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Abstract

Effective water resources management typically relies on numerical models to analyze ground-

water flow and solute transport processes. Since the important hydrogeological parameters

of these models (e.g., hydraulic conductivity) cannot be measured, they are normally esti-

mated by model calibration. In addition, groundwater models are often subject to input

data errors, as some of the input forcings (such as recharge and well pumping rates) are

unknown or estimated. Furthermore, model structural error is ubiquitous, due to simplifi-

cation and/or misrepresentation of the real system. The presence of errors in input data

and model structure raises questions regarding the suitability of conventional least squares

regression-based (LSR) calibration.

We present a Bayesian framework that explicitly recognizes errors in input forcings and model

structure and is tailored for groundwater models. The framework implements a marginaliz-

ing step to account for input data variability when evaluating the likelihood, and explicitly

describes the model structural error statistically in an inductive, data-driven way. We adopt

a fully Bayesian approach that integrates Gaussian process error models into the calibration,

prediction and uncertainty analysis.

We test the usefulness of the fully Bayesian approach with synthetic case studies of the

impact of pumping on surface-ground water interaction and a real-world case study. In the

real-world case study, Bayesian inference is facilitated using high performance computing

and fast surrogate models (based on machine learning technique) as a substitute for the
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computationally expensive groundwater model. We demonstrate in the case studies that

when input error or model structural error is present but not explicitly taken into account,

the parameters can be overly adjusted to compensate for input data and model structural er-

ror, thus leading to biased and overconfident parameter estimates. Parameter compensation

is found to have deleterious impact when the model is used to make prediction under new

scenarios. In contrast, the presented Bayesian framework effectively alleviates parameter

compensation and gives predictions that are more consistent with validation data in all case

studies. The results highlight the importance of explicit treatment of errors in input forc-

ings and model structure especially in circumstances where subsequent decision-making and

risk analysis require accurate prediction and uncertainty quantification. Follow-up studies

will further investigate the feasibility of joint inference of input and model structural errors,

particularly for real-world modeling practice.
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Chapter 1

INTRODUCTION

1.1 Background

Numerical groundwater models are being used to inform decisions and policies with enor-

mous social, economical and political implications, such as water resources management and

assessing risks of subsurface contamination. Therefore, it is critically important to ensure

accuracy and quantify the intrinsic uncertainties of these models. It has been recognized

that systematic structural error is ubiquitous in groundwater models, for example due to

simplified or improper interpretation of geological structure and conceptualizations of flow

and contaminant transport processes [17, 62, 69]. As a result, the model residual (the dif-

ference between observed and simulated quantities) contains both aleatoric and epistemic

errors.

The groundwater inverse modeling literature has mainly focused on parameter uncertainty.

The least squares regression (LSR) method is commonly used to estimate parameters and

associated uncertainty from historical observations. The calibrated model is then used for

subsequent prediction and uncertainty analysis. Linear prediction intervals are computed

using parameter confidence interval and sensitivity of prediction with respect to parame-

ters [37]. A great deal of effort has been made by the groundwater modeling community

to improve the characterization of heterogeneous subsurface systems. Traditional model

construction and calibration practice usually defines a handful of parameters by lumping

subsurface properties into “zones”, such that parameter values can be uniquely determined

from available calibration data [37, 62]. In contrast to the parsimonious strategy, there has
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been a trend of developing highly parameterized models to represent heterogeneity of subsur-

face systems. This trend is greatly facilitated by the increasing availability of measurements

and computing power, as well as the emergence of sophisticated automatic calibration tech-

niques and software, such as PEST [21] and UCODE [65]. Regularized inversion techniques

[24, 81] are proposed to solve the nonuniqueness issue that often arises when calibrating a

highly parameterized model. Following the calibration process, predictive uncertainty due

to the heterogeneous parameter field can be assessed using either linear prediction intervals

or explored using Monte Carlo methods [16, 17, 31, 82].

Underlying these existing approaches is the assumption that the model residual is dominated

by aleatoric measurement error. The model residual is commonly assumed to be indepen-

dent identically distributed (i.i.d.), Gaussian with zero mean and a constant variance. These

assumptions are often violated in surface and groundwater modeling applications [37, 63]

in addition to other domains of Earth system modeling [27, 93]. For example, Tiedeman

and Green [80] discussed a scenario where multiple observations used as calibration targets

were computed from overlapping sets of direct measurements. They then computed a full

(i.e. with non-zero off-diagonal entries) covariance matrix of observation errors for use in

calibration. This led to substantially different parameter estimates compared to using a

diagonal covariance matrix that neglects correlation among observations.

Model structural error can also lead to spatial and temporal correlation in model residual

[23, 98]. The lack of explicit treatment of model structural error in traditional calibration

and prediction of groundwater models based on regression analysis can be problematic in

circumstances where model structural error is the dominant contributor to model residual

[23, 69]. Unlike in [80], the correlation structure is typically unknown before calibration in

this case. Lu et al. [54] proposed an iterative two-stage method in the context of maximum

likelihood Bayesian model averaging [61]. The method estimates the error covariance ma-

trix by fitting an autoregressive model to the calibration residual, and then calibration is
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repeated using the new covariance matrix.

Error in input data has been recognized as another source of systematic bias in model outputs

in rainfall-runoff modeling. For example, Kavetski et al. [44] reasoned that the application

of traditional least squares regression ignoring the high spatial and temporal uncertainty of

precipitation can lead to biased parameter estimates and compromised prediction.

Handling input uncertainty of groundwater models is of great importance when an indirect

method or another model has been used to estimate forcings such as precipitation recharge,

percolation from irrigation, evapotranspiration and well pumping rates. Transient bound-

ary conditions, such as flux from adjacent basins and stream flow or stages, can also be

considered as model input. For example, irrigation pumping rates are rarely metered, but

commonly inferred from well database, irrigation acreage, electricity usage, and other types

of records [39, 58]. The amount and timing of precipitation recharge can be estimated by

watershed models, by water-budget methods and by measuring unsaturated zone physical

properties [34, 39, 51].

Uncertainty due to indirect estimation of these input forcings is sometimes characterized by

multipliers. The multipliers are adjusted with other model parameters during the calibra-

tion process [58, 91]. In surface hydrology, Kavetski et al. [44] introduced storm event-based

multipliers to characterize variability of rainfall, and inversely inferred the multipliers with

rainfall-runoff model parameters via Bayesian calibration. This method has been used in

later studies [40, 85], and it has been found that explicit treatment of precipitation error

significantly altered the shape of the posterior distributions of model parameters and led to

increased prediction uncertainty.

However, the multiplier approach typically results in a high dimensional calibration problem

with nonuniqueness issues. In cases where input errors are much larger than output errors,
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calibrating input multipliers essentially conditions the input on the output, often lead to

nearly perfect fit to calibration data (streamflow observations). Since true rainfall input is

rarely known in modeling practice, validation of the inferred multiplier, and therefore the

model parameters and outputs, is difficult [2, 40]. The nonuniqueness issue tends to be more

severe in groundwater modeling problems, as it would take a great number of multipliers to

describe inputs that vary temporally and spatially. In the groundwater modeling literature,

there exists no systematic approach to investigate the impact of input data uncertainty on

calibration and prediction.

Similarly, when calibrating an imperfect model, parameters may be over-adjusted to com-

pensate for errors in model structure[23, 25]. In groundwater literature, Moore and Doherty

[59] first introduced the strategic use of “compensatory parameters” within the framework

of highly parameterized calibration. Follow-up studies showed that use of many parameters

helped to localize parameter compensation [22, 23, 91]. Specifically, “correction parameter”

that do not necessarily have strict physical basis can be introduced to absorb model struc-

tural error, so that other parameters can be better estimated [22].

Some investigators have shown that the impact of parameter compensation on model pre-

dictive ability is prediction dependent [22, 23, 59, 91]. If predictions are very similar (e.g.

in location or corresponding forcing scenarios to calibration data, parameter compensation

may improve predictive accuracy. Thus they proposed the conjunctive use of multiple mod-

els; a model is calibrated multiple times, each time against a different type of observations

and would be used for the corresponding type during prediction [22]. In addition, calibra-

tion targets that most resemble the prediction quantity can be assigned higher weights to

enforce good fit. However, the deleterious implication of “compensatory parameters” can be

significant when models are used to predict under a future scenario different from historical

conditions reflected by calibration data [91]. In this case, while small calibration residual

can be obtained by calibrating a highly parameterized model, parameter compensation leads
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to biased prediction and underestimated predictive uncertainty.

Doherty and Christensen [22] proposed a paired complex/simple model method based on

linear subspace analysis to quantify calibration-induced predictive bias. This method re-

quires Monte Carlo runs of a complex model and repeated calibration of the simple model,

and therefore is very computationally expensive. The linear subspace analysis was later

used in a less computationally demanding way to estimate the prediction error covariance

matrix [91]. Both studies relied on a complex, highly parameterized model that represents

the complexity and variability of the true subsurface systems. The underlying hypothesis

is that the contribution of model structural error to predictive error can be described by a

linear model of “omitted parameters”, i.e. parameters present in the reality but omitted in

the approximate numerical model. However, other aspects, such as the interpretation of geo-

logical structure and conceptualizations of flow and transport processes, can also contribute

to model structural error [62, 69]. Unlike the heterogeneity of subsurface properties, these

aspects cannot be parameterized straightforwardly.

Other approaches have been proposed to accommodate correlated and non-Gaussian model

residual in the field of surface hydrology, mostly in a Bayesian context. Beven and Freer [8]

proposed the generalized likelihood uncertainty estimation methodology (GLUE), which uses

a subjective likelihood function to allow for users’ judgment of model goodness-of-fit. The

idea is related to Approximate Bayesian Computation (ABC), a “likelihood free” method

recently introduced to hydrologic model inversion [73]. Progress has also been made to

construct formal likelihood functions based on statistical characterization of residual. For

example, Schoups and Vrugt [75] constructed a formal generalized likelihood function to

handle residual errors that are correlated, heteroscedastic, non-Gaussian and exhibit kurto-

sis and skewness. The characterization of residual distribution was jointly estimated with

parameters of the computation model by a Markov chain Monte Carlo (MCMC) sampler.

Applications of the generalized likelihood functions to rainfall-runoff [75] and reactive trans-
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port [76] showed that proper representation of the distribution of residual provided improved

estimates of parameter and predictive uncertainty over statistical characterization based only

on measurement error. Similar approaches were applied to calibrate effective parameters of

a layered unsaturated flow column model [25]. As increasing attention to model structure

uncertainty has arisen, there have been debates over whether a formal likelihood function

should be used instead of an informal or subjective one [10, 73, 79, 86].

The use of formal and subjective likelihood functions in a variety of applications [9, 25, 75, 76]

suggests the utility of a Bayesian framework to handle model structural error. While these

applications span a variety of fields including rainfall-runoff, unsaturated flow and ground-

water uranium reactive transport modeling, they all work with time series data. If a formal

likelihood function is to be used, the challenge lies in how to configure the form of the likeli-

hood function to be capable of characterizing the distribution of complicated spatiotemporal

residual fields of groundwater models. Using a subjective likelihood or the likelihood free

ABC could circumvent this difficulty. However, both GLUE and ABC require users’ subjec-

tive choice to determine model goodness-of-fit and/or whether a particular parameter set is

behavioral or non-behavioral. In situations where knowledge about potential model struc-

tural error is limited, improper subjective choice may induce bias in the calibration process.

Fortunately, the statistical characterization of model residual can be approached from an

inductive, data-driven modeling prospective. A variety of machine learning techniques, such

as artificial neural networks and support vector machines, have been successfully applied to

build error models that correct for the systematic residual of rainfall-runoff [1, 32, 63, 78].

These machine learning techniques do not require explicit assumption of residual distribu-

tion. Instead, they are able to learn complex relations between the dependent variable (i.e.

model residual, in the context of error modeling) and selected predictors from historical data.

Therefore, they comprise good candidates to statistically characterize residual distribution.
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These techniques have been extended to groundwater hydrology to statistically character-

ize groundwater model residuals, which are usually spatiotemporal and substantially more

complicated than time series data [19, 33, 95, 98]. For example, Xu et al. [98] built comple-

mentary data-driven error models to account for the epistemic error of groundwater models.

By learning from the historical error of the groundwater model, the machine learning algo-

rithms (clustering, support vector regression and instance based weighting) are capable of

correcting its bias when the model is used for forecasting or extrapolation purposes. The

method was applied to two regional-scale groundwater models that have different hydroge-

ologic settings, parameterization and calibration methods. In both case studies, the error

models significantly improve the prediction accuracy of groundwater head. Xu and Valocchi

[97] extended this method to not only reduce the predictive bias of physically-based ground-

water models, but also provide prediction intervals. The prediction uncertainty due to the

aleatoric component of groundwater model residuals are estimated using both parametric

and non-parametric (quantile regression forest) distribution estimation methods. The new

method was tested on a real-world groundwater modeling case study. Compared to us-

ing only the physically-based groundwater model, the new method provided more accurate

monthly baseflow predictions along with prediction intervals with coverage probability con-

sistent with validation data.

In the above mentioned applications of machine learning techniques, error models are con-

structed in a postprocessing way that the error model is estimated from the residuals of a

single calibrated hydrologic model [63, 78, 90]. As repeated evaluation of the physically-

based model is not required to construct error models, postprocessor approaches are com-

putationally efficient. However, postprocessor approaches yield statistical error models that

are conditioned on an existing calibrated physically-based model; the calibration has been

implemented using conventional methods that do not account for correlated error. In this

sense, postprocessor approaches ignore interactions between model structural error and pa-

rameters [26].
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In contrast, a method that jointly infers the error model and the parameters of the hydro-

logic model can provide a complete assessment of the contribution to predictive uncertainty

from parameter, model structural and measurement uncertainty [46, 70, 75]. Kennedy and

O’Hagan [46] proposed a Bayesian formulation that allows for explicit treatment of errors

in both input data and model structure. In particular, the framework integrates a Gaussian

process error model to characterize predictive uncertainty of numerical simulation models.

Gaussian process regression belongs to the family of nonparameteric Bayesian kernel models,

which have become popular in the machine learning literature in the last decade [11, 52, 67].

In [46], the Gaussian process error model corrects for model structural error revealed by the

model residual, thus preventing parameter compensation during the calibration process. The

idea of using an error model to absorb model structural error is related to the strategic use

of compensatory parameters in highly parameterized calibration [59, 22], but here the error

model is not physically-based. The Bayesian approach [46] has inspired applications and

extension in various fields [7, 35], including river water quality [70, 20] and rainfall-runoff

modeling [38]. The authors also pointed out the link between the Bayesian formulation and

multiobjective calibration.

1.2 Main Contributions and Key Findings

This dissertation proposes a fully Bayesian calibration and uncertainty quantification frame-

work tailored for groundwater models. To account for input data variability, the framework

implements a marginalizing step when evaluating the likelihood. The framework incorporates

error models to explicitly handle errors in model structure and input data, while previous

applications of Bayesian approaches in the groundwater modeling literature concentrated on

parameter uncertainty [28, 45, 49, 53]. In particular, by integrating the data-driven error

modeling technique [19, 98, 97] with Bayesian calibration [46], the framework is capable of
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statistically characterizing complex, spatiotemporal structural error of groundwater mod-

els. In addition, existing approaches to handling structural error of environmental models

[47, 54, 70, 72, 76, 75] focus on time series data, and mostly rely on relatively simple statisti-

cal characterization of model residual distribution. This study integrates statistical learning

techniques to correct for groundwater model structural error, which is usually spatiotempo-

ral and substantially more complicated.

An important adaptation from [46, 70] is that the error model inputs can include a variety

of information including simulation results of the physically-based groundwater model and

other relevant data which are not used directly to construct the groundwater model. Us-

ing our new method it is therefore possible to extrapolate the error model to predictions

under conditions different from the calibration period. In addition, by fully coupling the

groundwater model with data-driven error models in a Bayesian formulation, the presented

approach facilitates the joint estimation of physically-based model parameter and structural

uncertainties. In this way, it extends beyond our preceding studies [98, 97] that constructed

error models for already calibrated groundwater models.

The framework is applied to two synthetic and one real-world case studies. By comparing

results obtained using conventional calibration techniques, we investigated the impacts of

input data and model structural errors on parameter estimates and predictions made by the

calibrated model.

We also illustrate through case studies strategies that we developed to address two challenges

faced by Bayesian inference, especially for real-world complicated groundwater models. First,

it has been noted in the literature that the interactions among different uncertainty sources

could render joint inference methods less robust than postprocessor approaches [26]. Second,

the computational cost associated with joint inference is often high and could be infeasible

for complex models having long evaluation time. We found in the case studies that cautious
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specification of error model priors helps alleviate the identifiability issue due to interaction,

delivering reasonable uncertainty analysis performance even with a complicated regional

groundwater model. To render the Bayesian inference computationally feasible in the real-

world case study, we constructed computationally frugal surrogate models to emulate the

behavior of the physically-based groundwater model. The surrogates are used in the Bayesian

inference process.

The key findings are summarized as follows.

1. We demonstrated through a synthetic case study of surface-ground water interaction un-

der changing pumping conditions, that calibration using biased input data would undermine

the quality of parameter estimates and model predictions. Applying the proposed Bayesian

approach with input error model, we showed that explicit treatment of errors in model struc-

ture and input data (groundwater pumping rate) has substantial impact on the posterior

distribution of groundwater model parameters. Using error models reduces predictive bias

caused by parameter compensation. In addition, input variability increases parametric and

predictive uncertainty. A manuscript based on the results is in preparation for Journal of

Hydrology.

2. In the second synthetic case study of surface-ground water interaction under changing

pumping conditions, we investigated the role of model structural error in calibration and

prediction in groundwater flow modeling practice. We first demonstrated that conventional

least squares regression (LSR) yields biased (and often overconfident) predictions under a

scenario differing from the calibration period. This finding is consistent with others in the

literature reporting the deleterious impact of parameter compensation on prediction perfor-

mance. We then tested the Bayesian framework on the case study and found that Gaussian

process error models can represent the underlying model structural error reasonably well,

although not perfectly. Integrating error models into Bayesian calibration reduces the degree
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of parameter compensation, leading to parameter posteriors that differ substantially from

LSR estimates. We also showed that the Bayesian framework with error model achieves

more accurate prediction and more robust prediction intervals compared to both LSR and

the classical Bayesian inference without error model. The results are published in Xu and

Valocchi [96] in Water Resources Research.

3. We presented a new recalibration strategy that circumvents the drawback that error

models adjusting the physically-based model simulation results may violate mass balance,

because such physical constraints are not enforced on the data-driven error model. The re-

calibration strategy incorporates model structural error into least squares regression by using

a full error covariance matrix. It was found in the second case study that the recalibration

strategy yields different parameter estimates and more accurate prediction compared to the

conventional LSR calibration and Bayesian calibration without error models. The results

are published in Xu and Valocchi [96] in Water Resources Research.

4. We further tested the Bayesian framework on a real-world case study to calibrate a re-

gional groundwater flow model. The regional model was developed by a multi-institution

team and parameters were calibrated by conventional LSR [39]. We use this as the basis

for the real-world case study. Efficient implementation strategies are developed to facili-

tate Bayesian inference. Similarly as in the second synthetic case study, the integration of

Gaussian process error models substantially improves the prediction accuracy of the ground-

water model when compared to the classical Bayesian calibration without error models. A

manuscript based on this case study is in preparation.
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1.3 Thesis Outline

The dissertation is organized as follows. Chapter 2 reviews the two general approaches for

model calibration and uncertainty analysis, namely least squares regression and the clas-

sical Bayesian inference. Chapter 3 proposes the fully Bayesian approach that is capable

of handling errors in model structure and input data. This chapter also presents an inno-

vative recalibration strategy that aims to preserve the physical basis of the groundwater

hydrology model (i.e. water balance), while allowing for integration with a data-driven er-

ror model. Chapter 4 introduces a synthetic case study of river-aquifer interaction under

changing pumping conditions. This case study considers the impact of input data error on

calibration, and the results of applying the proposed method is presented and compared with

results of existing methods (as described in Chapter 2). Chapter 5 presents a second syn-

thetic case study focusing on model structural error. In Chapter 6, the Bayesian approach

is further tested on a real-world regional groundwater modeling case study containing struc-

tural error. Finally, Chapter 7 concludes the dissertation.
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Chapter 2

METHODS OF MODEL
CALIBRATION AND

UNCERTAINTY ANALYSIS

In this chapter, we briefly review two calibration techniques that are commonly used in sur-

face and groundwater modeling community. We also briefly describe a Monte Carlo Markov

Chain (MCMC) sampler used to carry out Bayesian inference.

