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Abstract – While technology scaling has presented many new 
and exciting opportunities, new design challenges have arisen 
due to increased density, and delay and power variations.  High-
level synthesis has been touted as a solution to these problems, 
as it can significantly reduce the number of man hours required 
for a design by raising the level of abstraction.  In this paper, we 
propose a new variation-aware high-level synthesis bind-
ing/module selection algorithm, named FastYield, which takes 
into consideration multiplexers, functional units, registers, and 
interconnects.  Additionally, FastYield connects with the lower 
levels of the design hierarchy through its inclusion of a timing 
driven floorplanner guided by a statistical static timing analysis 
(SSTA) engine which is used to modify/enhance the synthesis 
solution.  FastYield is able to incorporate spatial correlations of 
process variations in its optimization, which are shown to affect 
performance yield.  On average, FastYield achieves a clock pe-
riod that is 14.5% smaller, and a performance yield gain of 
78.9%, when compared to a variation-unaware algorithm.  By 
making use of accurate timing information, FastYield’s rebind-
ing improves performance yield by an average of 9.8% over the 
initial binding, for the same clock period.  To the best of our 
knowledge, this is the first high-level synthesis binding/module 
selection algorithm that is layout-driven and variation aware. 

I. Introduction 

Aggressive technology scaling to the deep sub-micron realm has 
resulted in significant variations in fabricated device parameters.  In 
turn, these parameter variations have caused many traditional circuit 
design and analysis techniques to become inadequate.  To overcome 
this obstacle, a shift in the design paradigm from the worst-case 
deterministic design to a statistical or probabilistic design is critical.  
A new era of statistical design techniques has begun to emerge 
where circuit parameters such as delay and power are no longer 
modeled as deterministic values, but are represented as probability 
density functions.  These statistical design techniques are leading to 
reclamation of lost performance and yield that has been occurring 
when using deterministic design techniques. 

The shift to probabilistic design methodologies has produced a 
number of gate-level variation-aware optimization techniques [1][2].  
While progress at the gate-level is encouraging, the large productivi-
ty gains available in high-level synthesis (HLS) make it attractive 
and necessary to address the issue of process variations at a higher 
level of abstraction. 

In this paper, we propose a novel variation-aware simultaneous 
binding and module selection algorithm, named FastYield, which 
maximizes the performance yield of the resulting circuit.  We con-
nect our synthesis engine to the layout closely, so layout information 
can be accurately back-annotated to the synthesis and introduce 
useful synthesis transformations.  Synthesis and layout are iterated 
until the performance gain is maximized.  The major contributions 
of our paper are summarized below: 

1) A simultaneous binding and module selection algorithm that 
considers registers, multiplexers, functional units, interconnects, and 
spatially correlated process variations. 

2) A timing-driven, simulated annealing-based, statistical floor-
planner that considers interconnect delay and spatial correlation 
between all units in the design. 

3) An iterative functional unit rebinding based on timing analysis 
information and register criticality. 

The rest of the paper is organized as follows: Section II introduc-
es related work on recent high-level synthesis algorithms; Section III 
presents statistical functional unit modeling; Section IV presents the 
details of the FastYield algorithm; Section V presents experimental 
results; Section VI concludes this paper with future directions. 

II. Related Work 

HLS is a well-studied topic [3][4][5][6].  Much work has been 
done in the areas of scheduling, resource allocation, and binding.  A 
number of works, such as [7], have addressed the topic of simulta-
neous binding and floorplanning, but with no consideration of spa-
tial correlation or variability.  Huang et al. [8] presented a binding 
algorithm based on bipartite weighted matching.  However, their 
algorithm does not address the critical issues of module selection 
and delay variability.  Likewise, most of the work in HLS has ig-
nored the issue of process variation as it has not been an important 
issue, but that has begun to change in the past few years with the 
move to deep submicron processes.  We will mainly introduce varia-
tion-aware HLS work here, which is an emerging area of research. 

Hung et al. [9] offer a simultaneous scheduling, binding, and al-
location algorithm based on simulated annealing.  The simulated 
annealing algorithm seeks to reduce the overall latency while meet-
ing a performance yield requirement. However, the algorithm does 
not consider multiplexer use or interconnect delay, both of which 
can significantly contribute to the clock period of the unit.   

