∆r

in the case of correlation coefficients and s = k in the case of form factors.

The same type of modeling is possible when estimating the BSC using ul-

trasound, so parameters using ZMs and ultrasound can be compared. When

performing modeling as described in this section, it is necessary to assume

that the positions of the inhomogeneities are uncorrelated; otherwise a struc-

ture factor will distort the shape of the estimated correlation coefficient and

power spectrum using ZMs and the shape of the BSC estimated using ultra-

sound, leading to errors in the scatterer size estimates.

In conclusion, this section reviews parametric methods for modeling cor-

relation coefficients and power spectra. Parametric modeling in this manner

accomplishes two tasks, including dimensionality reduction and interpreta-

tion. Correlation coefficients and power spectra live in a high-dimensional

space and parametric modeling can be used to project that data onto a lower

dimensional space. In addition, parametric models can be interpreted to infer

physical properties of the scatterers in the medium such as effective scatterer

size.

2.3 Structure function

The development so far has assumed that the scatterer positions are inde-

pendent. When this assumption fails, a structure function must be added to

the BSC to account for the correlations between scatterer positions. Struc-
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ture functions have been used previously in modeling backscatter from red

blood cells [30–32] and biophantoms [23]. For a collection of monodisperse

scatterers, the structure function is defined as

S(k) = 1 + n̄

∫ ∞
−∞

(g(∆r)− 1)e−jk·∆rd3∆r (2.27)

where n̄ is the number density of scatterers and g(∆r) is the pair correlation

function governing the spatial distribution of the scatterers. The pair corre-

lation function is a statistical quantity that is proportional to the probability

of finding a second scatterer at a position ∆r relative to a first scatterer.

The independent positions (IP) pair correlation function is given by

gIP (∆r) = 1. (2.28)

The hole-correction (HC) approximation is a better model for non-overlapping

scatterers that enforces a minimal separation between the scatterers

gHC(∆r) =

0, ∆r ≤ 2a

1, ∆r > 2a
(2.29)

where a is the radius of the scatterer. The HC approximation gives a reason-

able description of sparsely packed scatterers, but breaks down for dense

packings. For a collection of nonoverlapping monodisperse spheres, the

Percus-Yevick (PY) approximation is frequently used to solve the Ornstein-

Zernike (OZ) equation for the PY pair correlation function gPY (∆r). Exam-

ples of pair correlation functions are in Fig. 2.4.

The analytic form for the structure function using the PY approximation

is [33]

S(k) =
1

1− n̄C(k)
(2.30)

where C(k) is the Fourier transform of the direct correlation function. The

direct correlation function is

c(x) =

{
α + βx+ δx3, x < 1

0, x > 1
(2.31)
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Figure 2.4: Pair correlation function assuming (a) IP, (b) hole-correction
approximation, and (c) PY approximation.

where x = r/2a, the sphere radius is a, and the constants are

α =
(1 + 2f)2

(1− f)4
(2.32)

β = −6f
(1 + f/2)2

(1− f)4
(2.33)

δ =
f(1 + 2f)2

2(1− f)4
(2.34)

f =
noπ(2a)3

6
(2.35)

and f is the volume fraction of the spherical scatterers.

To account for the structure function, the BSC in Eq. 2.16 can be modified

and written as

σb = σ0FF (2k)S(2k). (2.36)

Examples of the fluid sphere model form factor multiplied by the PY struc-

ture function are in Fig. 2.5. These examples show the significant effect that

the structure function can have on the shape of the scattering amplitude.

These shape changes produce errors in size estimates when modeling power

spectra from ZMs or BSCs estimated using ultrasound.
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Figure 2.5: Examples of the fluid sphere form factor multiplied by the PY
structure function (blue) 1%, (green) 5%, and (red) 25% volume fractions.

In conclusion, this section reviews the structure function. When scatterer

spatial positions are independent, the structure function is equal to one and

does not affect the estimated BSC. When scatterer spatial positions are not

independent, the structure function affects the shape of the BSC. When mod-

eling BSCs, it is necessary to account for this structure function; otherwise,

errors will result in the parameter estimates.

2.4 Structure function with container

ZMs are confined to a finite volume called a container. This container will

primarily affect the estimated power spectrum and parameters estimated

using the power spectrum. Therefore, it is important to predict the effects

that the container will have on estimation procedures.

Associated with a container are its shape (e.g., cube, sphere, cylinder,

etc.) and its size (characteristic dimension of the container such as side

length or diameter). The probability distribution for the scatterer positions is

affected by the size and shape of a container. Therefore, a structure function

was developed that included the effects of the container and a specified pair

correlation function.

A finite collection of monodisperse scatterers in n-dimensions may be de-
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scribed mathematically in the following way. A single scatterer centered at

the origin is denoted by h(r). For example, a sphere is

h(r) =

{
1, r ≤ a

0, r > a
(2.37)

where a is the spherical radius and r = |r|. The spatial positions of each

scatterer are given by

s(r) =
1

N

N∑
n=1

δ(r− ri) (2.38)

where δ is the Dirac delta function, N is the total number of scatterers in

the collection, and ri records the position of the ith scatterer. The collection

of scatterers is written as

f(r) = N · [h ∗ s] (2.39)

where * indicates spatial convolution. The volume power spectrum for the

collection of scatterers is given by

F (k) = N [H(k)S(k)] (2.40)

where k is the wavenumber vector, S(k) is the power spectrum of s(r), and

H(k) is the power spectrum of h(r). If the scatterer is a sphere, H(k) is

H(k) =

[
3
j1(ka)

ka

]2

. (2.41)

S(k) is the structure function

S(k) =
1

N

∣∣∣∣∣
N∑
m=1

e−jk·rm

∣∣∣∣∣
2

= 1 +
1

N

∑
m6=n

cos(k ·∆rm,n) (2.42)

where ∆rm,n = rn − rm is the spacing vector between the mth and nth

scatterers. The first addend in Eqn. 2.42 is called the incoherent component

because it does not depend on ∆rm,n. The second addend in Eqn. 2.42

is called the coherent component because it is does depend on ∆rm,n; i.e.,
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the spatial positions of the scatterers relative to each other determine the

magnitude of this term.

If the scatterer positions are known, the structure function can be com-

puted directly from Eq. 2.42. If the scatterer positions are unknown, the

expected value for the structure function can be found from the probability

distribution of the scatterer spacings, assuming a random spatial distribu-

tion. The expected value of the structure function is given as

E [S(k)] = 1 +
1

N

∑
m 6=n

E [cos(k ·∆rm,n)] . (2.43)

This expected value can be evaluated assuming that only two scatterers are

located in the collection

E [S(k)] = 1 + (N − 1)E [cos(k ·∆r)] (2.44)

where the expectation is taken with respect to ∆r which is governed by the

probability distribution p(∆r). Then the structure function can be written

as

E [S(k)] = 1 + (N − 1)

∫ ∞
−∞

p(∆r) cos(k ·∆r)dn∆r (2.45)

where the integral is over an n-dimensional space. Equation 2.45 is observed

to be similar in form to Eq. 2.27 by noting that g(∆r) is an even function.

Therefore, the exponential kernel in Eq. 2.27 turns into a cosine kernel. The

result in Eq. 2.45 suggests that the term g(∆r) − 1 in Eq. 2.27 can be

interpreted as a probability distribution for the scatterer spacings.

For independent scatterer positions confined to a container, smaller spac-

ings are more likely to occur than large spacings. Therefore, in 3D for a cube

container, it is reasonable to assume that the scatterer spacings will follow a

triangle distribution along one dimension. It should be noted that a triangle

function results when a rectangular function is convolved with itself.

Let an n-dimensional container be specified by w(r). For example, a cube

container in 3D with sidelength L and centered at the origin can be written

as

wcube(r) = rect
(x
L

)
rect

( y
L

)
rect

( z
L

)
(2.46)
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where rect(x/τ) is a rectangular function centered the origin and having a

width of τ . A sphere in 3D with diameter L and centered at the origin can

be written as

wsphere(r) = sphere(r/L) =

{
1, r ≤ L/2

0, r > L/2
(2.47)

The spatial autocorrelation function of a container w(r) is defined as

W (∆r) = w(r) ∗ w(−r). For the cube container

Wcube(∆r) = tri

(
∆x

L

)
tri

(
∆y

L

)
tri

(
∆z

L

)
(2.48)

where tri(∆/τ) is a triangle function centered at the origin and with base

length τ . For the sphere container the autocorrelation function is

Wsphere(∆r) = 1− 3∆r

4(L/2)
+

∆r3

16(L/2)3
, 0 ≤ ∆r ≤ L. (2.49)

The proposed model for the scatterer spacing probability distribution as-

suming a container with autocorrelation function W (∆r) and pair correlation

function g(∆r) is defined as

p(∆r) =
g(∆r)W (∆r)∫

g(∆r)W (∆r)dn∆r
. (2.50)

This function satisfies the properties required for a probability distribution

and incorporates the pair correlation function of the scatterers and the size

and shape the container. Examples of cross sections from 3D scatterer spac-

ing probability distributions are in Fig. 2.6 for different containers and dif-

ferent pair correlation functions.

In the case of IP, analytic forms of the structure function for the cube and

sphere containers can be found. For the cube container with sidelength L,

the structure function takes the form

S(k) = 1 + (N − 1)

[
sinc2

(
kxL

2

)
sinc2

(
kyL

2

)
sinc2

(
kzL

2

)]
(2.51)

where sinc(x) = sin(x)/x. For the sphere container with diameter L, the

structure function takes the form
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Figure 2.6: Example cross sections from scatterer spacing probability
distribution p(∆r). Assuming (a, c, e) cube container and (b, d, f) sphere
container. Assuming (a, b) IP, (c, d) HC approximation, and (e, f) PY pair
approximation. The container length was equal to 1.0 and the spheres had
radius 0.05.

S(k) = 1 + (N − 1)

[
3
j1(kL

2
)

kL
2

]2

. (2.52)

Radial lines from the IP structure function for a cube container are in Fig.
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2.7. This structure function displays a large peak centered at ka = 0. This

peak results because the cosine function approaches one as ka goes to zero,

causing the structure function to approach N . The width of this large peak

is controlled by the ratio of the scatter sizes relative to the container size.

The width of the peak increases for smaller containers and smaller for larger

containers. To avoid having this peak affect the structure function signifi-

cantly in the ka region of interest, the container dimension must be made

large enough relative to the scatterer size.

This structure function for the cube container is not radially symmetric.

An on-axis radial line from this structure function displays large amplitude

ringing, while an off-axis radial line from this structure function displays

much lower amplitude ringing. This result shows that using a cube container

introduces anisotropic effects even though the underlying random process

(randomly located scatterers) is isotropic. In this case, radial averaging is

not appropriate and a different container should be used or off-axis radial

lines should be analyzed.

Figure 2.7: Example structure functions assuming IP and a cube container.
A total of 100 scatterers were in the container and the ratio of the scatterer
radius to the container dimension was a/L = 0.1. Two polar/azimuthal
angle combinations are shown.

The structure function assuming IP and a sphere container is in Fig. 2.8.
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In contrast to the cube container, the sphere container structure function is

radially symmetric and radial averaging is acceptable in this case. For the

sphere container, the large peak centered at ka = 0 is slightly wider than for

the cube container. In addition, the sphere container exhibits ringing similar

to the cube container. The ringing for the sphere container is significantly

less than the observed on-axis ringing in the cube container, but slightly

larger than the observed off-axis ringing in the cube container.

Figure 2.8: Example structure function assuming IP and a spherical
container. A total of 100 scatterers were in the container and the ratio of
the scatterer radius to the container dimension was a/L = 0.1. The
function is radially symmetric.

Examples of structure functions for a spherical container and assuming

the PY pair correlation function are in Fig. 2.9; i.e., the spacing probability

distribution shown in Fig. 2.6 (f) was used. As the container becomes large

compared to the scatterer size, the expected behavior was that the structure

function with container effects would converge to the PY structure function.

The results in Fig. 2.9 show that the structure function model with container

followed this behavior.

The largest deviations between the PY structure function and structure

function with container were observed for the largest volume fraction. In par-

ticular, when the ratio between the scatterer size and container dimension
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was 0.3 and the volume fraction was 50%, i.e., the blue curve in Fig. 2.9 (c),

significant discrepancies were observed between the PY structure function

and the structure function with container effects. For this volume fraction,

the PY structure function displayed a large peak in the range 1.5 ≤ ka ≤ 2.

In contrast, the PY structure function with a container reduced the magni-

tude of this peak as this structure function was approaching one, i.e., the IP

structure function. This behavior can be explained because the container has

the effect of filtering the PY pair correlation function shown in Fig. 2.4 (c).

When a container is introduced, the large r content in the PY pair correla-

tion function is reduced in magnitude or eliminated, thus reducing is effect

on the structure function and causing the structure function with container

to not display large peaks similar to the PY structure function.

Similar to the IP structure function for a sphere container, the PY struc-

ture function with container displayed a large peak centered at ka = 0. The

width of this peak was controlled by the size of the container. As the con-

tainer was made larger, the width of this peak decreased and as the container

was made smaller, the width of this peak increased. Making the container

large enough so that this large peak does not affect the ka range of interest is

an important consideration when determining container size relative to the

scatterer size. Based on Fig. 2.9, the ratio between scatterer radius and con-

tainer length (a/L) should be less than 0.1 to prevent this main peak from

affecting the range ka > 0.5.

Based on the above observation, a tradeoff exists for the container size. To

reduce the effect of the structure function the container should be made as

small as possible relative to the scatterer size. The container had the effect

of reducing the magnitude of the PY structure function as the size of the

container decreased relative to the size of the scatterer. In some cases, it

may be desirable to preserve the structure function without container effects

and so the container should be made as large as possible. In other cases, it

may be desirable to suppress the structure function, so the container should

be made as small as possible without having the peak centered at ka = 0

affecting the ka range of interest.

Several applications exist for the structure function with container effects.

The model was developed to determine the effect of a container on ZM anal-

ysis. ZMs are usually confined to a cube, so the structure function with

container effects model suggests that on-axis lines from the spectral esti-
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mates of a ZM be avoided or that a spherical container be used instead of

a cube. The predictions of this model also apply to estimating BSCs from

ultrasound signals. When estimating BSCs, there is a lateral cross sectional

area associated with the finite aperture of the source and an axial length

associated with the length of the time gate used. These dimensions define a

container that in the roughest approximation is a cylinder. By adjusting the

focal properties of the source or the gate length used for analyzing the signal,

the container can be manipulated. Using the proposed model, the effects of

the container on the structure function could be studied and used to deter-

mine to what degree the container affects BSC estimates from ultrasound

signals.

The final application is related to clustering of scatterers. Recent work

has proposed using ultrasound to study the aggregation of red blood cells

as an indicator of disease [30–32]. In these studies, clusters of red blood

cells are modeled as being an effective scatterer with new acoustic properties

related to the cluster properties. For example, the effective scatterer might

be a sphere or a cylinder. A structure function model is then applied to

the effective scatterers to characterize the BSC from blood. The structure

function with container could be applied at the level of individual clusters of

red blood cells. A container such as a sphere could be assumed for the red

blood cells and a structure function with container effects model applied to

the collection of red blood cells confined to the sphere. A second structure

function could then be assumed for the collection of scattering clusterers.

In this way a hierarchical structure function model could be constructed to

describe scattering by red blood cell aggregates.

The goal of this section was to develop a structure function that incorpo-

rates the effects of confining scatterer positions to a finite container. Standard

structure function analysis does not include this constraint on scatterer po-

sitions. Instead, the assumption is usually made that the container is large

enough so that container effects are not a problem. The developed structure

function with container effects can be used to determine the ratio between

scatterer size and container size such that container effects would distort the

structure function assuming no container effects. In addition, the model sug-

gests that the magnitude of the structure function might be reduced (i.e., the

structure function would be closer to one) by making the container smaller.
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Figure 2.9: Example structure functions assuming PY correlation function
and a spherical container. The volume fraction was (a) 10%, (b) 30%, and
(c) 50%. The thick black line is the PY structure function without a
container.
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CHAPTER 3

IMPEDANCE MAP CONSTRUCTION AND
ANALYSIS

For a particular biological tissue, the spatial random process that describes

the ensemble collection of possible compressibility and density maps for this

tissue is denoted by {γ(r′)}. An impedance map (ZM) is a computational tool

that can be used to characterize {γ(r′)}, specifically the correlation coefficient

and power spectrum. The reader is referred to the following sources for a

complete development of the impedance map method: [16–18, 20, 34–36]. A

three-dimensional impedance map (3DZM) is an array stored in the memory

of a computer, where each array element is an acoustic impedance value with

an associated spatial position in a 3D space. Similarly, a two-dimensional

impedance map (2DZM) is an array stored in the memory of a computer,

where each array element is an acoustic impedance value with an associated

spatial position in a 2D space. Knowledge of acoustic impedance values and

their spatial arrangement can be used to estimate the correlation coefficient

and power spectrum for {γ(r′)}.

3.1 Constructing ZMs

3.1.1 3DZMs

The process for constructing a 3DZM from a tissue sample has been described

before and is included here for completeness [16, 18, 34, 35]. A graphical

illustration of the steps is shown in Fig. 3.1.

1. Histology: The tissue sample is fixed in formalin, embedded in paraf-

fin, sectioned at a thickness (e.g., 3 µm), placed on glass slides, and a

stain such as hematoxylin and eosin (H&E) is applied to highlight the

suspected acoustic impedance structures.
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2. Digitization: Each microscope slide is individually digitized using a

microscope with image capture capabilities and having a given pixel

resolution. The images are quantized in red, green, and blue color

fields (RGB color).

3. Slice registration: During the histology preparation and digitiza-

tion steps, the slices undergo physical transformations, such as shrink-

ing, shearing, translation, etc. The transformation set is unique for

each slice. If these transformations are not reversed, they can cause

large artifacts in the constructed 3DZMs that have the potential to

severely distort estimates of the correlation coefficient and power spec-

trum. Therefore, it is necessary to apply a slice registration procedure

to align the tissue sections.

4. Image color adjustment: Slight variation in the thickness of each

section results in varying uptake of the H&E stain. Therefore, the color

properties of the tissue must be adjusted.

5. Missing slice interpolation: Approximately 10% of the tissue sec-

tions are inadvertently damaged during the normal histology process,

rendering the information from these damaged sections unusable. For

example, the sections can be torn or folded over onto themselves. The

missing sections must be filled in to complete the reconstruction of the

3D tissue histology map. The missing sections are replaced using cubic

Hermite interpolation. The process is repeated independently for each

color field and along each stacked column of pixels.

6. Impedance value assignment: Each element of the tissue histology

map is assigned an acoustic impedance value using the following pro-

cess. A pink color in the H&E stained image indicates greater protein

concentration and a blue color indicates a greater nucleic acid concen-

tration. Therefore, the impedance values can be assigned by associ-

ating appropriate acoustic impedance values for each tissue structure

with certain color ranges. For example, tissue areas with eosin stain-

ing (indicating protein concentration) range in color from light pink

to dark pink, while tissue areas with hematoxylin staining (indicating

nucleic acid concentration) range in color from light blue to dark blue.

Therefore, it is reasonable to assume that the pink image elements

31



represented cell cytoplasm, while the blue image elements represented

cell nuclei. Each tissue structure can be assigned a bulk materials

impedance value, which can be increased or decreased proportionally

to the amount of color saturation in each pixel. It is also reasonable to

assume that elements which appeared very light or white are fat. Ta-

ble 3.1 provides an example of how impedance values may be assigned

based on color ranges. An example of a stained histology image and

corresponding impedance map is shown in Fig. 3.2.

Figure 3.1: 3DZM creation process block diagram.

Table 3.1: Impedance value assignment.

Color Tissue component Impedance value range
Light to dark pink Cytoplasm 1.5 - 1.7 Mrayl
Light to dark blue Cell Nuclei 1.8 - 2.0 Mrayl

White Fat 1.45 Mrayl

The 3DZM creation process is not guaranteed to produce a 3DZM that

is acceptable for correlation coefficient and power spectral analysis. In ad-

dition, the process for constructing a 3DZM is expensive in terms of slide

preparation time, computational time, and financial cost. Weaknesses of the

3DZM construction process are summarized below.

1. A large set of histological slides need to be meticulously stained, opti-

cally scanned, and digitized.
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Figure 3.2: (a) Stained histology image and corresponding (b) impedance
map from a rabbit liver.

2. During the slice registration step, if the actual physical transformations

experienced by the slides during ZM preparation are not included in

this set, it is impossible to correctly align the slides.

3. Standard interpolation methods for missing slides are not guaranteed

to adequately account for the missing slides.

4. The spatial sampling rate perpendicular to the slice plane is limited by

the minimum thickness that can be cut using a microtome. Currently,

the spatial sampling rate perpendicular to the slice plane is approxi-

mately 6.5 times the spatial sampling rate in the slice plane.

5. Large discontinuities can be introduced at multiple stages in the 3DZM

processing pipeline and these discontinuities can lead to distortions in

the estimated correlation coefficient and power spectrum.

6. There is a sampling issue with the 3DZMs. A single 3DZM typically

represents a resolution cell size or smaller of a medical ultrasonic imag-

ing system. Therefore, large numbers of 3DZMs need to be constructed

to represent a tissue volume, such as a tumor.

The goal of this section was to review the 3DZM construction process. In

addition, a number of weaknesses of the 3DZM method were identified. The

weakness of the 3DZM method motivates the development of improved ZM

analysis methods. A method based on analyzing 2DZMs would avoid many

of the described shortcomings of the 3DZM method.
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3.1.2 2DZMs

The process for constructing a 2DZM from a tissue sample is a subset of the

process for constructing a 3DZM and is summarized in Fig. 3.3. A 3DZM is

a collection of 2DZMs that have been registered and aligned, and any missing

2DZMs have been accounted for using interpolation.