2.1 Least Squares Regression

Automatic calibration using the method of least squares has been the standard way to

determine parameter values of numerical groundwater models in recent decades [37]. Assume

that a groundwater system can be represented as

z = M(x, θ) + ε, (2.1)

where M(x, θ) is typically a nonlinear, numerical model with input x and parameters θ, and

ε denotes residual error. Both x and θ can be vectors. Both z and M are vectors that repre-

sent the system response at various time and locations. Input x typically includes boundary

conditions and stresses, such as pumping. Parameters θ can be e.g. hydraulic conductivity,

storativity, dispersivity and other hydrogeologic properties. Given a set of n observations

z = {zi, i = 1, ..., n}, standard least squares calibration seeks θ̂ that minimizes the sum of

the squares of residual
∑n

i=1 r
2
i , where ri = zi −Mi(x, θ). Here, i denotes index that differ-

entiates the observations (or model outputs) at different time and locations. The underlying

assumption is that the errors r are uncorrelated, have zero mean and constant variance σ2.
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Generalized least squares method relaxes these assumptions and assumes instead that the

errors ri, i = 1, ..., n have a multivariate Gaussian distribution with zero mean and covari-

ance matrix σ2Σr. The parameter estimate θ̂ is obtained by minimizes the weighted sum of

squared residual

min
θ
φ(θ) = min

θ
rTΣ−1

r r/σ2 (2.2)

where r is the residual vector with ith element as ri = zi −Mi(x, θ).

Based on parameter estimates, parameter confidence intervals and linear prediction intervals

can then be derived. First assume that M(x, θ) is the correct model for the mean of z, i.e.

E(z) = M(x, θ). Here θ indicates the real but unknown value of parameters. In addition,

the nonlinear model M(x, θ) is approximated by first-order Taylor series expansion for θ

near θ̂:

Mi(x, θ) ≈Mi(x, θ̂) +

p∑
j=1

Jij · (θj − θ̂j), (2.3)

where Jij = ∂Mi(x,θ)
∂θj

∣∣
θ=θ̂

is element ij of the Jacobian matrix J , and p is the number of

parameters. The parameter covariance matrix is then given by

C = σ̂2[JTΣ−1
r J ]−1 (2.4)

where σ̂2 = φ(θ̂)/(n − p) is the estimate of the error variance σ2. The 100(1 − α)% linear

confidence interval for an individual parameter θj is then calculated as

θ̂j ± t(n− p, 1.0− α/2)
√
Cjj (2.5)

where t(n − p, 1.0 − α/2) is the Student t-statistic for n − p degrees of freedom and a

significance level of α. Prediction of interest can be computed using the calibrated model,

i.e. ẑ∗i = M(x∗i , θ̂). The covariance matrix for multiple predictions z∗i , i = 1, ..., k is given by

C∗ = JT∗ CJ∗ (2.6)
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where J∗ is the prediction Jacobian matrix with element Jij =
∂z∗i
∂θj

∣∣
θ=θ̂

. The 100(1 − α)%

linear prediction interval is

ẑ∗i ± t(n− p, 1.0− α/2)
√
C∗ii + σ̂2. (2.7)

Calibration of groundwater models typically assumes that ri are uncorrelated observation

errors, and omits off-diagonal elements of Σr. One exception was mentioned in Section 1.1

where a full error covariance matrix was used to account for correlation in observations com-

puted from a set of direct measurements [80].

While least squares regression theory requires weights assigned as the inverse of observa-

tion error, it is often considered appropriated in practice to designate weights to ensure

approximately equal goodness of fit of various types of outputs [39, 23]. In addition, the

strategy of regularized calibration of highly parameterized models recommends assigning

weights for observations according to their resemblance to predictions of interest [23]. As a

result, the parameter confidence interval and linear prediction interval derived using these

weights lack sound statistical foundation and often depend on subjective weighting decisions.

2.2 Bayesian Calibration and Prediction

In this section we overview the classical Bayesian calibration and prediction using the system

defined in Eqn. (2.1). More details can be found in [41, 83]. In a Bayesian framework, the

system output z, inputs x and parameters θ are random variables.

The goal of Bayesian calibration is to infer the posterior distribution of parameters θ con-

ditioned on available observations z = (z1, ...zn)T . Let p(z|θ) denote the joint density of ob-

servations z conditioned on θ. This is usually referred to as the likelihood function, denoted

as L(θ|z). It is commonly assumed that errors εi follow multivariate Gaussian distribution
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N(0, σ2
εΣ). In this case, log likelihood is given by:

logL(θ|z) = −n
2

log 2π − log σε −
1

2
log |Σ| − 1

2
rTΣ−1r, (2.8)

where r is the residual vector with ith element as ri = zi − Mi(x, θ). The term rTΣ−1r

corresponds to the weighted sum of squared error. This highlights the relation between

Bayesian calibration and least squares regression [53]. Often εi are considered i.i.d. ob-

servation errors, leading to Σ = In. In recent years, cases where εi are correlated and/or

non-Gaussian have been considered. For example, Lu et al. [54] used a full error covariance

(i.e. Σ has nonzero off-diagonal elements) in Equation (2.8) to account for error correlation

due to model structure uncertainty when simulating column experiments of uranium reac-

tive transport. Schoups and Vrugt [75] proposed a generalized likelihood function to handle

non-Gaussian errors in hydrologic models.

Bayesian calibration allows integration of other source of information about the parameters

via the prior distribution, p(θ). Normal, log-normal and uniform priors are widely used [83].

The prior and the likelihood are combined using Bayes’ theorem to provide the posterior

distribution p(θ|z):

p(θ|z) =
p(θ)p(z|θ)∫
p(θ)p(z|θ)dθ

∝ L(θ|z)p(θ). (2.9)

The posterior distribution can be used to derive point and interval estimate of parameters.

In particular, the maximum a posteriori probability (MAP) estimate of θ is defined as the

mode of the posterior distribution p(θ|Z). The posterior distribution of parameters is also

useful in practical applications where the model is used to predict quantities of interest. The

probability density function of prediction z∗ conditioned on available observations z can be

computed using

p(z∗|z) =

∫
p(z∗|θ, z)p(θ|z)dθ. (2.10)

16



2.3 Markov Chain Monte Carlo Sampling

While Bayesian calibration and prediction have simple formulations, analytical solutions of

Equations (2.9) and (2.10) are often intractable if nonconjugate prior distributions are used

or the integral is high dimensional. The Markov chain Monte Carlo (MCMC) method is the

most widely used numerical approximation technique for Bayesian calibration and predic-

tion. The MCMC method is based on the assumption that a Markov chain θ(n) with states θ

can be constructed such that its stationary distribution is equal to the posterior distribution

p(θ|z) of interest. This algorithm starts from arbitrary value of θ, then iteratively generates

trial moves from the current position θ(k) to a new state θ(k+1) until practical convergence is

judged [41].

Various MCMC samplers have been proposed with different strategies of generating new

states. Among these samplers, the Differential Evolution Adaptive Metropolis (DREAM)

algorithm developed by Vrugt et. al [85, 87] has been shown to be effective and computa-

tionally efficient in a variety of environmental modeling applications, and is therefore used in

this study. Let θi, i = 1, ..., N denote N (a sufficiently large number) samples from p(θ|z) by

a MCMC sampler. Each θi is a vector of p parameters. According to strong law of large num-

bers, g(θ), the conditional expectation of an arbitrary function of θ, can be approximated

by

E[g(θ)|z] ∼=
1

N

N∑
i=1

g(θi). (2.11)

Point and interval estimates of prediction of interest z∗ can be computed using the above

approximation.
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Chapter 3

BAYESIAN APPROACH FOR
MODELS WITH STRUCTURAL

AND INPUT DATA ERRORS

In Sections 3.1-3.3 we derive the fully Bayesian approach with input data and model struc-

tural error models. Section 3.4 describes the surrogate modeling strategy to reduce com-

putational cost associated with Bayesian inference. Finally in Section 3.5 we propose a

recalibration strategy that utilizes the Bayesian inference results while preserving physical

constraints such as mass balance.

3.1 Statistical Description of Input Data Error

Consider a groundwater system defined in Eqn. (2.1) where z is the quantity of interest that

can be observed, M denotes a model with inputs x and parameter θ, and ε is measurement

error. Both z and M can be vectors that denote the system output at various time and lo-

cations. Input x typically includes boundary conditions and stresses. In modeling practice,

some inputs (e.g. river stage) are measured with relatively high accuracy. However, some

input forcings are not measured, but estimated indirectly from relevant information. For ex-

ample, in the Republican River Compact Administration (RRCA) model [58], the irrigation

pumping rates were estimated based on irrigation acreage, farm efficiency, crop water re-

quirement among other information. We compared the estimated total annual pumping rate

at county level with metered pumping rate for three counties (Perkins, Chase and Dundy) in

Nebraska from 1980 to 2006 (data courtesy of Nicholas Brozovic, written communication).

It was found that the estimated annual pumping rate is 1%-26% lower than the metered

pumping rate. Besides pumping rate, groundwater recharge is a well-known input forcing
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that is hard to estimate accurately. As further discussed in Chapter 4, we will focus on

groundwater pumping and recharge rates. In this section, we omit the accurate inputs from

Equation (2.1) and use x to denote input data that may contain error.

As discussed in Section 1.1, uncertainty in input data has been studied in surface water

literature within a Bayesian framework. For rainfall-runoff models, rainfall error is typi-

cally considered as the primary source of input uncertainty. The existing approach is to

introduce a series (e.g. 100) of rainfall “multipliers” to adjust the measured rainfall rate of

each storm event; the multipliers are then jointly sampled with model parameters (which

are constant over time) using a MCMC sampler based on calibration data [40, 43, 44, 85].

However, assigning multipliers to each rainfall event results in hundreds to thousands of pa-

rameters, depending on the duration of simulation. The resulting high dimensionality poses

computational challenges to both least squares regression and Bayesian inference. More-

over, nonuniqueness or nonidentifiability issues arises from correlation among model input,

parameters and output. When input errors are substantially larger than output errors, cal-

ibrating input multipliers essentially conditions the input on the output, often leading to

nearly perfect fit to calibration data [40]. In rainfall-runoff modeling, it was argued that

inferring the posterior of rainfall event multipliers is of less interest than inferring model pa-

rameters. Since true rainfall input is almost never available in modeling practice, validation

of the inferred multiplier is unattainable [2, 40].

The nonidentifiability issue tends to be more severe in groundwater modeling problems. For

example, it would take a great number of multipliers to describe recharge rate that varies

temporally and spatially, or to describe pumping rates and each individual wells. In ground-

water modeling practice, recharge is sometimes calibrated while pumping rate is normally

fixed during calibration.

In this study, we take a different approach based on the observation that input data can
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often be estimated from other sources of information with small to medium degree of un-

certainty. For example, recharge rate is sometimes calculated using a surface hydrology

model, such as PRMS [55] and SWAT [3]. As the simulation results are usually validated by

comparing with streamflow observations, the model simulated recharge can be considered as

a reasonable estimate with somewhat confidence. A similar treatment of input data error,

albeit with different motivation and implementation, can be found in [2] for rainfall-runoff

modeling.

It is assumed a priori that analysis of the estimation method can provide a distribution of

the true input conditioned on the estimated value, denoted as p(x|x̂). A reasonable choice

would be the normal distribution x|x̂ ∼ N (x̂, σ2
x). The underlying assumption is that the

estimated input x̂ represents modelers’ best a priori knowledge, and there is no indication

that the estimate is biased. If any bias is suspected, the estimate should be adjust to elim-

inate the bias. The conditional distribution of real input given an estimate comprises the

input data model, and is analogous to the measurement error model that ε ∼ N(0, σ2
ε ).

Next, the probability of observing y given the true input x and parameters θ is given by

y|x, θ ∼ N(M(x, θ), σ2
ε In), (3.1)

where In is a n-by-n identity matrix. In order to account for the uncertainty associated with

x, we derive the marginal likelihood:

L(θ|y, x̂) = p(y|x̂, θ) =

∫
p(y|x, θ)p(x|x̂)dx. (3.2)

Because of the integration step to derive the marginal likelihood in the above equation, the

presented method is referred to as the marginalizing method hereafter. Following Equation
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(3.2), the posterior distribution of parameters θ can be written as

p(θ|x̂,y) ∝
∫
p(y|x, θ)p(x|x̂)dx · p(θ). (3.3)

Let x∗ denote uncertain inputs in the prediction scenario, and assume that x∗|x̂∗ ∝ N(x̂∗, σ2
x∗),

where x̂∗ denotes the estimated inputs. The distribution of a prediction y∗ can then be in-

ferred:

p(y∗|x̂, x̂∗,y) =

∫
p(y∗|θ, x̂,x∗)p(θ|x̂,y)p(x,x∗|x̂, x̂∗)dθdxdx∗. (3.4)

The dependency of the prediction y∗ on the input during the calibration period, x̂, is because

the model is often used to make forecast in a future scenario, using the simulation results in

the calibration period as initial condition.

3.2 Statistical Description of Model Structural Error

Proper treatment of model structural error is critical for calibration and subsequent pre-

diction uncertainty analysis. As discussed in Section 1.1, model structural error has been

approached by adopting a generalized likelihood function in a Bayesian framework [75, 73],

by constructing an error covariance matrix based on autoregression analysis [54], and by

paired complex/simple model methods based on linear subspace analysis [22, 91]. The ex-

isting approaches rely on either a simple statistical characterization (e.g. autoregression)

of model residual, or the assumption that the model structural error can be described as a

linear function of environmental models’ parameters.

Kennedy and O’Hagan [46] first proposed a fully Bayesian calibration framework that can

handle errors from multiple sources, in particular, from model structural inadequacy. In

their formulation, model structural error is expressed as an additive term:

z = M(x, θ) + b(x) + ε, (3.5)
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where x would be the location and time corresponding to z. Because systematic error is ac-

counted for by the model structural error term, the remaining ε can be considered as random

measurement error. In their benchmark paper, Kennedy and O’Hagan [46] proposed to place

a Gaussian process prior on b(x). This Bayesian framework was successfully implemented in

river water quality modeling [20, 70] and rainfall-runoff modeling [38] in a time series context.

In this study, we integrate the data-driven error modeling technique [98] into the Bayesian

calibration framework [46] to develop a new framework that is tailored for large-scale geo-

science models with structural error and input variability. The new formulation models an

observation z as

z = M(x, θ) + b(y, φ) + ε, (3.6)

where the model structural error term b(y, φ) is represented as a function of its own inputs

y and tuning parameters φ. An important adaptation from the original framework in [46]

is that, the error model input y may consist of the physically-based model’s output M(x, θ)

and other relevant information in addition to time and location of quantity of interest. This

allows for assimilating data that are not used directly to construct model M, therefore mak-

ing it possible to extrapolate to conditions different from the calibration period [98, 97].

Non-parametric Bayesian kernel regression methods, such as Gaussian process (GP) as used

in [46], are good candidates for the statistical error model. Gaussian process regression

[11, 67] has been shown to achieve remarkable performance in a variety of benchmark ap-

plications. Because of this, and its compatibility with Bayesian calibration and prediction

principles, GP is selected to construct the error model in this study. While the formulation

below is illustrated with GP, it should be noted that the proposed framework does not ex-

clude other types of Bayesian kernel methods [52, 64, 77].

A brief introduction to Gaussian process regression is included here. More details can be

22



found in [11, 67, 92]. In the following overview, we adapt conventional notations to be

consistent with Equation (3.6). A Gaussian process refers to a set of random variables

{b(y)|y ∈ Rd} (y is a d−dimensional vector) for which any finite set of {b} has a joint

multivariate Gaussian distribution. A GP is fully specified by its mean function µ(y) =

E[b(y)] and covariance function k(y,y′) = E[(b(y)−µ(y))(b(y′)−µ(y′))]. In this study, we

consider two simple mean functions: constant zero µ(y) = 0 and linear µ(y) = βTy. We use

a popular category of covariance function that takes the squared exponential form [67]:

k(y,y′) = σ2 exp

[
−

d∑
l=1

(yl − y′l)2

λ2
l

]
. (3.7)

In Equation (3.7), σ2 controls the marginal variance of b(y), and λ1, ...λd control the depen-

dence strength in each of the component directions of y. For the isotropic squared exponent

covariance function, λ1 = λ2 = ... = λd = λ, and λ is usually referred to as the characteristic

length scale. In the geostatistics literature, σ2 and λ1, ...λd are often called sill and range,

respectively. In Equation (3.6), the parameter vector φ consists of these tuning parameters

in the covariance function and the mean function, i.e. φ = {β, λ, σ2}.

Specifying a Gaussian process prior on b(y, φ), the prior distribution of b would be a mul-

tivariate Gaussian distribution N(µ(y, φ),Σ(φ)). The covariance matrix Σ is calculated

using the specified covariance function, and its ij-th entry is Σi,j = k(yi,yj). Note that

both the mean and the covariance depend on φ. For the sake of conciseness, hereafter

in this section we will omit the conditioning on φ. Equation (3.6) can be re-arraged into

z−M(x, θ) = b(y, φ) + ε. Therefore, z−M(x, θ) can be considered as noisy observations of

b. Let {Y, z −M} = {(y1, z1 −M(x1, θ)), ..., (yn, zn −M(xn, θ))} denote a set of n train-

ing data; z and M are vectors representing, respectively, observations and physically-based

model outputs at different locations and time, and Y is a n by d (input dimension) matrix.

The measurement error ε can be considered as white noise with variance σ2
ε . It follows that
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the log marginal likelihood of observations z−M is given as [67]:

log p(z−M|Y ) = −1

2
(z−M−µ)T

(
Σ + σ2

ε I
)−1

(z−M−µ)− 1

2
log |Σ+σ2

ε I|−
n

2
log 2π, (3.8)

where µ is the prior mean vector and I is the n by n identity matrix. The first term eval-

uates the goodness-of-fit, the second term is the complexity penalty, and the last term is a

normalization constant.

Based on the training data {Y, z−M}, predictions can be made for new input Y ∗ = {y∗j , j =

1, ...,m}, i.e. to estimate the probability density of b(Y ∗), abbreviated to b∗, conditioned on

training data. Similarly as Σ, define Σ∗,Σ∗∗ such that Σ∗i,j = k(yi,y
∗
j ) and Σ∗∗i,j = k(y∗i ,y

∗
j ).

We first write out the a priori joint distribution of z−M and b∗: z−M

b∗

 ∼ N

 µ

µ∗

 ,
 Σ + σ2

ε I Σ∗

Σ∗T Σ∗∗

 , (3.9)

The posterior distribution of b∗ conditioned on training data can therefore be derived [67]:

b∗|z−M, Y, Y ∗, φ ∼ N
(
b̄∗, cov(b∗)

)
. (3.10)

The posterior mean b̄∗ and covariance cov(b∗) are given below:

b̄∗ = E [b∗|z−M, Y, Y ∗, φ] = µ∗ + Σ∗T
(
Σ + σ2

εI
)−1

(z−M− µ), (3.11)

cov(b∗) = Σ∗∗ − Σ∗T
(
Σ + σ2

εI
)−1

Σ∗. (3.12)

In Gaussian process regression, assumptions about the target function are imposed via spec-

ifying a prior probability distribution over a family of possible functions. The prior is then

“sculpted” into a posterior using observation data. This feature and the use of the covariance

function give GP more flexibility compared to parametric regression methods that restrict

the class of functions. In this study, Gaussian process inference is implemented using GPML
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MATLAB toolbox version 3.4 documented in [67].

3.3 Bayesian Calibration and Prediction with Error models

This section briefly reviews the Bayesian framework to handle model structural error, and

then discusses numerical implementation details. Complete derivation of Bayesian inference

can be found in [46, 70].