Jung et al. [10] propose a timing variation-aware HLS algorithm 
which improves resource sharing.  While the algorithm is effective, 
it ignores multiplexers and interconnects, and also relies on the as-
sumption that functional units (FUs) are independent of each other 
in its yield calculation given by: 
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where n is the number of functional units, and Tclk is the chosen 
clock period.  As has been shown in [11] and [12], and as our results 
show, correlation among process parameters has an effect on the 
performance yield. 

Lastly, Wang et al. [13] propose a simulated annealing based me-
thod to consider both power yield and timing yield during HLS.  
They use a number of different simulated annealing moves com-
bined with a cost function that penalizes the design if it exceeds a 
power or timing yield constraint. Spatial correlation and intercon-
nect delay are not considered. 

III. Resource and Correlation Modeling 

Modeling resources at a higher level of abstraction is critical to at-
taining an accurate HLS solution. We employ a Monte Carlo based 
method to pre-characterize the functional units. Two types of varia-
tion are considered, random variation and correlated variation (or 
systematic variation). The characterization flow for each unit begins 
with logic synthesis followed by placement and routing using Synop-
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sys Design Compiler and Cadence SOC Encounter. The characteriza-
tion was performed on a recently released 45nm standard cell library 
provided in the design kit from [14]. From the place and route informa-
tion, the delay of the unit and placement of the individual gates are ex-
tracted. 

Using Monte Carlo analysis, we then characterize the units by 
specifying a correlated, θcor, and independent, θind, percentage of 
delay variation for each gate in the resource with respect to its no-
minal delay value.  For each Monte Carlo run, the critical path of the 
circuit is then found by running a deterministic timing analysis (we 
used Synopsys PrimeTime).  By plotting the critical path for each 
Monte Carlo run, the mean, μFU, and standard deviation, σFU of the 
delay distribution is built. 

To consider spatial correlation during the binding algorithm, we 
define two types of delay variation, inter-unit delay variation and 
intra-unit delay variation.  Inter-unit delay variation is defined to be 
correlated across units, while intra-unit delay variation is defined to 
be independent across units.  The components of inter- and intra-unit 
delay variation are calculated as percentages of the standard devia-
tion that was found from the Monte Carlo analysis of the resource.  
Equations (1) and (2) show the calculation of the intra- and inter-
unit delay standard deviations. 

)/(22
corindindFUintra θθθσσ +×=                             (1) 

)/(22
corindcorFUinter θθθσσ +×=                             (2)  

We support different structural implementations of the same 
arithmetic operation. These implementations provide different delay 
and area tradeoff characteristics and offer opportunities for better 
design space exploration targeting higher performance yield given a 
specific resource or area constraint. 

IV. FastYield Algorithm Description 

In this section we will present the FastYield binding/module selec-
tion algorithm. FastYield seeks to improve performance yield through 
a multiplexer- and interconnect-aware delay reduction strategy. Per-
formance yield evaluated at a clock period t, PY(t), is defined as: 

),...,,,()( 21 trtrtrPtPY n ≤≤≤=                            (3) 
where PY(t) is the probability that r1, r2,…, rn  meet the clock period 
requirement, and rn represents the probability distribution of register 
n.  We assume all delays are jointly Gaussian with an associated 
covariance matrix, i.e. they are correlated. 

The algorithm has three major components: 1) an initial resource 
allocation and binding; 2) a timing driven floorplanner, which per-
forms both a timing driven placement as well as a statistical static 
timing analysis (SSTA); and 3) a FU rebinding which incorporates 
timing analysis information from component 2.  FastYield seeks to 
improve the synthesis solution through iteratively feeding back ac-
curate, floorplan and interconnect-aware, statistical timing informa-
tion to the rebinding step. 

One of the strengths of FastYield lies in its use of a process corre-
lation model during timing analysis.  Enabled by the floorplan, in-
terconnect delay and multiplexer delays are considered during each 
SSTA step.  Performance yield is calculated at the end of each tim-
ing analysis to evaluate the success of the algorithm, and the algo-
rithm exits when no further improvement is seen in the bind-
ing/module selection solution. Each of the main components of Fas-
tYield is described next. 

