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Abstract

In this work, using computational modeling, we study the different mechanisms of intrinsic dissipation in

nano-electro mechanical systems (NEMS). We, first, use molecular dynamics (MD) simulation and gain an

understanding of the underlying loss mechanisms. Using insights from the MD simulation, a multi-scale

method to model intrinsic damping is developed. The high frequency vibration in NEMS have important

applications. A few examples include the sensing of atomic mass, detection of biological molecules and

observation of quantum effects in macroscopic objects. For all these potential applications, dissipation plays

a limiting role. While a number of experimental and theoretical studies have been performed, the individual

role of different mechanisms remains unclear. In this work, we attempt to isolate and understand the surface

and size effect on some of the intrinsic mechanisms. We, first, consider the case of the Akhiezer damping.

The Akhiezer dynamics is expected to play an important role in nano-resonators with frequencies in the GHz

range. Using a judiciously devised MD set-up, we isolate Akhiezer dynamics. We show that the surfaces

aid in reducing the dissipation rate through increasing the rate of thermalization of the phonons. We, next,

study damping under the flexure mode of operation. A comparative analysis with the stretching mode shows

that the flexure mode is less dissipative. A reduced order model is considered to understand this novel

behavior. We, also, investigate the role of tension on the Q factor, a measure of the inverse of dissipation

rate.

From these studies, we conclude that Akhiezer dynamics plays a dominant role in nano-resonators. We,

then, develop a quasi-harmonic based multi-scale method to model Akhiezer damping. A stress component,

that characterizes the non-equilibrium phonon population, is derived. We obtain constitutive relation that

governs the time evolution of the non-equilibrium stress. Different methods to parametrize the constitutive

relation are discussed. Using the proposed formulation, we compute the dissipation rate for different cases.

The results are compared with those obtained using MD. Next, we use the Boltzmann transport equation

and investigate the Q factor due to the thermo-elastic dissipation (TED). The Q factor obtained shows

deviations from the classical theory of TED. Correction to the classical formula, for the case of longitudinal

modes, is provided.
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We, then, study damping is low dimensional structure. We first consider the case of two dimensional

graphene sheet and under in-plane stretching. We show that the coupling between the in-plane and the out-

of-plane motions plays an important role in the loss of mechanical energy. Further, a hysteresis behavior in

the out-of-plane dynamics is observed. Next, we investigate the stretching motion of graphene nano-ribbon.

A normal mode Langevin dynamics is devised to understand the results from the MD simulation.
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Chapter 1

Introduction

The high frequency vibrations in nano-electro mechanical systems (NEMS) are being used for different

practical applications and for the fundamental understanding of physical phenomena. A few technological

applications include atomic scale mass sensors [46], detection of biological molecules [20, 27, 53] and the

detection of electron spin flip [81]. NEMS devices are, also, being used to probe the fundamental physical

processes in nature. For example, the observation of quantum effects in macroscopic sized nano-resonator

is one of the promising goals. An important consideration for all these applications is the dissipation which

limits its performance. Dissipation is often quantified in terms of a dimensionless Q factor which is defined

as

Q = 2π
Estored
Edisp

. (1.1)

Here, Estored is the maximum elastic energy stored in the structure and Edisp is the energy dissipated per

unit period. For most applications it is desired to have low dissipation or high Q factor. For example,

in-order to observe quantum effects in a nano-structure, it must be in the quantum ground state. For a

resonator with angular frequency ωn this necessitates that ~ωn >> kbT . Here, ~ is the Planck’s constant,

ωn is the angular frequency, kb is the Boltzmann constant and T is the temperature. This explains the need

for high values of ωn. However, dissipation or coupling with the environment leads to thermalization and

smears out the quantum effect. A low dissipation rate is, therefore, desired.

Dissipation is the process of transfer of energy from the (mechanical) motion of interest into the other

degrees of freedom. The motion of interest is, often, an eigen mode of a resonator. The other degrees of

freedom include the external environment as well as the internal vibrations of the structure. Depending

on the medium that exchanges energy with the mode, the dissipation mechanisms can be broadly classified

into the intrinsic and the extrinsic mechanisms. Extrinsic damping involves the flow of energy into the

surrounding environment. Anchoring losses[7, 9, 63], fluid damping[3, 28] etc. are a few select examples

of extrinsic damping. Intrinsic dissipation involves energy transfer from the mechanical mode into the

lattice vibrations or the electronic degrees of freedom of the system. The known mechanism of intrinsic

damping include thermo-elastic dissipation[10, 45], Akhiezer damping[32, 44], electron damping, dissipation
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due to defects[62, 66] etc. Extrinsic damping can often be eliminated with better design considerations.