In the fully Bayesian framework, the physically-based model parameters θ will be jointly

estimated with model structural error b(y, φ). This allows for a complete assessment of

uncertainty from parameter and model structure. Bayesian calibration starts from specifying

the prior distribution of parameters {θ, φ}. In general they are independent unless there is

evidence otherwise. According to Bayes’ theorem,

p(θ, φ|z) ∝ p(z|θ, φ)p(θ)p(φ), (3.13)

where p(z|θ, φ) is the likelihood and can be calculated using Equation (3.8). Calculating

the posterior p(θ, φ|z) is typically analytically intractable, so sampling techniques such as

Markov chain Monte Carlo (MCMC) algorithms are often used to sample from the posterior.

In this study, we use DREAM-ZS (DiffeRential Evolution Adaptive Metropolis algorithm)

[75].

Once sufficient samples {θi, φi}, i = 1, ..., N are generated using MCMC, Bayesian inference

of prediction uncertainty can be carried out. For every sample {θi, φi}:

1. Use θi to run the MODFLOW model in prediction mode to obtain M∗
i .

2. Conditioning on φi, compute the covariance matrices Σ,Σ∗,Σ∗∗ using Equations (3.7).

The MODFLOW model output Mi and M∗
i will be used in this step if they are included in

the input of GP error model.
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3. Generate one realization b∗i from the posterior of the error model using Equations (3.10)

– (3.12). Note that b∗i is conditioned on calibration residuals, which have been calculated

during the calibration phase.

4. Compute z∗i = M∗
i + b∗i + εi, where εi is a vector comprised of random draws based on

inferred measurement error.

Finally, the posterior mean of predictions is given by z̄∗ =
∑N

i=1 z∗i . Here, z̄∗, z∗i are vectors

of predictions at various locations and time. Predictive quantiles z∗α/2, z
∗
1−α/2 corresponding

to a specified confidence level α can be derived by sorting z∗i , i = 1, ...N .

3.4 Numerical Implementation

In Bayesian inference, sampling from the posterior distribution requires tens to hundreds

of thousands of model evaluation. For computationally intensive groundwater models, the

computational cost of MCMC sampling may be prohibitively high. Under such situations,

computationally frugal surrogate models can be used as a substitute for the original model

when evaluating the likelihood. Surrogate models can be constructed from the original

model by reducing numerical resolution, increasing tolerance and/or omitting processes [5].

However, the parameters of reduced-order models may not be defined exactly the same as

in the original model, making the inference of parameter posterior less straightforward. In

contrast, response surface methods attempt to statistically mimic the relationship between

explanatory variables (i.e. model parameters) and response variable(s). For example, [60]

used a radial basis function to approximate the calibration objective, such as the Nash-

Sutcliffe index. The resulting response surface was then updated in the optimization ap-

proach. Similarly, Gaussian process regression, a machine learning algorithm, was used to

emulate the response surface of logarithm of likelihood for the calibration of a rainfall-runoff

model [89]. In addition to calibration objective function, response surface methods can also

emulate model state variables, or outputs, such as groundwater head. Recently, generalized
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polynomial chaos expansion (gPC) [56] and sparse grid methods have been used to con-

struct surrogate models in various hydrology applications including groundwater modeling

[49, 99, 100].

As further described in Chapter 6.5, surrogate modeling was implemented on a real-world

case study with realistic degree of complexity. The surrogate models take as inputs the

parameters to be inferred, and output the original model’s simulation results. The surrogate

models were constructed based on Support Vector Regression (SVR) [84]. SVR has been

applied to many fields including rainfall-runoff modeling [68], radioactive soil contamination

[42] and groundwater hydrology [4, 98]. The SVR algorithm has good generalization per-

formance, because it seeks to minimize an upper bound of the generalization error rather

than minimize the training error. The solution of SVR is globally optimal, while many other

statistical learning tools (e.g. artificial neural network) may converge to local minima.

This section briefly overviews ε-SVR as will be used in Chapter 6.3. Given a set of training

data {xi, yi}, i = 1, ..., n, where xi denotes input and yi denotes output that has been

observed, the idea of SVR is to first project input x to a higher dimensional feature space by

the map Φ : X → F , and then carry out a linear regression of y in the feature space Φ(x):

f(x) = w · Φ(x) + b. (3.14)

The coefficients w and b are estimated by solving the following optimization problem

minimize
1

2
||w||2 + C

n∑
i=1

(ξi + ξ∗i ) (3.15a)

subject to (wTΦ(xi) + b)− yi ≤ ε+ ξi, (3.15b)

yi − (wTΦ(xi) + b) ≤ ε+ ξ∗i , (3.15c)

ξi, ξ
∗
i ≥ 0, i = 1, ..., n. (3.15d)
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The first term in Eq. (3.15a) represents the complexity of the regression model and there-

fore acts as regularization. The second term represents goodness-of-fit to training data;

the slack variables ξi, ξ
∗
i are introduced to cope with otherwise infeasible constraints of

the optimization problem. They are derived from the ε-insensitive loss function |ξ|ε =

max{0, |yi − f(xi)| − ε}. The constant C in Eqn. (3.15a) determines the trade-off between

the flatness of f and deviations exceeding ε.

In general, the map Φ : X → F is implemented implicitly via kernel functions. This study

adopts the commonly used radial basis function (RBF) kernel:

〈Φ(xi),Φ(xj)〉 = K(xi,xj),

K(xi,xj) = exp(−γ||xi − xj||2). (3.16)

The regularization hyperparameter C is chosen according to the training data following the

recommendations of Cherkassky and Ma [15]. The loss function hyperparameter ε and kernel

width hyperparameter γ are tuned by five-fold cross validation. The LIBSVM toolbox [14]

is used to implement ε-SVR.

3.5 Recalibration Strategy

As discussed in Sections 1.1 and 2.1, calibration of groundwater models typically uses a di-

agonal error covariance matrix because the correlation structure caused by model structural

error is usually unknown. We propose a “recalibration” strategy that utilizes, in a data

assimilation fashion, the model structural error inferred by the fully Bayesian approach.

As described in Section 2.2, the Bayesian prediction process will provide a size N ensemble

of predictions of interest z∗i = M∗
i + b∗i + εi, i = 1, ..., N . The mean z̄∗ = 1

N

∑N
i=1(M∗

i + b∗i )
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will be used as calibration targets in the recalibration process. The calibration targets can

be weighted according to measurement error. Another option is to use a full error covariance

matrix in Equation (2.2) to account for residual correlation due to model structural error.

A matrix Σb representing model structural error can be conveniently computed from the

Bayesian posterior realizations b∗i , i = 1, ..., N .

In other words, the groundwater model will be calibrated against predictions made by the

Bayesian approach, which is based on calibration data that have been observed and (possibly

weak) prior knowledge on model parameters and structural error. Therefore, the recalibra-

tion strategy does not require any additional information that is not available in the model

construction and calibration phase. The recalibrated model is then used to make forecast

along with associated linear prediction interval.

The advantage of the recalibration strategy is twofold. First, the mean prediction given

by the Bayesian approach is expected to be more accurate than that given by the initially

LSR calibrated model. This is because the Bayesian approach involves the error-correcting

Gaussian process error model; the recalibrated model should fit the Bayesian posterior mean

of prediction reasonably well, and therefore is expected to yield more accurate prediction

while preserving mass balance and other physical constraints inherent in a physically-based

model. The recalibration strategy is analogous to smoothing in the context of data assimila-

tion, only that the Bayesian prediction, rather than true observation, is used. Recalibration

is also related to the strategic use of compensatory parameters [23]. By recalibrating the

model using Bayesian predictions as targets, we are allowing parameters to be over-adjusted

in order to compensate for model structural error. As discussed in the Introduction section,

for predictions that are under similar conditions as calibration data, parameter compensa-

tion may improve predictive accuracy [22]. Second, Tiedeman and Green [80] showed that

ignoring error correlation can have substantial effect on parameter estimates, predictions and

associated uncertainty. The recalibration strategy utilizes the residual correlation structure
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estimated by the Bayesian approach. Therefore, it is expected that more realistic parameter

estimates can be achieved via recalibration than using the conventional LSR with a diagonal

error covariance matrix.
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Chapter 4

SYNTHETIC CASE STUDY WITH
INPUT DATA ERROR

In this chapter we describe a synthetic case study used to investigate the impact of input

data error on calibration and prediction and test the performance of the proposed Bayesian

approach. The hypothetical case study uses a virtual reality to represent realistic hydrogeo-

logic conditions that are common in the field and serves to generate synthetic observations.

Meanwhile, we build a working simplified model that represents the limited knowledge mod-

elers would possess about the virtual reality. The working model (hereafter referred to as

“model”) is calibrated against the synthetic observations generated by the virtual reality

and subsequently used to make forecast under changing scenarios.

The synthetic case study simulates the effect of pumping on two-dimensional groundwater

flow in an unconfined aquifer that is hydraulically connected to a stream. There have been

many documented cases where pumping-induced groundwater piezometric head decline and

stream depletion lead to water right conflicts and/or threaten ecosystem services [6, 74].

Numerical models are increasingly being used to support conjunctive regulation of ground-

water and surface water resources [50, 58, 88].

4.1 Synthetic Models

Both the virtual reality and the model are transient single-layer MODFLOW2000 mod-

els that simulate an unconfined aquifer with impermeable bottom and surrounding no-flow

boundaries. Both models have 50× 50 grid cells of size 200m× 200m, and hence the model
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domain spans 10 by 10 km2 (Figure 4.1). The virtual reality runs for 6 years with monthly

stress step and weekly time step. The simple model has the same monthly stress period,

but has only one time step for every stress period (monthly time step). The virtual reality

has irregular bottom elevation and non-permeable boundaries. The model has linearly in-

clined (north to south, sides to stream location) bottom elevation and straight surrounding

boundaries.

Specific yield is homogeneous in both the virtual reality and the model. For the virtual

reality, specific yield equals 0.2; the natural log conductivity field was generated using a

sequential Gaussian simulation code SGeMS [71], with a mean of 30 m/day and a sill of 1

(for natural logarithm lnK). An anisotropic spherical variogram was used, with range 6 km

in the east-west direction and 4 km in the north-south direction. In the field of groundwater

hydrology, it is a common practice to assume that the logarithm of hydraulic conductivity

(K) follows a normal distribution and geostatistically represent the natural spatial variability

of K via a covariance function or variogram (e.g., [22, 29, 91]). In the simple model, on the

other hand, the log conductivity field was interpolated from 12 pilot points (location shown

in Figure 4.5), using Ordinary Kriging and a spherical variogram with a range of 4 km and

a sill of 2. The variogram used in the model is different from the variogram used in the

virtual reality, reflecting inaccurate prior knowledge of the spatial correlation structure of

logarithm of K. Similar implementation can be found in other studies, such as [22, 91]. The

log conductivity values at pilot points will be calibrated.

The stream is modeled using the MODFLOW SFR1 package [66], and the stream stage is

routed by Manning’s Formula at each time step. In both models, Manning’s n is set to 0.03,

and the streambed slope is 0.0005. A rectangular streambed cross section is used, and the

channel width is 14 m. The streambed hydraulic conductivity is uniform throughout the

whole reach. Seasonally varying inflow is specified at the inlet at the north boundary in the

virtual reality. For the model, the inflow is generated by perturbing the inflow in the virtual
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Figure 4.1: Modeling domain and cross section showing the unconfined unit with a stream running from
north to south as simulated by the virtual reality. Locations of drawdown calibration targets s1, ..., s7 and
validation data s∗ are shown. Color encodes the natural logarithm hydraulic conductivity field of the virtual
reality.

reality, assuming that the streamflow measurement has a coefficient of variation (CV ) of 0.01.

While necessarily restricted by use of a specific complex numerical model to represent reality,

the case study can nevertheless provide insights into the potential of the presented approach

to handle errors in common types of forcings.

4.2 Input data

This synthetic case study considers two types of uncertain input data: groundwater pumping

and precipitation recharge. As discussed in Section 3.1, pumping rates are often not me-
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Figure 4.2: Recharge zones and location of pumping wells during the calibration (a) and validation (b)
periods. The recharge rates for each zone are shown in (c) and pumping rates at four wells shown in (d).

tered, but indirectly estimated from related information such as power usage and irrigation

requirements. Precipitation recharge rate can be calculated using an assumed penetration

ratio, using a surface water model, or estimated as model parameters through calibration.

The case study simulates four pumping wells; their locations are marked in Figure 4.2.

Among the four wells, B and D are irrigation wells and are turned on during the growth

season. On the other hand, A and C are municipal supply wells and are pumped at a con-

stant rate. Wells A and B starts pumping from the first transient stress period. Wells C and

D start pumping from the 5th year. The pumping rates at four wells are shown in Figure 4.2.
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Recharge is specified with four zones (Figure 4.2). Zones 1, 2 and 3 receive recharge from

precipitation only. Zone 4 also receives groundwater irrigation return flow during the growth

season, which is assumed to equal 20% of total pumping rates in that zone divided by the

area. The return flow rate 20% is chosen according to commonly reported irrigation effi-

ciency [58]. Figure 4.2 shows the monthly varying recharge rates for four zones in the virtual

reality. The values are specified based on typical recharge condition in the Nebraska portion

of the Republican River basin [58].

4.3 Calibration and validation data

The simulation starts from a steady-state stress period with no groundwater pumping, which

mimics natural equilibrium state before development. The virtual reality then runs for 6

years and generates quarterly synthetic drawdown (s) (location shown in Figure 4.1) and

stream gain-and-loss (∆Q) observations, both are the most commonly used types of ob-

servation when calibrating a groundwater flow model. Drawdown targets are computed by

subtracting the groundwater head at a time step from the head at steady state. The stream

gain-and-loss (∆Q) is computed by summing up the cell-by-cell flow exchange rates between

the stream and the aquifer cell across the whole reach. A negative value indicates ground-

water discharges to stream, and a positive value means stream loses to groundwater. Stream

gain-and-loss targets are important to constrain parameters; if only head observations are

used in calibration, hydraulic conductivity parameters would often become highly correlated

and cannot be uniquely determined.

The synthetic observations in the first 4 years are contaminated with measurement error

and used to calibrate the model. The drawdown measurement error is assumed to be in-

dependent and Gaussian distributed with zero mean and a standard deviation of 0.02 m.
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The streamflow measurement is also independent and Gaussian distributed with zero mean

and a coefficient of variation (CV ) of 0.01. The streamflow measurement error variance is

computed by summing up the variance of upstream inflow and downstream outflow [37]. A

relatively low streamflow measurement CV is assumed because the case study is intended

to focus on uncertainties other than measurement error. If a more realistic CV value, e.g.

0.05 [39], is used, CV of ∆Q can exceed 100% because ∆Q is small compared to upstream

and downstream flow. Synthetic data of the remaining 6 years are reserved for validation.

As can be seen from Section 4.2, the validation period represents an increased groundwater

demand scenario that is substantially different from the calibration period.

4.4 Experiments, Results and Discussion

To investigate the impact of inaccurate input data on uncertainty analysis, we carried out

three sets of experiments with the synthetic case study as described below.

4.4.1 Experiment A: Benchmark case with true inputs

In experiment A, we use the classical Bayesian method to calibrate the model with “true”

recharge and pumping rates. The result of this experiment will serve as the benchmark to

which results from experiments B and C will be compared. As can be seen from section 4.1,

there exist a few differences between the virtual reality and the model including the modeling

domain geometry and the specification of aquifer hydraulic conductivity. Therefore, it is not

straightforward to compare the estimated values of model parameter with the “true” value

in the virtual reality.

The synthetic data during the first 4 years were used to calibrate 16 parameters, namely

the specific yield (Sy), natural logarithm of the hydraulic conductivity of the streambed
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(lnKrb) and at locations given by the pilot points (lnK1, ..., lnK12), the drawdown measure-

ment error standard deviation (σs), and the stream gain-and-loss measurement coefficient

of variation (CV∆Q). Relatively vague prior distributions are specified for all parameters as

shown in Table 4.1. Specifically, the joint prior distribution of lnK1, ..., lnK12 is specified

as a multivariate normal distribution with a mean of 4.1 and a covariance matrix ΣK . The

covariance matrix is computed using the variogram used to interpolate logarithm hydraulic

conductivity from pilot points (a spherical variogram with a range of 4 km and a sill of 2).

As mentioned in Section 4.1, this variogram is different from the true anisotropic variogram

used to generate the lnK field in the virtual reality. In Table 4.1, the mean of prior distri-

butions are chosen to be different from the true value to reflect inaccurate prior knowledge.

For lnK, the “true value” refers to the lnK values in the virtual reality corresponding to

locations given by the pilot points and is shown in Figure 4.1.

Table 4.1: Prior distributions of calibrated parameters and assumed distribution of inputs. Please see Section
4.4 for explanation.

Notation Unit Distribution
Sy m N(0.18, 0.0362)
lnKrb m/d N(0.69, 0.692)
[lnK1, ..., lnK12]T m/d N

(
[4.1, ..., 4.1]T ,ΣK

)
CV∆Q - Uniform on [0.0001, 0.5]
σs m Uniform on [0.0001,0.5]

QA m3/d N(Q̂A, (0.2Q̂A)2), Q̂A = 1.2QA,0
QB m3/d N(Q̂B , (0.2Q̂B)2), Q̂B = 1.2QB,0
Ri, i = 1, ..., 4 mm/y N(R̂i, (0.25R̂i)

2), R̂i = 0.75Ri,0
λi, i = 1, ..., 4 - N(1, 0.252)

In this study, we used DREAM-ZS (DiffeRential Evolution Adaptive Metropolis algorithm),

a Markov chain Monte Carlo sampler developed in [75] to sample from the posterior dis-

tributions of parameters. The DREAM-ZS runtime settings were configured following the

recommendations in [85]. Three Markov chains were used to generate 15,000 samples from

the joint posterior distribution of 16 parameters after convergence was determined based on

the R̂ statistic of [30], visual inspection of trace plots and other diagnostics [18]; about 40,000
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model evaluations were required to converge (burn-in). The marginal posterior distributions

of specific yield and natural logarithm streambed hydraulic conductivity are shown in Figure

4.3 and Figure 4.4, respectively. The hydraulic conductivity (K) field interpolated from the

MAP estimates at the 12 pilot points is shown in Figure 4.5.

Due to model structural error (i.e. the discrepancy between the model and the virtual re-

ality), the estimated parameters deviate from the real values. The results in experiment A

represents the best results that can be obtained given the model structural error as true

inputs are used. The results will serve as benchmark, and results from experiments B and

C will be compared with the benchmark to assess the performance of different calibration

strategies.

In the prediction phase, the model is run repeatedly using the posterior samples for the

whole simulation period of 6 years. The posterior mean and 95% credible intervals of draw-

down at three locations (Figure 5.1) and stream gain-and-loss are shown in Figures 4.6 - 4.9.

Due to model structural error, predictive bias can be observed for drawdown and stream

gain-and-loss. The root-mean-square-error (RMSE) of the calibrated model prediction in

years 5-6 is listed in Figures 4.6 - 4.9. For all drawdown, the RMSE is significantly greater

than the standard deviation of measurement error 0.02 m.

4.4.2 Experiment B: Biased pumping rates

In experiment B, it is assumed that the pumping rates to be used in the model were estimated

with bias. For illustration purpose, the pumping rate of wells A and B are overestimated

by 20% of the true values (Figure 4.1) through the calibration period. Using the same pa-

rameter priors as in section 4.4.1 and Table 4.1, the model is calibrated using the classical

Bayesian and the marginalizing methods, respectively, resulting in two calibrated models,

MB,1 and MB,2. For the marginalizing method (Section 3.1), it is assumed that the pumping
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Figure 4.3: Posterior distribution of specific yield Sy of the calibrated models M0 (a), MB,1 (b), MB,2 (c),
MC,1 (d), MC,2 (e) and MC,3 (f).

rates QA and QB are normally distributed around the estimated value. More specifically,

QA ∼ N(Q̂A, (0.2Q̂A)2), QD ∼ N(Q̂B, (0.2Q̂B)2), where Q̂A and Q̂B are the estimated pump-

ing rates and equal to 1.2QA,0 and 1.2QB,0, respectively (Table 4.1).