A. Initial Binding 
The inputs to the algorithm include: 1) a scheduled control data 

flow graph (CDFG), 2) a resource library, and 3) an area constraint.  
The resource library contains all the resources – including FUs, 
multiplexers, and registers – as well as the pre-characterization data for 
each. FastYield performs an initial allocation and binding in three 
steps:  First, a minimal set of registers is allocated and bound to a set 

of variables (variables are outputs of operations).  Second, a com-
bined FU allocation and binding takes place.  Third, a minimized set 
of multiplexers is allocated.  We name this section Initial Binding to 
differentiate from the Rebinding procedure to be covered later. 

A.1. Register Allocation and Binding 
Register binding is accomplished in a manner similar to that de-

scribed in [8], where a minimal set of registers is allocated, and 
variables are bound by solving a weighted bipartite graph.

A.2. Initial Functional Unit Allocation and Binding 
Once the registers are allocated and variables are bound to them, 

FUs are allocated and operations assigned to them one control step 
at a time.  First, control steps are ranked according to the equation: 

numOPsdiversityRank cstep ×=                       (4) 

where diversity is the number of different types of operations in the 
control step, and numOPs is the number of operations assigned to 
the control step.  The control steps are then processed from the high-
est ranked to the lowest ranked.  This strategy is similar to the ‘first 
fit decreasing’ heuristic used in bin packing problems.  The items 
are put in descending order according to their volumes (in this case 
rank), and then packed one at a time in an effort to make the packing 
as close to optimal as possible. 

The cluster of control step operations to be bound is placed into a 
set, Ocstep, and the available FUs are put into a set FUav.  On the first 
control step to be bound, the set of available FUs consists of, for 
each operation in the control step, one instance of each FU in the 
resource library that is compatible with that operation (see Fig. 1).  
This initial allocation ensures that each operation can bind to any of 
the compatible FUs in the resource library.  In subsequent control 
steps, FUav is trimmed of any FUs that, if allocated, would exceed 
the area constraint, with the qualification that a sufficient number of 
FUs of each type has been allocated to accommodate a successful 
binding solution.  In this way FastYield produces a binding solution 
that meets the area constraint, while also enabling module selection. 

A weighted bipartite graph is constructed where each vertex 
represents either an operation (oi ∈Ocstep) or a FU (fuj ∈  FUav), and 
there is an edge, eij, between each operation, oi, and FU, fuj, which can 
perform the operation, with a corresponding weight.  Edge weights are 
based on multiplexer creation due to the already bound registers.  If 
two operations share the same input register, it is advantageous to bind 
the two operations to the same FU, because no multiplexer is needed 
(which will in effect potentially reduce the path delay).  Likewise, if 
two operations that share the same output register are bound to the 
same FU, no multiplexer is needed at the registers input port (again 
having a positive effect on the delay reduction).  The initial binding 
weight, wij_initial, corresponding to each edge, eij, is calculated below: 

),(/1_ jiestDelayw initialij =                                                           (5) 
2223),(
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where, μ is the mean, σ is the standard deviation, muxin is the multip-

Fig. 1. Illustration of the bipartite graph created for the functional unit bind-
ing of the first control step. 
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lexer that would be created at the input of the FU if the operation were 
bound to it, and muxout is the multiplexer that would be created at the 
input of the output register if the operation were bound to the FU. This 
weight calculation effectively incorporates the statistical behaviors of 
all the involved components in the circuit paths, putting a higher 
weight on the shorter delay paths. The maximum weight solution is then 
found to minimize the delay, and the operations are bound to FUs for the 
control step. After all the control steps are processed, FUs and registers 
are connected with allocated multiplexers. 

B. Statistical Timing Driven Floorplanner 
The timing-driven floorplanner is run after each binding iteration is 

completed to evaluate the performance yield of the solution.  As has 
been shown in previous work, [12][15], and as we show in the expe-
rimental results section, spatial correlation of variation in parameters 
such as gate length can have an impact on the variance of the timing of 
a circuit.  To achieve accurate timing results it is important that spatial 
correlation among units is considered during statistical timing analy-
sis.   