Figure 3.3: 2DZM creation process block diagram.

Comparing the 2DZM process to the 3DZM process, the slice registra-

tion and missing slice interpolation steps are not needed when constructing

2DZMs. Slice registration is an important step in the 3DZM process because

this step can cause large artifacts in the constructed 3DZMs. These large

artifacts have the potential to severely distort the estimates of the correla-

tion coefficient and power spectrum. When analyzing the 2DZMs included

in a 3DZM independently of each, the chance of these distortion effects is

prevented. The missing interpolation step is another source of error for the

correlation coefficient and power spectrum estimate. These errors can distort

the shape of the estimated correlation coefficient and power spectrum.

Another disadvantage of the 3DZM compared to the 2DZM appears when

considering tissues that are heterogeneous. To obtain good estimates from

a 3DZM requires multiple independent 3DZMs. While many 2DZMs would

also be needed, increasing the number of 2DZMs in an analysis comes at
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a much smaller cost compared to increasing the number of 3DZMs in an

analysis.

The main advantage of the 3DZM compared to the 2DZM is that 3DZMs

provide more independent radial lines for averaging when estimating the cor-

relation coefficient and power spectrum compared to using a single 2DZM.

Increasing the number of independent estimates available for averaging im-

proves correlation coefficient and power spectral estimates. However, this

advantage does not apply to anisotropic media because radial averaging is

not appropriate for an anisotropic medium.

In conclusion, this section described the 2DZM construction process and

compared it to the 3DZM construction process. The 2DZM construction

process has fewer opportunities for large errors to be introduced into the ZM

analysis. Reducing large discontinuities in ZM analysis is desirable to reduce

error when using ZMs to estimate form factors or to identity scattering sites

in a specific tissue.

3.2 Estimating the correlation coefficient and power

spectrum

3.2.1 Correlation coefficient

Estimating the correlation coefficient is an important step in ZM analysis.

The correlation coefficient can be modeled to estimate parameters related to

tissue properties and can also be used to estimate the power spectrum. For

an M × N × P matrix Z [i, k, l], where the integer i = {0, 1, ...,M − 1} is

associated with the z -direction, k = {0, 1, ..., N − 1} is associated with the

y-direction, and l = {0, 1, ..., P − 1} is associated with the x -direction, the

correlation coefficient was estimated using

b̂ [m,n, p] =
1

Nv

M−1∑
i=0

N−1∑
k=0

P−1∑
l=0

Z [i+m, k + n, l + p]Z [i, k, l] . (3.1)

The integer indices can be converted to a spatial coordinate using zi = i∆z,

yk = k∆y, and xl = l∆x, where ∆z, ∆y, and ∆x are the spatial sampling
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periods in each direction. The integer m = {−(M − 1),−(M − 2), ...,M −
2,M − 1} is associated with the spatial lag in the z -direction, the integer

n = {−(N − 1),−(N − 2), ..., N − 2, N − 1} is associated with the spatial lag

in the y-direction, and the integer l = {−(P − 1), (P − 2), ..., P − 2, P − 1} is

associated with the spatial lag in the x -direction. Nv is a normalizing term

equal to the number of matrix elements used in the triple summation for a

specific combination (m, n, p).

Similarly, for an M × N matrix Z [i, k], the correlation coefficient was

estimated using

b̂ [m,n] =
1

Np

M−1∑
i=0

N−1∑
k=0

Z [i+m, k + n]Z [i, k] (3.2)

where the integers i, k, m, n are defined similarly to the 3D case. Np is a

normalizing term equal to the number of matrix elements used in the double

summation for a specific combination (m, n).

3.2.2 Power spectrum

Direct estimation of the power spectrum without estimating the correlation

coefficient is possible using the discrete Fourier transform. For an M×N×P
matrix Z [i, k, l], the power spectrum can be estimated as

Ŝ [m,n, p] =

∣∣∣∣∣ 1

MNP

M∑
i=0

N∑
k=0

P∑
l=0

Z [i, k, l] e−j2π(m·i/M+n·k/N+p·l/P )

∣∣∣∣∣
2

(3.3)

where the integers i, k, and l represent spatial coordinates and are defined

in the same way as for estimating the correlation coefficient. However, the

integers m, n, and p are associated with spatial frequency. The spatial fre-

quencies can be found using ki = 2πm/∆z, kk = 2πn/∆y, and kl = 2πl/∆x.

The relationship between the modulus squared of a discrete Fourier transform

and power spectrum is given by the Wiener-Khintchine theorem [37].

Similarly, for anM×N matrix z [i, k], the power spectrum can be estimated

as
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Ŝ [m,n] =

∣∣∣∣∣ 1

MN

M∑
i=0

N∑
k=0

Z [i, k] e−j2π(m·i/M+n·k/N)

∣∣∣∣∣
2

(3.4)

where the integers i, k, m, n are defined similarly to the 3D case. Efficient

evaluation of the discrete Fourier transforms in Eqs. 3.3 and 3.4 is possible

using the fast Fourier transform (FFT).

3.2.3 Radial averaging

Description of radial averaging

Several of the methods that will be proposed for estimating the correlation

coefficient and power spectrum rely on using a radial average over a 2D or

3D rectangular grid of values. When an isotropic assumption can be made,

radial averaging may be used to reduce a 2D or 3D sampled function to a

1D sampled function. Reducing to a 1D sampled function is a necessary step

when using 2DZMs to estimate a 3D power spectrum.

Radial averaging was applied using a binning procedure that is illustrated

for the 2D case in Fig. 3.4. The spatial sampling periods were ∆x and

∆y along the x-axis and y-axis, respectively. The widths of the bins used

were h = max{∆x,∆y}, a condition which prevents the existence of empty

bins. The first bin consisted of a circle centered at the coordinate origin

for the rectangular grid and having radius h. The second bin consisted of

the annulus surrounding the first bin and having width h. The third bin

consisted of the annulus surrounding the first two bins and having width h.

The bins were built up in this manner to cover the entire rectangular grid.

For each bin, the rectangular grid points included in the bin were averaged

to estimate the radial function for the radial spatial coordinate at the center

of the bin annulus. A similar procedure was used in 3D, except spherical

shells with width h were used instead of annuli.

Radial averaging has the advantage of decreasing the error in the estimated

correlation coefficient. This can be observed in Fig. 3.5 which shows several

radial lines from the correlation coefficient estimated from a 2D section of a

random process governed by a spherical Gaussian correlation function. The

blue lines are lines extracted at different radial directions from the 2D corre-
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Figure 3.4: Binning procedure used to perform radial averaging in 2D. The
spacing between adjacent grid points was ∆x and ∆y along the x-axis and
y-axis, respectively, and the bin widths were h = max{∆x,∆y}. The first
bin was centered at the coordinate origin of the rectangular grid. The
second bin consisted of an annulus surrounding the first bin and having
width h. The values of the grid points in each bin were averaged to perform
radial averaging.

lation coefficient estimated from a 2D section of a spherical Gaussian random

process. The black line is the average of all of the blue lines. The dashed red

line is the theoretical correlation coefficient for a spherical Gaussian random

process. Clearly the black line has less error relative to the dashed red line

than the individual blue lines.

Grid size and scatterer size estimate error when radial averaging

The effect of grid spacing on 3D sampled functions produced with radial

averaging is illustrated in Fig. 3.6 using the fluid sphere, spherical Gaussian,

and exponential model functions (correlation coefficient and form factor)

discussed in Sec. 2.2. These model functions in 1D are shown in Fig. 2.3.
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Figure 3.5: The blue lines are lines extracted at different radial directions
from the 2D correlation coefficient estimated from a 2D section of a
spherical Gaussian random process. The black line is the average of all of
the blue lines. The dashed red line is the theoretical correlation coefficient
for a spherical Gaussian random process.

To test the effect of the number of grid points used to sample a function,

the function was sampled using a specified number of grid points along each

dimension. The correlation coefficient was sampled in the spatial lag range

−2 ≤ {∆rx,∆ry,∆rz}/d ≤ 2 and the form factor was sampled in the spatial

frequency range −2 ≤ {kx, ky, kz}d ≤ 2. A radial average was performed

to find a 1D sampled function from the 3D sampled function and the size

was estimated based on the 1D sampled function. Percentage error between

actual size and estimated size are shown when using the correlation coefficient

and form factor. The error curves are shown in terms of the number of grid

points along each axis used to sample the function in 3D.

When using a small number of grid points to sample the functions, errors

in the estimated sizes were in excess of 20%. To achieve an error in estimated

size less than 5% for all models, 15 and 25 grid points along each dimension

were needed when using the correlation coefficient and form factor, respec-

tively. When using the correlation coefficient to estimate sizes, the spherical

Gaussian model performed best when using the correlation coefficient and
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Figure 3.6: Percentage errors between actual size and estimated size are
shown when studying the (a) correlation coefficient and (b) form factor of
the (blue) fluid sphere, (green) spherical Gaussian, and (red) exponential
models. The x-axis represents the number of grid points used along each
dimension when sampling the functions in 3D. The spatial lag range
0 ≤ ∆r/d ≤ 2 was used for the correlation coefficient and the spatial
frequency range 0 ≤ kd ≤ 2 was used for the form factor.

the fluid sphere model performed best when using the form factor. The sizes

were underestimated when using the correlation coefficient and overestimated

when using the form factor.

The errors from using a radial averaging process for the purpose of reducing
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a 3D sampled function to a 1D sampled function were quantified using cor-

relation coefficient and form factor functions from the fluid sphere, spherical

Gaussian, and exponential models. The analysis of these model functions is

useful for determining the extent to which radial averaging introduces errors

into size estimates.

3.3 Foundations of 2DZM analysis

3.3.1 Correlation functions as linear systems

The correlation function for a random process in an n-dimensional space is

a linear system. For example, consider an arbitrary spatial random process

γ(x, y, z) in 3D; the correlation function is

B(∆x,∆y,∆z) =

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

γ(x+ ∆x, y + ∆y, z + ∆z)γ(x, y, z)dxdydz.

(3.5)

Next, this correlation function is found for a plane that is perpendicular to

the ∆z dimension and that passes through the origin

B(∆x,∆y, 0) =

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

γ(x+ ∆x, y + ∆y, z)γ(x, y, z)dxdydz. (3.6)

Separating the integral along the z dimension,

B(∆x,∆y, 0) =

∫ ∞
−∞

[∫ ∞
−∞

∫ ∞
−∞

γ(x+ ∆x, y + ∆y, z)γ(x, y, z)dxdy

]
dz.

(3.7)

And the integration on the inside of the brackets is a 2D correlation function

that depends on z

B(∆x,∆y, 0) =

∫ ∞
−∞

B2D(∆x,∆y, z)dz. (3.8)

This development could be repeated for any planar section that passes through
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the origin.

The key observation from this section is that planar sections were shown to

be all that was necessary to find a planar section from a volume correlation

function. It should be noted that this development does not place restrictions

on the correlation function for the examined random process and therefore

applies to anisotropic random processes. To use the result in this section

requires that all slices be available for the analysis. In future developments,

restrictions will be placed on the correlation function for the random process

to relax the requirement that all slices be available for the analysis.

Another important observation is that the correlation function for the 2D

sections does not include information about how the sections have been trans-

lated relative to each other. This fact implies that relative slice translations

do not need be reversed when averaging the 2D correlation functions.

Assuming that the correlation function is anisotropic, the obtained planar

section from the volume correlation function will not be radially symmetric.

Therefore, relative section rotation would need to be taken into account

when doing the averaging. In other words, the rotationally variant structure

observed in the correlation function from the individual 2D sections needs to

be aligned before averaging.

The development in this section shows that 2DZM analysis can be used to

find information about 3D volumetric structure. To reiterate, no restrictions

were placed on the correlation function for the random process under con-

sideration; i.e., the planar section from the 3D volume correlation function

could be found exactly for a random process with an anisotropic correlation

function when all 2D sections were available. From a theoretical perspective,

the development in this section definitively demonstrates that 2DZM analysis

can replace 3DZM analysis.

3.3.2 Power spectra and the projection-slice theorem

In contrast to the correlation function, the estimated power spectrum is not

a linear system with respect to a ZM. However, the projection-slice theorem

can still be used to transform a 3D analysis into a 2D analysis. The estimated

power spectrum for a ZM γ(r′) is
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Ŝ(kx, ky, kz) =

∣∣∣∣∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

γ(x, y, z)e−j(kxx+kyy+kzz)dxdydz

∣∣∣∣2 . (3.9)

Next, this power spectrum is found for a plane that is perpendicular to the

kz dimension and that passes through the origin

Ŝ(kx, ky, 0) =

∣∣∣∣∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

γ(x, y, z)e−j(kxx+kyy)dxdydz

∣∣∣∣2 . (3.10)

Evaluating the integral along the kz dimension,

Ŝ(kx, ky, 0) =

∣∣∣∣∫ ∞
−∞

∫ ∞
−∞

Pγ,z(x, y)e−j(kxx+kyy)dxdy

∣∣∣∣2 . (3.11)

where Pγ,z(x, y) is the projection of γ along the z-direction. Any planar

section that passes through the origin from a 3D power spectral estimate can

be written as a Fourier transform of the projection of the ZM onto a plane

that is perpendicular to the z direction and that passes through the origin.

This result is a statement of the projection-slice theorem.

This section shows that a slice passing through the origin of a 3D power

spectral estimate can be estimated by finding the Fourier transform of the

projection of the ZM onto a plane. Compared to the development of the

correlation function as a linear system, this result is not as useful because

full construction of a 3DZM is still necessary to find the projection of the 3D

volume. However, it could still be useful in the case when missing slices are

a major problem as the projection operation will be more immune to these

effects compared to a full 3DZM analysis.

3.3.3 Fourier transform relationships

The methods that will be utilized for estimating a power spectrum using

ZMs for the purpose of evaluating the BSCs in Eqs. 2.11, 2.13, and 2.15

require special Fourier transform relationships. For the case of an anisotropic

random process, the rectangular coordinate Fourier transform pair given for

an arbitrary n-dimensional space and shown in Table 3.2 is used to evaluate
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the BSC.

Table 3.2: Fourier transform pair in rectangular coordinates for an
n-dimensional space.

Dimension Direction Fourier transform relation

n Forward Sn(K) =
∫
Rn exp (−jK ·∆r)dn∆r

n Inverse bn(∆r) =
∫
Rn exp (jK ·∆r)dnk

For the case of isotropic and transverse isotropic random processes, Fourier

transform relationships for rotationally symmetric functions may be used to

evaluate the BSCs in Eqs. 2.13 and 2.15. These relationships are shown in

Table 3.3.

An important property of isotropic random processes is emphasized in Ta-

ble 3.3. An isotropic random process in Rn having correlation coefficient

b(∆r) has the property that for any positive integer (n-m) the values of

this process on an arbitrary (n-m)-dimensional subspace of the original n-

dimensional space form an isotropic random process with correlation coeffi-

cient b(∆r) [38]. Therefore, the correlation functions indicated in Table 3.3

do not depend on the number of dimensions. This property concerning the

correlation coefficient for isotropic random processes serves as the foundation

for 2DZM analysis. In general, power spectra in different dimensions are not

equal to each other and therefore the power spectra in Table 3.3 do depend on

the number of dimensions. In some special cases, e.g., the spherical Gaussian

model, power spectra in different dimensions are equal to each other.

For a random process with a given rotationally symmetric correlation co-

efficient, the power spectrum in an (n-m)-dimensional space can be written

in terms of an integral over the power spectrum in an n-dimensional space

[15]

Sn−m(k) =

∫
Rm

Sn(
√
k2 + (k′)2)dmk′ (3.12)

where √
k = k2

1 + k2
2 + ...+ k2

n−m (3.13)
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Table 3.3: Fourier transform pairs of rotationally symmetric functions in
one-, two-, and three-dimensional spaces. J0(x) is the zero order cylindrical
Bessel function of the first kind.

Dimension Direction Fourier transform relation

1 Forward S1(k) = 2
∫∞

0
b(∆r) cos(k∆r)d∆r

2 Forward S2(k) = 2π
∫∞

0
b(∆r)∆rJ0(k∆r)d∆r)

3 Forward S3(k) = 2
k

∫∞
0
b(∆r)∆r sin(k∆r)d∆r

1 Inverse b(∆r) = 2
∫∞

0
S1(k) cos(k∆r)dk

2 Inverse b(∆r) = 2π
∫∞

0
S2(k)kJ0(k∆r)dk

3 Inverse b(∆r) = 2
∆r

∫∞
0
S3(k)k sin(k∆r)dk

and √
k′ = k2

n−m+1 + k2
n−m+2 + ...+ k2

n. (3.14)

The geometric interpretation of this integration is that it is a projection from

a higher dimensional space onto a lower dimensional space.

Another useful Fourier transform relationship that was derived by Waag

et al. relates the 3D power spectrum to the 1D power spectrum [15]

S3(k) = − 1

2πk

d

dk
S1(k). (3.15)

The Fourier transform relationships and isotropic random process proper-

ties discussed in this section form the basis for the 2DZM analysis methods

of isotropic random media that will be proposed. In particular, these rela-

tionships imply that the 3D correlation function and power spectrum can be

estimated from a single 2D slice. Without these relationships, performing

a 2DZM analysis would require that all 2DZMs be included to estimate the

correlation function and power spectrum for a 3D random process with low

error.
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3.4 Estimating BSCs using ZMs

3.4.1 Using compounding to reduce BSC estimate variance

If a single ZM is used to estimate the BSC for the random process {γ(r′)},
the estimated power spectrum will suffer from high variance. Reducing this

variance is desirable when using the BSC in a diagnostic task because the

variance will decrease the classification performance. Several methods exist

for reducing variance, including ensemble averaging, spatial compounding,

and angular compounding.

In the case of ensemble averaging, multiple ZMs are acquired from differ-

ent realizations of the same biological tissue. Power spectral estimates are

calculated for each ZM and averaged to reduce variance and better estimate

the true BSC for the random process {γ(r′)} associated with the examined

tissue region.

When the random process {γ(r′)} is stationary, spatial averaging may be

used to reduce variance. In this case, ZMs are created from different regions

of the same tissue/organ realization and the collection of BSC estimates from

these ZMs are averaged to reduce variance and obtain a better estimate for

the true BSC for the examined tissue structure. Spatial compounding in this

manner is frequently used when estimating the BSC using ultrasound, when

the RF signal from a region of interest is divided into small data blocks and

the BSC estimates for the collection of data blocks are averaged.

When the random process {γ(r′)} is isotropic, the BSC no longer depends

on the incident angle of the acoustic plane wave. In this case, radial averaging

can be applied to the correlation coefficient and power spectral estimates of

a ZM to obtain a better estimate of the true BSC for the examined biological

tissue.

All of these compounding methods can be combined to provide better

estimates of the correlation coefficient and power spectrum for the random

process {γ(r′)}. Averaging independent estimates reduces the variance of the

estimated quantities, leading to better estimates of the true BSC associated

with a biological tissue and to increased performance when using the BSC

for disease classification and better resolution for therapy monitoring.
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3.4.2 3DZM method #1

The Wiener-Khinchin theorem relates the Fourier transform of the spatial

correlation coefficient given in Eq. 2.10 to the squared magnitude of the 3D

spatial Fourier transform of a realization γ(r′) [37]. For a 3DZM, the power

spectrum for the random process {γ(r′)} can be estimated using a 3DZM us-

ing the spectral estimator in Eq. 3.3. If the random process is anisotropic, it

is necessary to extract the line from this 3D power spectral estimate that cor-

responds to the incident ultrasound wave propagation direction. Otherwise,

if the random process is isotropic, radial averaging can be used to estimate

the function S(2k) from Eq. 2.12. Currently, 3DZMs are processed using the

method described in this section as 3DZM method #1 [16–18, 20].

3.4.3 3DZM method #2

Instead of directly estimating the power spectrum using the method described

above, the 3DZM can be used to estimate the correlation coefficient using

Eq. 3.1. The power spectrum can then be estimated using the discrete

Fourier transform. Similar to above, if the random process is anisotropic,

it is necessary to extract the line from the discrete Fourier transform that

corresponds to the corresponding incident ultrasound propagation direction.

Otherwise, if the random process is isotropic, radial averaging can be used

to estimate the rotationally symmetric function b(∆r) in Eq. 2.12.

3.4.4 2DZM method #1 for isotropic media

Given an isotropic random process in 3D with correlation coefficient b(∆r),

this isotropic random process will have the same correlation coefficient in

a 2D space [38]. Based on this fact, the following process can be used to

estimate the 3D power spectrum in Eq. 2.13 and ultimately the BSC:

1. The correlation coefficient was estimated for 2D slices using Eq. 3.2.

If more than one slice was available for the analysis, the resulting cor-

relation coefficients were averaged together. The result was a 2D cor-

relation coefficient.
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2. Radial averaging was performed on the 2D correlation coefficient to

obtain a 1D correlation coefficient.

3. The estimated correlation coefficient was substituted into Eq. 2.12

to estimate the BSC. Numerical integration was used to evaluate the

integral of Eq. 3.2.

3.4.5 2DZM method #2 for isotropic media

For an isotropic random process in 3D, Waag et al. proposed the following

process for estimating the 3D power spectrum from the 2D power spectrum

[15]:

1. The power spectrum in a 2D space was estimated using the discrete

Fourier transform in Eq. 3.4. If more than one slice was available

for the analysis, the resulting power spectra were averaged together to

produce a single 2D power spectral estimate.

2. Radial averaging was performed on the 2D power spectrum to obtain

a 1D power spectrum.