Both the classical Bayesian and marginalizing calibration methods were implemented via

DREAM-ZS. After convergence, posterior samples of model parameters are collected to run

the model in forecast mode. For both methods, true pumping rates (as used in virtual re-

ality) are used during the validation period (years 5 to 6). This is consistent with common

modeling practice that uses a groundwater model to make forecast under prescribed future

condition. The method can be easily extended to handle prediction under an uncertain

future scenario, e.g., climate change and population projection, by marginalizing over the

input in the prediction period. During the first 4 years, the classical Bayesian method used
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Figure 4.4: Posterior distribution of natural logarithm riverbed hydraulic conductivity lnKrb of the cali-
brated models M0 (a), MB,1 (b), MB,2 (c), MC,1 (d), MC,2 (e) and MC,3 (f).

the estimated pumping rates Q̂A and Q̂B, whereas the marginalizing method propagates the

uncertainty in calibration pumping rates via marginalizing.

The marginal posterior distributions of specific yield and natural logarithm streambed hy-

draulic conductivity are shown in Figure 4.3 and Figure 4.4, respectively. Comparing Figure

4.3 (b) and (c), and Figure 4.4 (b) and (c), it can be seen that the marginalizing method

yielded flatter, wider posteriors for both Sy and lnKrb, because of the propagation of input

uncertainty to posterior parametric uncertainty. For Sy, the posterior given by the marginal-

izing method is closer to the benchmark results (Figure 4.3a). The hydraulic conductivity

(K) field interpolated from the MAP estimates at the 12 pilot points is shown in Figure 4.5.

Compared with the benchmark results in (a), both (b) and (c) capture the overall pattern

of higher K in the northwestern part and lower K on the south. The inference of spatial
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Figure 4.5: Natural log hydraulic conductivity field of the calibrated models M0 (a), MB,1 (b), MB,2 (c),
MC,1 (d), MC,2 (e) and MC,3 (f). Locations of the 12 pilot points are shown. The K fields are interpolated
according to the maximum a posterior (MAP) estimate of pilot points.

variation of K is likely to be primarily controlled by drawdown observations and is insensitive

to bias in pumping and recharge rates.

The posterior mean and 95% credible intervals of drawdown at three locations (Figure 4.1)

and stream gain-and-loss are shown in Figures 4.6 - 4.9. It can be seen from Figures 4.6

and 4.7 that the calibration error of M0 and MB,1 are both small, while slight bias can be

observed for MB,2 in year 1-4 at s1 and s6. This is because the marginalizing step (Equation

(3.2)) leads to a likelihood with inflated variance term and is therefore more tolerant to sys-

tematic bias. Despite small calibration error, the classical Bayesian calibrated model MB,1

shows significant prediction bias in years 5-6 at s1 and s6 (and also other locations that are

not shown here), as well as at s∗, a monitoring well not used for calibration (Figure 4.8). In

contrast, the marginalizing method yields significantly less biased head predictions.
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Figure 4.6: Simulation results of drawdown s1 using the calibrated models M0 (a), MB,1 (b), MB,2 (c), MC,1

(d), MC,2 (e) and MC,3 (f).

As for stream gain-and-loss predictions, both methods deliver similar performance with the

classical Bayesian approach yielding slightly lower RMSE. As will be further discussed in

Section 4.4.3, the marginalizing method assumes that the true pumping rate follows a normal

distribution centered around the biased estimated value. Stream gain-and-loss is an impor-

tant component in the water budget of this case study, and is sensitive to bias in pumping

rates.
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Figure 4.7: Simulation results of drawdown s6 using the calibrated models M0 (a), MB,1 (b), MB,2 (c), MC,1

(d), MC,2 (e) and MC,3 (f).

4.4.3 Experiment C: Biased pumping and recharge rates

Experiment C considers the case that during the calibration period the pumping rates to

be used in the model are overestimated, and the recharge rates are underestimated. More

specifically, Q̂A = 1.2QA,0, Q̂B = 1.2QB,0, R̂i = 0.75Ri,0, i = 1, ..., 4. In this situation, the

bias from overestimation of pumping rate and the bias from underestimation of recharge

rate cannot cancel off, thus is expected to induce parameter compensation. The estimated

values of pumping and recharge rates were used as input in classical Bayesian calibration,

leading to calibrated model MC,1. A second calibration strategy was implemented for ex-

periment C that introduces four recharge multipliers to be calibrated along with the specific
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Figure 4.8: Prediction of drawdown s∗ using the calibrated models M0 (a), MB,1 (b), MB,2 (c), MC,1 (d),
MC,2 (e) and MC,3 (f).

yield, hydraulic conductivities and measurement error parameters. The recharge multipli-

ers λi, i = 1, ..., 4 are defined as the ratio of the recharge in a zone over the estimated

recharge rate at that zone, i.e. Ri = λiR̂i, i = 1, ..., 4. The prior marginal distributions of

λi, i = 1, ..., 4 are listed in Table 4.1. In total 20 parameters will be calibrated. This strategy

will be referred to as “augmentation” method in the remaining part of this chapter, and the

resulting model is denoted by MC,2. The augmentation strategy is included in Experiment C

because sometimes recharge rates are adjusted during calibration in groundwater modeling

practice. Finally, as the third calibration strategy, the marginalizing method assumes that

the pumping and recharge rates follow normal distributions as listed in Table 4.1 and gives
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Figure 4.9: Simulation results of stream gain-and-loss ∆Q using the calibrated models M0 (a), MB,1 (b),
MB,2 (c), MC,1 (d), MC,2 (e) and MC,3 (f).

model MC,3.

In the prediction phase, the calibrated models MC,1,MC,2,MC,3 were run and produce fore-

cast in the validation period (years 5-6) under specified pumping rates (Figure 4.2). While

biased estimated pumping rates Q̂A, Q̂B were used for years 1-4 (the calibration period),

true pumping rates Q̂A,0, ...Q̂D,0 were used in years 5-6 (the validation period). On the

other hand, biased estimated recharge rates R̂i, i = 1, ..., 4 were used throughout the 6 years

of simulation period for the classical Bayesian and marginalizing methods. The augmen-

tation method used the posterior distributions of recharge multipliers λi, i = 1, ..., 4. The
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marginalizing method propagates the uncertainty in calibration pumping rates via marginal-

izing. The reason of such implementations is that, in groundwater modeling practice, the

calibrated model is often used to make forecast with a prescribed future demand such as

pumping rate. Precipitation recharge, however, is often estimated via a set of infiltration

rates based on land use or soil type; once determined, these infiltration rates will also be

used in the prediction period. Note, however, that these implementation details do no affect

the major conclusions drawn in the chapter.

The marginal posterior distributions of specific yield and natural logarithm streambed hy-

draulic conductivity are shown in Figure 4.3 and Figure 4.4, respectively. Comparing Figure

4.3(b) with (d), it can be seen that the posterior of Sy given by the classical Bayesian method

becomes more biased when recharge rates are biased in addition to the pumping rates. This

is anticipated with the overestimation of pumping rate and underestimation of recharge rate.

With biased pumping and recharge rates, the calibration process tries to “fill in” the miss-

ing water, while matching the observed drawdown generated by the virtual reality under

true pumping and recharge rates. Therefore, the specific yield Sy is overestimated. Simi-

larly, classical Bayesian calibration gives streambed conductivity lnKrb that is higher than

the benchmark result (Figure 4.4(a)); higher krb produces more inflow from stream to the

aquifer to make up for the missing water. The marginalizing method and in particular the

augmentation strategy yielded Sy and lnKrb posteriors that are closer to the benchmark

results. However, it can be seen from Figure 4.4(e) that the posterior distribution of lnKrb

given by augmentation method is slightly overconfident compared to (a).

The hydraulic conductivity (K) field interpolated from the MAP estimates at the 12 pilot

points is shown in Figure 4.5. The K fields estimated by the three calibration strategies are

similar with each other. Similarly as in Section 4.4.2, the inference of spatial variation of

K is likely to be primarily controlled by drawdown observations and is insensitive to bias in

pumping and recharge rates.
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The posterior mean and 95% credible intervals of drawdown at three locations (Figure 4.1)

and stream gain-and-loss are shown in Figures 4.6 - 4.9. Similarly as in section 4.4.2, it

can be seen that despite relatively small calibration error of MC,1 and MC,2, the prediction

made by the two models has significant bias. In contrast, the marginalizing method yields

significantly less biased predictions during the validation period at calibration target wells

s1, s6 and another monitoring well s∗. As for stream gain-and-loss ∆Q, Figure 4.9 shows

that the classical Bayesian calibrated model MC,1 yields biased and overconfident prediction;

the marginalizing method yields smaller bias, while the augmentation method achieves the

most accurate prediction. The main reason is that the augmentation method resulting in

reasonable calibrated recharge rates for the two zones to which the stream gain-and-loss

are most sensitive. However, when model structural error is present in addition to input

data error, it is likely that the augmentation method may overly adjust inputs to com-

pensate for model structural error. For example, the augmentation method produces biased

and overconfident drawdown prediction at s1 and s∗, possibly due to the compensation effect.

It is worth mentioning that for the marginalizing method, the recharge rates are assumed

to follow a normal distribution centered around the biased estimates. Stream gain-and-loss

is an important component in the water budget of this case study, and is sensitive to bias

in pumping and recharge rates. The marginalizing method does not correct for the input

data bias, but accounts for the possibility that the true input deviates from the estimated

value. We recognize this as the limitation of the marginalizing method. As can be seen in

Figure 4.9(f) the Bayesian posterior prediction is biased, while the 90% prediction interval

still encompasses the validation data. We also note that the prediction interval given by

the marginalizing method depends on the quality of the statistical model specified a priori

to characterize input data error. Low confidence in the estimated input data will result in

prediction intervals that are too wide to be informative. The marginalization method is

suitable when input data are estimated with low to medium level of uncertainty.
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When prior estimation of input data is highly uncertain and significant bias is likely to exist,

an alternative is to jointly infer the hyperparameters of the input data error model during

the calibration process. For example, we can assume that QB ∼ N
(
µQ̂B, (βQ̂B)2

)
and

jointly sample µ, β with other parameters. In this way, the alternative method can correct

for possible bias in input data. This approach will be further investigated in followup studies.

4.5 Summary

We demonstrated the Bayesian approach through a synthetic case study of surface-ground

water interaction under changing pumping and land use conditions. It is found that explicit

treatment of errors in input data (groundwater pumping and recharge rates) has substantial

impact on the posterior distribution of groundwater model parameters. Using statistical

models to explicitly account for input error reduces predictive bias caused by parameter

compensation.

Compared to classical Bayesian results, the marginalizing approach yields more accurate

predictions. However, one limitation of the marginalizing approach is that it only recognizes

the uncertainty associated with input data, but does not correct for potential input bias.

As a result, for quantities that are highly sensitive to biased input data, such as streamflow

gain-and-loss in this case study, the prediction made by the marginalizing approach may

still be biased, although the prediction interval still encompasses validation data.

The marginalizing method results indicate that input variability increases parametric and

predictive uncertainty, in contrast with the augmentation result. This is because the marginal-

izing approach does not update the assumed input distribution, while the augmentation

method calculates a posterior input distribution by combining the prior with likelihood. In
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this sense, we recommend the marginalizing approach to be used for situations in which (1)

substantial knowledge is available to specify a reasonable input distribution, and (2) aug-

mentation method may not work due to identifiability issues.

Finally, in this case study the input uncertainty is dominant among various sources of uncer-

tainty. In general, the Bayesian approach allows for a comparison among the contributions

from various error sources, which could inform future model improvement and data collec-

tion efforts on how to best direct resources towards reducing predictive uncertainty.
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Chapter 5

SYNTHETIC CASE STUDY WITH
MODEL STRUCTURAL ERROR

In this Chapter we present a second synthetic case study in which we examine the impact

of model structural error on uncertainty analysis and test the performance of the Bayesian

approach with error model and the recalibration strategy. The synthetic case study is based

on the one described in Chapter 4 after modifications so that it represents a situation where

model structural error is non-negligible. The model is designed to suffer from common types

of model inadequacy (or imperfection) in groundwater modeling practice. The presented

framework can be applied to other types of model inadequacy beyond those represented in

the case study. Calibration and prediction are implemented using standard least squares,

standard (classical) Bayesian, the proposed Bayesian approach and the recalibration strat-

egy. Performance of these methods is evaluated and compared. The materials presented in

this chapter are based on Xu and Valocchi [96].

5.1 Synthetic Models

In the second synthetic case study, we modified the virtual reality and the working model

used in the first case study in Chapter 4 to introduce model structural errors. For concise-

ness this section focuses on the changes made.

For both the virtual reality and the model, the west and east boundaries are assigned as

impermeable, and the north and south boundaries are general head boundaries (GHB) for

which the flux is proportional to the difference between cell head and specified boundary
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Figure 5.1: (a) Modeling domain showing the unconfined unit with a stream running from north to south.
Squares show locations of drawdown calibration targets. Circles with inside cross show the two pumping
wells. (b) Stream cross section of the complex model. (c) Aquifer cross section showing irregular bottom
elevation.

head (Figure 5.1a). Figure 5.2 shows the difference between the two models in the geometry

of the west and east non-permeable boundaries. The discrepancy reflects imperfect knowl-

edge about the subsurface distribution of bedrock surrounding the simulated aquifer. In

addition, the head conductance of the north and south GHBs in the simple model is based

on prior knowledge that differs from the true value used in the complex model. Similarly

as in Chapter 4, the virtual reality has irregular bottom elevation (Figure 5.1c), while the

simple model has linearly inclined (north to south, sides to stream location) bottom elevation.

Specific yield is homogeneous in both models and equals 0.25 in the virtual reality. The

natural log conductivity(lnK) field was generated using a sequential Gaussian simulation

code SGeMS [71], with a mean of 22.5 m/day and a sill of 1.1 (for natural logarithm lnK).

An anisotropic spherical variogram was used, with range 1 km in the east-west direction

and 2 km in the north-south direction. The lnK field of the simple model was interpolated

from 12 pilot points (location shown in Figure 5.2), using Ordinary Kriging and the true

variogram used in the virtual reality. The log conductivity values at pilot points will be
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calibrated. Using only 12 pilot points cannot characterize the heterogeneity details of the

real K field (Figure 5.2a) even though the true variogram is used (Figure 5.2b). The case

study is designed to test the capability of Gaussian process error model to compensate for

bias resulting from the loss of heterogeneity.

Figure 5.2: Natural log hydraulic conductivity field of (a) the complex model and (b) the simple model.
Squares show locations of drawdown calibration targets, same as in Figure 5.1; triangles in (b) indicate pilot
points.

In both models recharge and evapotranspiration (EVT) rates vary in space and are higher

during summer months. For the complex model, the recharge and EVT rates are gener-

ated by multiplying a first order autoregressive time series with time varying spatial factors

generated using SGeMS. First, annual recharge rates for 20 years are generated from a first

order autoregressive AR(1) model, with a long-term mean of 0.1 m/year. Second, the annual

recharge rates were distributed to every month using a fixed set of monthly multiplier. For

the recharge rate used in the virtual reality, a spatially varying factor field was simulated

for each month, using SGeMS, with a mean of 1, a variance of 1 and an isotropic spherical

variogram with range equal to 1 km. The spatial varying recharge field for each month

was calculated by multiplying the factor field with the recharge rate of that month. For

the recharge rate in the simple model, on the other hand, the spatial factor fields were first
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contaminated with noise, sampled at five virtual climate stations, and then extrapolated

throughout the whole domain to obtain ”smoothed” factor fields. This introduces input

error induced by, e.g. limited sampling locations for precipitation, coarse resolution for soil

type map. The new factor fields were then multiplied by the monthly recharge rates to cal-

culate the spatiotemporally varying recharge in the simplified model. The EVT fields were

generated in a similar way.

On average, the mean annual recharge rates in the virtual reality and simple model are 93.5

mm and 105.1 mm, respectively. The maximum annual EVT is 36.9 mm for the virtual

reality and 37.1mm for the simple model, and the extinction depth is uniformly 2 meters

beneath the land surface in both models.

Likewise in the first synthetic case study described in Chapter 4, the stream is modeled

using the MODFLOW SFR1 package [66]. In this case study, however, for the virtual reality

streambed hydraulic conductivity is generated using SGeMS and varies longitudinally. The

stream runs from north to south; the inflow fluctuates seasonally (in phase with recharge

and EVT rates) and has a mean of 0.7m3/s. An eight-point cross section profile is assigned

to the whole reach (Figure 5.1b). The cross section represents a main channel and a side

channel which is dry except during wet periods. Meanwhile, in the simplified model, the

streambed hydraulic conductivity and channel width are assumed to be constant throughout

the whole reach. The streambed hydraulic conductivity is to be calibrated, and the channel

width is set to 14 m, which is the same as the maximum width in the virtual reality (Figure

5.1b). The inflow in the simplified model is generated by perturbing the inflow in the virtual

reality, assuming that the streamflow measurement has a coefficient of variation (CV ) of 0.01.

In summary, both models simulate a river-aquifer system, in which the groundwater re-

ceives inflow from the northern GHB boundary and rainfall recharge, and discharges to

the stream and the southern GHB boundary. As pumping rate increases, the river would
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become losing along most segments. The simple model differs from the complex model in

the following aspects: simplified geometry (no-flow boundaries and bottom elevation), het-

erogeneity of hydraulic conductivity specified by 12 pilot point and Kriging interpolation,

uniform riverbed conductance and idealized cross section, inaccurate stream inflow and spa-

tiotemporal recharge and ET rates, and coarser time step. Therefore, the simple model

has significant model structural error. A highly parametrized strategy could partly resolve

model structural error, for example by using more pilot points (reaches) to better repre-

sent heterogeneity of aquifer (streambed), by parameterizing the spatially and temporally

varying recharge and ET rates, and by parametrization the GHB head and conductance

[91]. However, model structural error that arises from model geometry including the stream

cross section is less straightforward to be avoided via parameterization. While necessarily

restricted by use of a specific complex numerical model to represent reality, the case study

can nevertheless provide insights into the potential of presented approach to handle various

types of commonly encountered model structural error.

5.2 Calibration and validation data

The virtual reality is used to generate quarterly synthetic drawdown (s) and stream gain-

and-loss (∆Q) observations for calibration. The locations of the drawdown observations

are shown in Figure 5.2b. The stream gain-and-loss (∆Q) is computed by summing up the

cell-by-cell flow exchange rates between the stream and underlying aquifer cell across the

whole reach. A negative value indicates groundwater discharges to stream, and a positive

value means stream loses to groundwater.

To mimic measurement error, noises were added to the virtual reality’s simulation results.

The drawdown measurement error is assumed to be independent and Gaussian distributed

with zero mean and a constant standard deviation of 0.02 m. The streamflow measurement
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is assumed to be independent and Gaussian distributed with zero mean and a coefficient of

variation (CV ) of 0.01. A low streamflow measurement CV is used because the focus of

this study is to investigate the role of model structural error. Following [37], the variance of

the stream gain-and-loss, ∆Q, is computed by summing up the variance of upstream inflow

and downstream outflow. Groundwater discharges to the river during the calibration period,

yielding high streamflow at the outlet. If a more realistic CV value, e.g. 0.05, is used, CV

of ∆Q can exceed 100%.

Both models start from a steady-state stress period with no groundwater pumping, which

mimics natural equilibrium state before development. Pumping starts from the second stress

period at well A, at a constant rate of 35,000 m3/day. The first eight years of data (ex-

cluding the steady-state period) are used as calibration targets, which consist of 32 stream

gain-and-loss observations and 224 drawdown measurements at seven locations (marked in

Figure 5.1a). Drawdown targets are computed by subtracting the groundwater head at a

time step from the head at steady state. At the beginning of the ninth year (immediately

after the calibration period), well B is turned on and pumped at the same constant rate

as well A. Data in the remaining 12 years are reserved for validation. The doubled total

pumping rate in the validation period represent an increased water demand scenario to test

the extrapolation capacity of the proposed framework.