B.1. Unit Correlation Model 
To complement the high level synthesis resource modeling, we 

propose a novel unit-based correlation model.  In this model, each 
functional unit, register, or multiplexer is assigned a unit number 
and the correlation between each unit is found based on the distance 
between the center points of the units using a correlation function 
that meets the requirements of [12] so that the correlation matrix for 
the circuit is positive-semi definite, a requirement for the SSTA 
approach that we use. 

This model is beneficial to high level synthesis as it complements 
the proposed resource modeling (Section III), and also takes into 
account the different sizes of functional units.  On the other hand, a 
grid based model, as used in [15], does not complement the unit 
characterization since it is possible for functional units to be split 
across different grid regions, which complicates both the unit cha-
racterization process and the correlation calculation. 

Fig. 2 shows an example of the unit correlation model.  Two mul-
tipliers (1 and 2), an adder (3), and a register (4) are labeled in the 
picture.  It can be seen that when an adder and a register (small area) 
are placed next to each other, the correlation is higher than when 
two multipliers (large area) are placed next to each other.  This sce-
nario can be accurately modeled using our unit-based model. Our 
model can also be viewed as an extension of the grid based model 
where each logic gate/functional unit is its own grid. 

The proposed correlation model, in conjunction with the inter-
unit and intra-unit variation found during the resource characteriza-
tion, allows correlated variation to be represented at a higher level of 
abstraction with accuracy and runtime efficiency. 

B.2. SSTA Algorithm 
To obtain layout information during the timing analysis we use a 

modified version of the Parquet floorplanner [16].  The modified 
flooplanner employs a simulated annealing approach where, after a 
number of unit moves, a statistical timing analysis is performed to 
evaluate the solution.  Fig. 3 shows the pseudo code for the timing 
driven floorplanner. 

The method for statistical timing analysis considering spatial corre-
lation is based on the work of Chang et al. [15].  This work relies on 
principal component analysis (PCA) to transform a set of correlated 
random variables into a new set of independent random variables. 

To perform PCA, a correlation matrix for the binding solution is 
found using the unit correlation model described above.  The inter-
connect delay between the units is modeled based on distance.  
Since no detailed routing information is available, we model the 
connection between two functional units as a two-pin net with the 
length being the Manhattan distance between the two connecting 
terminals of the FUs.  The mean Elmore delay with optimal buffer 
placement is then found using (7) which follows from the results of 
[17]:

25.2 lCRCR lengthlengthbuffbuffwire ×=μ                  (7)

wirewire μασ ×=                                                    (8)
where μwire is the mean wire delay, Rbuff is the output resistance of 
the buffer, Cbuff is the input capacitance of the buffer, Rlength is the 
resistance per unit length, Clength is the capacitance per unit length, 
and l is the net length.  The standard deviation of the wire length is 
calculated using (8) where α is a percentage of wire variation. α is 
found in accordance with the results from [18] as follows1:

)1537.0exp(3836.0 h−×=α                           (9) 

where h is the optimal buffer size as calculated by [17].  We consid-
er the wire variation to be independent across wires. 

B.3. Floorplanner Cost Function 
The cost function for simulated annealing moves in the floorplan-

ner is given by: 
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where max(reg1(μ1,σ1), reg2(μ2,σ2),..., regn(μn,σn)) represents the 
statistical max operation [15] on the timing distributions at the inputs 
to all output registers (pseudo primary outputs), μbest and σbest
represent the mean and standard deviation of the best solution found 
so far, and α and β are weighting parameters. The TR cost is then 
found by adding the mean and standard deviation of the max distribu-
tion, normalized by the mean and standard deviation of the best solu-
tion. In the calculation of TR, we chose to use the sum of the mean and 
standard deviation since the result corresponds to the required clock 
frequency for an ~84% yield, for which we target in this study. After a 

1 We plotted the equation based on the buffer size vs. wire variation data 
reported in [18]. 

Fig. 3. Timing driven floorplanner pseudo code. 

Fig. 2. Sample floorplan showing data connections. 