3. The relationship for the 2D inverse Fourier transform in Table 3.3,

which relates the 2D power spectrum to the correlation coefficient was

used to estimate the correlation coefficient.

4. The relationship for the 3D forward Fourier transform in Table 3.3,

which relates the 3D power spectrum to the correlation coefficient, was

used to estimate the 3D power spectrum.

The disadvantage of this method compared to 2DZM method #1 is that the

correlation coefficient estimated from the power spectrum can be estimated

directly without first estimating the 2D power spectrum. There is no need

to first estimate the power spectrum of the slices if the correlation coefficient

from slices can be estimated without estimating the power spectrum. For

this reason, 2DZM method #1 is preferred over 2DZM method # 2.
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3.4.6 2DZM method #3 for isotropic media

For an isotropic random process in 3D, Waag et al. proposed the following

process for estimating the 3D power spectrum from the 2D power spectrum

[15]:

1. Convert the 2D power spectrum into a power spectrum of scattering in

a 1D space using Eq. 3.12. This step can be accomplished by summing

the vertical coordinates for each horizontal coordinate in the 2D power

spectrum.

2. Convert the 1D power spectrum into a 3D power spectrum using Eq.

3.15

In this 2DZM method, the analysis takes place entirely in the frequency

domain. When using this method, a correlation coefficient estimate is never

estimated. In addition, this method relies on numerical differentiation, a step

that can amplify noise. For these reasons, 2DZM method #1 is preferred over

2DZM method #3.

3.4.7 2DZM method for transverse isotropic media

The following process can be used to estimate the 1D and 2D power spectra

needed to evaluate Eq. 3.4. Extract 2D slices from the medium that are in

the same plane as the r2-r3 plane as shown in Fig. 3.7. The propagation

direction for the ultrasound should be in the r2-r3 plane. The 2D correlation

coefficient and 2D power spectrum can be estimated based on these slices to

obtain estimates for bγ,2 and Sγ,2 in Eqs. 2.14 and 2.15 . Next, the variation

along the r1 plane needs to be characterized and can be accomplished in

several different ways. For example, the correlation coefficient along the r1

axis can be estimated by studying sequential slices. As an alternative, the

medium can be assumed to be constant along the r1 axis so that bγ,1(∆r1) = 1

and Sγ,1(kx) = δ(kx). The 2D power spectrum can be estimated using the

squared magnitude of the 2D spatial Fourier transform as given in Eq. 3.4.

It should be noted that converting between power spectra of different di-

mensions is not necessary when examining a transverse isotropic medium.

The power spectra that need to be estimated from Eq. 3.4 are a 1D and
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Figure 3.7: Scattering geometry for transverse isotropic medium.

a 2D power spectrum. The required 2D power spectrum can be estimated

from a 2D slice and the required 1D power spectrum by examining sequential

slices or by making assumptions about the medium.

The transverse isotropic ZM method is useful for tissues such as muscle or

nerve, which exhibit cylindrical structure. When conducting 2DZM analysis

in this case, the goal would be to cut the tissue in the transverse direction

to the cylindrical structures. Using 2DZM analysis of these cross sections

would then provide estimates for the 2D power spectrum in Eq. 3.4.

3.4.8 Conclusions

There are two fundamental approaches to analyzing ZMs. In the first ap-

proach, the squared modulus of the Fourier transform is used to estimate the

power spectrum of a random process. Estimation of the correlation function

is not needed in this approach. In the second approach, the correlation func-

tion for the random process is estimated first and then used to estimate the

power spectrum.

3DZM analysis can be conducted using either of the described approaches.

2DZM analysis of isotropic media can be conducted using the second ap-

proach. 2DZM analysis of transverse isotropic media can be conducted using

either of the described approaches.
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CHAPTER 4

SIMULATIONS

In the first section of this chapter, methods for packing scatterers inside a

volume are discussed. Next, the structure function with container was vali-

dated using simulations. In the later sections, the 2DZM computational tool

was validated using simulations. Each simulation was designed to answer

a specific question related to ZM analysis. Practical issues related to ZM

analysis include the role of ZM size and regularly spaced slices in estimat-

ing correlation coefficient and power spectrum. The simulated media had a

known correlation coefficient and power spectrum, and therefore it was pos-

sible to study ZM performance by comparing the correlation coefficient and

power spectrum estimated using a ZM to a ground truth.

4.1 Scatterer packing

Several methods exist for filling a specified volume with discrete scatter-

ers (e.g., spheres) such that the scatterers do not overlap with each other.

Two classes of methods exist for performing this task, including equilibrium

methods and non-equilibrium methods [39]. Equilibrium methods sample the

scatterer configuration space in a uniform manner, such that the probability

distribution for the scatterer configurations is uniform. For non-equilibrium

methods, the probability distribution for the scatterer configurations is not

uniform and some configurations are preferred over others.

The random sequential absorption algorithm (RSA) is a non-equilibrium

method that consists of sequentially attempting to place a scatterer in a

specified volume. If the scatterer being placed overlaps with any existing

scatterers in the volume, that position is rejected. Otherwise, that position

is accepted and the scatterer is placed in the volume. This sequential addition

of scatterers repeats until the specified number of scatterers have been placed
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in the volume. Scatterers placed using the RSA algorithm are frozen in place

once they have been placed and do not diffuse to make room for the placement

of other scatterers. For this reason, RSA reaches a saturation limit that is

significantly lower than equilibrium methods. For monodisperse hard spheres

in 3D, the maximum achievable volume fraction using RSA is approximately

38% [40].

The most commonly used equilibrium method for placing scatterers is the

Metropolis algorithm, which is described below [39].

1. An initial configuration of scatterer positions in a specified volume is

generated without regard to whether scatterers are overlapping. The

energy of the configuration is computed.

2. A scatterer is displaced along each axis by amounts governed by a

uniform distribution [-δ, δ], where δ is the maximum step size. The

energy of the new configuration is computed. If the new energy is

smaller than the old energy, the move is accepted. If the new energy

is larger than the old energy, the move is accepted according to an

exponential distribution that depends on the energy change.

3. Each scatterer is moved sequentially in this manner, accepting or re-

jecting the move according to the previous rule.

4. This process is repeated until an equilibrium state is achieved and no

scatterers overlap each other.

For the Metropolis algorithm, the maximum achievable volume fraction is

approximately 64% in 3D for monodisperse spheres [40]. An example of a

cross section from a volume that was filled with spheres using the Metropolis

algorithm is in Fig. 4.1.

Two methods for placing non-overlapping scatterers such as spheres were

reviewed in this section, including RSA and the Metropolis algorithm. The

Metropolis algorithm was used in this work because it is an equilibrium

method. Associated with the way that scatterers are placed in a volume is

a pair correlation function in the spatial domain and a structure function in

the spatial frequency domain. Non-overlapping monodisperse spheres placed

using an equilibrium method will be governed by the PY pair correlation

function and structure function. If the spheres were placed such that overlap
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Figure 4.1: Example cross section from a collection of spheres with 45%
volume fraction. White indicates a value of one and black indicates a value
of zero.
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was acceptable, the IP pair correlation function would apply. The Metropolis

algorithm will be used in future sections to validate the structure function

with container model and to simulate media to demonstrate that the 2DZM

method works for dense collections of objects.

4.2 Validation of structure function with container

Simulations were used to test the structure function with container model.

Four simulations were used to validate this model, including cube container

with IP, sphere container with IP, cube container with non-overlapping spheres,

and sphere container with non-overlapping spheres. Once validated using

simulations, the model can be used to predict structure function behavior

for different model parameters, such as container size, shape, and pair corre-

lation function.

4.2.1 Description of simulations

Cube container and independent positions

The scatterer spacing probability distribution p(∆r) in Eq. 2.45 assuming

IP scatterers and a cube container having side length L = 1.0 was estimated

in the following manner. A total of 104 scatterer positions inside the cube

container were selected randomly and independently. In other words, each

coordinate for each scatterer position in 3D space was generated using a

continuous uniform random number generator with range [0, 1]. The spac-

ing between each scatterer position and every other scatterer position was

computed. Because there were 104 scatterer positions, there were a total

of 104(104 − 1) scatterer spacings that were computed. Using this collec-

tion of scatterer spacings, kernel density estimation was used to estimate

the scatterer spacing probability distribution, p(∆r). This simulation was

repeated ten times and the average of the set of scatterer spacing probabil-

ity distributions was found. The model of the scatterer spacing probability

distribution for this simulation was given by Eq. 2.50, where the IP pair cor-

relation function g(∆r) = 1 and the cube container autocorrelation function

Wcube(∆r) = tri
(

∆x
L

)
tri
(

∆y
L

)
tri
(

∆z
L

)
were used.
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Sphere container and independent positions

The described process for simulating the scatterer spacing probability distri-

bution p(∆r) assuming IP and a cube container was repeated for a sphere

container with diameter L = 1.0. A total of 104 scatterer positions inside

the sphere container were selected randomly and independently. Rejection

sampling was used to sample scatterer positions inside the sphere container.

Similar to the cube container simulation, each coordinate for each scatterer

position in 3D space was generated using a continuous uniform random num-

ber generator with range [0, 1]. The scatterer position was discarded if it was

outside of the sphere container and retained if it was inside the sphere con-

tainer. Using the collection of scatterer spacings, kernel density estimation

was used to estimate the scatterer spacing probability distribution, p(∆r).

This simulation was repeated ten times and the collection of scatterer spacing

probability distributions were averaged. The model of the scatterer spacing

probability distribution for this simulation was given by Eq. 2.50, where the

IP pair correlation function g(∆r) = 1 and the sphere container autocor-

relation function Wsphere(∆r) = 1 − 3∆r
4(L/2)

+ ∆r3

16(L/2)3
, 0 ≤ ∆r ≤ L, were

used.

Cube container and non-overlapping spheres

The scatterer spacing probability distribution p(∆r) in Eq. 2.45 for a cube

container with side length L = 1.0 and using the PY structure function, i.e.,

non-overlapping spheres, was estimated in the following manner. Spherical

scatterers having radius a = 0.05 were placed in a cube container using the

Metropolis algorithm [39]. A total of 573 spheres were placed in the cube

container for a volume fraction of 30%. The simulation produced a set of

scatterer positions associated with each of the spherical scatterers in the vol-

ume. The spacing between each scatterer position and every other scatterer

position was computed. Because there were 573 scatterer positions, a total

of 573(573 − 1) = 327, 756 scatterer spacings were computed. Using the

collection of scatterer spacings, kernel density estimation was used to esti-

mate the scatterer spacing probability distribution, p(∆r). This simulation

was repeated 1000 times and the collection of scatterer spacing probability

distributions were averaged. The model of the scatterer spacing probability
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distribution for this simulation was given by Eq. 2.50, where the PY pair

correlation function shown in Fig. 2.4 (c) and the cube container autocorre-

lation function were used.

Sphere container and non-overlapping spheres

The described process for simulating the scatterer spacing probability distri-

bution p(∆r) assuming the PY structure function and a cube container was

repeated for a sphere container with diameter L = 1.0. In this case, spherical

scatterers were simulated inside a cube container with side length L = 1.0.

Once the Metropolis algorithm stopped, the scatterer positions outside a

sphere having diameter L = 1.0 were discarded. Using the collection of scat-

terer spacings, kernel density estimation was used to estimate the scatterer

spacing probability distribution, p(∆r). This simulation was repeated 1000

times and the collection of scatterer spacing probability distributions were

averaged. The model of the scatterer spacing probability distribution for this

simulation was given by Eq. 2.50, where the PY pair correlation function

shown in Fig. 2.4 (c) and the sphere container autocorrelation function were

used.

4.2.2 Simulation results

Cross sectional views of the scatterer spacing distribution p(∆r) for IP as-

suming a cube container for model and simulation are in Figs. 4.2 (a) and

(c), respectively. When using a sphere container, the resulting cross sectional

views for model and simulation are in Figs. 4.2 (b) and (d), respectively. The

error between the modeled and simulated distributions is

error = pmodel(∆r)− psimulation(∆r). (4.1)

The error between the model and simulation scatterer spacing probability

distribution is in Fig. 4.3. The root-mean-square error (RMSE) was found

between the model and simulation probability distributions. The error in the

simulated scatterer spacing probability distribution depends on the number

of scatterer spacings used to estimate the scatterer spacing probability dis-

tribution. Therefore, the RMSE is a function of the number of scatterer
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spacings included in the analysis. If the modeled probability distribution

is correct, the simulated probability distribution RMSE should converge to

zero as the number of scatterer spacings in the analysis increases. The RMSE

curves for the IP spacing probability distributions are in Fig. 4.4.

Figure 4.2: Example cross sections from the scatterer spacing probability
distribution assuming IP. Modeled probability distributions for the (a) cube
and (b) sphere containers. Estimated probability distributions for the (c)
cube and (d) sphere containers. The cube container had side length L = 1.0
and the sphere container had diameter L = 1.0.
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Figure 4.3: Error between modeled and simulated scatterer spacing
probability distributions for (a) cube and (b) spherical containers assuming
the IP pair correlation function.

Figure 4.4: RMSE between modeled and simulated scatterer spacing
probability distributions for cube and spherical containers assuming the IP
pair correlation function. The RMSE is given as a function of the number
of scatterer spacings included in the simulation analysis. The number of
scatterer spacings can be increased by including more spheres in the
simulation or by averaging results from independent simulations.
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Examples of cross sections of the scatterer spacing distribution p(∆r) for

the PY pair correlation function assuming a cube container for the model and

simulation are in Figs. 4.5 (a) and (c), respectively. When using a sphere

container, resulting example cross sections for model and simulation are in

Figs. 4.2 (b) and (d), respectively. The error defined in Eq. 4.1 between

the model and simulation scatterer spacing probability distribution is in Fig.

4.6. The RMSE between model and simulation is shown as a function of the

number of scatterer spacings included in the simulation in Fig. 4.7.

4.2.3 Discussion

For the IP scatterer spacing probability distribution, visual inspection be-

tween the model and simulation results in Fig. 4.2 showed good agreement

for the cube and sphere containers. The error between simulation and model

presented in Fig. 4.3 does not show a systematic source of error. The error

between model and simulation decreased as a function of the distance from

the origin. The scatterer spacing distribution also decreases in this manner,

so the error appears to be random noise that is proportional to the magnitude

of the probability distribution itself. The RMSE curves for the IP probabil-

ity distributions, shown in Fig. 4.4, suggest that the simulation probability

distribution was converging to the model probability distribution for both

cube and sphere containers. These results suggest that for the case of IP, the

suggested model probability distribution and associated structure function

with container effect models are valid.

For the PY pair correlation function scatterer spacing probability distribu-

tions, visual inspection between the model and simulation in Fig. 4.5 shows

good agreement for the cube and sphere containers. However, there were

some discrepancies between model and simulation that appeared when ex-

amining the error between model and simulation as shown in Fig. 4.6. For

the case of a cube container, discrepancies existed on-axis where the model

probability distribution had magnitude value below the simulation proba-

bility distribution (i.e., a negative error value). In addition, for both cube

and sphere containers, discrepancies existed between model and simulation

near the scatterer spacing radial value ∆r = 2a, where a is the radius of

the spherical scatterers. These errors indicated that the model probability
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Figure 4.5: Example cross sections from the scatterer spacing probability
distribution assuming IP. Modeled probability distributions for the (a) cube
and (b) sphere containers. Estimated probability distributions for the (c)
cube and (d) sphere containers. The cube container had side length L = 1.0
and the sphere container had diameter L = 1.0. The spherical scattering
objects had radius a = 0.05.
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Figure 4.6: Error between modeled and simulated scatterer spacing
probability distributions for (a) cube and (b) spherical containers assuming
the PY pair correlation function.

Figure 4.7: RMSE between modeled and simulated scatterer spacing
probability distributions for cube and spherical containers assuming the PY
pair correlation function. The RMSE is given as a function of the number
of scatterer spacings included in the simulation analysis.
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distribution had magnitude value greater than the simulation probability dis-

tribution (a positive error value). The RMSE curves for the PY correlation

function probability distributions, shown in Fig. 4.7, shows that the simu-

lation probability distribution was not converging to the model probability

distribution for both cube and sphere containers. However, the error between

the model and simulation probability distributions was small. The PY pair

correlation function is an approximation for the pair correlation function pro-

duced by using an equilibrium method to fill a volume with non-overlapping

spheres. Therefore, the error between the model and simulation may be due

to this approximation. The proposed model still offers a good approxima-

tion for the actual probability distribution produced for a volume containing

non-overlapping spheres.

When modeling BSCs from dense media, it is important to account for

the structure function; otherwise, error will be introduced into the param-

eter estimates. However, it should also be noted that when using the PY

structure function to model BSCs, the fact that the PY structure function is

an approximation also introduces errors in the parameter estimates.

4.2.4 Conclusion

The simulations in this section serve as validation for the structure func-

tion with container effects. Excellent agreement (RMSE: 1%) was observed

between model and simulation scatterer spacing distribution for the case of

IP and cube and sphere containers. Good agreement (RMSE: 3%) between

model and simulation was observed in the case of the PY pair correlation

function. This model could be used to study the effect of a container on ZMs

or the effect of a focal region on BSC estimation.

4.3 2DZM simulations of sparse isotropic media

The primary goal of the simulation studies in this section was to verify that

2DZMs can be used to estimate correlation coefficients and power spectra

with low error for sparse collections of objects. The correlation coefficient

and 3D power spectrum of the media studied in this section have simple

shapes as shown in Fig. 4.8 and provide an excellent starting point for
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demonstrating that the 2DZM method works. Because the simulated ZMs

had known correlation coefficients and power spectra, they could be used to

assess error when using 2DZMs to estimate these quantities. The studies

were also designed to offer practical guidance for 2DZM analysis, including

ZM size, spacing, and section thickness.

Figure 4.8: (a) Correlation coefficient and (b) power spectrum for a
collection of sparse monodisperse spheres.

For a typical tissue, each histological section contains many scattering

object cross sections. These objects could be cells, ductal structures, nerve

bundles, muscle fibers, etc. The error of the correlation coefficient and power

spectral estimates is related to the number of object cross sections included

in the analysis. The error of these estimates will decrease as the number

of object cross sections included in the analysis increases and increase as

the number of object cross sections decreases. Therefore, 2DZM size should

be made as large as possible. However, the tissue of interest may not be

stationary and it may be desirable to spatially localize the analyzed tissue

properties. Therefore, it also desirable to make the 2DZM size as small

as possible. Simulations can be used to determine how many object cross

sections need to be included in a 2DZM analysis to obtain tissue correlation

coefficient and power spectral results having low error.

Two methods were explored for reducing error when using 2DZMs to es-

timate correlation coefficients and power spectra representing 3D volumes.

The first method was to increase the physical size of the 2DZM. Increasing

the physical size of the 2DZM increases the number of object cross sections
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included in the ZM analysis, leading to power spectral estimates with re-

duced error assuming that the properties of the objects in the cross section

are uniform.

The second method for reducing error was to increase the number of

2DZMs that were extracted from the volume. Each 2DZM was used to in-

dependently estimate the correlation coefficient and the resulting correlation

coefficients were averaged before being used to estimate the power spectrum.

When sectioning a tissue for 3DZM analysis, the slices are successively cut

from the tissue and have regular spacings, suggesting that slices extracted

at regular spacings be studied for 2DZM analysis. Furthermore, analyzing

2DZMs that intersect different sets of objects as shown in Fig. 4.9 (a) is equiv-

alent to increasing the size of the 2DZM. Averaging correlation coefficients

from slices that intersect different objects discards information about the po-

sitions of objects relative to each other. For regularly spaced slices having

separation less than the object diameter, information about relative object

positions will be present in the estimated correlation coefficients. Therefore,

the regularly spaced slices were extracted from a layer of the volume that

had thickness on the order of the size of the scattering objects as shown in

Fig. 4.9 (b). Increasing the regularly spaced slice density in this manner

is different from increasing the physical size of the 2DZM, because adjacent

2DZMs have similar cross sections.

4.3.1 Description of simulations

For the first set of simulations, two-phase media were constructed by placing

discrete scatterers (i.e., spheres, ellipsoids) into volumes. The simulated

volumes were two-phase media; i.e., the background had a value of zero

and the inside of the object had a value of one. The collection of spheres in

Fig. 4.10 (a) and the collection of randomly oriented ellipsoids in Fig. 4.10

(b) are examples of isotropic media. The sparse two-phase media simulate a

biological medium filled with one scattering structure (e.g., cell, cell nucleus,

duct, nerve bundle, muscle fiber, etc.) and when the scattering structures

were sparsely located.

The centers of the objects were sparsely located and had a separation

distance of at least twice the largest diameter of the object. The purpose of
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Figure 4.9: Two-dimensional side view of several collections of spheres.
Spheres are depicted as black circles and slices as gray lines. (a) Three
regularly spaced slices having spacing greater than the sphere diameter
causing the object cross sections in adjacent slices to be unrelated. (b)
Three regularly spaced slices having spacing less than the sphere diameter
causing the object cross sections in adjacent slices to be related.

Figure 4.10: (a) Collection of randomly located spheres and (b) collection
of randomly located and randomly oriented ellipsoids in isotropic media.
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this separation criterion was that the correlation coefficient in the lag range

0 ≤ ∆r ≤ 2a, where a was the largest radius for the object, consisted of

the sum of the correlation coefficients for each individual object. In other

words, correlation coefficient values resulting from the interaction between

different objects only existed at lag ranges greater than 2a. Therefore, it

was possible to set the correlation coefficient to 0.0 for the range ∆r > 2a to

eliminate interaction effects between the objects. The separation criteria for

monodisperse spheres are in Fig. 4.11.