5.3 Least Squares Regression

We first calibrate the simple model using standard weighted least squares regression. Cali-

brated parameters include the hydraulic conductivity values at the 12 pilot points, uniform

streambed hydraulic conductivity and the uniform specific yield. All parameters except the

specific yield are log-transformed. Synthetic observations during the first eight years de-

scribed in Section 5.1 were used as calibration targets. In this synthetic case study, the
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measurement error of drawdown is much smaller than that of streamflow. Preliminary ex-

periments assigned weights as the inverse of corresponding measurement error variance. As a

result, the contribution to the objective function from stream gain-and-loss is much smaller

than that from drawdown. Therefore, the weights of stream gain-and-loss targets are in-

creased to achieve comparable goodness-of-fit of the two types of observations.

Identifiability issues arise for the hydraulic conductivity values at K10, K11, K12 during initial

calibration attempts, mainly due to the fact that the three pilot points are located beyond

the range of monitoring wells. Therefore prior information was introduced based on initial

estimates of the parameters, and equivalent prior distribution will be used in Bayesian cal-

ibration. The weights of prior information represent our confidence in the initial estimates

and were designated according to the coefficient of variation (CV ), which equals 0.2, 1, 0.6

for Sy, lnKrb and pilot points lnK1, ..., lnK12, respectively. The hydraulic conductivity pa-

rameters have higher CV because hydraulic conductivity can vary over orders of magnitude

and uncertainty of measurements or estimates is typically high. A prior value of Sy, 0.30,

was obtained by perturbing the corresponding parameter in the virtual reality with the spec-

ified CV value. The prior of lnKrb, 1.61, was generated by perturbing (according to CV )

the mean value averaged over the whole stream reach in the virtual reality. We specify the

same prior value for the log hydraulic conductivity at all 12 pilot points. The prior value

is calculated as the arithmetic mean of the log hydraulic conductivity values in the real K

field at the locations of 12 pilot points. The new objective function is

Φ(θ) =
n∑
i=1

wi [zi −M(xi, θ)]
2 +

p∑
j=1

wj
[
θj − θprj

]2
, (5.1)

where wi, wj denote weights of calibration targets zi and prior information θprj , respectively,

and p is the dimension of parameter vector θ. Since we specified same prior for all pilot

points, θK1 = ... = θK12 and wK1 = ... = wK12 . Optimization started from several sets of

initial value in order to prevent from converging to sub-optimal local minima. The least
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squares calibration is implemented using PEST [21].

The mean calibration error for stream gain-and-loss is −116m3/day, and the root-mean-

square-error (RMSE) is 1.6× 103m3/day. The streamflow at the inlet on the north bound-

ary varies in the range of 3.0 × 104 to 1.5 × 105m3/day, and the coefficient of variation of

streamflow measurement is 0.01. Therefore, the ∆Q RMSE is of similar magnitude with

measurement error. However, autocorrelation was detected for the ∆Q residual (Figure 5.3

and Figure 5.4). For drawdown, the mean calibration error is 0.005 m; the RMSE is 0.073

m, significantly higher than the drawdown measurement error standard deviation (0.02 m).

Further residual analysis reveals that the drawdown residuals are heteroscedastic and highly

temporally correlated, indicating potential model structural error (Figures S1 and S3, Sup-

porting Information). In addition, correlation among calibration error at different drawdown

locations suggests spatial correlation (Figure S4, Supporting Information).

Next, the calibrated model was used to make forecasts for the validation period, in which

the second well, well B, pumps at a rate of 35,000 m3/day. Following the procedures out-

lined in Section 2.1, linear 95% prediction intervals were then calculated by propagating the

parameter covariance matrix through the linearized model.

5.4 Classical Bayesian Method

We then calibrate the simple model using the classical Bayesian method (Section 2.2). As

in the least squares calibration (Section 5.3), calibrated parameters include the hydraulic

conductivity values at the 12 pilot points, uniform streambed hydraulic conductivity and

the uniform specific yield. All parameters except the specific yield are log-transformed. The

prior distributions of MODFLOW model parameters are consistent with the prior informa-

tion employed in least squares calibration. Specifically, the prior of parameter θj is a normal
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distribution N(θprj , (CV θprj )2). The CV value for Sy, lnKrb and pilot points lnK1, ..., lnK12

are 0.2, 1, 0.6, respectively, the same as for the conventional LSR calibration.

Besides MODFLOW model parameters, two additional likelihood parameters are calibrated,

including the coefficient of variation of stream flow measurements (CVε,∆Q) and the stan-

dard deviation of drawdown measurement error (σε,s). We choose a uniform distribution on

[0.0001, 0.5] as the prior of σε,∆Q and σε,s. The priors are loose since in practice knowledge

about measurement accuracy is usually available.

For linear and quasi-linear problems, the least squares regression and Bayesian calibration

should result in almost equivalent parameter estimates and predictions, provided that equiv-

alent priors are used [53]. In this case study, the model is found to be moderately nonlinear

using the modified Beale’s measure [37]. The modified Beale’s measure tests model lin-

earity with respect to the calibration targets, focusing on the parameter confidence region.

Therefore, the LSR calibration results could be different from results obtained by classical

Bayesian due to the linearity assumption of LSR. We carried out classical Bayesian calibra-

tion to obtain benchmark results, in addition to LSR, to be compared with the calibration

results using the proposed Bayesian approach with error model.

5.5 Bayesian Method With Error Model

A premise of the Bayesian calibration framework is that the discrepancy between the model

and the reality is reflected by the mismatch between model simulation and observed data [46].

As stated in Section 5.3, residual analysis suggested the presence of model structural error:

the calibration error of the conventional LSR method contains bias and temporal and spatial

correlation structure. Still, researchers have reported possible confounding (or identifiabil-

ity) issues between the physically-based and error models [13, 70]. Because of overfitting, the
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physical model parameters may over-compensate for structural error, while the error model

may over-compensate for physical model parameters. This issue will be further discussed in

Section 5.6.2. The Bayesian formulation provides a natural solution to alleviate these issues

via specifying priors that incorporate soft expert knowledge [7]. For example, as described

later this section, the prior of the drawdown error model “encourages” the model structural

error to be zero. In this way, the error model takes the compensation role only when sup-

ported by the data. In addition, while the case study uses vague priors for the hydraulic

conductivity parameters, it is often possible in practice to specify fairly informative priors

for parameters with clear physical meaning based on preliminary measurements or estimates.

Bayesian calibration was conducted using data during the first eight years. In total 21 pa-

rameters were calibrated, which consists of 14 MODFLOW model parameters (the same as

LSR) and 7 likelihood hyperparameters (Table 5.1). The prior distribution of MODFLOW

model parameters are consistent with the prior information deployed in least squares cali-

bration. Specifically, the prior of parameter θj is a normal distribution N(θprj , (CV θprj )2).

The CV value for Sy, lnKrb and pilot points lnK1, ..., lnK12 are 0.2, 1, 0.6, respectively,

same as for the conventional LSR calibration.

The seven likelihood hyperparameters include the coefficient of variation of stream flow

measurements (CVε,∆Q), the standard deviation of drawdown measurement error (σε,s), and

tuning parameters of GP error models. We choose a uniform distribution on [0.0001, 0.5]

as the prior of σε,∆Q and σε,s. One GP error model was constructed for drawdown observa-

tions at seven locations (Figure 5.1a), and another was constructed for stream gain-and-loss.

Hereby they are denoted as bs and b∆Q, respectively. Input of bs included time (t), spatial

location of the monitoring well (u = (ux, uy)) and MODFLOW model simulated drawdowns

(Ms); input of b∆Q consisted of time (t) and the MODFLOW model simulated stream gain-

and-loss (M∆Q). Because they are of different magnitudes and units, all input data were

linearly scaled.
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For each of the GP models, we specify an isotropic squared exponential covariance function

to enforce smoothness and reduce confounding. The isotropic squared exponential covari-

ance function is a special case of Equation (3.7) when λ1 = ... = λd = λ. For example, follow

the notation in Equations (3.6) and (3.7) and let yi = [ti,ui,Ms,i],yj = [tj,uj,Ms,j] denote

two input data points corresponding respectively to bs,i, bs,j. Using Equation (3.7), the prior

covariance between bs(yi) and bs(yj) can be computed as σ2
s exp{−[(ti− tj)2 +(ux,i−ux,j)2 +

(uy,i − uy,j)2 + (Ms,i −Ms,j)
2]/λ2

s}. Here, σs, λs are two parameters of error model bs. The

prior covariance function for b∆Q is defined similarly with parameters σ∆Q, λ∆Q.

The characteristic scale length hyperparameters λs, λ∆Q, can be different for each dimension

of input data but are kept the same in this case study to lower the dimension of parameters

to be sampled. Anisotropy can be handled by scaling the elements of input data differently.

The time (t) and MODFLOW model outputs M∆Q,Ms were scaled to [0, 1]; M∆Q,Ms may

sometimes slightly exceed the [0, 1] range depending on specific parameter values used to run

the model. For the drawdown GP model, the spatial location u = (ux, uy) is scaled to range

[0, 2], which is twice of the range of t,M∆Q,Ms. This reflects the prior belief that historical

model structural error at one monitoring location contains more information for inferring

predictive structural error at the same location than other locations. Residual analysis on

the LSR calibration error suggests complex correlation structure including strong negative

correlation among errors at different drawdown locations (Figure 5.5). Such correlation can-

not be fully captured by the simple squared exponential covariance function. In this case

study, scaling u to different ranges, such as [0, 1], [0, 3] did not significantly alter parame-

ter estimates and predictions. While the true model structural error is unknown, residual

analysis on the LSR calibration error can be used to guide scaling and choice for the range

priors of hyperparameter. For example, autocorrelation and variogram plots could detect

the correlation range in time and space when sufficient calibration data is available. In this

case study, drawdown observations are only available at seven locations, making variogram
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analysis challenging.

For the GP error model b∆Q, a linear mean function µ(y) = β∆Q(t + M∆Q) is used based

on the prior conjecture that the the model structural error tends to exacerbate as pumping

continues. In addition, residual analysis revealed a linear trend in the LSR calibration error

of stream gain-and-loss (Figure A2, Appendix). Similar to λ∆Q, β∆Q are the same for t and

M∆Q, although they can be different if supported by prior knowledge. A constant zero mean

prior was assigned to the drawdown GP error model. Residual analysis of drawdown LSR

calibration error did not reveal clear pattern that can be cast into a prior mean of simple form.

In summary, the GP error models have five hyperparameters: characteristic scale lengths λs

and λ∆Q, standard deviations σs and σ∆Q, and linear prior mean coefficient β∆Q. The prior

distributions are summarized in Table 5.1. Since the model structural error is expected to

be smooth, we use a Gamma prior distribution with mean 1 and variance 0.2 for λs and

λ∆Q, following similar practice in [13]. We truncate the prior distribution of λs at 0.6 to

enforce a longer characteristic scale length. This is because the GP error models will be

extrapolated during the validation period. With a small λs, the GP error model predicted

model structural error will essentially equal to the prior after one or two λs. With a larger

λs, however, the information that the GP error model learned during the calibration period

can be carried over to the validation period. This is not necessary for λ∆Q because a linear

prior mean is used. Both λ∆Q, λs are truncated at 3 to ensure numerical stability.

The standard deviation hyperparameters, σs, σ∆Q, reflect the prior knowledge about the

magnitude of model structural error. For example, σs = 1 m suggests that a priori, the bias

is unlikely to exceed 1.96 m, which is the 0.975−th quantile of a normal distribution N(0, 1).

Compared to measurement error hyperparameters, less is known about σs, σ∆Q. The expo-

nential distribution with mean µ, fX(x) = exp (−x/µ)/µ, is specified as the prior of σs, σ∆Q.

This distribution favors smaller values unless data support otherwise, thus expressing the
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modeler’s preference of smaller model structural error [70]. Other types of prior distribution

can also be used as long as they encourage smaller model structural error. In this way, the

risk of overfitting the Gaussian process error model is reduced.

The GP error model b∆Q assumes a linear mean function as prior. A normal distribution

with mean 0 and standard deviation 0.5 is specified for β∆Q, so that lower bias is encouraged.

Table 5.1: Prior marginals of the parameters.

Notation Unit Distribution
Sy m N(0.30, 0.062)
lnKrb m/d N(1.61, 1.612)
lnKi, i = 1, ..., 12 m/d N

(
3.06, 1.842

)
CVε,∆Q - Uniform on [0.0001, 0.5]
σε,s m Uniform on [0.0001,0.5]
β∆Q 104 m3/d Normal, N(0, 0.52)
λ∆Q - Gamma, k = 5, θ = 0.2, truncated at 3
λs - Truncated Gamma, k = 5, θ = 0.2, on [0.6, 3]
σ∆Q 104 m3/d Exponential, µ = 0.25
σs m Exponential, µ = 0.25

The DREAM-ZS runtime settings were configured following the recommendations in [85].

The Bayesian calibration and prediction processes were carried out following the procedures

outlined in Section 2.2. Three Markov chains were used to generate 15,000 samples from

the joint posterior distribution of θ and φ after convergence was determined based on the R̂

statistic of [30], visual inspection of trace plots and other diagnostics [18]. In the prediction

phase, the Gaussian process error model uses as input y∗ = [t,u,M∗
s ] for drawdown, and

y∗ = [t,M∗
∆Q] for stream gain-and-loss. The GP error models can predict the model struc-

tural error throughout the model domain, including locations not included in the calibration

data. The final outcome of the Bayesian framework is an ensemble (of 15,000 samples) of

predictions comprised of stream gain-and-loss ∆Q∗i = M∗
∆Q(θi) + b∗∆Q,i + ε∆Q,i and draw-

down s∗i = M∗
s(θi) + b∗s,i + εs,i, i = 1, ..., 15, 000. Here, ∆Q∗ is a time series representing the

stream gain-and-loss rate at different times during the prediction period; s∗i denotes draw-
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Figure 5.3: Stream gain-and-loss (Q) calibration error time series of the standard LSR method (upper) and
the Bayesian approach (bottom). An increasing trend can be observed from the LSR calibration error.

Figure 5.4: Autocorrelation function (ACF) of calibration error of the conventional LSR (blue) and the
Bayesian approach (red). The dash-dotted lines enclose 95% confidence interval that the true correlations
were 0. One lag equals three month as drawdowns and stream gain-and-loss are observed quarterly.
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Figure 5.5: Correlation coefficients among the calibration error for the seven drawdown locations and stream
gain-and-loss, resulted from the conventional LSR (a) and the Bayesian approach (b).

down varying in both space and time. The Bayesian posterior of prediction can be estimated

by collecting the realizations in the ensemble. The Bayesian posterior mean is given by ∆̄Q
∗

and s̄∗.

5.6 Results and Discussion

5.6.1 Parameter Estimates

The 95% confidence interval estimated by conventional LSR calibration and the posterior

marginal distribution given by the classical Bayesian method are shown in Figure 5.6. It can

be seen that for most of the parameters, the classical Bayesian maximum a posterior (MAP)

estimates agree with the LSR estimates. Exceptions including lnKrb, lnK3, lnK7 are likely

caused by the moderate degree of non-linearity of the MODFLOW model. Non-linearity also

explains the observation that for some parameters, such as lnK4 and lnK7, the Bayesian

posterior distribution is much narrower than the 95% linear confidence interval given by LSR.

We then examine the parameter estimation performance of the proposed fully Bayesian

framework by comparing parameter posterior distributions with the true values used in the
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virtual reality and the posterior yielded by classical Bayesian calibration, as shown in Figure

5.7. We will discuss the recalibration results later in Section 5.7.

As described in Section 5.4, classical Bayesian and Bayesian calibration with GP error model

used equivalent priors for MODFLOW model parameters and measurement error hyperpa-

rameters. For the specific yield Sy, it can be seen from Figure 5.7 that the classical Bayesian

estimate seems overconfident. The posterior (blue) does not encompass the true value indi-

cated by the vertical line, although the bias is small. The posterior of Sy given by the error

model approach encompasses the true value, and the mode is less biased than the classical

Bayesian posterior. This indicates that the Gaussian process error model can indeed reduce

the degree of Sy compensating for model structural error. The uncertainty associated with

Sy clearly reduces after calibration: both posterior pdfs are significantly narrower than the

prior.

Validation of hydraulic conductivity parameters is less straightforward because in the virtual

reality both the streambed and the aquifer have heterogeneous conductivity. For streambed

krb, the true value indicated by the vertical black line is calculated by taking the arithmetic

mean of streambed conductivity values over all stream cells. For hydraulic conductivity val-

ues at pilot points (locations shown in Figure 5.2b), K1, ..., K12, the “true” value equals the

hydraulic conductivity of the cell in the virtual reality at which the pilot point is located. As

mentioned in Section 5.3, using only 12 pilot points cannot characterize the heterogeneity

details of the real K field (Figure 5.2a) even if true values are specified at pilot points (Figure

5.2b). Ideally, Gaussian process error models would compensate for the bias from multiple

model deficiencies including the simplification of hydraulic conductivity field. Therefore,

the fully Bayesian calibration approach should yield marginal posterior distributions that

overlap with the “true” value.

Figure 5.7 shows that both posteriors of lnKrb are underestimating the “true” value. Un-
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derestimation is not surprising, because the simple model assumes a rectangular channel

with a constant width of 14m. In the virtual reality, the streambed conductance varies

with stream width, which in turn varies with flow rate. The maximum width in the virtual

reality is 14 m, and the effective width will in general be smaller than that. To maintain

the same streambed conductance, the calibration process will arrive at a smaller streambed

hydraulic conductivity, if all other conditions are the same between the virtual reality and

the simple model. One way to deal with this underestimation issue is to calibrate streambed

conductance instead of hydraulic conductivity. This approach is not adopted here because

streambed conductance varies in time and along the stream in the virtual reality. More

importantly, calibrating streambed conductance cannot avoid the deleterious effect of pa-

rameter compensation on prediction, as will be shown in Section 5.6.2. The GP error model

only slightly reduce parameter compensation of Krb, although it improved model predictive

performance as will be shown later. The reason is that the noisy calibration data and GP

prior are not adequate to identify model structural error and Krb [13].

Similarly with Sy and Krb, the classical Bayesian posterior of K3, K4, K5, K6, K8, K9, K12 are

biased and overconfident, suggesting parameter compensation. The Bayesian posteriors of

these parameters are clearly less biased and mostly encompassing the “true” values. Inter-

estingly, K9 is an important parameter for predicting the effect of well B on drawdown and

stream depletion during the validation period. This pilot point is close to well B, thus a very

low K9 may lead the model to a false forecast that well B would turn dry. The LSR estimate

of K9 is as low as 1.2 m/day, significantly lower than the Bayesian estimate and the true

value. For lnK7, both methods gives biased posterior, while the with error model approach

is less biased. The classical Bayesian method gives better estimates for K1 and K2 than

the Bayesian approach. A possible reason is that the calibration data are not sufficient for

the GP error model to infer the effect of incorrect eastern and northern boundary conditions.

For K1, K2, K4, K5, K6, K7, K8, K9, K12 as well as Sy, the Bayesian posteriors show higher
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parameter variability in comparison with classical Bayesian results. This indicates the con-

founding effect between model structural error and model parameters [13, 70]. For example,

Figure 5.8 suggests correlation between the posterior samples of Sy and GP error model bs1

at the end of year 8. The underlying mechanism is that, for any value of Sy within a feasible

range, the MCMC sampling procedure will be able to find a corresponding bs1 such that the

MODFLOW model and the GP error model combined can fit calibration data reasonably

well (reflected by a high likelihood value), due to the flexibility of GP regression. In some

cases the confounding effect raises identifiability issues that may not necessarily be solved

by increasing the amount of calibration data [13]. The parameter uncertainty arising from

this confounding is inherent in the calibration problem with given data and prior; neglecting

model structural error could lead to overconfident parameter estimates.

Finally, Figure 5.7 indicates lack of identifiability for K10, K11, K12. This is anticipated when

calibration data provide limited information to alter the prior because of low sensitivity of

calibration data to K10, K11, K12. As can be seen from Figure 5.2, the three pilot points are

located on the south of all drawdown observations.