Parquet:
While (time > time_cool){ 
     Perform_moves(num_moves); 
     Calc_wire_delay(); 
     Calc_Correlation(); 
     Perform_PCA();  //principle component analysis 
     Perform_timing_analysis(); 
     Calculate_Cost(); 
}
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specified number of moves, a timing analysis is performed on all 
paths in the design as described in Fig. 3. 

Upon completion of the timing analysis, the delay probability density 
function (pdf) for each register is known. The distributions, as well as 
the required clock frequency for an 85% performance yield are then 
passed back to FastYield for the criticality analysis of the rebinding step. 
Fig. 2 shows the example floorplan obtained from the timing driven 
floorplanner, with the arrows representing the flow of data through 
the critical path.  

C. Rebinding 
Functional unit rebinding is performed after the initial solution has 

been analyzed by the timing driven floorplanner, and then continues in 
an iterative fashion until the floorplanner reports that no improvement 
has been made.  The rebinding algorithm works by determining which 
functional units along the critical paths are causing the majority of the 
delay.  It then attempts to reduce the delay in two ways: one, by swap-
ping slower FUs on critical paths for faster FUs; and two, by rebinding 
individual operations on the critical paths.  Fig. 4 shows the pseudo 
code for the rebinding algorithm, which will be explained next. 

C.1. Register and Functional Unit Ranking 
The algorithm begins by ranking the output registers in order of 

their criticality.  The slowest register is identified by finding the 
worst case delay based on the mean and standard deviation from the 
floorplanning information.  The rank of register r is then calculated: 

slowestslowest

rr
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+=                            (11) 

where μr and σr are the mean and standard deviation for register r,
and μslowest and σslowest are the mean and standard deviation of the 
slowest register.  The registers are then ordered according to their 
criticality, or rank, starting from the most critical. 

With the registers ranked, the algorithm then proceeds to rank 
each FU that is connected to each register.  The rank of FU k con-
nected to register r is found by: 
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where μr and σr are the mean and standard deviation for output reg-
ister r, μk and σk are the mean and standard deviation of the FU, and 
RegRankr is the rank for register r.  The RegRankr weight provides 
an estimate of the global impact the register has on the overall clock 
period, while the ratio of the means and standard deviations consid-
ers how much the overall mean or variance of the functional unit 
impacts the final timing at the register.  The end of section C.3 will 
present an example of how this ranking is accomplished. 

C.2. Swapping Critical Functional Units 
The rebinding algorithm examines the set of allocated FUs, and 

based on their rank, finds any higher ranked FUs that are slower 
than lower ranked, faster FUs of the same type, and swaps them.  
The net effect is to place the fastest FUs on the most critical paths.  
If no FUs meet the criteria for swapping, the rebinding proceeds to 
the next step.  If FUs are swapped then the timing analysis is re-run 
before rebinding proceeds. 

C.3. Selection of Operations to be Rebound 
The rankings of the registers and FUs are used in the selection of 

particular operations that will be rebound.  Operations are chosen 
that both contribute to a critical path delay, and have the potential to 
reduce that delay.  Briefly, this is done as follows: First, a set of 
output registers are selected for their delay criticality based on their 
rank.  For each chosen register, the FU connected to it with the 
highest rank (denoting its greater contribution to the criticality of the 
register) is selected, and an operation, or multiple operations, that 
are bound to that FU are selected to be rebound.  The criterion for 
selection of the particular operations associated with each FU to be 
rebound is the operation’s potential, if rebound, to reduce multiplex-
er size on that critical path.  The example in the next paragraph 
serves to clarify the process.