These simulation studies were used to determine the effectiveness of the

two described methods for reducing the error in 2DZM correlation coefficient

and power spectrum estimates. Volumes containing different numbers of

objects were simulated. To study the effect of physical 2DZM size on power

spectral estimates, the size of the simulated 2DZM was expanded to increase

the number of objects included in the analysis. Initially, a single slice was

extracted from the volume. To study the effect of regularly spaced slice

density, the analysis was repeated using different numbers of regularly spaced

slices that were drawn from a layer in the volume having the same thickness as

the diameter of the objects. Therefore, each simulation volume was generated

by specifying an average number of objects per slice (physical 2DZM size) and

an average number of regularly spaced slices per object (regularly spaced slice

density). The number of objects per slice was varied in the range {1, 2, ..., 50}
and the number of regularly spaced slices per object was varied in the range

{1, 3, 5}. For each 2DZM size and regularly spaced slice density combination,

a total of 50 simulation volumes were generated to produce 50 correlation

coefficient and power spectral estimates.

For this type of medium, the correlation coefficient and power spectra

could be found for each individual scatterer and then averaged to find the

correlation coefficient and power spectral estimates for the collection. Pro-

cessing the correlation coefficient and power spectra in this way eliminates

the effects of the object locations (i.e., structure function and container ef-

fects). The performance of the 2DZM could then be studied based on the

number of objects included in the analysis without regard to the effects of

the object spatial locations. Therefore, any discrepancy between correlation

coefficient and power spectrum and its respective theoretical curve would be

due to the 2DZM processing method and not to scattering object interaction
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Figure 4.11: Illustration of the separation criteria for collections of sparse
monodisperse spheres. The black circles represent the spherical scatterers
with radius 0.5. The dashed circles are bounding spheres for the spherical
scatterers and had radius 1.0. The bounding spheres for the spherical
scatterers were not allowed to overlap so that the minimum separation
distance between the sphere centers was 2.0. The gray line represents the
2DZM extracted from the volume.
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effects.

Collections of monodisperse spheres having radius 0.5 were simulated as

shown in Fig. 4.11. A correlation coefficient was estimated for each 2DZM

and then radially averaged to form a 1D function of spatial lag and used

in the numerical evaluation of Eq. 2.12. In the case of multiple 2DZMs,

a correlation coefficient was estimated for each 2DZM and the correlation

coefficients were averaged to form a single 2D correlation coefficient before

radial averaging. Performance was quantified using the RMSE between the

simulation estimated curves and the theoretical curves.

Simulations of monodisperse spheres are a standard example when explor-

ing new methods for studying acoustic scattering. However, real tissues are

more complex than monodisperse spheres, so it is important to examine the

behavior of 2DZMs when analyzing more complex media. Collections of ran-

domly oriented ellipsoids having radii 0.5, 0.4, and 0.3 were simulated as

shown in Fig. 4.12. The correlation coefficient and power spectrum were

processed in the same way as for the sphere collection simulations. Per-

formance was quantified using the RMSE between the simulation estimated

curves and the theoretical curves. The correlation coefficient for a collection

of randomly oriented and monodisperse ellipsoids is a linear combination of

spherical correlation coefficients

bellipsoid(∆r) =

∫ 2π

0

∫ π

0

a3
θ,φbsphere(∆r, aθ,φ)dφdθ (4.2)

where bsphere(∆r, a) is the correlation coefficient for a sphere with size a,

aθ,φ is the radius of the ellipsoid for the given spherical coordinate angles,

and bellipsoid(∆r) is the correlation coefficient for the collection of randomly

oriented ellipsoids. The power spectrum is found by taking the Fourier trans-

form of the correlation coefficient in Eq. 4.2. The primary goal of these sim-

ulations was to study the performance of the 2DZM method for an isotropic

medium having scatterers with non-uniform shape.

In addition to having non-spherical shape, the scatterers in real tissues of-

ten have varying sizes. Therefore, collections of polydisperse spheres having

radii governed by a uniform distribution with minimum of 0.4 and maximum

of 0.5 were simulated as shown in Fig. 4.13. The correlation coefficient and

power spectrum were processed in the same way as for the sphere collection
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Figure 4.12: Illustration of the separation criteria for collections of sparse
monodisperse ellipsoids. The black circles represent the ellipsoidal
scatterers. Notice how the ellipsoids are not aligned in the same direction.
The ellipsoids had radii (0.3, 0.4, 0.5). The dashed circles are bounding
spheres for the ellipsoidal scatterers and had radius 1.0 (twice the
maximum ellipsoidal scatterer radius). The bounding spheres were not
allowed to overlap so that the minimum separation distance between the
ellipsoid centers was 2.0. The gray line represents a 2DZM extracted from
the volume.
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simulations. Performance was quantified by comparing the theoretical power

spectrum for a collection of polydisperse spheres with the 2DZM power spec-

tral estimates [22]. The correlation coefficient for a collection of polydisperse

spheres, i.e., each scatterer has the same shape but different size, is a linear

combination of spherical correlation coefficients

bpd−spheres(∆r) =

∫
a3p(a)bsphere(∆r, a)da (4.3)

where bsphere(∆r, a) is the correlation coefficient for a sphere with size a,

p(a) is the probability distribution governing sphere sizes, the integration

is over the support of this probability distribution, and bpd−spheres(∆r) is

the correlation coefficient for the polydisperse collection of spheres. The

power spectrum for a collection of polydisperse spheres is found by taking

the Fourier transform of the correlation coefficient in Eq. 4.3. The primary

goal of these simulations was to study the performance of the 2DZM method

for an isotropic medium having scatterers with non-uniform shape.

When creating histological slices from a tissue, the slides have finite thick-

ness and this thickness affects the results of the ZM analysis. In order to

study the effect of ZM slice thickness on the processing of 2DZMs, the simu-

lations were repeated using a finite slice thicknesses of 10% of the maximum

diameter of the scatterer (i.e., 0.05 in all cases). The cross section was pro-

duced by extracting a 3DZM having y- and z-dimensions of the 2DZM and

x-dimension equal to the slice thickness. Next, the 3DZM was projected

to form a 2DZM by taking the maximum value along the x-axis. In this

way, the largest radius contained in the sphere cross section was obtained.

After creating 2DZMs, processing proceeded the same as with the normal

sphere collection simulations. These thickness simulations were studied for

monodisperse and polydisperse spheres.

4.3.2 Simulation results

Monodisperse spheres

Figures 4.14 and 4.15 present examples of estimated correlation coefficients

and power spectra for different configurations of object cross sections per

70



Figure 4.13: Illustration of the separation criteria for collections of sparse
polydisperse spheres. The black circles represent the spherical scatterers.
The spherical radii were governed by a uniform distribution with minimum
of 0.4 and maximum of 0.5. The dashed circles are bounding spheres for the
spherical scatterers and had radius 1.0 (twice the maximum spherical
scatterer radius). The bounding spheres for the spherical scatterers were
not allowed to overlap so that the minimum separation distance between
the sphere centers was 2.0. The gray line represents a 2DZM extracted from
the volume.
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slice and number of regularly spaced slices for collections of monodisperse

spheres. The power spectra were estimated using 2DZM method #1. A total

of 50 simulations for each 2DZM size and density configuration were used.

Figures 4.16 and 4.17 present examples of estimated correlation coefficients

and power spectra for different configurations of object cross sections per

slice and number of regularly spaced slices for collections of monodisperse

spheres, except that the slice thickness was set to 10% of the sphere diameter.

Figure 4.18 shows the RMSE for the estimated correlation coefficient as the

number of spheres included in the analysis was increased, i.e., the size of the

2DZM was increased. Figure 4.18 shows the RMSE for the estimated power

spectrum as the number of spheres included in the analysis was increased.

For the monodisperse sphere simulations, the results in Figs. 4.14 and

4.15 show that the 2DZM correlation coefficient and power spectral estimates

converged to their respective theoretical forms as the number of sphere cross

sections included in the analysis was increased by increasing either the num-

ber of regularly spaced slices or the number of spheres. Figure 4.14 (a) and

4.15 (a) clearly demonstrate the need for the present simulation. A collection

of randomly located spheres is an isotropic random process, so it should be

possible to estimate the correlation coefficient and power spectrum from this

random process using 2DZMs. However, the correlation coefficient and power

spectrum estimates based on one slice from a single sphere showed significant

error. In contrast, Fig. 4.14 (i) and 4.15 (i) demonstrate that the correlation

coefficient and power spectrum can be estimated using many slices from a

large collection of spheres. Analysis of Figs. 4.14 and 4.15 suggests that a

sufficient number of slices and/or scattering objects need to be included in

a 2DZM analysis to estimate the correlation coefficient and power spectrum

with low error. The goal of these simulations was to relate such 2DZM analy-

sis parameters to the error in the estimated correlation coefficient and power

spectrum.

Visual inspection of Figs. 4.14 and 4.15 indicates that the correlation

coefficient estimates converged more quickly to theory than did the power

spectral estimates. This result was also visible from Figs. 4.18 (a) and 4.19

(a), as the falloff in the RMSE curves was much steeper for the correlation

coefficients than for the power spectra. The RMSE curves for the correlation

coefficient estimates exhibited a region of rapid decline followed by a region of
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Figure 4.14: Estimated correlation coefficients for monodisperse spheres
when using (a, b, c) one regularly spaced slice, (d, e, f) three regularly
spaced slices, (g, h, i) five regularly spaced slices, (a, d, g) 1 object cross
section per slice, (b, e, h) 15 object cross sections per slice, and (c, f, i) 30
object cross sections per slice. The dashed line represents the theoretical
correlation coefficient. Each solid line represents one of 50 simulations.
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Figure 4.15: Estimated power spectra for monodisperse spheres when using
(a, b, c) one regularly spaced slice, (d, e, f) three regularly spaced slices, (g,
h, i) five regularly spaced slices, (a, d, g) 1 object cross section per slice, (b,
e, h) 15 object cross sections per slice, and (c, f, i) 30 object cross sections
per slice. The dashed line represents the theoretical power spectrum. Each
solid line represents one of 50 simulations.
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Figure 4.16: Estimated correlation coefficients for monodisperse spheres
when using a slice thickness of 10% of the sphere diameter and when using
(a, b, c) one regularly spaced slice, (d, e, f) three regularly spaced slices, (g,
h, i) five regularly spaced slices, (a, d, g) 1 object cross section per slice, (b,
e, h) 15 object cross sections per slice, and (c, f, i) 30 object cross sections
per slice. The dashed line represents the theoretical correlation coefficient.
Each solid line represents one of 50 simulations.
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Figure 4.17: Estimated power spectra for monodisperse spheres when using
a slice thickness of 10% of the sphere diameter. Presentation is the same as
Fig. 4.16.
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Figure 4.18: RMSE for estimated correlation coefficients for monodisperse
spheres. Using a slice thickness of (a) 0% (i.e., a perfect cross-section
through the 3DZM) and (b) 10% of object diameter.
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Figure 4.19: RMSE for estimated power spectra for monodisperse spheres.
Using a slice thickness of (a) 0% (i.e., a perfect cross-section through the
3DZM) and (b) 10% of object diameter.
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slow decline. The division in 2DZM size between the region of rapid and slow

decline for the correlation coefficient was approximately 15 spheres. Only

marginal decreases in RMSE were observed by adding additional spheres.

The described region of rapid decline was not as pronounced for the power

spectrum as it was for the correlation coefficient. However, the RMSE in

the power spectral estimates showed appreciable decay by including up to

30 spheres in the analysis. Only marginal reductions in RMSE error were

observed by increasing the 2DZM size further. A significant source of error

in the power spectral estimates shown in Fig. 4.15 was the nulls in the

theoretical power spectrum. These nulls could be the reason why the 2DZM

needed to be larger when estimating the power spectrum compared to the

correlation coefficient.

The RMSE curves for the correlation coefficient in Fig. 4.18 (a) indicated

that significant reductions in error were possible by increasing the number of

regularly spaced slices included in the analysis. For example, it was possible

to reduce the RMSE in the correlation coefficient estimate by approximately

40% when using three regularly spaced slices instead of one slice from a single

sphere. To achieve the same error reduction when using one regularly spaced

slice, a total of six spheres had to be included in the analysis. It should be

noted that RMSE reduction from increasing the number of regularly spaced

slices decreased as the number of spheres in the analysis was increased. This

result suggests that the use of a small 2DZM size could be compensated for

by increasing the number of regularly spaced slices used in the analysis. A

related conclusion was that the use of regularly spaced slices has diminishing

returns as the physical size of the 2DZM size is increased.

The effect on the correlation coefficient and power spectral estimates of

using a slice thickness of 10% of the object diameter is shown in Figs. 4.16 and

4.17. For the correlation coefficient, the effect of the finite slice thickness was

that the correlation coefficient values were slightly larger than the expected

theoretical values. In other words, the correlation coefficients bulged in the

vertical direction relative to the theoretical correlation coefficient. However,

the spatial extent of the correlation coefficient did not change, i.e., the first

value when the correlation coefficient was zero was the same using 0% slice

thickness and 10% slice thickness. Increasing the slice thickness caused the

power spectrum nulls to shift slightly toward the origin, which is the same as

79



an increase in size in the spatial domain. Using a finite slice thickness causes

the circle cross sections to be larger than if zero thickness slices were used,

leading to a power spectral estimate with an inflated sphere size compared

to the actual sphere size. 3DZMs are also affected by slice thickness resulting

in biases in scatterer size estimates.

The effect on the RMSE for the correlation coefficient and power spectral

estimates when using a finite slice thickness is shown in Figs. 4.18 (b) and

4.19 (b). When using low numbers of objects, having a 10% object diameter

slice thickness actually exhibited smaller error compared to using a 0% slice

thickness. However, as the number of objects in the analysis was increased,

the error was larger when using a 10% compared to a 0% slice thickness.

In addition, the reduction in error when increasing the number of regularly

spaced slices was not as great when using 10% versus 0% slice thickness.

This result suggests that the effectiveness of using regularly spaced slices

was reduced significantly when increasing the slice thickness. The results in

Figs. 4.18 (b) and 4.19 (b) show that the RMSE converged to a constant

value as the number of objects increased. It was not possible to eliminate

this error by increasing the number of regularly spaced slices or the size of

the 2DZM.

The monodisperse sphere simulations demonstrated that the correlation

coefficient and power spectrum for a collection of spheres could be estimated

with low error from cross sections of the spheres. When estimating the cor-

relation coefficient, the 2DZM size should be made large enough to include

15 spheres. When estimating the power spectrum, the 2DZM size should

be made large enough to include 30 spheres. Using 2DZMs with at least

these numbers of objects means that the estimated correlation coefficient and

power spectrum will be in the region of slow RMSE decline. For monodis-

perse spheres, significant reductions in RMSE were achieved by increasing

the regularly spaced slice density. However, when even a small slice thickness

(10% of object diameter) was introduced, the advantages of using regularly

spaced slices largely disappeared.
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Polydisperse spheres

Figures 4.20 and 4.21 present examples of estimated correlation coefficients

and power spectra for different configurations of sphere cross sections per

slice and number of regularly spaced slices for collections of polydisperse

spheres. The radii of the spheres had uniform distribution in the range

[0.8, 1]. The power spectra were estimated using 2DZM method #1. A total

of 50 simulations for each 2DZM size and density configuration were used.

Similar to the monodisperse sphere simulations, the polydisperse sphere

simulation results in Figs. 4.20 and 4.21 show that the 2DZM estimated

correlation coefficient and power spectrum converged to their respective the-

oretical forms as the number of object cross sections included in the analysis

was increased. In contrast to monodisperse spheres, the power spectrum for

polydisperse spheres did not contain any nulls, which was a significant source

of error in the case of monodisperse spheres.

For the polydisperse spheres, the RMSE curves in Figs. 4.22 (a) and 4.23

(a) for the correlation coefficient and the power spectrum display a region

of rapid decline followed by a region of slow decline. For the correlation

coefficient and the power spectrum, the division between rapid and slow

decline in the RMSE was approximately 15 polydisperse spheres included in

the analysis. The region of rapid decline offered greater reductions in error

for the correlation coefficient compared to the power spectrum.

The gaps between the RMSE curves for both the correlation coefficient and

the power spectrum were slightly smaller than for monodisperse spheres,

indicating that increasing the number of regularly spaced slices was also

effective for reducing error in the case of polydisperse spheres. For example,

a reduction of 30% was possible in the error when using three regularly spaced

slices instead of one regularly spaced slice extracted from a single object.

Comparing the RMSE curves for the estimated correlation coefficients and

power spectra for the polydisperse spheres in Figs. 4.22 (a) and Figs. 4.23 (a)

to the RMSE curves for the monodisperse spheres, shows that the error was

greater for the collection of polydisperse spheres. This result was consistent

with expectations because more object cross sections need to be included

in the analysis to account for the randomness introduced by the probability

distribution that governed the scatterer size. These results suggest that for
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Figure 4.20: Estimated correlation coefficients for polydisperse spheres.
Presentation is the same as Fig. 4.14.
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Figure 4.21: Estimated power spectra for polydisperse spheres.
Presentation is the same as Fig. 4.14.
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Figure 4.22: RMSE for estimated correlation coefficients. Using a slice
thickness of (a) 0% (i.e., a perfect cross-section through the 3DZM) and (b)
10% of object diameter.
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Figure 4.23: RMSE for estimated power spectra for polydisperse spheres.
Using a slice thickness of (a) 0% (i.e., a perfect cross-section through the
3DZM) and (b) 10% of object diameter.
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an isotropic medium of discrete scatterers with large variance in scatterer

size, more objects need to be included in the analysis to achieve reductions

in error. In contrast, if the variance in scatterer size is small, fewer objects

need to be included in the analysis and increasing regularly spaced slices is

preferable for reducing error.

In contrast to the monodisperse sphere results, where the correlation co-

efficient was found to converge to the theoretical correlation coefficient at a

faster rate than the power spectrum converged to the theoretical power spec-

trum, the correlation coefficient and power spectrum for the polydisperse

spheres converged at similar rates. However, based on Figs. 4.20 and 4.21,

it was still apparent that the error in the correlation coefficient was smaller

compared to the estimated power spectrum.

Similar to the monodisperse sphere results, the RMSE curves in Figs. 4.22

(b) and 4.23 (b) for a slice thickness of 10% of the object diameter show that

increasing the slice thickness reduced the advantage of using regularly spaced

slices. In addition, when using a finite slice thickness, the RMSE converged to

a constant value that did not decrease when increasing the regularly spaced

sliced density or the 2DZM size.

The polydisperse sphere simulations demonstrated that correlation coeffi-

cient and power spectrum for a collection of spheres having non-uniform size

distribution could be estimated from cross sections of the spheres. When

estimating the correlation coefficient and the power spectrum for such a col-

lection, the 2DZM size should be made large enough to include 15 spheres.

Using 2DZMs with at least this numbers of objects means that the esti-

mated correlation coefficient and power spectrum will be in the region of slow

RMSE decline. For polydisperse spheres, significant reductions in RMSE

were achieved by increasing the regularly spaced slice density. However,

when a finite slice thickness was introduced, the advantages of using regu-

larly spaced slices largely disappeared.

Randomly oriented and monodisperse ellipsoids

Figures 4.24 and 4.25 present examples of estimated correlation coefficients

and power spectra for different configurations of object cross sections per

slice and number of regularly spaced slices for collections of monodisperse
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ellipsoids. The ellipsoids had radii [0.6, 0.8, 1.0]. The power spectra were

estimated using 2DZM method #1. A total of 50 simulations for each 2DZM

size and density configuration are represented.

The randomly oriented ellipsoid simulation results in Figs. 4.24 and 4.25

show that correlation coefficients and power spectra could be estimated for

non-spherical objects. Similar to the polydisperse sphere simulations, rapid

reductions in error were observed for the correlation coefficient and the power

spectrum by increasing the number of objects in the analysis. Similar to the

polydisperse spheres, multiple randomly oriented ellipsoids were needed to

estimate the correlation coefficient and power spectrum with low error.

The RMSE curves in Fig. 4.26 indicate that the division between rapid

and slow decline was 15 ellipsoids included in the analysis for the correlation

coefficient and the power spectrum. Including more ellipsoids in the analysis

offered only marginal reductions in RMSE. Increasing the size of the 2DZM

proved most beneficial for reducing RMSE in the case of the ellipsoids. Sim-

ilar to the polydisperse spheres, multiple randomly oriented ellipsoids need

to be included in the analysis to represent a collection of randomly oriented

ellipsoids.

In the region of rapid RMSE decline, significant reductions in RMSE were

achievable by increasing the regularly spaced slice density. In the region of

slow RMSE decline, minimal reductions in RMSE were achievable by increas-

ing the regularly spaced slice density.

The randomly oriented ellipsoid simulations demonstrated that correla-

tion coefficient and power spectrum for a collection of randomly oriented

and non-spherical objects could be estimated from cross sections of the ob-

jects. When estimating the correlation coefficient and the power spectrum

for such a collection, the 2DZM size should be made large enough to include

15 ellipsoids. Using 2DZMs with at least this number of objects means that

the estimated correlation coefficient and power spectrum will be in the region

of slow RMSE decline. For the ellipsoid collection, significant reductions in

RMSE were achieved by increasing the regularly spaced slice density, but

only in the region of rapid decline. Therefore, for these types of objects, in-

creasing regularly spaced slice density is not an effective strategy for reducing

RMSE.
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Figure 4.24: Estimated correlation coefficients for monodisperse and
randomly oriented ellipsoids. Presentation is the same as Fig. 4.14.
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Figure 4.25: Estimated power spectra for monodisperse and randomly
oriented ellipsoids. Presentation is the same as Fig. 4.14.
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Figure 4.26: RMSE for (a) estimated correlation coefficients and (b)
estimated power spectra for monodisperse and randomly oriented ellipsoids.
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4.3.3 General discussion of results

The results shown in Figs. 4.14-4.26 demonstrate that correlation coefficients

and power spectra can be estimated using 2DZMs for sparse isotropic media

consisting of discrete collections of objects. To minimize correlation coeffi-

cient and power spectrum error, the size of the 2DZMs and regularly spaced

slice density should be made as large as possible to maximize the number of

object cross sections included in the analysis. However, ZM size is limited

by tissue size and computational limitations. Slice density is limited by slice

thickness and by the financial cost of slice processing. The simulations in

this study can help to assess expected error for the slice size, spacing, and

thickness in a ZM analysis of real tissue.