5.6.2 Prediction

Next we investigate the prediction capability of the fully Bayesian approach. In practice,

it is usually more important to achieve accurate prediction than parameter estimates when

the numerical groundwater models are used to support water resources management deci-

sion making. Comparison of predictive capability between LSR and Bayesian approaches is

shown in Figures 5.9 -5.11.

In Figure 5.9, the Bayesian calibration error is calculated as the difference between cali-

bration targets and Bayesian posterior mean. It can be seen that the Bayesian approach

resulted in errors of smaller magnitude and more evenly spreading around 0.
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Figure 5.10 shows the simulation results at two monitoring wells s3, s6 and stream gain-and-

loss ∆Q for both the calibration and prediction periods. It can be seen in Figure 5.10a-c that

in the calibration period, the LSR calibrated model outputs fit the measurements reasonably

well, although with some bias for drawdown (Section 5.3). Despite moderate calibration er-

ror, the LSR calibrated model yields notable biased forecast during the prediction period.

Figure 5.10a shows that the LSR calibrated model systematically over-predicts drawdown

s3 by 2.5 m by the end of the prediction period (20th year), and the 95% confidence in-

terval does not encompass the validation data. For drawdown s6, prediction is accurate for

later stage of the prediction period. However, the LSR calibrated model underestimates the

drawdown before year 14. A possible reason is that LSR gives lower biased estimates of K5

and K6, the hydraulic conductivity values at two pilot points close to the pumping well A

and location of s6. Figure 5.11a shows the LSR calibrated model drawdown prediction error

throughout the model domain at the end of year 12. The model significantly overestimates

drawdown in the central area, mainly because the Sy estimate is lower than the true value.

The model underestimates drawdown in a small area close to the stream because LSR under-

estimates the hydraulic conductivity value at two pilot points close to the stream (K6, K9).

In addition, drawdown near K4 is underestimated, possibly because LSR estimated K4 is

lower than the “true” value.

The classical Bayesian method yields similar results with LSR calibration. Comparing Figure

5.10a and d, it can be seen that the classical Bayesian method gives even narrower prediction

interval that does not encompass the validation data. For streamflow gain-and-loss, however,

the classical Bayesian method did not fit the calibration data well, and produces very wide

error bars. This is because ∆Q data have higher measurement error. Note that we have

manually increased the weights assigned to ∆Q targets in LSR calibration.

The drawdown prediction performance of the fully Bayesian approach is demonstrated in
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Figure 5.10d, e and Figure 5.11b. Because of the confounding between model structural

error and MODFLOW model parameters, only total uncertainty is presented. Figure 5.10d,

e shows that the proposed Bayesian method 95% credible intervals of drawdown are wider

than the LSR 95% prediction interval because of higher posterior parameter uncertainty

due to model structural error. The proposed Bayesian approach perfectly reproduces the

calibration error, which can be anticipated based on the adaptive nature of Gaussian pro-

cess regression (Section 3.2). The Bayesian with error model prediction of s3 is substantially

closer to the true validation data (Figure 5.10d) compared to the LSR and classical Bayesian

calibrated models prediction. Slight underestimation after year 15 is because the GP poste-

rior approaches the prior, which is zero, when extrapolating to a later stage of pumping. The

performance can be further improved by imposing a more informative prior, e.g., a linear

mean function and a higher value of characteristic length scale. For s6, the Bayesian with

error model posterior mean slightly overpredicts the drawdown after year 11. A probable

reason is that, in the forecast scenario, the prediction made by the GP error model at s6 is

affected by information at other locations such as s5. The model structural error at s5 is

significantly larger than at s6 due to the influence of inaccurate boundary conditions, thus

leading to overestimation of b∗s at s6. This issue may be addressed by using a more com-

plicated covariance function and/or including additional information in GP input to reflect

the spatially varying pattern of model structural error.

Comparing Figure 5.11 a and b, it can be seen that using a GP error model effectively

reduces the overall predictive bias for drawdown. The improved predictive capability of the

Bayesian approach is particularly evident in the central area, due to better estimate of Sy

and that the GP error model compensates for model structural error. However, the Bayesian

posterior mean shows slightly higher predictive bias than the LSR calibrated model near the

west and north boundaries outside of the range of calibration data. In these regions, the

extrapolated GP cannot fully compensate for model structural error.
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As shown in Figure 5.10c, the LSR calibrated model substantially underestimates the stream

gain-and-loss ∆Q. A positive value of ∆Q indicates stream leakage to the aquifer, while a

negative value means that the aquifer discharges to the stream. Therefore, higher positive

value of ∆Q indicates higher degree of stream depletion, and based on Figure 5.10c the LSR

calibrated model under-predicts stream depletion. This is a combined result from several

factors: (1) the error in north and south boundary conditions of the simple model leads to

over-predicted boundary inflow, (2) the simple model, assuming spatially uniform streambed

conductance, does not describe a high conductance stream segment close to well B, and (3)

the LSR calibrated model underestimates drawdown in the near-stream area (Figure 5.11a).

In comparison, the fully Bayesian framework yields substantially less biased ∆Q prediction

because of GP error correcting and better estimates of Sy and most of the pilot points.

Figure 5.10c, f show that neither LSR nor the Bayesian approach is able to fully reproduce

the magnitude of seasonal fluctuation of ∆Q. As described in Section 5.1, in the virtual

reality the streambed conductance is higher during high flow seasons due to the increase in

channel width. During the calibration period, the stream is primarily gaining water from the

aquifer. When the streamflow rate is high, stream stage is high, and therefore the ground-

water discharge to stream is low, although streambed conductance is high. In the prediction

period, however, pumping at well B leads to a primarily losing stream. Stream leakage is

in general high during high flow seasons due to high stream stage and large conductance.

Therefore, the seasonal fluctuation magnitude tends to be larger during the prediction pe-

riod as the stream seasonally switches between high and low flow regimes. The change of

fluctuation magnitude cannot be simulated by the simple model because it uses a simplified

rectangular channel cross section with constant width. In this case study, the GP error

model has difficulty in inferring the increase of fluctuation magnitude from calibration data,

because such increase is not visible during the calibration period.

Figure 5.10c shows that the LSR estimated prediction variability due to parameter uncer-
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tainty (darker shades) is rather small, while the 95% linear prediction interval is wide. The

wide 95% prediction interval is a combined product of streamflow measurement error and

the fact that the LSR calibration was not able to fit drawdown observations to the degree of

measurement error (Equation (2.7)). However, the prediction interval does not encompass

the validation data. On the other hand, Figure 5.10i shows that the fully Bayesian frame-

work yields credible intervals of ∆Q∗ that encompasses most of the validation data points.

As a result of the confounding effect, the relatively high prediction uncertainty is inherent of

the calibration problem with given data and prior, and may be reduced if a more informative

prior is available for b∆Q.

Finally, it was found that the residual of the posterior mean obtained by the Bayesian with

error model approach has weaker temporal and spatial correlation compared to results ob-

tained by LSR and the classical Bayesian. Figure 5.3 shows that the GP posterior mean

captured the linear trend in LSR residual, therefore the remaining residual is more evenly

distributed around 0. In Figure 5.4, strong temporal correlation can be observed for LSR

calibration error within the time span of one year, leading the use of a diagonal error co-

variance matrix dubious. On the other hand, the Bayesian residual has significantly weaker

temporal correlation, mostly falling within the 95% confidence bound. This is because the

GP error model captures the correlation structure in model structural error. In Figure 5.5,

strong correlation can be observed among drawdown locations and between drawdowns and

stream gain-and-loss. Similarly with temporal correlation, the presence of such correlation

makes the use of a diagonal error covariance matrix dubious. For the Bayesian calibration

error, the correlation among calibration targets is significantly smaller, within the range of

(−0.5, 0.5), indicating that the GP error model indeed captures the correlation structure in

model structural error and renders nearly white-noise remnant error.
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5.7 Recalibration

As discussed in Section 3.5, least squares recalibration is a strategy introduced to utilize the

prediction given by the Bayesian approach while preserving mass balance of the MODFLOW

model and other physical constraints such as the relation between groundwater discharge rate

to stream and groundwater head. In the recalibration phase, the simple model is recalibrated

with calibration targets given by the Bayesian posterior mean throughout the whole 20-year

simulation period. The Bayesian posterior mean is used instead of observation data in the

first eight years (the calibration period) because the posterior mean is expected to represent

the underlying noise-free system response. Theoretically, one can include drawdown at any

location/time and stream gain-and-loss at any time as recalibration targets. For illustration

purposes, we assume that the quantity of interest in the case study is the impact of pumping

on drawdown at the seven observation wells and stream gain-and-loss through the 20-year

simulation period. Hence, we use the following as recalibration targets: ∆̄Q, ∆̄Q
∗

and

s̄i, s̄i
∗, i = 1, ..., 7. Meanwhile, a full error covariance matrix Σb associated with the recali-

bration targets is computed from the error model realizations b∗∆Q,i and b∗s,i, i = 1, ..., 15, 000

given by the Bayesian approach (Section 3.5). Preliminary experiments indicate that the

recalibration targets suffice for identifying parameter values, hence the prior information as

used in the initial LSR calibration is not directly used in the recalibration process. However,

the prior information is encapsulated in the recalibration targets, which depend on the prior

information used in Bayesian calibration.

Finally, it is worth noting that numerical instability might occur if the error covariance ma-

trix approaches singularity [23]. Therefore, recalibration targets should be chosen such that

they are not highly correlated with each other. In the case study, it was found that model

structural error has spatial and temporal correlation. Therefore, it would be inappropriate

to use drawdown at every grid cell and at every stress period, as this would lead to Σb with

a high condition number. However, using quarterly drawdown at the seven observation wells
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and stream gain-and-loss as recalibration targets still leads to some numerical instability

due to strong temporal correlation. To reduce the condition number of Σb, a small amount

equivalent to 5% of measurement error was added to the diagonal entries.

Based on Figures 5.6 and 5.7, for some parameters the recalibration yields estimates differ-

ent from the classical LSR calibration results. This is not surprising since recalibration uses

different targets and error covariance matrix. The recalibration 95% CI is narrower for most

of parameters, because (1) more calibration “data” are used, and (2) the full error covariance

matrix imposes less penalty to systematic bias when computing the objective function in

Equation (2.2) [54].

Comparing the 20-year simulation results of the recalibrated model with the Bayesian pos-

terior mean used as recalibration targets, the mean error is 0.16 m (drawdown) and 2.2 ×

103m3/day (stream gain-and-loss), and the RMSE is 0.42 m (drawdown) and 2.8×103m3/day

(∆Q). The Bayesian posterior realizations have been corrected by the GP error model.

Therefore, it is not surprising that the simple model cannot match the posterior mean per-

fectly, given the model structural error. For drawdown, comparing Figure 5.11a and c, it can

be seen that the recalibration strategy improved the predictive accuracy over the standard

LSR calibrated model in the center part of domain. In addition, the recalibration strategy

reduces the underestimation of LSR calibrated model in a small area close to the stream,

which is consistent with the observation from Figure 5.7 that recalibration yields less biased

estimates of K6 and K9. Comparing Figure 5.11c with a and b, the recalibrated model

has higher bias near the west boundary, which can be considered as a negative impact of

parameter compensation. For stream gain-and-loss, the recalibrated model prediction has

smaller bias compared to the original LSR calibrated model (Figure 5.10l); this is related to

more accurate prediction of drawdown near stream.

Figure 5.10j-l provide 95% prediction intervals associated with the recalibrated model. The
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PIs are not computed using the methods outlined in Section 2.1. The recalibration strategy

uses an error covariance matrix computed from the realizations of the error model given by

the Bayesian approach. It is then straightforward to estimate prediction variability by draw-

ing samples from the error covariance matrix. The parameter uncertainty in Figure 5.10j-l

is computed based on 10,000 independent samples drawn from N(0,Σ); Σ is computed from

the posterior samples b∗i +εi, i = 1, ..., 15, 000. It is not surprising that the resulting 95% PIs

in Figure 5.10j-l are similar in width with the Bayesian with error model credible intervals

in Figure 5.10g-i.

In summary, the results suggest that recalibration is a promising method to achieve more

robust prediction of quantities of interest by assimilating the GP error model updated pre-

dictions and using a full error covariance matrix inferred by the Bayesian approach. The

recalibration strategy represents a tradeoff between the aims of obtaining realistic parameter

estimates and accurate predictions. Using a full error covariance matrix could potentially al-

leviate the degree of parameter compensation. This is because when the errors are positively

correlated, using a full error covariance matrix indicates higher tolerance for systematic bias.

The implementation configuration of the recalibration strategy is problem specific. For

example, if obtaining accurate prediction is of central importance, the measurement error

covariance matrix can be used instead of the full error covariance in order to force a good

fit to the Bayesian posterior mean, i.e., overfitting on purpose. This scenario does not re-

quire the full error covariance matrix given by Bayesian inference with the error model.

Postprocessor approaches that construct statistical error models conditioned on an existing

calibrated physically-based model [26, 98, 97] can provide corrected prediction to be used as

recalibration targets. The postprocessor approaches are computationally efficient because

they typically do not require repeated evaluation of the physically-based model. The error

model corrected prediction is overall more accurate than the prediction given by the initial

calibrated model using conventional LSR. Therefore, if the recalibration is able to fit the
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corrected predictions reasonably well, the recalibrated model can be expected to yield more

accurate prediction than the initial calibrated model. When recalibration error is large, mul-

tiple models can be recalibrated separately, each using one subset of recalibration targets,

as suggested in [22] in a different context.

5.8 Summary and Discussions

We investigated the role of model structural error in calibration and prediction in groundwa-

ter flow modeling practice using a synthetic case study of surface-ground water interaction

under changing pumping conditions. We first demonstrated that conventional least squares

regression and the classical Bayesian method yield biased (and often overconfident) predic-

tions under a scenario differing from the calibration period. This finding is consistent with

others in the literature reporting the deleterious impact of parameter compensation on pre-

diction performance.

In order to properly treat model structural error, we present a Bayesian framework that

incorporates data-driven error models. The proposed approach allows for a complete assess-

ment of uncertainty by jointly inferring parameter variability and model structural error.

We found in the case study that Gaussian process error models can represent the underly-

ing model structural error reasonably well, although not perfectly. Integrating error models

into Bayesian calibration reduces the degree of parameter compensation, leading to param-

eter posteriors that differ substantially from LSR and classical Bayesian estimates. We also

showed that the Bayesian framework with error model achieves more accurate prediction

and more robust prediction intervals compared to the LSR and classical Bayesian calibrated

models.

Using an external error model to correct for model structural error leads to the violation
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of mass conservation and inconsistency between parameter estimates and predictions. We

argue that profound model structural error could be an indication of error in water budget

terms, such as recharge. In circumstances where preserving water budget and other physical

constraints are important, we present a recalibration strategy that incorporates model struc-

tural error into least squares regression by using a full error covariance matrix. We showed

in the case study that the recalibration strategy yields more realistic parameter estimates

and more accurate prediction compared to the conventional LSR and classical Bayesian cal-

ibration methods.
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Figure 5.6: Prior distributions (grey, dashed), 95% confidence intervals given by conventional least squares
calibration (blue), and marginal posterior distributions given by classical Bayesian calibration (red). Black
vertical lines show the “true” values. The specific yield Sy is dimensionless, and the hydraulic conductivities
Krb,K1, ...,K12 with unit [m/day] are natural log transformed.
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Figure 5.7: Prior distributions (grey, dashed), marginal posterior distributions given by classical Bayesian
calibration (blue), marginal posterior distributions given by Bayesian calibration with GP error model (red)
and 95% confidence intervals given by the recalibration strategy (light blue bar). Black vertical lines show
the “true” values. The specific yield Sy is dimensionless, and the hydraulic conductivities Krb,K1, ...,K12

with unit [m/day] are natural log transformed.
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Figure 5.8: Correlation between specific yield Sy and Gaussian process error model posterior bs1 at the end
of calibration period (year 8).

Figure 5.9: Up: Drawdown calibration error of the standard LSR method plotted versus drawdown computed
by the LSR calibrated model. Bottom: Drawdown calibration error of the Bayesian approach (with error
model) plotted versus posterior mean of the Bayesian approach.

79



Figure 5.10: Prediction and associated uncertainty of drawdown s3 (left), s6 (center) and stream gain-and-
loss ∆Q (right) given by least squares regression (a-c), classical Bayesian (d-f), proposed fully Bayesian
approach (g-i) and the recalibration strategy (j-l). Dark shades in (a-c) indicate 95% LSR confidence
intervals due to parameter uncertainty, and light shades indicate 95% prediction (credible) intervals of total
uncertainty. Blue dots show calibration measurements; red dots correspond to noise-free data reserved for
validation. 80



Figure 5.11: Drawdown prediction error at the end of year 12, yielded by (a) conventional least squares
regression, (b) proposed fully Bayesian approach and (c) the recalibration strategy. Locations of pumping
wells are shown.
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Chapter 6

A REGIONAL-SCALE
GROUNDWATER MODELING

CASE STUDY

In this chapter, we apply the Bayesian with error model approach to calibrate a real-world

regional-scale groundwater flow model. This case study is motivated by the findings in our

previous work [98] that systematic bias exists in groundwater head simulated by the least

squares calibrated model, indicating presence of model structural error. In this chapter, we

use a Gaussian process to describe the model structural error, and jointly infer the error

model with groundwater model parameters.

We discuss a surrogate modeling strategy we employed to reduce the computational cost

associated with Bayesian calibration of a complicated groundwater model. Calibration and

prediction are implemented using classical Bayesian and the proposed Bayesian approach

with error model. Performance of the two methods is compared. Based on the results pre-

sented in this chapter, a manuscript is in preparation.

6.1 The Spokane Valley-Rathdrum Prairie Model

This study is based on a regional-scale groundwater flow model, namely the Spokane Valley-

Rathdrum Prairie (SVRP) model. The SVRP aquifer covers approximately 326 square miles

across the states of Idaho and Washington, and supplies drinking water to more than 500,000

residents. A MODFLOW-2000 model was jointly developed by the USGS, Idaho Depart-

ment of Water Resources, the University of Idaho, and Washington State University [39]. We

have used the SVRP model as a case study in our previous paper [98] in which data-driven
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error models based on machine learning techniques were used as postprocessors to improve

the model’s head predictive accuracy.

Figure 6.1 shows the SVRP model domain. The model has a uniform cell size of 1,320 by

1,320 ft (402.34 m), and stress period of 1 month from September 1990 through September

2005. The SVRP aquifer is conceptualized as one active layer except in Hillyard Though

and the Little Spokane Arm. In those areas, the aquifer was divided by a clay layer (layer

2) into an upper, unconfined unit (layer 1) and a lower, confined unit (layer 3), as shown in

Figure 6.1.

Figure 6.1: The Spokane Valley-Rathdrum Prairie aquifer on the border of Washington and Idaho. The
Spokane River is shown in blue. The three layers are shown in different colors. The grids represent the
spatial discretization of the MODFLOW model. Also shown are the locations of representative monitoring
wells as discussed in Section 6.7. Adapted from “Use of machine learning methods to reduce predictive error
of groundwater models,” by T. Xu et al., 2014, Groundwater, 52(3):448-460, 2014.

The parameterization of the model is summarized in Table 6.1 and explained in the following
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paragraphs. The horizontal hydraulic conductivity (Kh) field in layer 1 was grouped into 22

zones. The value of Kh is uniform within each zone and denoted by HK1-1 through HK1-22.

The vertical hydraulic conductivity, Kv, is uniform in all active cells of layer 1. The specific

yield Sy is represented using three zones, SY-1, SY-2 and SY-3. For layer 2, Kh and Kv are

represented with two zones. For layer 3, Kh is represented using two zones and denoted by

HK3-1 and HK3-2. The vertical hydraulic conductivity in layer 3 is uniform. Storativity of

layers 2 and 3 are negligible.