An example of the register and FU ranking, and operation selec-
tion, is illustrated in Fig. 5. The method is presented step-by-step:  
The slowest register has a mean μ = 3.1, and a standard deviation σ
= 0.3.  1) Based on the slowest register information, by (11) register 
5 is found to have a rank of 0.9.  (Register 5 is determined to be 
critical based on its rank.)  2) The FUs connected to register 5 are 
ranked according to (12). fu_2 is found to have a higher rank than 
fu_1, so it is from fu_2 that an operation, or operations, will be se-
lected for rebinding.  3) The inputs to fu_2 are examined, and port 1 
is found to have a larger multiplexer than port 0.  4) The registers 
connected to the inputs of the 3-input multiplexer are evaluated.  
One of the three registers has two variables bound to it, and the oth-
er two have one variable bound to them. Since fewer variables 
bound to a register is preferred (more likely to reduce the multiplex-
er size if moved), register 3 is randomly chosen from the two regis-
ters with only one variable bound to them.  The operation corres-
ponding to that register/variable, operation 1 in this case, is assigned 
the rank of the target FU, and chosen for rebinding.  This same 
process is carried out for each critical register, and the selected oper-
ations (along with their ranking) are placed in the set Orebind to be 
rebound.  

C.4. Operation Rebinding 
The rebinding is performed for each operation oi∈Orebind, one op-

eration at a time, starting with the operation with the highest rank.  
Previous bindings that have not been selected for rebinding are left 
untouched.  For a given operation, oi, a rebind weight is calculated for 
each FU, fuj, in the previously allocated FU set.  The weight, wij_rebind,
for each operation FU pair is calculated as follows: 

)1(
)max( _

_
_ j
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w −×=                     (13) 

where wij_rebindPrevious is the weight of the operation-to-FU pair in the 
previous iteration of rebinding (or the initial binding if this is the 
first iteration), max(wi_rebind) is the maximum weight from all of the 
operation-to-FU pairs, and FURankj is the FU rank as described Fig. 4. Rebinding algorithm pseudo code. 

Fig. 5. Example of FU ranking and the selection of operations for rebinding 

Rebind { 
  Calc_reg_and_FU_ranks(); 
  If(Swap_critial_FUs()) Break; 
  Order_rebind_operations(Orebind);
  for_each (op in Orebind) { 
    Calc_op_to_FU_weights(); 
    Bind_largest_weight_pair(); 
    Estimate_timing(); 
    Recalc_reg_and_FU_ranks(); 
  } 
}

reg_5 

fu_1 fu_2 
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earlier.  The first part of the weighting considers the likelihood op-
eration oi had of being assigned to fuj in the previous binding.  If oi
was close to being assigned to fuj during the previous binding, then 
rebinding oi to fuj will be a good choice, if the rank of the FU is low 
(meaning it currently is not a part of the critical path).  The second 
part of the equation adds this rank consideration to the weight. 

The operation-to-FU pair with the largest weight is then chosen, 
and that operation is bound to the FU.  The process repeats for each 
operation that belongs to the set Orebind.  However, after each opera-
tion is rebound it is possible that the multiplexer size has changed, 
which in turn reduces the critical path of the circuit and changes the 
ranks of the registers.  Therefore, after each operation is rebound, a 
fast estimated timing analysis is performed on the paths that are 
affected by the rebinding of the operation and the register and FU 
ranks are recalculated.  After every operation in Orebind has been 
processed, one iteration of rebinding is complete and the solution is 
sent to the floorplanner for analysis.

V. Experimental Results 

In this section we present a number of results that demonstrate the 
importance of considering process variation and correlation during 
high-level synthesis, and the effectiveness of FastYield at accom-
plishing these tasks.  FastYield reads in a benchmark, which has 
been pre-scheduled with list scheduling, and a resource library, and 
runs it through the initial binding, floorplanning and timing analysis, 
and rebinding.  The resource library contains the pre-characterized 
resources, which include FUs, multiplexers, and registers.  The re-
sources were pre-characterized with 10% random variation and 10% 
spatially correlated variation with a correlation distance of 1 mm 
(such assumptions are compatible with the variation predictions laid 
out in [19]).  The characterization was performed on a 45nm library 
provided in the design kit from [14]. 

A number of data-intensive benchmarks are used in our experi-
ments with FastYield.  The benchmark control data flow graphs in-
clude several different DCT algorithms such as pr, wang, and dir, and 
a couple of DSP programs such as chem, mcm and honda [20].  The 
benchmarks are profiled in Table 1.  Each node in the benchmarks is 
either an addition/subtraction or a multiplication.  