For example, operating the structure in vacuum eliminates fluid damping, increasing the stiffness of the

surrounding substrate minimizes the anchoring losses. Intrinsic damping, however, sets a fundamental upper

limit for the devise performance.

Figure 1.1 illustrates the process of intrinsic loss in nano-resonators. Dissipation, for such a case, is the

transfer of energy from the excited mode into the phononic bath. For structures with dimensions in the

range of few nm, the natural frequency of the fundamental modes is of the order of few GHz. The thermal

phonons have frequencies in the THz range. The flow of energy, then, takes place between motion with

these two time-scales. It should be pointed out that we have not taken into consideration the electronic

degrees of freedom. They have time-scales which is faster than that of the phonons. The Born-Oppenheimer

approximation, then, suffices in most of the cases. The electrons follow the nuclear motion adiabatically, no

resultant flow of energy takes place between the two sub-systems.

10
1

10
2

10
3

10
4

0

1

Dissipation

Figure 1.1: The process of intrinsic loss in nano-structures. The time-scales associated with different motions
are illustrated.

A number of experimental[57, 58, 64] and theoretical studies[17, 30, 31] have been carried out to study

dissipation in NEMS. These studies have shown that surfaces[12, 56] have an important role on the dissipation

in nano-structure. Using experimental investigation it is, however, difficult to discern the relative role of the

different mechanisms. The individual role of the different mechanisms and their scaling with size remains less

well understood. In this work, using computational methods, we attempt to isolate some of the intrinsic loss

mechanisms. We, then, study the effect of size and surface on these mechanisms. For this purpose, different

modeling methods are employed. Non-equilibrium molecular dynamics (NEMD) is a powerful simulation
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technique that can be used to probe damping in NEMS. The atomic level details provided by NEMD can be

judiciously processed to gain insight into the different damping processes. The first objective of this work is

to use NEMD to investigate the different intrinsic damping mechanisms operative in NEMS.

In a crystalline structure the two known intrinsic damping mechanisms are the Akhiezer damping and the

thermo-elastic dissipation (TED). Akhiezer damping results from the local disturbance of the equilibrium

phonon distribution while TED takes place due to a spatial flow of heat energy. When the time period of

mechanical oscillation becomes comparable to the phonon equilibration time, Akhiezer damping becomes

important. The Akhiezer dynamics is, therefore, expected to play an important role in NEMS. The first

goal of this research work is to study Akhiezer damping in nano-structures using NEMD. In-order to isolate

Akhiezer dynamics we develop a simulation method to generate a nearly uniform strain field in the structure.

A uniform strain field ensures that there is no spatial flow of energy and hence TED is suppressed. Using

the simulation method, we performed size and frequency study of the Q factor. For the cases considered, we

find that the surface can have a positive role in reducing dissipation due to Akhiezer dynamics.

With the understanding of Akhiezer damping in nano-structure, we, next, study the total dissipation in

a beam under flexure deformation. For such a case the resulting strain field is non-uniform and TED also

becomes operative. We use the free vibration method to study dissipation for the flexure mode. In this

method, the mode of interest is excited by imparting excess energy to it. From the subsequent decay rate

of the mode amplitude, the Q factor is determined. We performed a comparative study of the dissipation

in the bending and the stretching mode of operation. Surprisingly, we observe that a spatial flow of heat

energy results in lowering the damping rate in the bending mode of operation. We consider a reduced order

model, based on the Boltzmann transport equation, to explain this observation. The results show that

the thermo-mechanical coupling at the nano-scale shows behavior which are fundamentally different from a

macroscopic sized object. The classical thermo-elasticity is not applicable at these time and length scales.

We, also, investigate the role of tension the Q factor.