The results from these simulations suggest the following guidelines for de-

termining the size of a 2DZM. Nearly all of the RMSE curves for correlation

coefficients and power spectra exhibited regions of rapid decline followed by

regions of slow decline when expanding the size of the 2DZM. Ideally, ZM

analysis would take place in the region of slow decline, as the correlation

coefficients and power spectra gradually converge to the actual quantities.

For the monodisperse spheres, the cutoff between rapid and slow decline in

RMSE was 15 and 30 spheres for the correlation coefficient and power spec-

trum, respectively. For the polydisperse spheres, the cutoff between rapid

and slow decline in RMSE was 15 spheres for both correlation coefficient and

power spectrum. For the randomly oriented ellipsoids, the cutoff between

rapid and slow decline was 15 ellipsoids for correlation coefficient and power

spectrum. Based on these simulations, it is suggested that at least 30 object

cross sections be included in a ZM to guarantee that the ZM is in the re-

gion of slow decline. Fewer objects need to be included in the analysis when

analyzing media that do not contain nulls in the power spectrum.

The results from these simulations suggest the following guidelines for using

regularly spaced slices. Note that increasing the regularly spaced slice density

cannot be accomplished by dividing a single 2DZM into smaller regions and

processing the collection of 2DZMs. To realize the observed reductions in

error, the slices need to be adjacent to each other at regularly spaced intervals

and from a slab of the tissue that has thickness less than the size of the

objects. The advantage of using regularly spaced slices was most pronounced

for the sphere simulations. Only minimal reductions were observed for the
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ellipsoid simulations. All of the simulations studied in this section suggest

that the advantages of increasing regularly spaced slice density decreased

as the number of objects in the analysis was increased. In other words,

the observed reduction in RMSE from increasing the regularly spaced slice

density was a function of 2DZM size and RMSE reduction decreased as the

2DZM size increased. This result was true for correlation coefficient estimates

and power spectral estimates.

The results from these simulations also suggest that the advantage of using

regularly spaced slices largely disappeared when using slices with thickness

on the order of 10% of the object diameter. If the histology sections are

greater than 10% of the radius of the suspected scattering objects in the

image, using regularly spaced slices is not an effective means to reduce er-

ror in the correlation coefficient and power spectral estimates. Finite slice

thicknesses distorted the sampling of the object cross sections and caused

the correlation coefficients and power spectra to overestimate the actual size

of the scattering objects. When estimating the scatterer size based on ZM

analysis, this distorting effect of the slice thickness on scatterer size estimates

needs to be kept in mind if the slice thickness is appreciable compared to the

estimated scatterer size. Based on these findings, it is suggested that us-

ing regularly spaced slices in 2DZM analysis is not an effective method for

reducing RMSE in correlation coefficient and power spectral estimates.

The simulations in this section were conducted for collections of spheres

and ellipsoids having known sizes and the results were given in terms of those

sizes. In a real tissue ZM analysis the sizes of the objects in the medium are

unknown and need to be determined based on the ZM analysis. The simula-

tion results can still be applied to guide ZM analysis of an uncharacterized

medium if the first step is to use the correlation coefficient to estimate an ob-

ject size, â, using a model of choice. The simulation results are also presented

in terms of the number of object cross sections per slice. For a sparsely filled

medium of discrete objects, counting the number of object cross sections per

slice can be achieved through visual inspection of histology images or the

ZMs themselves. For example, it is straightforward to count the number of

cell nuclei in a histology image.
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4.3.4 Conclusions

The simulations in this section demonstrate that correlation coefficients and

power spectra can be estimated for 3D random processes consisting of collec-

tions of discrete objects through the analysis of 2D slices extracted from these

3D volumes. The simulations demonstrate that the 2D slices need to have a

sufficient size, i.e., the slices need to include a certain number of object cross

sections to estimate correlation coefficient and power spectra with low er-

ror. The simulations also demonstrate that even a small slice thickness (10%

of object diameter) significantly reduced the advantages of using regularly

spaced slices. Therefore, when looking to improve correlation coefficient and

power spectral estimates, the physical size of the 2DZM should be increased

instead of trying to analyze adjacent sections from the 2DZM. In general, the

results showed that 2DZMs were effective for studying 3D volume quantities

such as the correlation coefficient and power spectrum from the examined

random processes.

4.4 2DZM accuracy analysis of monodisperse spheres

A binary classification problem was studied in simulation using collections of

sparse monodisperse spheres to assess the accuracy of the 2DZM method in

a classification problem context. The first class consisted of spheres having

radius 100 µm and the second class consisted of spheres having radius 90

µm (10% difference). The goal of the simulation was to determine if 2DZM

analysis could be used to correctly assign an observation to its appropriate

class.

The simulation for the first class consisted of the following steps. A sin-

gle sphere with radius 100 µm was randomly placed to intersect a 2DZM

slice such that the 2DZM contained one sphere cross section. The correla-

tion coefficient and 3D power spectrum were estimated using this 2DZM and

scatterer size estimates were made using the correlation coefficient and using

the power spectrum. Next, a second sphere was randomly placed to inter-

sect the same 2DZM slice, such that the 2DZM contained two sphere cross

sections. The correlation coefficient and 3D power spectrum were estimated

using this 2DZM and scatterer size estimates were made using the correla-

tion coefficient and using the power spectrum. This process was repeated by
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successively adding a new sphere to the simulated 2DZM and estimating the

correlation coefficient, power spectrum, and scatterer size at each step. The

result consisted of two vectors of scatterer size estimates, one using the corre-

lation coefficient and the second for the power spectrum, given as a function

of the number of spheres included in the analysis. The first vector contained

scatterer sizes estimated using the correlation coefficient. The second vector

contained scatterer sizes estimated using the power spectrum. This simula-

tion was repeated for a total of 100 iterations. The simulation for the second

class consisted of the same steps as for the first class, except that the sphere

radius was 90 µm.

The sample data was sorted into the first or second class based on the

scatterer size estimate. If the estimated scatterer size was greater than 95

µm, the sample was sorted into the first class. If the estimated scatterer

size was less than 95 µm, the sample was sorted into the second class. This

decision rule was applied to the simulated data described above. Sensitivity,

specificity, and accuracy were calculated and are shown in Fig. 4.27 as a

function of the number of sphere cross sections included in the 2DZM. Class

one (100 µm) was taken to be a positive result and class two (95 µm) was

taken to be a negative result. Therefore, sensitivity indicated the fraction of

class one samples that were correctly assigned to class one. Specificity indi-

cated the fraction of class two samples that were correctly assigned to class

two. Accuracy represents the total number of samples that were correctly

classified divided by the total number of samples. Sensitivity, specificity, and

accuracy are frequently used to assess classifier performance [41].

Several observations can be made from the results shown in Fig. 4.27. Sen-

sitivity, specificity, and accuracy were higher when using the power spectrum

compared to using the correlation coefficient. This can be observed in Fig.

4.27, which shows that in general, the green line was higher than the blue

line. This finding suggests that the power spectrum was better for detecting

a difference in sphere size compared to the correlation coefficient.

Better performance was observed for specificity than for sensitivity. In

other words, the classifier did a better job of correctly classifying spheres

having smaller radius (90 µm) than it did when classifying spheres having

larger radius (100 µm). For example, the sensitivity was greater than 90%

when a 2DZM contained 11 or more sphere cross sections. The specificity was

greater than 90% when a 2DZM contained 3 or more sphere cross sections.
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Figure 4.27: Sensitivity, specificity, and accuracy as a function of the
number of sphere cross sections included in the 2DZM. The blue line
represents the results when using the correlation coefficient to estimate
scatterer size. The green line represents using the power spectrum to
estimate the scatterer size. It should be noted that a single 2DZM is being
used in this analysis and that an increase in the number of spheres
indicates an increase in 2DZM size.
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One possible explanation for this observation is that 2DZM analysis may

tend to slightly underestimate scatterer size. The decision rule used for

this analysis was rudimentary and it may be possible to improve sensitivity

by adjusting the threshold used to assign observations to a class without

sacrificing specificity.

The 2DZM required a small number of sphere cross sections to achieve

a high level of accuracy. For example, when using the power spectrum to

estimate scatterer size, accuracies of 90% and 95% were achieved when a

2DZM contained 8 and 10 sphere cross sections, respectively.

The average RMSE for the estimated correlation coefficients and power

spectra used in this simulation are shown in Fig. 4.28 as a function of the

number of sphere cross sections included in the 2DZM. Using these figures,

it is possible to relate sensitivity, specificity, and accuracy to RMSE. For

example, to achieve 95% accuracy when using the power spectrum to estimate

scatterer size, required a 2DZM with 10 sphere cross sections. The average

RMSE for the power spectrum when using 10 sphere cross sections was 1.5

dB.

In conclusion, the simulations in this section demonstrate that 2DZMs

could be used to accurately detect differences in sphere size. The power

spectrum was found to be more accurate than the correlation coefficient. Bet-

ter accuracy was achieved when classifying observations having the smaller

sphere size compared to the larger sphere size. Finally, a 2DZM needed to

contain a small number of sphere cross sections (10) to achieve high accuracy

(95%).

4.5 2DZM simulations of sparse anisotropic media

The primary goal of the simulation studies in this section was to demonstrate

that in some cases, the processing steps used to estimate correlation coeffi-

cients and power spectra for isotropic media are still applicable to anisotropic

media. Isotropy is a frequent assumption when studying scattering in bio-

logical media; however, this assumption will not always be valid with every

tissue. Having the ability to relax the assumption of anisotropy when ana-

lyzing 2DZMs would be a major advantage.
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Figure 4.28: RMSE for the correlation coefficient and power spectrum as a
function of the number of sphere cross sections included in the 2DZM.
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4.5.1 Description of simulations

The media that were studied in this section consisted of randomly located

and aligned ellipsoids with radii [0.3, 0.4, 0.5]. The ellipsoids were aligned so

that the major axis of any ellipsoid having radius 0.3 was along the z-axis.

The 2DZMs were sliced in the y-z plane. The goal was to use the 2DZMs to

estimate the scattering response from assuming the plane wave propagation

was parallel to the z plane. In this case, the shape of the scattering ampli-

tude is the same as that of a sphere having radius 0.3. The ellipsoids were

placed in the same way that the sparse objects in the previous section were

placed. Figure 4.29 demonstrates how the aligned monodisperse ellipsoids

were placed in the volume.

4.5.2 Simulation results

Figures 4.30 and 4.31 present examples of estimated correlation coefficients

and power spectra for different configurations of object cross sections per

slice and number of regularly spaced slices for collections of monodisperse

ellipsoids. The power spectra were estimated using 2DZM method #1. A

total of 50 simulations for each 2DZM size and density configuration are

represented.

The results in Figs. 4.30 and 4.31 demonstrate that the 2DZM method

could be used to estimate correlation coefficients and power spectra for an

anisotropic medium. This result is significant because it suggests that the

isotropy constraints applied to 2DZM method #1 may be relaxed when using

this method to estimate correlation coefficients and power spectra.

The RMSE curves in Fig. 4.32 suggest that increasing regularly spaced

slices was a good approach to reducing error for both the correlation coeffi-

cient and power spectrum. In addition, the RMSE curves exhibited a region

of rapid decline followed by a region of slow decline for correlation coefficient

and power spectrum. For the correlation coefficient, the region of rapid de-

cline was from 1 to 7 objects. For the power spectrum, the region of rapid

decline was from 1 to 10 objects. The advantages of using regularly spaced

slices was reduced as the number of objects in the analysis was increased.

The correlation coefficient clearly converged to its theoretical form at a

much quicker rate than did the power spectrum. Similar to the monodisperse
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Figure 4.29: Illustration of the separation criteria for collections of sparse
monodisperse and aligned ellipsoids. The black circles represent the
ellipsoidal scatterers. Notice how the ellipsoids are aligned in the same
direction. The ellipsoids had radii (0.3, 0.4, 0.5). The dashed circles are
bounding spheres for the ellipsoidal scatterers and had radius 1.0 (twice the
maximum ellipsoidal scatterer radius). The bounding spheres were not
allowed to overlap so that the minimum separation distance between the
ellipsoid centers was 2.0. They gray line represents a 2DZM extracted from
the volume.
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Figure 4.30: Aligned monodisperse ellipsoid simulations. Example
correlation coefficient estimates when using (a, b, c) one regularly spaced
slice, (d, e, f) three regularly spaced slices, and (g, h, i) five regularly
spaced slices. (a, d, g) 1 object cross section per slice, (b, e, h) 15 object
cross sections per slice, and (c, f, i) 30 object cross sections per slice. The
dashed line represents the theoretical correlation coefficient. Each solid line
represents one of 50 simulations.
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Figure 4.31: Aligned monodisperse ellipsoid simulations. Presentation is
the same as Fig. 4.30 except that estimated power spectra are shown
instead of correlation coefficients.
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Figure 4.32: RMSE for (a) estimated correlation coefficients and (b)
estimated power spectra for aligned monodisperse ellipsoids.
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sphere simulations, the power spectrum for the aligned ellipsoids contained

nulls, which were a large source of error for the power spectral estimates.

4.5.3 Conclusions

The simulations in this section demonstrate that 2DZM method #1 could

be used to estimate the correct correlation coefficient and power spectrum

for an anisotropic medium consisting of aligned ellipsoids. These results sug-

gest that in some cases it is possible to relax the isotropy constraint required

to derive the 2DZM methods while still obtaining valid results. To properly

compare the 2DZM results for such an anisotropic medium to BSCs estimated

using ultrasound requires that knowledge of the ultrasound propagation di-

rection be known. However, knowledge of the ultrasound direction would

also be required if 3DZMs were being used instead of 2DZMs. Therefore,

this limitation is general to ZMs and not specific to 2DZMs.

4.6 2DZM simulations of continuous media

The second class of simulated media consisted of infinite phase media (i.e.,

continuous variations of impedance values). Whether the distribution of

impedance values in biological media is continuous or discrete is still an

open question. Therefore, it is important to study the 2DZM method in

the context of continuous media. The continuous medium studied in this

section had correlation coefficient and power spectrum that where Gaussian

and are plotted in Fig. 4.33. Compared to the correlation coefficient for

sparse discrete scatterers in Fig. 4.8 (a), the Gaussian correlation coefficient

never falls to zero. Compared to the power spectrum for sparse discrete

scatterers in Fig. 4.8 (b), the Gaussian power spectrum does not have any

nulls. The spherical Gaussian medium serves as an excellent test medium to

demonstrate that the 2DZM method works for continuous media.

4.6.1 Description of simulations

In these simulations, the function governing the impedance distribution for

a single scatterer was specified to have a spherical Gaussian shape and scat-
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Figure 4.33: (a) Correlation coefficient and (b) power spectrum for a
spherical Gaussian medium.

terers were placed to have independent positions. A copy of the specified

impedance distribution was placed at each scatterer position to generate the

random medium. The function governing the spatial behavior of a spherical

Gaussian scatterer that is centered at the origin is given by

f(r) = e−r
2/d2 (4.4)

where r is the distance from the origin and the effective scatterer radius for

this scatterer is aeff = d/(3
√
π/2)1/3.

The process used to create the simulated Gaussian medium consisted of

the following steps. A total of 104 scatterer positions inside a cube container

with side length L = 1.0 were selected randomly and independently. In

other words, each coordinate for each scatterer position in 3D space was

generated using a continuous uniform random number generator with range

[0, 1]. Next, a 3D grid of spatial positions that spanned the container was

created. A total of 28 grid points were used to span each dimension so that

a total of 224 grid elements were used. Associated with each grid element

was an impedance value. For each scatterer position, the spatial location of

the scatterer was taken to be the origin and an impedance value was added

to each element of the grid with magnitude depending on Eq. 4.4. The

effective radius for the Gaussian scatterers was aeff = 0.02. An example of

a slice from a simulated Gaussian medium is shown in Fig. 4.34. A total

of 50 independent spherical Gaussian media 3DZMs were simulated. The
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theoretical correlation coefficient and power spectrum for this medium are

given in Eqs. 2.20 and 2.21, respectively.

To estimate the power spectrum using the estimated correlation coefficient

the following equation was used:

Ŝ3(k) =
2

k

∫ ∆rcutoff

0

b̂(∆r)∆r sin(k∆r)d∆r (4.5)

where ∆rcutoff served to eliminate the effect of the correlation coefficient

amplitude values above the cutoff. The correlation coefficient values associ-

ated with the larger values of ∆r represent correlations between scatterers

and cause the estimated power spectrum to appear noisy. Using a ∆rcutoff

value in this manner provides a way to smooth the estimated power spectrum

without the need to increase averaging. The ability to smooth the estimated

power spectrum in this manner is not possible when using 3DZM method

#1 and is unique to 2DZM method #1 and 3DZM method #2. For the

simulations in this section, ∆rcutoff/d̂ = 4.0, where d̂ was the correlation

length estimated from the correlation coefficient. When using this cutoff and

the theoretical correlation coefficient for a spherical Gaussian medium to es-

timate the power spectrum, the RMSE between estimated and theoretical

power spectra was less than 1%.

The estimated correlation coefficients and power spectra include two types

of errors, including bias and variance. The bias component of the error is

determined primarily by the size of the 2DZM used to estimate the correlation

coefficient. The variance component of the error is determined by the number

of 2DZMs used to estimate the correlation coefficient.

4.6.2 2DZM size

To study the bias in the estimated correlation coefficients and power spectra,

the variance was eliminated by averaging large numbers of 2DZMs. Specifi-

cally, the correlation coefficient was estimated from every 2DZM from every

3DZM in this study such that a total of 256×50 = 12, 800 2DZMs were used

to estimate the correlation coefficient. The 2DZM plane was perpendicular

to the z-axis. Four different 2DZM sizes were studied, where the size of the

2DZM was specified by its side length L. The examined 2DZM sizes included
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Figure 4.34: Example section from simulated spherical Gaussian medium.
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L = 0.125, L = 0.25, L = 0.5, and L = 1.0.

The average estimated correlation coefficient and power spectrum for each

of the studied 2DZM sizes are in Fig. 4.35. The RMSEs between estimated

and theoretical correlation coefficients and the RMSEs between estimated

and theoretical power spectra for the examined 2DZM sizes are shown in

Fig. 4.36. Scatterer sizes were estimated from the correlation coefficients and

power spectra in Fig. 4.35 and the percentage errors between the estimated

and actual size are shown in Fig. 4.37.

The importance of the present simulation is demonstrated in Fig. 4.35.

Large errors between the estimated and theoretical correlation coefficients

(RMSE: 23%) and between the estimated and theoretical power spectra

(RMSE: 101%) were observed when using 2DZMs with size L = 0.125. In

contrast, excellent agreement was observed between the estimated and theo-

retical correlation coefficients (RMSE: 0.3%) and the estimated and theoret-

ical power spectra (RMSE: 0.2%) when using 2DZMs with size L = 1.0.

The effect on correlation coefficient estimate bias when using a 2DZM that

was too small relative to the scatterer size is shown Fig. 4.35. For example,

the correlation coefficient for L = 0.125 in Fig. 4.35 was underestimated

relative to the theoretical correlation coefficient. The RMSE curves in Fig.

4.36 show the trend that RMSE increased as 2DZM size decreased. The

effect of 2DZM size on scatterer size estimates is displayed in Fig. 4.37.

When using a 2DZM that was too small relative to the scatterer size, the

effect on estimated scatterer size was to underestimate the actual scatterer

size. For example, when using a 2DZM with size L = 0.125, the percent

error between estimated and actual size based on the correlation coefficient

was -30%.

The effect on power spectral estimate bias when using a 2DZM that was

too small relative to the scatterer size is shown Fig. 4.35. For example,

the power spectrum for L = 0.125 in Fig. 4.35 had a negative value for

low values of ka. A negative power spectrum for low ka values indicates a

negatively balanced correlation coefficient (i.e., the correlation coefficient is

more negative than positive). The RMSE curves in Fig. 4.36 show the trend

that RMSE increased as 2DZM size decreased. When using the estimated

power spectrum to estimate scatterer size, the effect of using a 2DZM that

was too small relative to the scatterer size was to underestimate the scatterer

size. For example, when using 2DZM size L = 0.25, the percent error between
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Figure 4.35: Estimated (left column) correlation coefficient and (right
column) power spectrum for spherical Gaussian media using 2DZMs with
different sizes. L is the side length of the studied 2DZM.
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Figure 4.36: RMSE for estimated correlation coefficients and power spectra
for spherical Gaussian media using 2DZMs with different sizes. L is the side
length of the studied 2DZM.

Figure 4.37: Percentage error in estimated scatterer size based on the
estimated correlation coefficient and power spectrum using 2DZMs with
different sizes. L is the side length of the studied 2DZM.
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estimated and actual size based on the power spectrum was -25%.