A. Spatial Correlation in Timing Analysis 
In order to show the importance of considering spatially corre-

lated process parameters during the timing analysis we performed a 
floorplanning and timing analysis on the same binding solution with 
spatial correlation and θind from equation (1) set to 0 (Corr), and 
without correlation (No Corr) with θind = 1. Setting θind = 0 makes 
σinter

2 = σFU
2 = 1.  This makes it possible for all the FU variation to 

be correlated between units, however, the actual correlation between 
the FUs is still found based on the distance between them.  The re-
sults are shown in Table 2.  Columns 2 and 3 show the clock period 
obtained for an 85% yield with Corr and No Corr, respectively.  
Column 4 shows the reduction in clock period of the Corr result 
over the No Corr result, which averages 4.22%.  Column 5 reports 
the performance yield (PY) gain of Corr over No Corr, which aver-
ages about 14.25%. That is, for the No Corr clock period given, one 
would expect to achieve an 85% PY based on the No Corr timing 

analysis, but would achieve a 85% + 14.25% = 99.25% PY based on 
the Corr timing analysis.  In other words, timing analysis without 
consideration of correlated process parameters is conservative com-
pared to correlated timing analysis.  This shows the importance of 
using spatial correlation information to guide the floorplanner, as 
well as performing accurate SSTA. 

B. FastYield Compared to BindBWM and Rebinding Improvement 
We compare the results of FastYield after rebinding (FY Rebind) 

to an enhanced version of the weighted bipartite graph based bind-
ing (here referred to as BindBWM) of Huang, et al. [8].  The en-
hancements to [8] include module selection and the ability to specify 
an area constraint, making the comparison demonstrative of the 
performance yield gains that can be achieved when considering 
process variation during binding.  The same schedules, area con-
straints, and library were used in both algorithms.  We also compare 
FY Rebind performance to the performance attained by FastYield 
before rebinding (FY Initial) to show the effect of timing informa-
tion on the rebinding solution.  In all of the benchmarks, the same 
number of adders and multipliers were allocated in the binding solu-
tion for BindBWM, FY Initial, and FY Rebind. 

Table 3 summarizes the experimental results.  Columns 2, 4, and 6 
give the clock periods for each BindBWM, FY Initial and FY Rebind 
respectively.  Columns 3 and 5 give the PY attainable by the respec-
tive binding solutions if clocked at the 85% PY clock of FY Rebind.  
Fig. 6 demonstrates this graphically by plotting the cumulative densi-
ty functions (cdf’s) for the different binding results of chem (pdf’s 
are inset).  If clocked at the 85% PY clock period of FY Rebind, FY 
Initial and BindBWM have PY’s of 67.7% and 12.5%, respectively. 

In Table 3, Column 7 gives the total FY runtime in minutes.  Col-
umns 8 and 10 give the FY Rebind percentage reduction in clock pe-
riod when compared to BindBWM and FY Initial, respectively.  Col-
umns 9 and 11 give the PY gain (in percent) of FY Rebind over 
BindBWM and FY Initial, respectively.  This means that if BindBWM 

TABLE 1 
Benchmark Profiles 

Benchmark No. of 
PIs

No. of 
POs

No. of 
Adds

No. of 
Mults 

Total No. 
of Edges 

chem 20 10 171 176 731 
dir 8 8 84 64 314 

honda 9 2 45 52 214 
mcm 8 8 64 30 252 

pr 8 8 26 16 134 
steam 5 5 105 115 472 
wang 8 8 26 22 134 Fig. 6. Chem delay distributions of BindBWM, FY Initial, and FY Rebind. 

TABLE 2 
Correlation vs. No-Correlation Experimental Results

Bench-
mark 

85% Yield Clk (ns) Corr reduc-
tion in Clk 

over No 
Corr (%) 

Corr 85% PY 
Gain over No 

Corr (%) Corr No Corr 

chem 5.91 6.20 4.70 14.97 
dir 4.91 5.14 4.49 14.98 

honda 5.14 5.30 3.03 14.37 
mcm 4.09 4.28 4.35 10.56 

pr 4.45 4.66 4.51 14.99 
steam 5.54 5.80 4.51 14.89 
wang 4.91 5.11 3.98 14.99 

Average 4.22 14.25 
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or FY Initial were clocked at the 85% PY clock period of FY Rebind, 
they would have a PY smaller than 85% by the given amount. 