Using NEMD we, therefore, gain insights into the two principal intrinsic loss mechanisms, namely the

Akhiezer and the TED. While a powerful tool, NEMD is still limited in terms of length and the time-scale

that it can simulate. The next objective of this work is, thus, to develop multi-scale methods to model

intrinsic dissipation under high frequency vibrations. The classical thermo-elasticity theory does not capture

the essential physics that become important at these time and length scales. In this work, we extend the

quasi-harmonic (QHM) frame-work to describe intrinsic dissipation in solids. Mechanical motion with time-

scales comparable to the phonon relaxation rates are considered. A non-equilibrium stress component, that

characterizes the local deviation from equilibrium, is considered. We obtain constitutive relations that govern

the time evolution of the non-equilibrium stress. Using the proposed frame-work, we study dissipation as a
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function of different parameters. The results are compared with those obtained using NEMD.

The QHM based multi-scale method describes the dynamics due to the local disturbance of the phonon

population. Next, we consider the spatial flow of heat energy and use the Boltzmann transport Eqn. (BTE)

to study dissipation. BTE under the gray approximation is considered. We show that two effects become

important in the case of nano-structures. For the high frequencies of vibration, the finite relaxation time

of the heat flux becomes important. We consider the case of longitudinal modes and modify the classical

Zener[78] theory to account for this phenomenon. Secondly, and as for the Akhiezer dynamics, the surface

scattering of the phonons reduces the relaxation time for a thermal disturbance. For the cases considered,

we show that the faster thermalization has an effect of increasing the damping rate. Compared with the

classical prediction, the resultant Q factor is high for all the cases considered.

We also investigate the damping mechanisms in low dimensional structures. NEMD and Langevin

dynamics are employed for this purpose. We consider the case of graphene sheet and graphene nano-

ribbons. Graphene is a single atomic layer thin sheet of carbon atoms and has been shown to have excel-

lent mechanical[41] and electrical properties[54]. Graphene based structures offer potential applications as

membrane[6] and string resonators. A few theoretical[31, 65] and experimental[8] studies have been per-

formed to study dissipation in graphene. However, the different damping mechanisms remain unidentified.

In this work we study intrinsic damping in graphene sheet and graphene nano-ribbons under in-plane stretch-

ing. We show that the geometric non-linear coupling between the in-plane vibration and out-of-plane motion

plays a dominant role in the loss of mechanical energy.
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Chapter 2

Akhiezer Damping

2.1 Introduction

Akhiezer damping takes place as a result of heat flow between different phonon modes. The applied strain

field modulates the frequency of the thermal phonons. The strength of coupling between the strain field

and the phonon modes varies and is given by a mode-dependent Gruneisen parameter, which is a measure

of the change in frequency of each mode with applied strain. The applied deformation, therefore, results in

a temperature difference between different phonon modes, and each of them then tends to relax toward the

mean temperature value. This results in an intramode heat flow and, hence, entropy generation leading to

dissipation. While TED depends on the applied strain field, Akhiezer damping rate is a more fundamental

property of the system. Under the application of a uniform strain field, and in the absence of any additional

mechanism of dissipation, the damping rate in a structure will be governed by the Akhiezer mechanism.

Since the original work of Akhiezer[1] the absorption of acoustic waves by Akhiezer mechanism has been

the subject of extensive research. Bommel and Dransfeld[4] developed an expression for attenuation of

elastic waves by assuming that the dominant heat flow takes place between two phonon branches. Woodruff

and Ehrenreich[76] derived an expression for damping of elastic waves by solving the Boltzmann transport

equation. Mason and Bateman[48] introduced a nonlinearity parameter D for the attenuation coefficient due

to Akhiezer damping and found good agreement with the experimental results for silicon and germanium.

The theories developed in these works have been applied to a number of other experimental works[24, 39, 42]

wherein it has been demonstrated that the Akhiezer mechanism becomes particularly important when the

time scale of oscillation becomes comparable to the phonon relaxation time τph−ph. A metric for assessing the

strength of this mechanism is the ωτph−ph value. The mechanism plays an important role for the absorption

of acoustic waves in the ultrasonic and the hypersonic regimes.