From Fig. 4.37, it is interesting to note that the correlation coefficient

produced scatterer size estimates with lower error compared to scatterer size

estimates based on the power spectrum. For example, for L = 0.25 the

percent error in estimated scatterer size using the correlation coefficient and

power spectrum was -11% and - 25%, respectively. For L = 0.5, the percent

error in estimated scatterer size using the correlation coefficient and power

spectrum was -3.0% and -16%, respectively. This result shows that when

estimating scatterer size based on ZMs in the case when correlation coefficient

and power spectral variance have been eliminated, estimates based on the

correlation coefficient had lower error than estimates based on the power

spectrum.

In conclusion, the simulation analysis in this section was important be-

cause it demonstrated that the correlation coefficient and power spectrum

could be estimated for a continuous medium using 2DZMs. In addition, the

analysis demonstrated that biased correlation coefficient and power spectral

estimates resulted as 2DZM size was decreased and that this bias was elim-

inated when using 2DZMs that had sufficient size. The important quantity

is the ratio L/a, where L is the 2DZM side length and a is the scatterer ra-

dius. The RMSE between estimated and theoretical correlation coefficients

was 7.0% (L/a = 12.5), 1.5% (L/a = 25), and 0.3% (L/a = 50). The RMSE

between the estimated and theoretical power spectra was 47% (L/a = 12.5),

9% (L/a = 25), and 0.2% (L/a = 50). The effect of bias on scatterer size

estimates was also studied and it was found that biased scatterer sizes re-

sulted from the biased correlation coefficients and biased power spectra. The

percent error in scatterer size estimates based on the correlation coefficients

was -11% (L/a = 12.5), -3.0% (L/a = 25), and -0.3% (L/a = 50). The per-

cent error in scatterer size estimates based on the power spectra was -25%

(L/a = 12.5), -16% (L/a = 25), and 1% (L/a = 50). These results demon-

strate the advantage of estimating scatterer size based on the correlation

coefficient instead of the power spectrum.
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4.6.3 Number of 2DZMs

To study the variance in the estimated correlation coefficients and power

spectra, the bias was eliminated by using 2DZMs having size L = 1.0. The

results from the previous section demonstrated that 2DZMs with this size

exhibited minimal bias because excellent agreement was observed between

the estimated and theoretical correlation coefficients. The variance of an

estimated correlation coefficient is controlled by the number of 2DZMs that

are used to estimate the correlation coefficient. Using more 2DZMs to es-

timate the correlation coefficient results in decreased correlation coefficient

variance. Therefore, the analysis in this section consisted of changing the

number of 2DZMs used to estimate the correlation coefficient in order to

study correlation coefficient variance.

In order to study correlation coefficient variance, the following process was

used. First, one 2DZM was randomly selected from the collection of 50 spher-

ical Gaussian 3DZMs. A total of 256 × 50 = 12, 800 2DZMs were available

for selection. This 2DZM was used to estimate the correlation coefficient.

The RMSE between the estimated and theoretical correlation coefficients

was computed. The scatterer size was estimated using the correlation coeffi-

cient. This process was repeated 100 times, that is, for 100 different randomly

selected 2DZMs.

Second, ten 2DZMs were randomly selected from the collection of 12, 800

spherical Gaussian 2DZMs. The correlation coefficient was estimated using

these ten 2DZMs. RMSE values were computed for the estimated correlation

coefficient. Scatterer sizes were computed using the estimated correlation

coefficient. This process was repeated 100 times, that is, for 100 different

sets of ten randomly selected 2DZMs.

The above processing steps were repeated but using sets of 20, 30, ..., 100

randomly selected 2DZMs from the 12, 800 spherical Gaussian 2DZMs. In

this way, the correlation coefficient RMSE and estimated scatterer size could

be studied as a function of the number of 2DZMs used to estimate the corre-

lation coefficient. Because the 2DZMs were randomly selected from the set of

50 spherical Gaussian 3DZMs, which each had 256 2DZMs, the 2DZMs were

independent. In addition, because the size of the 2DZMs was L = 1.0, the

observed errors were due to variance in the estimates and not due to bias.

The process above was repeated to study power spectral variance. In
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this case, each examined correlation coefficient was used to estimate a power

spectrum. The RMSE was computed for each power spectrum and a scatterer

size was estimated based on each power spectrum.

Examples of correlation coefficients and power spectra that were estimated

using different numbers of 2DZMs are in Fig. 4.38. The RMSE between

estimated and theoretical correlation coefficients and the RMSE between

estimated and theoretical power spectra are shown in Fig. 4.39. Scatterer

sizes were estimated from the estimated correlation coefficients and power

spectra in Fig. 4.38. The percent error and coefficient of variation between

the estimated and actual size as a function of the number of 2DZMs used to

estimate the correlation coefficient are shown in Fig. 4.40.

Previously, it was demonstrated that 2DZMs could be used to estimate

correlation coefficients when using large numbers of 2DZMs. The results in

Fig. 4.38 demonstrate that correlation coefficients and power spectra could

be estimated using small numbers of 2DZMs.

The displayed correlation coefficient and power spectral examples in Fig.

4.38 show the variance that results when using very small numbers of 2DZMs

to estimate the correlation coefficient. This variance decreased as the number

of 2DZMs used to estimate the correlation coefficient was increased. This fact

is also visible in Fig. 4.39, which shows the RMSE for correlation coefficient

and power spectrum as a function of the number of 2DZMs used to estimate

the correlation coefficient. The RMSE decreased as the number of 2DZMs

used to estimate the correlation coefficient was increased. For the correlation

coefficient, the RMSE was 3.0% (1 2DZM), 0.9% (10 2DZMs), and 0.5% (20

2DZMs). For the power spectrum, the RMSE was 11% (1 2DZM), 4% (10

2DZMs), and 2% (20 2DZMs).

Mean percent error in estimated scatterer size based on the correlation

coefficient and power spectrum are shown in Fig. 4.40. For scatterer size

estimates based on the correlation coefficients and power spectra, the mean

percent error was typically less than 1%. This result shows that scatterer size

estimates using 2DZMs having size L = 1.0 were not biased. The advantage

of increasing the number of 2DZMs used to estimate the correlation coefficient

can be observed in the scatterer size coefficient of variation curves in Fig.

4.40. The coefficient of variation decreased sharply as the number of 2DZMs

used to estimate the correlation coefficient increased. For scatterer sizes

estimated from the correlation coefficient, the coefficient of variation was
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Figure 4.38: Estimated (left column) correlation coefficient and (right
column) power spectrum for spherical Gaussian media using different
numbers of 2DZMs to estimate the correlation coefficient.
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Figure 4.39: RMSE for estimated correlation coefficients and power spectra
for spherical Gaussian media using different numbers of 2DZMs to estimate
the correlation coefficient.

Figure 4.40: Percentage error and coefficient of variation of the estimated
scatterer size using the correlation coefficient and using the power spectrum
as a function of the number of 2DZMs used to estimate the correlation
coefficient.
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5.7% (1 2DZM), 1.7% (10 2DZMs), and 1.2% (20 2DZMs). For scatterer sizes

estimated from the power spectrum, the coefficient of variation was 21% (1

2DZM), 9.1% (10 2DZMs), and 5.2% (20 2DZMs). These results demonstrate

the advantage of estimating scatterer size based on the correlation coefficient

instead of the power spectrum.

In conclusion, the simulation analysis in this section was important because

it demonstrated that the correlation coefficient and power spectrum could be

estimated using small numbers of 2DZMs. For comparison, a corresponding

3DZM analysis of the media simulated in this section would have included 256

2DZMs. The analysis in this section demonstrated that correlation coefficient

and power spectral variance were reduced by increasing the number of 2DZMs

used to estimate the correlation coefficient. Finally, the results suggest that

using the correlation coefficient to estimate scatterer sizes was more robust

compared to using the power spectrum.

4.6.4 Conclusions

The simulations in this section demonstrate that 2DZMs could be used to

estimate the correlation coefficient and power spectrum for an isotropic con-

tinuous medium having correlation coefficient and power spectrum described

by a Gaussian function. Two sources of error in the correlation coefficient

and power spectral estimates were examined, including bias and variance.

The analysis of bias found that it was necessary to use a sufficiently sized

2DZM to estimate the correlation coefficient; otherwise, biased correlation

coefficient and power spectral estimates resulted. For example, to achieve

correlation coefficient and power spectrum RMSE less than 1% required the

use of a 2DZM with side length that was 50 times the scatterer radius. The

analysis of variance demonstrated that small numbers of 2DZMs (relative to

the number of 2DZMs included in a 3DZM) could be used to estimate the cor-

relation coefficient and power spectrum. For example, to achieve correlation

coefficient RMSE less than 2% required that 10 2DZMs be used to estimate

the correlation coefficient. To achieve power spectrum RMSE of 5% required

that 20 2DZMs be used to estimate the correlation coefficient. Both analyses

suggested that scatterer size estimates based on the correlation coefficient

had lower error than scatterer size estimates based on the power spectrum.
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For specifying 2DZM size, the important quantity is the ratio between the

2DZM characteristic length L (e.g., side length or diameter) and the radius

of the scattering objects, a. When conducting a ZM analysis, the quantity

a is unknown and must be estimated initially. Once an initial estimate has

been made, it can be determined whether the ZM is large enough relative to

the estimated scatterer size. If not, the ZM can be expanded until the ratio

between 2DZM size and scatterer size is of sufficient size. The results of this

simulation can be used to guide determination of this sufficient size.

4.7 2DZM simulations of dense two-phase media

The sparse collections of discrete objects and the spherical Gaussian continu-

ous medium simulations demonstrated that the 2DZM method works for me-

dia having correlation coefficients and power spectra determined by the size

and shape of individual scatters. The goal of this section was to demonstrate

that the 2DZM method also works for media with correlation coefficients and

power spectra that depend on the size and shape of the scatterers, but also

the 3D positions of the scatterers.

The simulations in this section consisted of dense collections of spheres

having volume fraction 30%. The theoretical correlation coefficient and power

spectrum for this random process are in Fig. 4.41. For finite sized volumes,

these curves result when averaging over many realizations. Compared to the

correlation coefficient for sparse discrete objects in Fig. 4.8 (a) and for a

spherical Gaussian medium in 4.33 (a), the correlation coefficient for dense

collections of monodisperse spheres in Fig. 4.41 (a) exhibits structure that

depends on the 3D positions of the scatterers. Similar structure is exhibited

for the power spectrum. The purpose of this section was to demonstrate that

the 2DZM method was still able to capture the more complex structure in

the correlation coefficient and power spectrum.

A total of 50 cube container volumes with side length L = 1.0 were filled

with spherical scatterers having radius a = 0.02 and a volume fraction of 30%.

The Metropolis algorithm was used to place the spheres so that they did not

overlap. The 3D volume grid was sampled at 28 points along each dimension

for a total of 224 sampling points. The 2DZM plane was perpendicular to

the z-axis. Equation 4.5 was used to estimate the power spectrum from the

116



Figure 4.41: (a) Correlation coefficient and (b) power spectrum for a
collection of dense monodisperse spheres with volume fraction 30%.

estimated correlation coefficient.

4.7.1 2DZM size

To study the bias in the estimated correlation coefficients and power spectra,

the variance was eliminated by averaging large numbers of 2DZMs. Specif-

ically, the correlation coefficient was estimated from all available 2DZMs in

this study such that a total of 256 × 50 = 12, 800 2DZMs were used to es-

timate the correlation coefficient. Four different 2DZM sizes were studied,

where the size of the 2DZM was specified by its side length L. The examined

2DZM sizes included L = 0.0625, L = 0.125, L = 0.25, and L = 0.5.

The estimated correlation coefficient and power spectrum for each of the

studied 2DZM sizes are in Fig. 4.42. The RMSE between estimated and

theoretical correlation coefficients and the RMSE between estimated and

theoretical power spectra for the different sized 2DZMs are shown in Fig.

4.43.

The previous simulation results established that 2DZM analysis can cap-

ture information about the 3D size and shape of scatterers. The results in

Fig. 4.42 are important because they demonstrate that 2DZMs can also cap-

ture information about the 3D location of the scatterers. Excellent agreement

was observed between the 2DZM estimated and theoretical correlation coeffi-

cients (RMSE: 0.2%) in Fig. 4.42 when using 2DZMs with size L = 0.5. Good
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Figure 4.42: Estimated (left column) correlation coefficient and (right
column) power spectrum for dense spheres with volume fraction 30% using
2DZMs with different sizes.
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Figure 4.43: RMSE for estimated correlation coefficients and power spectra
for dense spheres with volume fraction 30% using 2DZMs and different
2DZM sizes.

agreement was observed in the case of the power spectrum (RMSE: 11%).

Good agreement was observed between estimated and theoretical correlation

coefficients (RMSE: 7.0%) using 2DZM size L = 0.0625. Poor agreement was

observed for the power spectrum (RMSE: 150%) using this size 2DZM.

The results in Fig. 4.42 demonstrate the importance of using a 2DZM

having sufficient size relative to the scatterer size. When a 2DZM size that

was too small was used, the correlation coefficient and power spectral es-

timates were biased. The correlation coefficient was underestimated when

using 2DZM size that was too small. The power spectrum exhibited nega-

tive values for small values of ka when the 2DZM size was too small. When

conducting 2DZM analysis, it is important to determine if a sufficiently sized

2DZM is being used.

The RMSE curves in Fig. 4.43 show that error decreased as the size of the

2DZM was increased. The error between the estimated and theoretical power

spectra was larger than that between estimated and theoretical correlation

coefficients. Because only small errors were observed in the estimated cor-

relation coefficient, but larger errors were observed in the power spectrum,

this result suggests that the power spectral estimate was sensitive to small

errors in the correlation coefficient estimate. Similar to the spherical Gaus-

sian sphere simulations, this finding suggests that when conducting 2DZM

analysis, it may be better to analyze the correlation coefficient instead of the
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power spectrum.

In conclusion, the simulation analysis in this section was important be-

cause it showed that the correlation coefficient and power spectrum could

be estimated for a dense collection of spheres using 2DZMs in the case that

correlation coefficient variance was eliminated. The finding is significant

because it shows that 2DZMs can capture information about the 3D spatial

positions of the scatterers in addition to information about the size and shape

of the scatterers. The results indicated that increasing 2DZM size relative

to the scatterer size reduced bias in the estimated correlation coefficient and

power spectrum. The important quantity is the ratio L/a, where L is the

2DZM side length and a is the scatterer radius. The RMSE between esti-

mated and theoretical correlation coefficients was 2.0% (L/a = 6.25), 0.5%

(L/a = 12.5) , and 0.1% (L/a = 25). The RMSE between the estimated and

theoretical power spectra was 180% (L/a = 6.25), 87% (L/a = 12.5), and

11% (L/a = 25).

4.7.2 Number of 2DZMs

To study the variance in the estimated correlation coefficients and power

spectra, the bias was eliminated by using 2DZMs having size L = 0.5. The

results from the previous section demonstrated that 2DZMs with this size

exhibited minimal bias because excellent agreement was observed between

the estimated and theoretical correlation coefficients. The analysis in this

section consisted of changing the number of 2DZMs used to estimate the

correlation coefficient in order to study correlation coefficient variance.

In order to study correlation coefficient variance, the process used to study

variance in the spherical Gaussian simulations was used. First, one 2DZM

was randomly selected from the collection of 256× 50 = 12, 800 dense sphere

2DZMs. This 2DZM was used to estimate the correlation coefficient. The

RMSE between the estimated and theoretical correlation coefficients was

computed. This process was repeated 100 times, that is for 100 different

randomly selected 2DZMs. Second, ten 2DZMs were randomly selected from

the collection of 12, 800 dense sphere 2DZMs. The correlation coefficient

was estimated using these ten 2DZMs. RMSE values were computed for

the estimated correlation coefficient. This process was repeated 100 times,
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that is, for 100 different sets of ten randomly selected 2DZMs. Third, the

described processing steps were repeated but using sets of 20, 30, ..., 100 ran-

domly selected 2DZMs from the 12, 800 dense sphere 2DZMs. In this way, the

correlation coefficient RMSE could be studied as a function of the number

of 2DZMs used to estimate the correlation coefficient. Because the 2DZMs

were randomly selected from the set of 50 dense sphere 3DZMs, which each

had 256 2DZMs, it was safe to assume that the 2DZMs were independent. In

addition, because the size of the 2DZMs was L = 0.5, it was safe to assume

that observed errors were due to variance in the estimates and not due to

bias.

The process above was repeated to study power spectral variance. In this

case, each examined correlation coefficient was used to estimate a power

spectrum and the RMSE was computed for each power spectrum.

Examples of correlation coefficients and power spectra that were estimated

using different numbers of 2DZMs are in Fig. 4.44. The RMSE between

estimated and theoretical correlation coefficients and the RMSE between

estimated and theoretical power spectra are shown in Fig. 4.45.

Previously, it was demonstrated that 2DZMs could be used to estimate

the correlation coefficient for dense spheres when using large numbers of

2DZMs having sufficient size relative to the scatterer size. The results in

Fig. 4.44 demonstrate that correlation coefficients could be estimated with

low error using small numbers of 2DZMs. The findings are significant for

2DZM analysis because smaller numbers of 2DZMs were required to estimate

the correlation coefficient than would be needed to conduct a 3DZM analysis.

The displayed correlation coefficients in Fig. 4.44 show the variance that

resulted when using very small numbers of 2DZMs to estimate the correlation

coefficient. The variance decreased as the number of 2DZMs used to estimate

the correlation coefficient was increased. This fact is also visible in Fig. 4.45,

which shows the RMSE for correlation coefficient as a function of the number

of 2DZMs used to estimate the correlation coefficient. For the correlation

coefficient, the RMSE was 1.3% (1 2DZM), 0.5% (10 2DZMs), and 0.5% (20

2DZMs). These results suggest that estimation of the correlation coefficient

was possible using small numbers of 2DZMs.

The displayed power spectra in Fig. 4.44 show that the variance of the

estimated power spectra decreased as the number of 2DZMs used to estimate

the correlation coefficient was increased. However, the variance of the power
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Figure 4.44: Estimated (left column) correlation coefficient and (right
column) power spectrum for dense spheres with volume fraction 30% using
different numbers of 2DZMs.
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Figure 4.45: RMSE for estimated correlation coefficients and power spectra
for dense spheres with volume fraction 30% using different numbers of
2DZMs.

spectral estimates was significantly larger than the variance observed for the

correlation coefficients. These results suggest that the power spectrum was

sensitive to small errors in the correlation coefficient estimate. Nonetheless,

the RMSE in Fig. 4.45 was converging toward zero as the number of 2DZMs

was increased. For the power spectrum, the RMSE was 59% (1 2DZM), 33%

(10 2DZMs), and 25% (20 2DZMs).

In conclusion, the simulation analysis in this section was important be-

cause it showed that the correlation coefficient could be estimated using

small numbers of 2DZMs relative to the number of 2DZMs needed to com-

plete a 3DZM analysis. The variance for the estimated power spectra was

significantly higher compared to the correlation coefficient variance. How-

ever, increasing the number of 2DZMs did decrease power spectral estimate

variance. These findings provide further evidence that when working with

2DZMs, it may be better to analyze the correlation coefficient instead of the

power spectrum.

4.8 Acoustic simulations

Acoustic theory for scattering by a fluid sphere predicts that the BSC for a

collection of same sized spheres will be weighted by the sphere radius raised to

a power [12]. If a medium is filled with spheres having different radii, larger
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size spheres will have a greater contribution to the estimated backscatter

coefficient compared to smaller sized spheres. When interpreting scatterer

size estimates for a polydisperse collection of fluid spheres, the scatterer

size will be biased toward the larger spheres. The goal of this section is

to present analytic developments and simulation results demonstrating that

the same weighting is present when conducting impedance map analysis.

Simulations were conducted to relate analytic predictions, 3DZM analysis,

2DZM analysis, and pulse-echo simulations.

4.8.1 Ultrasonic backscatter coefficient for spheres having
different sizes: Volume defined in terms of the region
where echoes originate

The backscattering cross section for a single fluid spheres is [22]

σBCS(k, a) =
4π

9
(γκ − γρ)2k4a6

(
3

2ka
j1(2ka)

)2

. (4.6)

For a scattering volume containing N spheres, the incoherent component of

the BSC can be written as a summation of scattering cross sections

σ(k) =
1

4π

1

V

N∑
i=1

σBCS(k, ai) (4.7)

where in this approach the scattering volume is defined as

V =
N∑
i=1

4

3
πa3

i . (4.8)

There are two random variables in Eqs. 4.7 and 4.8, including the sphere

radius, A, and the number of scatterers in the ensemble of scatterers, N .

Evaluating the ensemble average of the BSC in Eq. 4.7 is difficult, but

several approximations can be made to derive a simple expression. First,

note that

lim
N→∞

1

N

N∑
i=1

σBCS(k; ai) =

∫ ∞
0

p(a)σBCS(k; a)da = E[σBCS(k;A)] (4.9)
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where p(a) is the probability distribution for the random variable A, the

sphere radius. Likewise, for the volume term in Eq. 4.8

lim
N→∞

1

N

N∑
i=1

4

3
πa3

i =
4

3
π

∫ ∞
0

p(a)a3da =
4

3
πE[A3]. (4.10)

Therefore, for large enough N , the following approximate expression for the

BSC exists:

σ(k) ≈ 1

4π

E[σBCS(k;A)
4
3
πE[A3]

(4.11)

=
1

4π

∫∞
0
p(a)σBCS(k; a)da

4
3
π
∫∞

0
p(a)a3da

(4.12)

=
1

4π

1
4
3
πE[A3]

1

9
(γκ − γρ)2

[
k4

∫ ∞
0

p(a)a6

(
3

2ka
j1(2ka)

)2

da

]
(4.13)

Several observations can be made from Eq. 4.13. First, this equation does

not depend on the number of spheres in the ensemble. For example, if the

number of spheres is doubled, the same BSC results. Second, the fluid sphere

form factor is weighted by the sphere radius raised to the sixth power. When

estimating scatterer sizes, the shape of the BSC is controlled by the terms

inside the square brackets in Eq. 4.13. The terms outside the bracket only

affect the magnitude of the BSC and therefore have no effect when estimating

scatterer sizes based on Eq. 4.13.