By considering process variation and layout, FY Rebind is able to 
reduce the clock period of the benchmarks by an average of 14.5% 
and increase the performance yield an average of 78.9%, when com-
pared to BindBWM.  It is also able to improve clock period and PY an 
average of 1.84% and 9.8%, respectively, over FY Initial. 

In some cases the amount of clock period improvement that rebind-
ing can achieve is limited by the number of the type of unit that is on 
the critical path. For example, if there are 4 allocated multipliers, all of 
which are found to be critical, then rebinding cannot offer much im-
provement. However, if only 3 of 4 allocated multipliers are found to 
be critical then rebinding can offer more improvement.   

Often, though, even if the reassignment of operations has a small 
effect on mean clock period, it can have a large impact on the va-
riance of the clock period, thus improving the PY significantly.  This 
can be seen in Fig. 6, where there is a large improvement in the 
delay cdf between the BindBWM and FY Rebind.  This explains the 
results in column 3 of Table 3, where we see that when BindBWM 
is clocked at the 85% PY clock value of FY Rebind, the PY is very 
small.  The difference between FY Rebind and FY Initial is not as 
drastic, but there are two key improvements.  First, the mean of the 
pdf has been shifted to a lower clock value. Second, the variance has 
been reduced. Combining these two improvements results in a sig-
nificant PY jump for a relatively minor change in the mean clock 
period (17% PY difference in the example). 

VI. Conclusions and Future Work 

We have presented a new variation-aware algorithm, FastYield, 
for simultaneous binding and module selection.  FastYield incorpo-
rates many competing factors into its algorithms that are not found 
in previous variation-aware algorithms.  It considers register, mul-
tiplexer, and functional unit usage as well as spatial correlation 
among the resources during SSTA embedded in a floorplanner.  The 
importance of spatial correlation during SSTA was demonstrated.  
On average, FastYield achieves an 85% performance yield clock 
period that is 14.5% smaller, and a performance yield gain of 78.9%, 
when compared to a variation-unaware and layout-unaware algo-
rithm based on [8].  Also, by making use of accurate timing infor-
mation, FastYield’s rebinding improves performance yield by an 
average of 9.8% over the initial binding, for the same clock period.  
This result shows that by performing statistical layout-driven syn-
thesis, substantial gains in performance yield can be made. Future 
work includes making scheduling variation-aware as well. Simulta-
neous register and functional unit binding considering process varia-
tion will also be considered. 
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TABLE 3 
FastYield Experimental Results 

BindBWM FastYield Initial FastYield Rebind Comparison 

Benchmark 

85% 
Yield 
Clk 
(ns) 

PY at FY 
Rebind 

85% Clk 
(%)

85% 
Yield 
Clk 
(ns) 

PY at FY 
Rebind 

85% Clk 
(%)

85% 
Yield 
Clk 
(ns) 

Total FY 
Run Time 

(min) 

FY Rebind 
reduction in Clk 
over BindBWM 

(%)

FY Rebind 
85% PY Gain 

over
BindBWM 

(%)

FY Rebind 
reduction in 
Clk over FY 
Initial (%) 

FY Rebind 
85% PY 

Gain over 
FY Initial 

(%)
chem 6.9 12.5 6.1 67.7 6.0 75 14.17 72.5 2.35 17.3 

dir 5.8 1.5 4.9 70.9 4.8 43 16.71 83.5 1.76 14.1 
honda 5.7 8.1 4.9 82.6 4.9 28 14.39 76.9 0.32 2.4 
mcm 4.9 11.4 4.3 78.0 4.2 40 14.57 73.6 3.34 7.0 

pr 5.2 0.1 4.5 70.1 4.3 24 16.47 84.9 3.04 14.9 
steam 6.2 7.6 5.5 76.3 5.5 64 11.88 77.4 1.14 8.7 
wang 5.3 1.6 4.7 80.8 4.6 16 13.29 83.4 0.95 4.2 

Average             14.50 78.9 1.84 9.8 
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