The angular frequency of oscillation of the fundamental longitudinal mode ωl of a beam is given as

ωl =

√
E

ρ

π

2L
, (2.1)
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where ρ is the mass density and L is the length of the beam. For L of the order of few nanometers,

frequency in the range of tens of GHz is obtained. The phonon relaxation time is generally of the order of

few picoseconds. Thus, for beams with dimension in the range of nanometers, ωτph−ph will be of the order

of 10−2. The Q factor due to Akhiezer mechanism scales as[4]

Q−1 ∝ ωτph−ph
1 + (ωτph−ph)2

. (2.2)

Q attains a minimum value Qmin for ωτph−ph = 1. For ωτph−ph of the order of 10−2,
Q

Qmin
is of the

order of 102 and one expects the Akhiezer damping to be an important loss mechanism at such length scales.

A number of experimental as well as theoretical works have been carried out to elucidate the dissipation

mechanisms in a nanostructure. These works have provided insight into the different possible dynamics

operating at the nanoscale. Kiselev et al.[32] solved the Boltzmann transport equation and studied the

relative importance of TED and Akhiezer damping in a nanobeam under flexure. The analysis, however,

did not take into consideration the variation in material properties with size. For example, the value of

τph−ph was assumed to be the same for all sizes. Further attempts to isolate and study the role of individual

dissipation dynamics at such small length scales have not been made. A more general study of the role of

surface on individual dissipation mechanism is therefore lacking and we attempt to make some effort in this

direction. In this work[35], we employ classical molecular dynamics (MD) to understand Akhiezer dynamics

in nanostructures. The other known dissipation mechanism, namely, TED, is eliminated by applying a nearly

uniform strain field. It is worth pointing out that additional mechanisms, such as the surface dissipation, may

also be present and mask the dynamics that would have resulted solely from Akhiezer damping. Attempts

have not been made to isolate such effects. In Sec. 2.2, we review the dynamics of a beam under longitudinal

vibration and present a case of a nearly linear displacement profile. In Sec. 2.3, we describe the MD setup

to study the vibration of a nickel nanostructure, using the idea of Sec. 2.2 to attain the desired objective.

In Sec. 2.4, the results are summarized, and conclusions are given in Sec. 2.5.

2.2 Beam Dynamics

Figure 2.1 shows a schematic of the structure considered. The structure is anchored using a rigid support

at one end, a perodic force is applied at the other end. The equation of motion for the displacement profile,

u(x, t), of a purely elastic beam under longitudinal vibration is given as

E
∂2u(x, t)

∂x2
= ρ

∂2u(x, t)

∂t2
+ f(x, t), (2.3)
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where E is the Young’s Modulus, ρ is the mass density and f(x, t) is the applied force. A concentrated

periodic load f(x, t) = F0δ(x− L)cos(ωt) is applied at the end. F0 is the magnitude of the applied load, ω

is the angular frequency of the applied force and L is the length of the beam. The solution of Eqn.(2.3) for

such case is obtained as u(x, t) = Amsin(
π

2L0
)cos(ωt) . Am is the measure of the amplitude of oscillation

and L0 =
π

2ω

√
E

ρ
. The physical interpretation of L0 is that it corresponds to the length of an imaginary

beam, which has the same material properties as stated above and for which the angular frequency of the

fundamental longitudinal mode is equal to ω. Under the condition that L is sufficiently smaller than L0,

u(x, t) can be approximated as

u(x, t) = Amsin(
πx

2L0
)cos(ωt)≈A πx

2L0
cos(ωt) (2.4)

This results in a linear displacement profile with a uniform strain field. The amplitude of oscillation at the

end of beam A is then given as A = Am
πL

2L0
. The elastic energy U stored in the beam is then given as

U =

∫ L

0

1

2
SE(

Am
2L0

)2dx, (2.5)

where S is the cross-sectional area of the beam.

Figure 2.1: A schematic of the simulation set-up.