4.8.2 Ultrasonic backscatter coefficient for spheres having
different sizes: Volume defined in terms of a
measurement region

For a scattering volume containing N spheres, the incoherent component of

the BSC can be written as a summation of scattering cross sections as in Eq.

4.7, except that the volume V is the volume associated with a measurement

apparatus, e.g., the focal region of a transducer. In this case, assuming large

enough N such that Eq. 4.9 applies, the BSC is
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σ(k) ≈ 1

4π

N

V
E[σBCS(k;A)] (4.14)

=
1

4π

N

V

∫ ∞
0

p(a)σBCS(k; a)da. (4.15)

Taking an ensemble average of the BSC produces the following expression:

〈σ(k)〉 =
1

4π

E[N ]

V
E[σBCS(k; a)] (4.16)

=
n̄

4π

∫ ∞
0

p(a)σBCS(k; a)da (4.17)

=
1

9
n̄(γκ − γρ)2

[
k4

∫ ∞
0

p(a)a6

(
3

2ka
j1(2ka)

)2

da

]
(4.18)

where n̄ is the average number of spheres per unit measurement volume.

Several observations can be made from Eq. 4.18. First, this equation does

depend on the number of spheres in the ensemble. For example, if the number

of spheres is doubled, the BSC doubles. Second, the fluid sphere form factor

is weighted by the sphere radius raised to the sixth power. Finally, when

estimating scatterer sizes, the shape of the BSC is controlled by the terms

inside the square brackets in Eq. 4.18. The terms outside the bracket only

affect the magnitude of the BSC and therefore have no effect when estimating

scatterer sizes based on Eq. 4.18.

Irrespective of the definition of the volume term in Eq. 4.7, i.e., using Eq.

4.13 or 4.18, the fluid sphere form factor is weighted by the sphere radius

raised to the sixth power. In other words, the terms that affect scatterer size

estimates, i.e., the terms on the inside of the square brackets in Eqs. 4.13

and 4.18, are the same for Eqs. 4.13 and 4.18.

4.8.3 Impedance maps of spheres with different sizes

For a single sphere at the origin and having radius a, the function describing

the relative changes in compressibility and density is given by

γsphere(r, a) =

{
γκ − γρ, r ≤ a

0, r > a
(4.19)
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where γκ is the relative compressibility inside the sphere and γρ is the relative

density inside the sphere. The Fourier transform of this function is given by

Γsphere(k, a) = (γκ − γρ)Va
(

3

ka
j1(ka)

)
(4.20)

where Va = 4/3πa3 and the magnitude squared of the Fourier transform is

given by

|Γsphere(k, a)|2 = (γκ − γρ)2V 2
a

(
3

ka
j1(ka)

)2

. (4.21)

For an ensemble of N spheres having different sizes, the spatial map de-

scribing the relative changes in density and compressibility and having unit

volume can be written in terms of Eq. 4.19 as

γ(r) =
N∑
i=1

γsphere(r− ri, ai) (4.22)

where ri is the center of the ith sphere and ai is the radius of the ith sphere.

The Fourier transform for this function is given by

Γ(k) =
N∑
i=1

Γsphere(k, ai)e
−jk·ri . (4.23)

By averaging over many realizations of γ(r), the coherent component can be

ignored and the average magnitude squared of the Fourier transform can be

approximated as

〈
|Γ(k)|2

〉
≈ N

∫ ∞
0

p(a) |Γsphere(k, a)|2da (4.24)

= N(γκ − γρ)2 16π2

9

[∫ ∞
0

p(a)a6

(
3

ka
j1(ka)

)2

da

]
(4.25)

and multiplying by k4 and accounting for pulse echo propagation produces:

k4
〈
|Γ(2k)|2

〉
= N(γκ − γρ)2 16π2

9

[
k4

∫ ∞
0

p(a)a6

(
3

2ka
j1(2ka)

)2

da

]
.

(4.26)

When estimating scatterer sizes based on Eq. 4.26, the only terms affecting
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the scatterer size estimates are on the inside of the square brackets in Eq.

4.26. Comparing the terms inside the square brackets for Eqs. 4.13, 4.18,

and 4.26 shows that all of them are identical and include the fluid sphere

form factor weighted by the sphere radius raised to the sixth power.

4.8.4 Simulations

Simulations were conducted to demonstrate the equivalence in the estimation

of scatterer size between impedance map approaches and acoustic approaches

when propagating a plane wave through a medium with spheres of polydis-

perse sizes. Specifically, analytic acoustic expressions and impedance map

analysis predict an acoustic weighting of the radius to the sixth power.

Description

A cube having side length 300 µm was filled with spheres. The sphere di-

ameters were random following a Gaussian distribution with mean 30 µm.

The ratio between the standard deviation and the mean of the Gaussian

distribution was varied as σ/µ = 0.1, 0.2, 0.3, 0.4. The number density for

the spheres was 3, 000/mm3 for a volume fraction of approximately 4%. The

spheres were placed randomly and independently of each other. A total of

500 collections of spheres were simulated for each σ/µ ratio. For each collec-

tion of spheres, a 3DZM and 2DZM analysis was conducted and pulse echo

data was also generated from the volume by propagating an acoustic pulse

into the media.

3DZM analysis

For each collection of spheres, a 3DZM was generated. The 3DZM spatial

sampling rate was 0.46 µm by 0.46 µm by 3.0 µm, such that the number of

grid points in the 3DZM was 650 by 650 by 100, which is the same as the

rabbit liver 3DZMs discussed in the next chapter. The 3D power spectrum

was computed for each 3DZM using the squared magnitude of the Fourier

transform and radial averaging was used to reduce this function to a 1D

function of spatial frequency. These power spectra were averaged across the

50 collections of spheres and scatterer sizes were estimated using this power
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spectrum utilizing the range 0.5 < ka < 1.2 and a fluid sphere model. The

simulation was then repeated 10 times. This analysis was repeated for each

σ/µ ratio and the results are shown in Fig. 4.46.

2DZM analysis

For each collection of spheres, a 2DZM was generated by extracting a single

slice from the volume of spheres. The 2DZM spatial sampling rate was

0.46 µm by 0.46 µm. The slice was extracted from the x,y-plane and from the

middle of a 3DZM volume along the z-axis and a 2D correlation function was

computed for the extracted slice. For a particular ratio σ/µ, the correlation

functions from each of the 50 volumes were averaged. A power spectrum

was found from this correlation function and scatterer sizes were estimated

using this power spectrum utilizing the range 0.5 < ka < 1.2 and a fluid

sphere model. The simulation was then repeated 10 times. The scatterer

size estimates from the 2DZM analysis are shown in Fig. 4.46.

Pulse echo simulations

For a particular collection of spheres, a pulse was propagated through the

collection of spheres and used to generate RF pulse echo data. The medium

was lossless and the speed of sound was set to 1500 m/s. For these sim-

ulations, the spatial sampling rate was 0.46 µm by 0.46 µm by 0.46 µm,

such that the number of grid points in the volume was 650 by 650 by 650.

For each collection of spheres, a pulse was used to generate RF data for the

medium. The pulse consisted of a Gaussian modulated sinusoid with center

frequency 13.5 MHz and 80% fractional bandwidth. A pulse with these fre-

quency characteristics corresponded to the range 0.5 < ka < 1.2 based on

the mean sphere size. A Gaussian beam with -6-dB beam width of 100 µm

was applied to the medium orthogonal to the pulse propagation. The power

spectrum was normalized by the frequency response of the pulse before esti-

mating scatterer sizes. For each ratio σ/µ, 50 power spectra were averaged

to reduce the effects of spatial variation noise. Scatterer size estimates were

made using the averaged normalized power spectrum. The simulation was

repeated 10 times and results are shown in Fig. 4.46.
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Analytic predictions #1

For the examined ratios σ/µ = 0.1, 0.2, 0.3, 0.4, an analytic BSC was com-

puted using Eq. 4.18 and used to estimate the scatterer size utilizing the

range 0.5 < ka < 1.2. The scatterer size estimates based on this analytic

expression for the BSC are shown in Fig. 4.46.

Analytic predictions #2

Let A be the random variable for the sphere radius which has probability

distribution p(a). The mean for the random variable A is µ and the standard

deviation is σ. A new probability distribution is formed by multiplying p(a)

by the weighting term (a/µ)n

pn(a) = (a/µ)np(a)/C (4.27)

where C is a normalization constant such that pn(a) integrates to one. Inte-

grating pn(a) in this way gives

1 =

∫ ∞
−∞

pn(a)da =

∫ ∞
−∞

(a/µ)np(a)/Cda (4.28)

=
1

µnC

∫ ∞
−∞

anp(a)da =
1

µnC
E[An] (4.29)

where

E[An] =

∫ ∞
−∞

anp(a)da (4.30)

and solving for C gives

C = E[An]/µn. (4.31)

Inserting Eq. 4.31 into Eq. 4.27 gives

pn(a) =
an

E[An]
p(a). (4.32)

Next, the expected (mean) value for the new probability distribution pn(a)

is given by
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µn =

∫ ∞
−∞

a pn(a)da (4.33)

=

∫ ∞
−∞

a
an

E[An]
p(a)da (4.34)

=
1

E[An]

∫ ∞
−∞

an+1p(a)da (4.35)

=
E[An+1]

E[An]
(4.36)

where the non-central moments in Eq. 4.36 are given by Eq. 4.30.

Discussion

Several observations can be made from Fig. 4.46 and Table 4.1. First, as

the ratio σ/µ increased, the estimated scatterer size increased for both the

3DZM and 2DZM analysis, suggesting that the scatterer size estimates were

being biased toward the large size scatterers. This finding has been described

previously for acoustic experiments [22, 42] and for 3DZM analysis [17]. Sec-

ond, scatterer sizes estimated using 3DZMs, 2DZMs, and pulse echo data

agreed with the analytic predictions discussed in the analytic predictions #1

section above (which uses Eq. 4.18) to within 2%, 2%, and 3%, respec-

tively. Third, the scatterer sizes estimated from BSCs generated using Eq.

4.18 (analytic predictions #1) produced lower RMSE values compared to

the analytic predictions of Eq. 21 (analytic predictions #2). Fourth, when

comparing the two predictions from the analytic predictions #2 section, the

prediction using n=4 was more accurate for the 2DZM results and the 3DZM

results compared to using the prediction when using n=3. For the pulse echo

simulations, n=3 and 4 had the same RMSE.

4.9 Conclusions

In this chapter, simulated media having correlation coefficients and power

spectra with different shapes were used to demonstrate that estimation of

the correlation coefficient and power spectrum of a 3D random process was

possible with low error using 2DZMs. The simulations in this section demon-
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Figure 4.46: Estimated scatterer size as a function of the ratio σ/µ. The
solid blue line represents scatterer sizes estimated from 2DZMs. The solid
green line represents scatterer sizes estimated using 3DZMs. The solid red
line represents scatterer sizes from the generated pulse echo data. The
dashed red line represents scatterer sizes estimated from BSCs generated
from the analytic expression in Eq. 4.18 and corresponds to the analytic
predictions #1 section above. The dashed tan and dashed light blue lines
represent scatterer sizes based on the analytic expression in Eq. 4.36 and
with n=3 and 4, respectively. These lines correspond to the analytic
predictions #2 section above.

Table 4.1: RMSE (µm) between scatterer size estimates based on
simulations and AP (analytic predictions) #1 and AP #2.

AP #1 AP #2 (µ2 in Eq. 4.36) AP #2 (µ3 in Eq. 4.36)
3DZM 0.51 1.5 0.9
2DZM 0.46 1.4 1.0

pulse echo 1.9 2.0 2.0
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strated that such analysis was possible using media having known correlation

coefficients and power spectra. Such analysis is possible from a theoretical

stand point; however, it was not known if the analysis would be possible

at practical scales (i.e., massively sized 2DZMs were not needed relative to

3DZM size). In addition, previous work in this area did not validate that

estimation of a correlation coefficient and power spectrum was possible using

2DZMs, except by using analytic expressions.

The sparse scatterer simulations demonstrated that 2DZMs were able to

capture size and shape information about a 3D random process. Most impor-

tantly, the number of object cross sections needed to capture this information

was small (i.e., less than 30). The results provide guidance when analyzing

histology with sparse collections of objects such as cell nuclei. In this case,

the number of nuclei in a 2DZM could be counted to determine if the 2DZM

had sufficient size. The results from the sparse scatterer simulations also sug-

gest that gains could be made by using regularly spaced slices, particularly

in the case of spherical objects. However, when increasing slice thickness,

the advantages of using regularly spaced slices largely disappeared.

The sparse anisotropic simulations demonstrated that in some cases it was

possible to relax the isotropy assumption used to develop the 2DZM method.

In this case, it was necessary for the 2DZM slice plane to be parallel to

the ultrasound propagation direction. When this condition was satisfied,

correlation coefficient and power spectral estimation was possible with low

error using 2DZMs.

The spherical Gaussian simulations demonstrated that the 2DZM method

worked for continuous media. These simulations examined the effect of 2DZM

size on the estimated correlation coefficient and power spectrum. The results

showed that biased correlation coefficient and power spectral estimates re-

sulted when using 2DZMs that were too small. More importantly, the results

showed that non-biased estimates resulted when using 2DZMs that were not

excessively larger than the scatterer. For example, the results showed that

when using a 2DZM that was 50 times larger than the scatterer, unbiased

correlation coefficient and power spectral estimates were possible. Using a

2DZM that is this large compared to the scatterer is not a limitation of 2DZM

analysis. Furthermore, the analysis showed that correlation coefficient and

power spectrum could be estimated using small numbers of 2DZMs relative

to the numbers of 2DZMs required to conduct 3DZM analysis. For example,
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the coefficient of variation of scatterer size estimates based on the correlation

coefficient was less than 2% when using 10 2DZMs. In addition, the results

suggested that the correlation coefficient produced lower error scatterer size

estimates, both in terms of bias and variance, compared to estimates based

on the power spectrum. These findings suggest that modeling the correlation

coefficient may be better than modeling the power spectrum when conducting

ZM analysis.

The dense sphere simulations were significant because they demonstrated

that 2DZMs could capture information about the 3D spatial positions of

the scatterers in addition to information about the size and shape of the

scatterers. Similar to the spherical Gaussian simulations, it was found that

using too small a 2DZM resulted in biased correlation coefficient and power

spectral estimates. However, using a 2DZM that was 25 times the size of

the spheres resulted in unbiased estimates. While it was possible to esti-

mate correlation coefficient and power spectrum in an unbiased manner, the

analysis of variance results demonstrated that the power spectral estimates

were sensitive to small errors in the correlation coefficient estimate. These

findings add further support to the suggestion that the correlation coefficient

should be modeled instead of the power spectrum when conducting 2DZM

analysis, especially when conducting analysis of dense media.

In general, the simulations in this chapter provide substantial evidence that

the 2DZM approach works in practice. The 2DZM method should work from

a theoretical perspective, but the simulation results demonstrated that 2DZM

analysis did not require additional constraints relative to 3DZM analysis. For

example, it was not necessary to significantly increase 2DZM size relative

to 3DZM size to obtain results with low error. Verification of the 2DZM

method on media having known correlation coefficient and power spectrum

has never been previously conducted. These simulation results show that the

2DZM method can be used to model scattering, that is it possible to estimate

the correlation coefficient and power spectrum for different kinds of random

media, and that one can have confidence in the 2DZM method when using

it to analyze ZMs with unknown correlation coefficients and power spectra.
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CHAPTER 5

ANALYSIS OF IMPEDANCE MAPS
CREATED FROM HISTOLOGY

5.1 Rabbit liver

5.1.1 Description of ZM construction

The 2DZM analysis procedure was applied to a set of ZMs constructed from

the livers of New Zealand white rabbits. The 3DZMs used in this study

were constructed by Pawlicki et al. and used with their permission [20]. In

that study, the 3DZM analysis suggested that the cell nucleus was a primary

source of scattering in liver.

The process that Pawlicki et al. used to construct the ZMs used in this

study can be found in [20, 36] and is reviewed here briefly. Lobes of normal

liver from New Zealand white rabbits were excised, chemically fixed in for-

malin, sliced into 3 µm sections, stained with hematoxylin and eosin (H&E),

and prepared as standard histology slides. Each slide was digitized using a

NanoZoomer HT slide scanner (Hamamatsu, Hamamatsu City, Japan) at a

pixel resolution of 0.46 µm. An example histology image from the rabbit

liver is in Fig. 3.2 (a).

A total of 24 3DZMs were created at different spatial locations from the

excised liver sample using the process described in Sec. 3.1. Impedance

values were assigned according to Table 3.1. The created 3DZMs were cubes

having side length 300 µm. The resolution along the x- and y-axes was 0.46

µm and the resolution along the z-axis was 3 µm. An example 2DZM created

from the rabbit liver is in Fig. 3.2 (b).

In addition to the healthy rabbit liver, the above process was repeated

using a fatty rabbit liver with a measured fat content of 14.6% [20]. A total

of 24 3DZMs were created from the fatty liver.

In this study, analysis of bias and analysis of variance were conducted to
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study error in the estimated correlation coefficient and power spectrum in

the healthy rabbit liver. These studies were used to determine a minimum

size 2DZM that was needed to reduce bias and the number of 2DZMS that

were needed to reduce variance. In addition, a study was conducted to

demonstrate that 2DZM analysis can be used in place of 3DZM analysis to

detect differences between two rabbit livers, one healthy and one fatty, and to

quantitatively characterize the agreement between scatterer sizes estimated

using 2DZMs and 3DZMs for the examined rabbit livers.

5.1.2 2DZM size

The liver ZMs were used to complete an analysis of bias for correlation co-

efficients and power spectra estimated using 2DZMs. To study the bias in

the estimated correlation coefficients, the variance was eliminated by aver-

aging large numbers of 2DZMs. Specifically, the correlation coefficient was

estimated from every 2DZM from every rabbit liver 3DZM in this study such

that a total of 100 × 24 = 2, 400 2DZMs were used to estimate the corre-

lation coefficient. Five different 2DZM sizes were studied. The 2DZM sizes

were given in terms of the 2DZM side length L. The studied 2DZM sizes

included L = 300.0 µm, L = 150.0 µm, L = 75.0 µm, L = 37.5 µm, and

L = 18.75 µm. The correlation coefficient estimated using L = 300.0 µm

served as the reference for the analysis. If the correlation coefficients esti-

mated using 2DZM size L = 150.0 µm, L = 75.0 µm, L = 37.5 µm and

L = 18.75 µm converged to the correlation coefficient estimated using 2DZM

size L = 300.0 µm, this served as evidence that the 2DZM size L = 300.0 µm

was sufficient to estimate the correlation coefficient without bias. In addi-

tion, if only small differences existed between 2DZMs with size L = 300.0 µm

and smaller sized 2DZMs, these smaller sized 2DZMs could also be said to

be unbiased. The same study was repeated, except that each correlation co-

efficient was used to estimate a power spectrum and a sufficient 2DZM size

to estimate the power spectrum was determined.

The estimated correlation coefficients and power spectra for each of the

studied 2DZM sizes are in Fig. 5.1. The RMSE between estimated and

reference correlation coefficients for the different sized 2DZMs are shown in

Fig. 5.2. The RMSE between estimated and reference power spectra is also
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shown in Fig. 5.2. Scatterer sizes were estimated using the correlation co-

efficients from Fig. 5.1. The fluid-filled sphere model in Eq. 2.18, spherical

Gaussian model in Eq. 2.20, and exponential model in Eq. 2.23 were used to

model the correlation coefficients and it was determined that the exponen-

tial model provided the best fit. The reference scatterer size was estimated

from the reference correlation coefficient (i.e., the correlation coefficient es-

timated using 2DZM with size L = 300.0 µm) and the estimated effective

scatterer diameter was 8.8 µm. The percentage error between the estimated

and reference scatterer sizes as a function of 2DZM size is shown in Fig. 5.3.

Scatterer sizes were also estimated using the power spectra from Fig. 5.1

and the exponential model, the results of which are shown in Fig. 5.3. The

estimated effective scatterer diameter based on the power spectrum was 7.6

µm.

The results in Fig. 5.1 show the effect of 2DZM size when estimating

the correlation coefficient. The RMSE between the estimated and reference

correlation coefficients was 0.4% (2DZM size: L = 150.0 µm), 1.0% (2DZM

size: L = 75.0 µm), 2.8% (2DZM size: L = 37.5 µm), and 10% (2DZM

size: L = 18.75 µm). These results suggest that the rabbit liver correlation

coefficient estimates were unbiased when using a size of L = 150.0 µm and

L = 75.0 µm and that they were biased when using a size of L = 18.75 µm.

The RMSE curves in Fig. 5.2 show rapid convergence to zero, suggesting

that increasing the 2DZM size would offer only minimal reductions in error

due to bias.

The results in Fig. 5.1 show the effect of 2DZM size when estimating the

power spectrum. The RMSE between the estimated and reference correla-

tion coefficients was 1.2% (2DZM size: L = 150.0 µm), 1.4% (2DZM size:

L = 75.0 µm), 4.4% (2DZM size: L = 37.5 µm), and 33% (2DZM size:

L = 18.75 µm). These results suggest that the rabbit liver power spectral

estimates were unbiased when using a size of L = 150.0 µm and L = 75.0 µm

and that they were biased when using a size of L = 18.75 µm.