The main aquifer (layer 1) receives inflow from adjacent tributary basins, lakes, precipitation

recharge, irrigation and septic systems. The aquifer loses water mainly through pumping

and exchanges water with the Spokane River and Little Spokane River. The Little Spokane

River, Lake Pend Oreille and Coeur d’Alene Lake are simulated using MODFLOW River

Package (RIV), and a single conductance is assigned to the river and each lake, denoted as

C-LSR, C-PO and C-CDA, respectively. The Spokane River is simulated using Streamflow-

routing package (SFR) [66]. The Spokane River within the model domain is divided into 11

sections (the stream sections are shown in Figure 35 in [39]), and one streambed conductance

is assigned to each section (denoted by KVSR-1 through KVSR-11).

The model was calibrated using PEST [21] by the model developers [39]. Calibration pa-

rameters include horizontal hydraulic conductivity in layers 1 and 3, specific yield and con-

ductance defined in the RIV and SFR packages. It was found that the calibration data

were not sensitive to HK1-21 and KVSR-11. In addition, the estimated value of HK3-2

was considered as unreasonable. Therefore, these three parameters were not adjusted in the

calibration process but fixed. In total, there are 38 calibrated parameters [39] as listed in

Table 6.1.

The PEST calibration data was comprised of over 1,500 groundwater level (or head) mea-

surements and 313 measurements of streamflow gain-and-loss along segments of the Spokane
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Table 6.1: Calibrated model parameters, lower and upper bounds, PEST estimated values and 95% con-
fidence intervals. Adapted from Table 8, “Model parameters, acceptable intervals, estimated values, and
95-percent confidence intervals.” in Hsieh et al. [39].

Enforced bounds 95% confidence interval
Parameter Units Lower Upper PEST estimated value Lower Upper

HK1-1 ft/d 100 50,000 13,000 6,440 26,400
HK1-2 ft/d 100 50,000 6,170 4,300 8,860
HK1-3 ft/d 100 50,000 17,100 13,500 21,700
HK1-4 ft/d 100 50,000 12,100 10,800 13,500
HK1-5 ft/d 100 50,000 22,100 20,200 24,300
HK1-6 ft/d 100 50,000 19,100 17,800 20,400
HK1-7 ft/d 100 50,000 7,470 6,820 8,170
HK1-8 ft/d 100 50,000 9,500 8,040 11,200
HK1-9 ft/d 1 5,000 2,630 2,400 2,870
HK1-10 ft/d 1 5,000 2,180 2,020 2,360
HK1-11 ft/d 1 5,000 1,980 1,710 2,300
HK1-12 ft/d 1 5,000 608 485 362
HK1-13 ft/d 1 5,000 3,110 2,470 3,920
HK1-14 ft/d 1 5,000 90 82 98
HK1-15 ft/d 1 5,000 1,290 755 2,190
HK1-16 ft/d 1 5,000 55 53 56
HK1-17 ft/d 1 5,000 5 4 7
HK1-18 ft/d 1 5,000 78 74 82
HK1-19 ft/d 1 5,000 95 93 97
HK1-20 ft/d 1 5,000 64 55 76
HK1-22 ft/d 1 5,000 140 131 150
HK3-1 ft/d 1 5,000 207 155 276
C-PO ft2/d 10−10 1010 241,000 102,000 572,000
C-LSR ft2/d 10−10 1010 40,600 36,100 45,700
C-CDA ft2/d 10−10 1010 77,800 40,000 151,000

SY-1 – .1 .3 .1 .08 .13
SY-2 – .1 .3 .19 .16 .21
SY-3 – .1 .3 .21 .18 .23

KVSR-1 ft/d .01 10 .054 .047 .062
KVSR-2 ft/d .01 10 .25 .23 .27
KVSR-3 ft/d .01 10 .054 .047 .062
KVSR-4 ft/d .01 10 .14 .10 .20
KVSR-5 ft/d .01 10 9.4 7.3 12.2
KVSR-6 ft/d .01 10 .01 .005 1.7
KVSR-7 ft/d .01 10 10 5.6 18
KVSR-8 ft/d .01 10 .3 .20 .45
KVSR-9 ft/d .01 10 10 1.70 50
KVSR-10 ft/d .01 10 10 .63 159

River and Little Spokane River from October 1995 to September 2005. The five years before

October 1995 were considered as the warm-up period, thus observations from September

1990 to September 1995 were excluded from the calibration data. More details about the
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model can be found in the documentation [39] that is available on the project website

(http://wa.water.usgs.gov/projects/svrp/summary.htm).

Overall the calibrated model fits the calibration data to a reasonable degree, given the com-

plexity of the model. There is visible mismatch between measured and model simulated

streamflow gain-and-loss. Nevertheless, the simulated gains-and-loss are mostly within the

error bounds of the measured quantities, mainly because of the relatively large measurement

error of streamflow. However, residual analysis revealed that some bias existed in the head

residuals of the PEST calibrated model. The mean error is 3.37 ft (1.03 m) and RMSE is

15.50 ft (3.20 m), which is larger than a reasonable estimate of the waterlevel observation

error. In addition, our preceding work [98] found that the calibration error is correlated

temporally and spatially, indicating presence of model structural error.

6.2 Calibration and Validation Data

Post-audit of the SVRP model is not possible due to the lack of input data beyond the

simulation period (from September 1990 to September 2005). Generating new inputs (e.g.

recharge and pumping rates) requires a variety of information, such as land use map, irri-

gation amount of both agricultural and recreational lands, and domestic and public supply

pumping records. Not all of the required information is public available. Therefore, it is not

possible to run the model in forecast mode beyond the simulation period.

In this case study, we follow the model developers’ practice of using the first five years

as warm-up period. Groundwater piezometric head and stream gain-and-loss measurements

from October 1995 to September 2004 are used as calibration data, while measurements from

October 2004 to September 2005 are reserved for validation. October 2004 to September

2005 corresponds to a dry period in that the precipitation recharge is lower than in preceding
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years (Figure 9 in [39]). In other words, the validation period exhibits somewhat different

hydrogeologic condition compared to the conditions reflected by the calibration dataset.

The whole dataset is comprised of groundwater head and stream gain-and-loss measurements

on the Spokane River and Little Spokane River that have been used in the PEST calibration

(Section 6.1), as well as additional head observations that became available via the USGS

Water Data for the Nation online database (http://waterdata.usgs.gov/nwis/gw) after

model construction and PEST calibration in 2006. In total, calibration dataset includes

1,552 head data points at 342 wells from October 1995 to September 2004, 177 stream

gain-and-loss measurements on segments of the Spokane River, and 87 stream gain-and-loss

measurements on segments of the Little Spokane River; the validation dataset is comprised

of 554 head measurements at 55 wells and 41 stream gain-and-loss measurements on the

Spokane River and 18 on the Little Spokane River, from October 2004 to September 2005.

6.3 Surrogate Models

One forward run for the simulation period (from 1990 to 2005) of the SVRP MODFLOW

model takes approximately 2 minutes and 20 seconds (depending on parameter values) on a

single 2.0GHz CPU core. Bayesian calibration often requires over tens of thousands model

evaluations to sample from the posterior, and therefore can be infeasible for a complicated

groundwater flow model like the SVRP model. In order to reduce the computational cost,

we construct computationally frugal surrogate models to mimic the model outputs that vary

with parameter values (Section 3.4).

In order to generate the training data of the surrogate models, the SVRP model was run

repeatedly using 3,200 sets of the 38 calibration parameters drawn using Latin Hypercube

sampling. The samples cover a relatively wide range of parameter values that are a priori
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believed to be reasonable based on the hydrogeologic conditions of the region. The span of

parameter values were selected based on the lower and upper bounds (Table 6.1) and start-

ing value of the PEST calibration as documented in [39]. As the 3,200 model evaluations

are independent from one another, they were run in parallel using the high performance

computing (HPC) resources provided by the Illinois Campus Cluster.

Support Vector Regression algorithm is used to construct surrogate models for each head

measurement at a certain time and location and for each stream gain-and-loss observation

along one segment of river at a certain time, resulting in a total of 1552 surrogate models

for head and 264 for stream gain-and-loss. These surrogate models take as inputs the model

parameters. Sensitivity analysis reveals that for many observations, the change in the values

of some parameters does not significantly alter the model outputs; insensitive parameters

vary among observations. For each surrogate model, we select the subset of parameters to

which the model output is the most sensitive according to the predictor importance measure

calculated with Random Forest regression [12].

Split-sample validation is carried out to examine the emulation accuracy of SVR surrogates.

The 3,200 sets of model simulation results are randomly divided into a training dataset and

a testing dataset. The training dataset is comprised of 80% of all data, i.e. 2,560 sets of

parameters and corresponding MODFLOW model outputs. Using the training dataset, we

then tune the SVR hyperparameters via five-fold cross validation (Section 3.4). We then

retrain the SVR surrogates using the whole training dataset; the trained SVR surrogates are

then tested on the testing dataset which consists of 640 data points for every drawdown and

stream gain-and-loss output.

Figure 6.2 compares the surrogate model prediction results with the MODFLOW model

outputs for the testing dataset. Overall, the head emulation coefficient of determination R2

is 0.999, and the RMSE is 1.3 ft. The RMSE of surrogate models is smaller than model
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structural error, as the RMSE of LSR calibrated model is 15.50 ft (Section 6.1). The 3,200

parameter sets cover a wide range, and the corresponding SVRP model simulated head can

vary significantly (by over 55 ft for half of calibration targets). For streamflow gain-and-

loss on the Spokane River and the Little Spokane River, the coefficient of determination R2

is 0.996, and the RMSE is 29.5 cfs. For 83% of stream gain-and-loss calibration targets,

the SVR surrogate RMSE is smaller than the measurement error standard deviation, which

ranges from 9 to 1.2 × 103 cfs. Overall, the SVR emulation accuracy can be considered as

acceptable.

Figure 6.2: (a) Groundwater head simulated by the SVR surrogate models plotted versus the head simulated
by the MODFLOW model. (b) Streamflow gain-and-loss simulated by the SVR surrogate models plotted
versus the gain-and-loss simulated by the MODFLOW model.

When evaluating the likelihood during MCMC sampling, we will use SVR as surrogates of

the MODFLOW model. This introduces additional error to the inference process. More

specifically, letting fi,j denote the SVR prediction corresponding to the j-th LHS sample

of parameters for the i−th MODFLOW output Mi, we have Mi = fi,j + ei,j, where ei,j

is the surrogate error. As described earlier, we test the trained SVR models on a testing

dataset consisting of 640 data points for every drawdown and stream gain-and-loss outputs.

Comparing the SVR predicted values with the MODFLOW simulation results, we calculate

89



the mean squared error (MSE) for each model outputs as s2
i = 1

n

∑n
j=1 e

2
i,j, where n is the

number of testing data points and equals 640. The MSE s2
i is a good estimate of the surrogate

error variance. Incorporating the surrogate error into Equation (3.8), we have

log p(z−M|Y ) =− 1

2
(z−M− µ)T

(
Σ + σ2

ε I + ΣSV R

)−1
(z−M− µ)

− 1

2
log |Σ + σ2

ε I + ΣSV R| −
n

2
log 2π,

(6.1)

where ΣSV R is a diagnonal matrix with elements s2
i , i = 1, 2, .... Here, we assume that the

surrogate errors ei,j are independent because residual analysis did not show any significant

correlation.

To further examine the quality of surrogate models, we carried out Bayesian calibration

with the same head and streamflow gain-and-loss data and associated weights as used in

the PEST calibration [39]. The Bayesian and PEST calibration used the same prior and

lower/upper bounds for parameters. This is not a rigorous comparison because PEST cali-

bration entails the quasi-linear assumption of the model with respect to model parameters.

Ideally, the resulting joint posterior distribution of parameters should be compared to the

results from Bayesian calibration using the MODFLOW model, which would take one month

or even more, depending on the MCMC convergence rate. Therefore, such an experiment is

usually not possible for real-world applications. Figure 6.3 shows the comparison between

the PEST parameter estimates (with 95% confidence intervals) and posterior marginal dis-

tributions obtained by MCMC sampling with surrogate models. In general, the posteriors of

hydraulic conductivity and specific yield parameters agree with PEST estimates. Exceptions

include the hydraulic conductivity for two zones, HK1-1 and HK1-14. These zones are close

to the model domain boundary. Near the boundary, the SVRP aquifer has low saturation

thickness. Accordingly, the head response surface with respect to parameters could be non-

linear and less smooth, which would be challenging for the surrogate models to emulate.

The Bayesian calibration yields streambed conductance posteriors that are different from
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PEST results. A possible reason could be that adding the surrogate error variance changes

the goodness-of-fit tradeoff between head and stream gain-and-loss targets. Nevertheless,

given the overall good agreement between the PEST estimates and Bayesian posterior, we

consider the SVR surrogates eligible to be used in later experiments.

6.4 Classical Bayesian Calibration

As benchmark, we run classical Bayesian calibration first to estimate the 38 SVRP model

parameters, using the surrogate models as substitute for the SVRP model. The priors of

parameters are specified as uniform distributions over a relatively wide range that is consid-

ered as physically reasonable given the hydrogeologic condition, as listed in the third and

fourth columns in Table 6.1.

In the PEST calibration by SVRP model developers, it was found that the sum of squares of

weighted residuals is dominated by head measurements if calibration weights are calculated

as the inverse of measurement error standard deviation. This is similar with the findings in

our second case study (Section 5.3), and results from two facts. First, the streamflow mea-

surement error standard deviation is 5% of the measured streamflow; the variance of stream

gain-and-loss ∆Q is calculated as the sum of the variance of upstream and downstream

measurement error. As the magnitude of gain-and-loss is small compared to upstream and

downstream flow, the relative error in ∆Q measurements is much higher than that in head

observations. Second, the number of head measurements is about six times the number of

streamflow gain-and-loss measurements. To ensure approximately equal goodness-of-fit to

head and flow measurements, the model developers added 5 ft. to the standard deviation of

head measurement errors to reduce the weights of head targets [39].

Accordingly, in the classical Bayesian calibration experiment, we follow this practice and
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added 5 ft. to the standard deviation of head measurement errors when evaluating the

likelihood during MCMC sampling. In addition, as described in Section 6.3, we added a

surrogate error covariance matrix ΣSV R to account for the error resulting from using the

SVR surrogates. When deriving the prediction intervals, we do not make these adjustments

because we will run the SVRP model during the prediction phase.

The DREAM-ZS runtime settings were configured following the recommendations in [85].

Ten Markov chains were used to generate 1,600 samples from the joint posterior distribu-

tion of model parameters after convergence was determined based on the R̂ statistic, visual

inspection of trace plots and other diagnostics [18]; about 60,000 model evaluations were

required to converge (burn-in). The marginal posterior distributions of 38 parameters are

shown in Figure 6.4. The parameter estimation and prediction results will be discussed in

Sections 6.6 and 6.7.

6.5 Fully Bayesian Calibration with Error Model

Based on the residual analysis results reported in Section 6.1, we constructed an error model

to describe model structural error in head. We did not construct error models for stream

gain-and-loss because residual analysis did not reveal significant bias and correlation struc-

ture in streamflow residuals. The inputs of GP error model are chosen similarly as in Section

5.5. As variogram analysis revealed spatial correlation in head residual [97], the input of the

error model should include spatial locations of head measurements, u = (ux, uy). Since in

this case study the model needs to make forecasts beyond the calibration time span, using

time as one of the inputs would require the error model to be extrapolated in time. Our

earlier results in [98] indicate that for temporal prediction it is better not to include time

as an input for the data-driven error model. Therefore we used as input the (surrogate)

model simulated head (Mh) rather than time. In summary, the input of the error model is
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y = {u,Mh}. Because u and Mh are of different magnitudes and units, they were linearly

scaled to a range of [0, 1]. It is worth mentioning that other relevant information, such as

depth to groundwater and precipitation, can also be incorporated into the inputs. This might

lead to an even more robust error model for making forecast under changing conditions and

will be explored in future studies.

As discussed in Section 5.5, the confounding (interaction) between the physical model pa-

rameters and error model could potentially lead to identifiability issues [13, 70]. To constrain

the error model so that it is not overfitting, we specify the prior of the drawdown error model

such that it “encourages” the model structural error to be zero. In this way, the error model

takes the compensation role only when supported by the data. More specifically, we specify

the prior of head error model as a Gaussian Process with constant zero mean. Similarly

as in Section 5.5, an isotropic squared exponential covariance function is used to enforce

smoothness and reduce confounding between model structural error and parameters. The

GP error model has two hyperparameters: characteristic scale length λh and standard devi-

ation σh. The scale length hyperparameter represents the degree of correlation in the space

of GP input. We specify a uniform distribution on (0, 1] for λh. Given that the inputs were

scaled to the range of [0, 1], the prior has a loose upper bound. The standard deviation

represents the amount of model structural error we would accept. A larger σh allows the

error model to take on more compensation role of the model structural error. We specify

a uniform distribution on (0, 20] for σh. The upper limit 20 ft. suggests that a priori, the

bias is unlikely to exceed 20 × 1.96 = 39.2ft, which is the 0.975-th quantile of a normal

distribution N(0, 202). In this case study, the posterior distribution is not sensitive to the

choice of prior distribution, as long as the prior covers a fairly wide range. The main rea-

son is because the calibration data provide much more information to constrain the posterior.

In addition to the 38 MODFLOW model parameters (θ) and 2 GP hyperparameters, a

likelihood parameter σε is jointly inferred. Variogram analysis on head residuals revealed a
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nugget effect that is larger than the magnitude of head measurement error. For drawdown

observations, the nugget σε, SVR surrogate error, and measurement error combined represent

the aleatoric error that the error model cannot capture. For stream gain-and-loss, on the

other hand, the aleatoric error consists of measurement error and the SVR surrogate error;

both terms are calculated before calibration and fixed. We specify a uniform distribution on

(0, 10] as the prior of σε. For the 38 MODFLOW parameters, the same prior distributions

as in Section 6.4 are used.

In total, Bayesian calibration was carried out to infer the joint posterior distribution of

41 parameters, using head and streamflow gain-and-loss during the calibration period (Oc-

tober 1995 to September 2004). The process is similar as described in Section 5.5. The

DREAM-ZS runtime settings were configured following the recommendations in [85]. Ten

Markov chains were used to generate 1,600 samples from the joint posterior distribution

of 41 parameters after convergence was determined based on the R̂ statistic [30], visual in-

spection of trace plots and other diagnostics [18]. As burn-in, 80,000 samples were discarded.

In the prediction phase, the Gaussian process error model uses as input y∗ = [u,M∗
h ]. The

Bayesian framework yields an ensemble of head predictions h∗i = M∗
h(θi) + b∗h,i + εh,i, i =

1, ..., 1, 600. Here, h∗i denotes groundwater head varying in both space and time; b∗h,i is a

vector drawn from the GP error model posterior; εh,i is randomly drawn from a normal

distribution N(0, σ2
ε,iI + Σh), where Σh is a diagonal matrix with head measurement error

as diagonal entries. It is worth mentioning that the head measurement error could vary in

space and time depending on the accuracy of site land surface altitude, accuracy of depth

to groundwater measurement and site status (e.g. if pumped recently) [39]. The Bayesian

posterior of prediction can then be estimated by collecting the realizations in the ensemble,

and the posterior mean is given by h̄∗.

The groundwater head forecasts h∗i could be evaluated using the surrogate models if surro-
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gate models for prediction quantities have been trained following the procedures described

in Section 6.3. When using surrogate models to make a forecast, more parameter samples

can be used to improve the accuracy of Monte Carlo posterior mean. Here we take a more

straightforward approach and run the SVRP MODFLOW model to compute predictions.

This is feasible because the model runs using different sets of parameters can be executed in

parallel. The MODFLOW model is evaluated using 1, 600 samples drawn with DREAM-ZS.

With 1, 600 samples, the calculated posterior mean has an error rate of order O(1/
√

1600)

(according to the Central Limit Theorem), which is acceptable in this case. For modeling

problems with higher accuracy requirement, more posterior samples may be needed at the

expense of increased computational burden.

6.6 Results: Parameter Estimates

Figure 6.4 shows the marginal posterior distributions estimated by the classical Bayesian

method without error model and the proposed Bayesian approach with error model for

head. The names of the 38 SVR parameters were defined in Section 6.1. The priors of the

parameters were specified as uniform distributions over a wide range (Sections 6.4 and 6.5).