For a linear displacement profile, U is obtained as

U =
1

2
k(A)2, (2.6)

where k is effective stifnness of the beam and is given as k =
EA

L
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2.3 Simulation Set-up

A nickel structure was generated by arranging atoms on a face-centered cubic (fcc) lattice with a lattice

spacing of 3.5374 Å. A schematic of the simulation setup is illustrated in Fig 2.1. 20 unit cells, corresponding

to a length of 7.07 nm, were taken in the longitudinal [100] direction, while the cross-section area was varied

from 3.53 × 3.53 nm2 to 7.07 × 7.07 nm2 for different studies. All atoms within one unit cell from the

left end were fixed by setting the forces on them to be zero. This corresponds to a clamped boundary

condition. The embedded atom method (EAM) potential[14] was used to model the force field. Large-

scale atomic/molecular massively parallel simulator (LAMMPS)[59] was used for all MD simulations. The

structure was equilibrated at 300 K using a Nose-Hoover thermostat with a time constant of 1 ps. A time

step of 1 fs was used for the entire simulation. After equilibration of the structure for 2 ns, a periodic force

was applied to the atoms on the right longitudinal edge in the x direction. The system was further evolved

as a canonical (NVT) ensemble for a simulation time of 30 ns.

For a perfectly elastic structure, the mean displacement of the end atoms would be in phase with the

applied periodic force. However, because of dissipation, a phase lag exists between the applied force and the

response. The work done by the applied force per unit period is a measure of the energy dissipation rate. In

an isolated system (microcanonical ensemble), this work would result in an increase in the internal energy,

and hence the temperature, of the system. For a system evolved as a canonical ensemble, the thermal bath

takes away the excess energy and keeps the mean temperature constant. The energy dissipated per unit

period Ediss is equal to the work done by the external force and is given as

Ediss =
ω

2πTf

∫ T

0

∑
ne

f0cos(ωt)vxdt, (2.7)

where f0 is the magnitude of the applied force on each of the end atom, vx is the x component of the velocity,

Tf is the total time for which the force is applied and ne is the number of atoms at the end on which the

external force is applied. F0 is related to f0 as F0 = nef0. We neglected an initial transient of 2 ns from

the time the external force was imposed for computing the energy dissipation rate. In order to compute

the energy stored, the Fourier transform of the x component of the center-of-mass displacement of the edge

atoms was taken. The Fourier transform showed a dominant peak corresponding to the frequency of the

applied force. The amplitude of oscillation was computed from the peak magnitude as

A = max(2abs(fft(xdata)))/(ndata), (2.8)

where xdata is the time series data of the center of mass of end atoms and ndata is the number of data
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points.

The effective stiffness of the structure was determined using a separate equilibirum simulation. After an

initial equilibration at 300 K for 2 ns, a static force was applied on the end atoms. The structure was relaxed

for 1 ns, the length value corresponding to the applied force was then computed using the data obtained for

a subsequent time of 1.5 ns. The force magnitude was then increased and the procedure described above

was followed to compute the new relaxed length for the increased applied force value.This was repeated with

subsequent force increments and the length value was obtained for different magnitude of the applied force.

The slope of the force displacement curve gives the value of k.

The energy stored Estored was, then, computed as

Estored =
1

2
kA2. (2.9)

The Q factor is then given as

Q =
2πEstored
Ediss

. (2.10)

2.4 Results and Discussion

We first studied the frequency dependence of Q factor for the bulk case. The bulk case was simulated by

imposing the periodic boundary condition in the lateral direction. A size independence for a simulation

domain with cross-sectional area larger than 3.53 × 3.53 nm2 was observed. Figure 2.2(a) shows the plot

of the Q factor versus frequency as obtained for the bulk case. The Q factor decreases and, hence, the

dissipation rate increases with the increase in frequency.

Under the single mode relaxation time approximation, the Q factor for Akhiezer damping is given as [4]

Q−1 =
CpTλ

2
av

ρv2
ωτph−ph

1 + (ωτph−ph)2
, (2.11)

where ρ is the density, v is the sound velocity, Cp is the specific heat capacity at constant pressure, T is

temperature, λav is mean value of Gruneisen parameter, ω is the angular frequency of the applied strain field

and τph−ph is a measure of a phonon energy mean transfer time. Eqn.(2.11) states that, for ωτph−ph ≤ 1,

Q factor decreases with the increase in frequency. The phonon relaxation time is of the order of a few

picoseconds for which the above inequality is valid in the frequency range of the order of a few GHz.

Eqn(2.11) can be further recasted as

Qω = mω2 + c, (2.12)
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Figure 2.2: a) Q Factor vs. Frequency for bulk nickel. b) A linear fit for Qω vs. ω2 for the same structure.

where m =
ρτph−phv

3

CpTλAv
2 and c =

m

τ2
. Eqn(2.12) states that Qω and ω2 have a linear relationship. Figure

2.2(b) shows the plot of Qω vs ω2 as obtained for the bulk case and a linear dependence between Qω and

ω2 is observed. The slope and the intercept of the linear fit was used to compute the τph−ph value which

was estimated to be 1.72 ps.