Similar to the spherical Gaussian simulations, the rabbit liver correlation

coefficient was underestimated when using 2DZMs that were too small. The

scatterer size based on the estimated correlation coefficient was also under-

estimated when using 2DZMs that were too small. The percent error in

scatterer size estimate based on the correlation coefficient was -1.9% (2DZM

size: L = 150.0 µm), -4.1% (2DZM size: L = 75.0 µm), -12% (2DZM size:
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Figure 5.1: Examples of (left column) correlation coefficient and (right
column) power spectrum estimated using different sized 2DZMs. The
dashed black line represents the correlation coefficient or power spectrum
estimated using L = 300.0 µm.
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Figure 5.2: RMSE for estimated (left column) correlation coefficients and
(right column) power spectrum as a function of 2DZM size.

Figure 5.3: Percentage error in estimated scatterer size using the (left
column) correlation coefficients and (right column) as a function of 2DZM
size.
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L = 37.5 µm), and -34% (2DZM size: L = 18.75 µm). The percent error

in scatterer size estimate based on the power spectrum was 1.3% (2DZM

size: L = 150.0 µm), -4.2% (2DZM size: L = 75.0 µm), -13% (2DZM size:

L = 37.5 µm), and -47% (2DZM size: L = 18.75 µm).

In conclusion, this section demonstrated how to analyze bias for a collection

of 2DZMs created from rabbit liver. The actual correlation coefficient and

scatterer size were unknown for this medium. The results suggested that

2DZM with size L = 150.0 µm was sufficient to reduce or eliminate bias

because the correlation coefficient and power spectrum RMSE were less than

1% and the percent error in scatterer size estimates was less than 3%.

5.1.3 Number of 2DZMs

To study the variance in the estimated correlation coefficient, the bias was

eliminated by using 2DZMs having size L = 300.0 µm. The results from

the previous section suggested that 2DZMs with this size exhibited minimal

bias. The variance of an estimated correlation coefficient is controlled by the

number of 2DZMs that are used to estimate the correlation coefficient. Using

more 2DZMs to estimate the correlation coefficient results in decreased cor-

relation coefficient variance. Therefore, the analysis in this section consisted

of changing the number of 2DZMs used to estimate the correlation coefficient

in order to study correlation coefficient variance.

In order to study correlation coefficient variance, the following process was

used. First, one 2DZM was randomly selected from the collection of 24 rabbit

liver 3DZMs. Each rabbit liver 3DZM had 100 2DZMs, so there were a total

of 100× 24 = 2, 400 2DZMs available for selection. This 2DZM was used to

estimate the correlation coefficient. The RMSE between the estimated and

reference correlation coefficients were computed. The reference correlation

coefficient was found by estimating the correlation coefficient using all avail-

able 2, 400 2DZMs and using 2DZM size L = 300.0 µm. The scatterer size

was estimated from the estimated correlation coefficient using the exponen-

tial model. This scatterer size was compared to the reference scatterer size,

which was estimated from the reference correlation coefficient. This process

was repeated 100 times, that is, for 100 different randomly selected 2DZMs.

Next, ten 2DZMs were randomly selected from the available rabbit liver
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2DZMs. The correlation coefficient was estimated using these ten 2DZMs.

RMSE values were computed for the estimated correlation coefficient. Scat-

terer sizes were computed using the estimated correlation coefficient. This

process was repeated 100 times, that is, for 100 different sets of ten randomly

selected 2DZMs.

The above processing steps were repeated but using sets of 20, 30, ..., 100

randomly selected 2DZMs from the available rabbit liver 2DZMs. In this

way, the correlation coefficient RMSE and estimated scatterer size could be

studied as a function of the number of 2DZMs used to estimate the correlation

coefficient. Because the 2DZMs were randomly selected from the available

2, 400 2DZMs, the 2DZMs were independent. In addition, because the size

of the 2DZMs was L = 300.0 µm, it was assumed that observed errors were

due to variance in the estimates and not due to bias. The same study was

repeated except that the power spectrum was estimated from each studied

correlation coefficient.

Examples of correlation coefficients and power spectra that were estimated

using different numbers of 2DZMs are in Fig. 5.4. The RMSE between

estimated and reference correlation coefficients are in Fig. 5.5. The RMSE

between estimated and reference power spectra are in Fig. 5.5. Scatterer sizes

were estimated from the correlation coefficients and power spectra in Fig.

5.4. The percent differences between the estimated and reference scatterer

sizes as a function of the number of 2DZMs used to estimate the correlation

coefficient are shown in Fig. 5.6. In addition, the coefficients of variation of

the estimated scatterer sizes as a function of the number of 2DZMs used to

estimate the correlation coefficient are shown in Fig. 5.6.

In the previous section, it was shown that 2DZMs having sufficient size

could be used to estimate the correlation coefficient without bias. However,

large numbers of 2DZMs were used to estimate that correlation coefficient.

The results in Fig. 5.4 are important because they demonstrate that small

numbers of 2DZMs could be used to estimate the same correlation coefficient

that large numbers of 2DZMs were used to estimate.

From Fig. 5.5, the RMSE for the correlation coefficient decreased rapidly

as the number of 2DZMs used to estimate the correlation coefficient was

increased. For example, the RMSE between estimated and reference corre-

lation coefficient was 3.7% (1 2DZM), 1.1% (10 2DZMS), 0.9% (20 2DZMs),

and 0.8% (30 2DZMs). From Fig. 5.5, the RMSE for the power spectrum
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Figure 5.4: Examples of (left column) correlation coefficients and (right
column) power spectra estimated using different numbers of 2DZMs. The
dashed black line represents the correlation coefficient estimated using
L = 300.0 µm and all available 2DZMs.
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Figure 5.5: RMSE for estimated (left column) correlation coefficients and
(right column) power spectra using different numbers of 2DZMs to estimate
the correlation coefficient.

Figure 5.6: The top row is the average percent error in estimated scatterer
size based on the (left column) correlation coefficient and (right column)
power spectrum using different numbers of 2DZMs. The bottom row is the
coefficient of variation for the scatterer size estimates using different
numbers of 2DZMs.
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decreased rapidly as the number of 2DZMs used to estimate the correlation

coefficient was increased. The RMSE between estimated and reference power

spectrum was 1.7% (1 2DZM), 0.6% (10 2DZMs), 0.5% (20 2DZMs), 0.4%

(30 2DZMs). These results suggest that estimation of the correlation coeffi-

cient and power spectrum with low error was possible using a small subset

of the 2DZMs that would be required to conduct a 3DZM analysis.

From Fig. 5.6, the mean percent difference in scatterer size estimates was

close to zero and independent of the number of 2DZMs used to estimate

the correlation coefficient, suggesting that the scatterer size estimates were

unbiased. Furthermore, the coefficient of variation for the scatterer size es-

timates decreased as the number of 2DZMs used to estimate the correlation

coefficient was increased. For example, the coefficient of variation for the

scatterer size based on the correlation coefficient was 24% (1 2DZM), 5.9%

(10 2DZMs), 5.5% (20 2DZMs), and 4.6% (30 2DZMs). The coefficient of

variation for the scatterer size based on the power spectrum was 8.6% (1

2DZM), 3.5% (10 2DZMs), 2.8% (20 2DZMs), and 2.5% (30 2DZMs). A

small coefficient of variation indicates that the estimated scatterer size will

be close to the reference scatterer size irrespective of the set of 2DZMs used

to estimate the correlation coefficient.

In conclusion, the rabbit liver results in this section were important be-

cause they demonstrated that the correlation coefficient could be estimated

with low error using small numbers of 2DZMs. One of the main advan-

tages of 2DZMs over 3DZMs is that fewer slices need to be used to estimate

the correlation coefficient. The results in this section demonstrate that this

advantage was realized for the rabbit liver ZMs. The rabbit liver 3DZMs

required analysis of 100 2DZMs. The results in this section demonstrated

that low error estimation of the correlation coefficient was possible using 30

2DZMs with size L = 300.0 µm because the RMSE for the correlation coef-

ficient and power spectrum was less than 1% and the coefficient of variation

for the scatterer size estimates was less than 5%.

5.1.4 3DZM and 2DZM scatterer size estimate comparison

The goal of this section was to demonstrate 1) that 2DZM analysis can be

used in place of 3DZM analysis to detect differences between two rabbit livers,
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one healthy and one fatty, and 2) to quantitatively characterize the agreement

between scatterer sizes estimated using 2DZMs and 3DZMs for the examined

rabbit livers. To accomplish the first goal, 3DZM analysis was carried out to

demonstrate that differences were statistically significant between one normal

and one fatty rabbit liver using scatterer size estimates. Next, 2DZM analysis

was carried out to show that this difference was also statistically significant

using 2DZMs. To accomplish the second goal, a Bland-Altman analysis was

conducted to characterize the agreement between scatterer sizes estimated

using 3DZMs and 2DZMs.

3DZM analysis

A total of 24 3DZMs for the healthy rabbit liver and 24 3DZMs for the fatty

rabbit liver were examined. Correlation coefficients were estimated using the

available 3DZMs and used to estimate a power spectrum and then a form

factor for each 3DZM. The estimated form factors are in Fig. 5.7 and visual

inspection of this figure suggests that a difference existed between normal and

fatty liver form factors. The estimated effective scatterer diameter (ESD)

using an exponential model was 7.7 ± 0.4 µm and 6.7 ± 0.5 µm for normal

and fatty liver, respectively (p < 10−7).

2DZM analysis

Using the same collection of 3DZMs, 2DZM analysis was conducted to see

if differences between the normal and fatty liver samples were statistically

significant. Each rabbit liver 3DZM consists of 100 2DZMs that have been

registered and aligned. The 2DZM analysis in this section was performed by

extracting a single 2DZM from each 3DZM. Figure 5.8 shows the form factors

estimated using a single 2DZM from each 3DZM and visual inspections sug-

gested that a difference existed between normal and fatty liver power spectra.

When scatterer sizes were estimated from these form factors, the estimated

ESDs using an exponential model were 7.4 ± 0.5 µm and 6.2 ± 0.5 µm for

normal and fatty liver, respectively. The healthy and fatty liver scatterer

size samples were found to be statistically different (p < 10−7).
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Figure 5.7: Estimated form factors from power spectra for normal (blue)
and fatty (green) rabbit liver 3DZMs. Each line represents a single sample.

Figure 5.8: Estimated form factors from power spectra for normal (blue)
and fatty (green) rabbit liver samples. A single 2DZM was used from each
of the available 3DZMs. Each line represents a single sample.
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Bland-Altman analysis

To show that there is perfect accuracy between the 2DZM and 3DZM meth-

ods would require an infinite amount of data, which is not practical. The

goal of this section was to characterize the agreement between the 3DZM

and 2DZM methods. This task was accomplished using a Bland-Altman plot

with a finite data set, which is a common tool used in medical literature to

examine the agreement between two different measurement techniques [43].

The horizontal axis of a Bland-Altman plot shows the mean value of the two

measurement techniques and in the absence of a gold standard serves as a

best estimate for the true value being measured. The vertical axis of a Bland-

Altman plot shows the difference between the two measurement techniques.

Presentation of the data in this way allows for identification of systematic

differences between the measurement techniques.

A Bland-Altman plot showing the difference between the scatterer size

estimated using a 3DZM and the scatterer size using a single 2DZM is in Fig.

5.9. The difference between scatterer sizes was 0.4± 0.8 µm, which includes

48 scatterer size estimates from the 48 liver sample impedance maps.

Figure 5.9: Bland-Altman plot showing agreement between scatterer sizes
estimated using 3DZMs and scatterer sizes estimated using 2DZMs. The
solid black line represents the mean of the differences and the dashed black
lines represent 95% limits of agreement.
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Discussion

Several observations can be made from the results section. First, statistically

significant differences were observed for scatterer size estimates based on a

3DZM analysis for healthy and fatty liver samples. In addition, statistically

significant differences were also observed for scatterer size estimates based on

a 2DZM analysis. These results demonstrate that it was possible to detect

a difference in scatterer size between the healthy liver and fatty livers using

3DZMs and that a 2DZM analysis was able to perform the same task. Second,

a Bland-Altman plot was used to study the agreement between scatterer sizes

estimated using 3DZMs and 2DZMs. A bias was observed between 3DZM

and 2DZM with the finite data set, but the magnitude of the bias would be

unlikely to hinder using ZMs to identify acoustic scattering sites.

5.2 Conclusion

The simulation results in Chap. 4 demonstrated that the 2DZM method

can model ultrasonic scattering. The results of the 2DZM analysis could

be verified because the studied media had known correlation coefficient and

power spectrum.

In this chapter, the process for analyzing uncharacterized media was demon-

strated. The first step of the 2DZM method was to analyze the bias of the

estimated correlation coefficient in the case when the variance was elimi-

nated. This step was completed by eliminating the variance of the corre-

lation coefficient estimate by averaging the correlation coefficient estimates

from many 2DZMs. In this way, the correlation coefficient was estimated us-

ing differently sized 2DZMs and found to converge to the reference correlation

coefficient, which was estimated using 2DZMs with size L = 300.0 µm. The

analysis suggested that a 2DZM with size L = 150.0 µm was sufficient to re-

duce or eliminate bias because the correlation coefficient and power spectrum

RMSE were less than 1% and the percent error in scatterer size estimates

was less than 3%.

The second step of the 2DZM method was to analyze the variance of the es-

timated correlation coefficient in the case when the bias was eliminated. For

this step, the bias was eliminated by using 2DZMs with size L = 300.0 µm.

Next, random sets of 2DZMs (where the number of 2DZMs was varied) were
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selected and used to estimate the correlation coefficient. This analysis al-

lowed the correlation coefficient variance to be studied as a function of the

number of 2DZMs. The results suggested that small numbers of 2DZMs could

be used to estimate the correlation coefficient with low error. The analysis

demonstrated that estimation of the correlation coefficient and power spec-

trum was possible with low error using 30 2DZMs with size L = 300.0 µm

because the RMSE for the correlation coefficient and power spectrum was

less than 1% and the coefficient of variation for the scatterer size estimates

was less than 5%. In comparison, a 3DZM analysis would have required 100

2DZMs.

In general, the results in this chapter demonstrated how to perform 2DZM

analysis on uncharacterized media. The first step was to determine if an

adequately sized ZM is being used to estimate the correlation coefficient.

The second step was to determine how many 2DZMs were needed to estimate

the correlation coefficient with low variance. The analysis showed that for

the rabbit liver ZMs, a reasonable 2DZM size was needed to estimate the

correlation coefficient size and small numbers of 2DZMs could be used to

estimate the correlation coefficient with low error. This suggested method

for analyzing ZMs has not been used previously and should be completed to

avoid biased and high variance correlation coefficient estimates.
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CHAPTER 6

CONCLUSIONS AND FUTURE WORK

6.1 Summary and contributions

This thesis proposed the 2DZM approach for studying weak acoustic scat-

tering in biological media using stained histological tissue slides. Processing

2DZMs has numerous advantages compared to processing 3DZMs, including

reduced computational and financial cost. For example, it is not necessary

to register and align 2DZMs before analyzing them. Also, missing slides do

not affect 2DZM analysis besides reducing the number of 2DZMs available

for analysis.

The 2DZM approach is based on theoretical properties of multi-dimensional

random processes. In particular, the correlation functions for an (n-k)-

dimensional subspace of an n-dimensional isotropic random process are one

and the same. In contrast, the power spectra for an (n-k)-dimensional sub-

space of an n-dimensional isotropic random process are not the same. There-

fore, to estimate the 3D power spectrum from 2D sections of a random pro-

cess, the following steps were used. First the correlation coefficient was esti-

mated using 2D histology slides. Second, the correlation coefficient was used

to estimate the 3D power spectrum.

Although the 2DZM approach is based on theoretical properties of multi-

dimensional random processes, the approach has never been validated using

media with known correlation coefficient and power spectrum. The sparse

scatterer and spherical Gaussian simulations demonstrated that 2DZMs can

capture 3D size and shape information about the scatterers in the medium.

The dense scatterer simulations demonstrated that 2DZMs can also capture

information about the 3D spatial arrangement of the scatterers.

The simulation studies were also designed to offer practical guidance for

2DZM analysis. For example, the simulations were used to determine how
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large 2DZMs need to be to estimate correlation coefficients and power spectra

with low error, to determine if regularly spaced slices offer any advantages

when estimating the correlation coefficient and power spectrum, to deter-

mine the effect of appreciable histology section thickness, and to determine

the number of 2DZMs that are necessary to achieve a certain reduction in

correlation coefficient and power spectral variance. Future ZM analysis can

use these results to assess expected bias and variance in the estimated cor-

relation coefficient and power spectrum.

Specifically, the following guidelines can be suggested based on the simula-

tion results. When analyzing 2DZMs where the suspected scatterer is sparse

(e.g., cell nuclei), the 2DZM should be made large enough to include at least

30 of the scatterer cross sections. Including this many scatterer cross sec-

tions produced correlation coefficient estimates with RMSE less than 0.5%

for monodisperse and polydisperse spheres and monodisperse ellipsoids. In

addition, the power spectrum RMSE was less than 3 dB for monodisperse

spheres and less than 1 dB for polydisperse spheres and monodisperse ellip-

soids. When analyzing 2DZMs with continuous variation in acoustic proper-

ties, the spherical Gaussian simulations suggest that the 2DZM be at least 50

times larger than the suspected scatterer. For simulated spherical Gaussian

media and using 2DZDs with this size, the RMSE of the estimated correla-

tion coefficients and power spectra was less than 1%. When analyzing dense

media with 2DZMs, the dense sphere simulations suggest that the 2DZM be

at least 25 times larger than the suspected scatterer. For simulated dense

spheres and using this 2DZM size, the RMSE of the estimated correlation

coefficients and power spectra was less than 0.5% and 12%, respectively.

The rabbit liver study demonstrated that the 2DZM method performed

well using real histology. An analysis of bias study was carried out to deter-

mine the smallest 2DZM that could be used without introducing bias. The

RMSE for the correlation coefficients and power spectra when using 2DZMs

with side length 150 µm was less than 1%, suggesting that 2DZMs with side

length 150 µm were sufficient to estimate the correlation coefficient without

bias. An analysis of variance study was carried out to determine the number

of 2DZMs that were necessary to conduct 2DZM analysis. The RMSE for

the correlation coefficient and power spectrum when using a single 2DZM

with side length 300 µm was 3.7% and 1.7%, respectively. When using 10

2DZMs, the RMSE for correlation coefficient and power spectrum was less
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than 1%.

2DZMs may be used to help identify anatomic scattering structures in

tissues. For example, the spatial autocorrelation function estimated from

a 2DZM could be modeled to estimate an ESD, which would represent a

size associated with the impedance fluctuations in the ZM. Similarly, a form

factor could be estimated from this correlation function and also modeled to

estimate an ESD. Finally, the estimated form factor could be modeled over

different frequency ranges to study the dominant scattering structure for

each frequency range. When scanning tissues with ultrasound, the frequency

range is limited by the bandwidth of the ultrasound system. ZMs might

be used to identify the optimal frequency range that is most sensitive to a

specific anatomic scattering structure.

6.2 Future work

Numerous directions of research are available for 2DZM analysis. For exam-

ple, 2DZMs could be used to study whether tissues are isotropic. Determining

if a tissue is not isotropic is important for QUS analysis because the param-

eter estimates would change depending on the incident ultrasound direction.

In addition, knowledge of tissue anisotropy is important for studying QUS

parameters using ZMs. If it is determined that a tissue is isotropic, 2DZM

method #1 can be used to estimate the correlation coefficient and power

spectrum. If it is determined that a tissue is transverse isotropic, the 2DZM

method for transverse isotropic media could be used. If it is determined

that a tissue is anisotropic, then it is necessary to complete the ZM analysis

with knowledge of how the ZMs are aligned relative to the ultrasound wave

propagation direction. However, it is important to note that when conduct-

ing ZM analysis for anisotropic media, having this knowledge of ultrasound

wave propagation is necessary for both 3DZM analysis and 2DZM analysis.

2DZMs could be used to estimate tissue isotropy in the following man-

ner. The correlation coefficient could be estimated for a 2DZM. The radial

symmetry of this correlation could be assessed using different methods, ei-

ther through direct comparison of radial lines from the correlation coefficient

extracted at different angles or comparing scatterer size estimates based on

radial lines from the correlation coefficient extracted at different angles. If
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significant differences are observed as a function of angle, this would indicate

that the tissue is anisotropic. Although this assessment of isotropy would

be conducted in the plane in which the tissue was sliced, if the tissue is

anisotropic, it is likely that this anisotropy would show up in a 2D analysis.

In addition, 2DZMs could be used to study the stationarity of acoustic tis-

sue properties in a tissue, by analyzing 2DZMs created from different spatial

locations. For example, the correlation coefficient could be estimated using

2DZMs from different spatial locations in the tissue. Similar correlation co-

efficients would be indicative of stationary tissue properties and dissimilar

correlation coefficients would be indicative of non-stationary tissue proper-

ties.

A final area of development in ZM analysis is the assignment of impedance

values. Currently, impedance values are assigned based on the color of the

histology stain. A better method would be to directly measure tissue prop-

erties using a scanning acoustic microscope. 2DZMs created with a scanning

acoustic microscope could offer significant improvements to the study of QUS

methods using ZM analysis. This represents another advantage of 2DZMs

over 3DZMs, which is the ability to extract parameters from a limited set of

2DZMs that might be provided by a scanning acoustic microscope technique.
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[19] M. Gyöngy, L. Balogh, K. Szalai, and I. Kalló, “Histology-based sim-
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