The priors are not displayed in Figure 6.4 because they would be a horizontal line close to

the horizontal axes.

In this real-world case study, the “true” value of model parameters is unknown. Therefore,

it is not possible to validate the correctness of parameter posteriors, as was possible for

the synthetic case study in Chapter 5. For some parameters (KVSR-5, KVSR-7, KVSR-9,

KVSR-10), the posterior is on the upper bound. The same phenomena occurred in PEST

calibration, and the resulting parameter estimates are considered reasonable [39].

Given the wide priors, the parameter posteriors yielded by both the classical Bayesian and
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proposed method can be considered as fairly constrained. Comparing the posteriors given

by the two methods, it can be seen that the Bayesian with GP error model approach yields

posteriors that are visibly different from the classical Bayesian method for many parameters,

such as HK1-1, KVSR-1, SY-1, SY-2, SY-3. This reaffirms our finding in Section 5.6 that

accounting for model structural error leads to substantially different parameter estimates.

6.7 Results: Prediction Performance

This section evaluates the performance of the classical Bayesian method and the proposed

fully Bayesian approach in terms of predictive capability. Figure 6.5 and Table 6.2 assess how

the simulated head compares with observation data. Figure 6.5 plots the difference between

observations and posterior mean given by the classical and proposed Bayesian methods. For

both the calibration and the validation periods, the proposed Bayesian method simulation

error is smaller compared to classical Bayesian results. Table 6.2 summarizes the mean error,

mean absolute percentage error, and root-mean-square-error (RMSE) statistics. The mean

absolute percentage error is defined as the ratio of absolute error to observed value, averaged

over all observations. It can be seen that the integration of an error model into Bayesian

calibration effectively improved the accuracy of head prediction of the MODFLOW model,

reducing the RMSE by over 50% for the validation period. The error model also removed

most of the global bias, reducing the mean error from -2.08 ft. to 0.483 ft., and the mean

absolute percentage error from -0.11% to 0.026%.

Figures 6.6-6.10 show head simulation results at four representative wells; the locations

of wells are plotted in Figure 6.1. Figure 6.6 and Figure 6.8 plot the head prediction at

two wells located in the Spokane Valley. For both wells, the classical Bayesian approach

simulation results are biased and overconfident, in that the posterior mean deviates from

observation data, and the prediction intervals do not encompass observations. With a GP

96



Table 6.2: Head simulation error of the classical Bayesian and proposed Bayesian with error model methods.
Performance measures are calculated for the calibration period (October 1995 to September 2004) and the
validation period (October 2004 to September 2005), respectively.

Calibration Validation
w/o error model w/ error model w/o error model w/ error model

Mean error (ft) -1.10 -0.0308 -2.08 0.483
Mean absolute percentage error 0.0595% -0.0018% -0.11% 0.0258%

RMSE (ft) 11.4 4.48 7.84 3.55

error model, the proposed Bayesian approach magnified the seasonal fluctuation, yielding

head prediction that better matches the validation data. Well W3 is close to the Spokane

River near Greenacres. The GP error model is not able to fully recover the observed head

rise in autumn, which is caused by the rise in Spokane River stage as the Post Falls Dam

opens its gates [39]. The performance could potentially be improved by incorporating rele-

vant information, such as river stage, into the GP error model inputs.

Figure 6.7 shows the hydrograph at a well screened in layer 3. The drawdown in August

is due to pumping at a nearby well [39]. The classical Bayesian method calibrated model

predicted much higher drawdown than the observation, indicating that layer 3 may not be

represented accurately in the SVRP model. The GP error model partially corrected this

model structural error and yielded less biased head prediction.

Figure 6.9 shows that for a well in the southern Rathdrum Prairie, the classical Bayesian

method yielded head prediction with fluctuation character that does not match measure-

ments. A similar finding was observed for the PEST calibrated model, and a possible reason

is that the temporal distribution of recharge for this region used in the model in 2004-2005 is

not accurate [39]. Using a GP error model, we were able to improve the prediction accuracy,

albeit with slightly overdampened head fluctuation.

For a representative well in northern Rathdrum Prairie (Figure 6.10), the classical Bayesian
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method results in good fit to calibration data. However, in the prediction period the sim-

ulated fluctuations of the classical Bayesian calibrated model are somewhat larger than

measurements. This is likely due to the linear assumption between the time for precipita-

tion infiltration to reach groundwater table and depth of groundwater [39]. In Figure 6.10

bottom panel, it can be seen that the Bayesian approach with error model corrected this

issue and yielded more accurate prediction.

6.8 Summary

In this chapter, the Bayesian with error model approach was further tested on a real-world

regional groundwater flow model. We constructed computationally frugal surrogate models

to emulate the response of the groundwater model with respect to its parameters. With

this strategy, a 150-fold speedup was obtained, and Bayesian calibration of the complicated

groundwater model becomes feasible.

In the SVRP case study, the model outputs of concern, namely groundwater head and stream

gain-and-loss, possess relatively low degree of nonlinearity with respect to model parameters.

When strong nonlinearity or even discontinuity is present, it may be challenging to achieve

high surrogate accuracy [99].

The results are consistent with observations in the second case study (Chapter 5). More

specifically, it was demonstrated that the Bayesian with error model method yielded param-

eter posterior pdfs that are substantially different from posteriors obtained using the classical

Bayesian that does not account for model structural error. As for prediction performance,

not accounting for model structural error led to biased and overconfident head predictions.

In contrast, integrating a GP error model effectively improves the prediction accuracy and

yielded prediction intervals that are consistent with validation data.
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This study considers the temporal prediction scenario; the groundwater model and error

models are calibrated using head at all observation wells before October 2004 and make

forecasts since October 2004 at the same well locations. In groundwater modeling practice,

it is often desirable to predict head at an unsampled locations. When used under the spatial

prediction scenario, the GP error model’s bias correction capability may decrease, as the GP

posterior reduces to essentially zero when the prediction location is outside of the correlation

range from training wells. As discussed in our preceding work [98], in the SVRP case study

the density of monitoring wells is not sufficient for spatial prediction in most parts of the

basin. The spatial prediction capability of the Bayesian with error model method needs

further investigation in more real-world case studies with denser observation network.
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Figure 6.3: Comparison between PEST estimated parameters with 95% confidence interval (yellow bars)
and Bayesian posterior marginal distributions (blue curves) for 38 parameters. The Bayesian results were
obtained using the same observations as the PEST calibration. The hydraulic conductivity parameters are
natural logarithm transformed. The ranges of x axes represent the lower and upper bounds enforced during
calibration.
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Figure 6.4: Marginal posterior distributions given by the classical Bayesian (blue) and the proposed Bayesian
with error model approach (orange) of 38 SVRP model parameters. The hydraulic conductivity parameters
are natural logarithm transformed. The ranges of x axes represent the lower and upper bounds enforced
during calibration.
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Figure 6.5: Head simulation error plotted versus posterior mean given by the classical Bayesian (left) and the
proposed Bayesian with error model (right) methods. Calibration period is from October 1995 to September
2004, and the validation period spans October 2004 to September 2005.
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Figure 6.6: Head prediction at well W1 given by the classical Bayesian (up) and the proposed Bayesian with
error model approach (bottom). Grey shades show 95% prediction interval, black dots are calibration data,
and red dots are verification data. Well location is shown in Figure 6.1.
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Figure 6.7: Head prediction at well W2 given by the classical Bayesian (up) and the proposed Bayesian with
error model approach (bottom). Grey shades show 95% prediction interval, black dots are calibration data,
and red dots are verification data. Well location is shown in Figure 6.1.
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Figure 6.8: Head prediction at well W3 given by the classical Bayesian (up) and the proposed Bayesian with
error model approach (bottom). Grey shades show 95% prediction interval, black dots are calibration data,
and red dots are verification data. Well location is shown in Figure 6.1.
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Figure 6.9: Head prediction at well W4 in southern Rathdrum Prairie, given by the classical Bayesian (up)
and the proposed Bayesian with error model approach (bottom). Grey shades show 95% prediction interval,
black dots are calibration data, and red dots are verification data. Well location is shown in Figure 6.1.
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Figure 6.10: Head prediction at well W5 in northern Rathdrum Prairie, given by the classical Bayesian (up)
and the proposed Bayesian with error model approach (bottom). Grey shades show 90% prediction interval,
black dots are calibration data, and red dots are verification data. Well location is shown in Figure 6.1.
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Chapter 7

SUMMARY AND CONCLUSIONS

We present a fully Bayesian calibration and uncertainty quantification framework tailored

for groundwater models. The framework implements a marginalizing step to account for

input data error when evaluating the likelihood. A data-driven error model is integrated

into the Bayesian framework to correct for spatiotemporal groundwater model structural

error.

We demonstrated the Bayesian approach using synthetic case studies of surface-ground wa-

ter interaction under changing stress conditions as well as a real-world case study. In the

first synthetic case study, we investigated the impact of errors in input data on calibration

and prediction. The case study uses a virtual reality to generate synthetic observations

of pumping-induced drawdown and stream depletion under “true” groundwater pumping

and precipitation recharge rates. The synthetic observations are used to calibrate a model

driven by biased pumping and recharge rates. The performance of the proposed marginal-

izing method is compared with classical Bayesian method that does not account for input

error and the augmentation method, which estimates inputs together with model parameters

during calibration. It is found that explicit treatment of errors in input data has substan-

tial impact on the posterior distribution of groundwater model parameters. The classical

Bayesian method yielded biased and overconfident prediction due to parameter compensa-

tion, while, by accounting for input data error, the proposed marginalizing method gave

more accurate predictions.
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One limitation of the marginalizing approach is that it only recognizes the uncertainty associ-

ated with input data, but does not correct for potential input bias. As a result, for quantities

that are closely related to biased input data, such as streamflow gain-and-loss in this case

study, the prediction made by the marginalizing approach may still be biased, although

the prediction interval encompasses validation data. For these quantities, the augmentation

method may yield more accurate prediction. However, as discussed in Section 4.4.3, the

augmentation method may overly adjust input data to compensate for model structural er-

ror (when present). We recommend the marginalizing approach for modeling problems in

which (1) substantial knowledge is available to specify a reasonably tight input distribution,

and (2) augmentation method may not work due to identifiability issues. In the future,

we will investigate a variant of the marginalizing method that jointly infers the hyperpa-

rameters of the input data error model with other parameters during the calibration process.

The second synthetic case study investigated the role of model structural error in calibration

and prediction. The case study uses a virtual reality to generate synthetic observations; the

observations are used to calibrate a simplified model which differs from the virtual reality.

The differences reflect common types of model inadequacy in groundwater modeling practice,

including simplified geometry, underrepresented heterogeneity of hydraulic conductivity, ide-

alized stream cross section, inaccurate stream inflow and other aspects. While necessarily

restricted by use of a specific complex numerical model to represent reality, the case study

can nevertheless provide insights into the potential of presented approach to handle various

types of commonly encountered model structural error.

In the second case study, we first demonstrated that both the conventional least squares

regression (LSR) and classical Bayesian method yielded biased (and often overconfident)

predictions under a scenario differing from the calibration period. It was then shown that

integrating error models into Bayesian calibration reduces the degree of parameter compen-

sation, leading to parameter posteriors that differ substantially from results not considering
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model structural error. In terms of prediction accuracy, the Bayesian framework with error

model delivered overall better performance than LSR and classical Bayesian methods.

We also presented a new recalibration strategy that aims to circumvent a well-known draw-

back of using an error model. Using the example of groundwater flow models, typical quan-

tities of interest include groundwater head and flow interaction with surface water bodies.

An error model adjusting the physically-based model simulated groundwater head may vi-

olate mass balance, because such physical constraints are not enforced on the data-driven

error model. As a remedy, we “recalibrate” the groundwater model against prediction made

by the Bayesian approach (which has been corrected by the error model). In this way, the

recalibration strategy utilizes the Bayesian prediction while preserving mass conservation.

As the third case study, the Bayesian with error model approach was further tested on a

real-world groundwater flow model. By using computationally frugal surrogate models as

substitute and with the help of high performance computing (HPC) resources, Bayesian cal-

ibration becomes feasible even for a complicated regional-scale MODFLOW model with 38

parameters to be estimated. The surrogate models were constructed using support vector

regression, a powerful machine learning algorithm.

Similarly as in the second case study, it was shown in the third case study that the joint infer-

ence of groundwater model parameters and model structural error led to parameter posterior

pdfs that are substantially different from posteriors obtained using classical Bayesian that

does not account for model structural error. When using the posterior parameter samples to

make forecast beyond the calibration horizon, the classical Bayesian approach yielded biased

and overconfident predictions. In contrast, the Bayesian with error model method delivered

significantly more accurate prediction along with prediction intervals that are consistent

with validation data. The results suggest that the proposed approach could be a robust

method in real-world modeling problems. As a followup study, we will explore the poten-
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tial of the proposed method in other modeling studies and under various prediction scenarios.

The presented framework constructs error models in an inductive, data-driven way, which

sets this study apart from other work in the hydrology literature. In the second and third case

studies, the error model inputs include simulation results of the physically-based groundwa-

ter model. This allows using the error model to extrapolate under conditions different from

the calibration period. In addition, other relevant information not directly used in the de-

velopment of the physically-based model can also be incorporated into the inputs to further

improve the robustness of the error model. Selecting input for the error model is problem

specific and should be guided by residual analysis. For example, feature selection techniques

borrowed from information theory and statistical learning can detect dependency between

model residual and other possibly relevant data [19, 97]. However, it should be noted that

the predictability challenge in forecasting dynamic changes [48] still remains for the GP error

model. This is because all machine learning methods including Gaussian process regression

are essentially empirical. These inductive methods can be powerful tools in learning complex

functional relationships, however they cannot predict dynamics that are not reflected in the

training dataset.

A premise of our Bayesian method with error model is that model structural error is visible

through the calibration process and cannot be fully compensated by adjusting parameters.

The presented framework works the best with a parsimoniously parameterized model. For

a highly parameterized model, model structural error is sometimes not discernible. It is

noteworthy that using an error model for an unbiased model does not necessarily impair

calibration results [70]. Furthermore, the overfitting issue can be alleviated by specifying

priors that incorporate soft expert knowledge.

Bayesian inference often requires tens to hundreds of thousands of evaluations of the ground-

water model. The interaction between groundwater model parameters and the error model
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may deteriorate the convergence rate of sampling and further increase the computational

expense. Beside the surrogate modeling strategy used in the third case study, the compu-

tational cost associated with Bayesian inference can be reduced in various ways, such as

reducing the dimension of the parameter space and implementing multiple-chain, multiple-

try and multiple-stage sampling algorithms [49, 57, 94]. Whether to implement a fully

Bayesian calibration with its computational burden is a problem specific decision and can

be informed by various diagnostics [36]. In general, we recommend the presented Bayesian

approach when evidence supports the presence of input and model structural errors, yet

model deficiency cannot be identified, and robust prediction uncertainty assessment is criti-

cal for post-modeling decision making.

Admittedly, like other empirical methods, the GP error models lack physical basis. There-

fore, the presented framework cannot replace thoughtful modeling analysis and additional

field observations toward improved understanding of specific groundwater systems. For ex-

ample, posterior check of the error model posterior would identify regions (spatially or in

the input space of the error model) that have significant predictive bias and high uncer-

tainty. The gained information will help to locate spatial and temporal domains where the

groundwater model does not perform satisfactorily. In addition, the data series associated

with biased model simulation indicates that the related process may not be adequately rep-

resented in the groundwater model. These potential extensions will be further discussed in

future work.

In the case studies, we used one GP error model with a simple covariance function (for

each type of output) to emulate the model structural error lumped from various model defi-

ciencies. Depending on specific applications, a modeler can use a more complex covariance

function, which is a combination of several different kinds of simple covariance functions

[67]. Each simple covariance function handles an individual property of the model structural

error. Similarly, a mixture of GP models can be used to allow for more flexibility. Analysis
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of posterior of hyperparameters of these covariance functions may shed light on the decom-

position of model structural error contributed by various underlying processes at different

time and spatial scales.

In summary, the results in the case studies highlight the importance of proper treatment of

input data and model structural errors in circumstances where subsequent decision making

and risk analysis require accurate prediction and uncertainty quantification. The Bayesian

approach allows for disaggregation of uncertainty among various error sources. This could

inform future model improvement and data collection efforts on how to best direct resources

towards reducing predictive uncertainty. The presented Bayesian framework brings together

the strength of physically-based groundwater models and inductive data-driven statistical

learning techniques, and is in harmony with new trends towards increased data availability

and promotion of environmental observatories. The presented framework can be used for sub-

surface solute transport models and other environmental modeling applications. Follow-up

studies will further investigate the feasibility of joint inference of input and model structural

errors, particularly for real-world modeling practice.
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[13] Jennỳ Brynjarsdóttir and Anthony O’Hagan. Learning about physical parameters:
The importance of model discrepancy. Inverse Problems, 30(11):114007, 2014.

[14] C.C. Chang and C.J. Lin. Libsvm: a library for support vector machines. ACM
Transactions on Intelligent Systems and Technology (TIST), 2(3):27, 2011.

[15] V. Cherkassky and Y. Ma. Practical selection of svm parameters and noise estimation
for svm regression. Neural Networks, 17(1):113–126, 2004.

[16] Richard L Cooley and Steen Christensen. Bias and uncertainty in regression-calibrated
models of groundwater flow in heterogeneous media. Advances in water resources,
29(5):639–656, 2006.

[17] R.L. Cooley. A theory for modeling ground-water flow in heterogeneous media. US
Dept. of the Interior, US Geological Survey, 2004.

[18] Mary Kathryn Cowles and Bradley P Carlin. Markov chain monte carlo convergence
diagnostics: a comparative review. Journal of the American Statistical Association,
91(434):883–904, 1996.

[19] Yonas K Demissie, Albert J Valocchi, Barbara S Minsker, and Barbara A Bailey. Inte-
grating a calibrated groundwater flow model with error-correcting data-driven models
to improve predictions. Journal of Hydrology, 364(3):257–271, 2009.

[20] A Dietzel and P Reichert. Bayesian inference of a lake water quality model by emulating
its posterior density. Water Resources Research, 50(10):7626–7647, 2014.

[21] J. Doherty, L. Brebber, and P. Whyte. PEST: Model-independent parameter esti-
mation user manual. Technical report, Watermark Computing, Corinda, Australia,
2010.

[22] J. Doherty and S. Christensen. Use of paired simple and complex models to reduce
predictive bias and quantify uncertainty. Water Resources Research, 47(12), 2011.

[23] J. Doherty and D. Welter. A short exploration of structural noise. Water Resources
Research, 46(5), 2010.

[24] John Doherty. Ground water model calibration using pilot points and regularization.
Groundwater, 41(2):170–177, 2003.

[25] D Erdal, I Neuweiler, and JA Huisman. Estimating effective model parameters for
heterogeneous unsaturated flow using error models for bias correction. Water Resources
Research, 48(6), 2012.

[26] Guillaume Evin, Mark Thyer, Dmitri Kavetski, David McInerney, and George Kuczera.
Comparison of joint versus postprocessor approaches for hydrological uncertainty es-
timation accounting for error autocorrelation and heteroscedasticity. Water Resources
Research, 50(3):2350–2375, 2014.

115



[27] DR Feldman, KN Liou, RL Shia, and YL Yung. On the information content of the
thermal infrared cooling rate profile from satellite instrument measurements. Journal
of Geophysical Research: Atmospheres (1984–2012), 113(D11), 2008.

[28] Michael Fienen, R Hunt, D Krabbenhoft, and Tom Clemo. Obtaining parsimonious
hydraulic conductivity fields using head and transport observations: A Bayesian geo-
statistical parameter estimation approach. Water resources research, 45(8), 2009.

[29] Michael N Fienen, Marco D’Oria, John E Doherty, and Randall J Hunt. Approaches
in highly parameterized inversion: bgaPEST, a Bayesian geostatistical approach im-
plementation with PEST: documentation and instructions. Technical report, US Ge-
ological Survey, 2013.

[30] Andrew Gelman and Donald B Rubin. Inference from iterative simulation using mul-
tiple sequences. Statistical Science, 7(4):457–472, 1992.
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