Different studies have estimated different values of τph−ph. According to Bomme et al.[4], the value of

τph−ph should be taken to be same as that of the thermal relaxation time, τth, given as

τth =
3κ

Cvv2
. (2.13)

Here, κ is the thermal conductivity and Cv is the specific heat capacity at constant volume. Mason and

Betman[48] used a value of τph−ph = 2τth for the longitudinal mode and obtained a very good agreement

with the experimental data. Heino and Ristolainen[25] computed the phonon mean-free path l for nickel

using MD, although they used a different version of the EAM potential to model the force field. Making

use of τth =
l

v
and using the data given by Heino and Ristolainen[25], the value of τth comes out to be 0.96

ps. The ratio
τph−ph
τth

= 1.8, it then follows that the relation given by Mason and Bateman[48] holds more

applicable for our case.

Phonon relaxation time can be computed by taking the correlation of the mode potential or kinetic

energy [50]. 20 × 10 × 10 unit cells of nickel with periodic boundary condition in all directions were used.

The relaxation time for phonons in the direction of 20 unit cells, which corresponded to [100] direction in

a fcc lattice structure, were computed at 300 K. The correlation function of the mode kinetic energy was
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Figure 2.3: Phonon relaxation time as a function of mode frequency.a) Longitudinal modes b) Transverse
modes.

taken to estimate the decay rate. A phonon is a propagating wave for which the mode shape is given as

~up(~x, t) = ~Pexp(i~k.~x)exp(iω0t), (2.14)

where ~x is the position vector of each atom, ~up is the displacement of an atom from the mean position, ~k is

the wave vector, ω0 is the phonon frequency and ~P is the polarization vector. ~k is given by the boundary

condition. For a given value of ~k, one can construct a force constant matrix[72] using second-order derivative

of the potential function; the eigenvectors of the force constant matrix then give ~P and the eigenvalues scaled

with atomic mass give ω2
0 . ~k and ~P completely characterize a mode shape. MD displacement and velocity

are then projected on the mode shape to get the mode displacement dm and the mode velocity vm. The

mode kinetic energy Kem is then computed as Kem =
1

2
mv2m. The correlation function of Kem was taken

to estimate the decay rate. Figure 2.3 shows the relaxation time for the transverse and longitudinal phonons

as obtained for the bulk case. The phonon density of state (PDOS) was computed by taking the fast Fourier

transform (FFT) of the function C(t) given as

C(t) =
1

natoms

〈 ∑
natoms

~vi(t0).~vi(t0 + t)

〉
, (2.15)

where natoms is the total number of atoms and ~vi(t) are the velocity components. Figure 2.4 shows the

PDOS obtained. The PDOS has two peaks, the peak at 6 THz corresponds to the transverse mode while

the peak at 9 THz corresponds to the longitudinal mode. At 5.73 GHz the transverse mode has a relaxation

time of 2.97 ps and at 8.8 GHz the longitudinal mode has a relaxation time of 0.78 ps, the mean of these
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two values comes to be 1.875 ps which is comparable to the phonon relaxation time estimated from Q vs ω

scaling.
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Figure 2.4: Phonon density of state for bulk Nickel.

The scaling of Q factor with ω was then studied for the finite sized case. A free surface boundary condition

was imposed in the lateral direction. We considered three different cases, each of them having a length of

7.1 nm in the longitudinal direction, and with cross-sectional areas as 3.53 × 3.53 nm2, 5.29 × 5.29 nm2 and

7.07 × 7.07 nm2. Figure 2.5(a-c) shows the plot of Q vs frequency for the three cases. For all the sizes the

dissipation rate was found to increase with the increase in frequency. The plot also shows a Q = A(ω)−1

curve, with A obtained using the least square fit from the data points. For the case of cross-section area

of 7.1 × 7.1 nm2, the Q value closely follows the Aω−1 curve. For the smallest size, the MD data and the

inverse relationship became slightly deviant.

The Q vs ω relation, as stated in Eqn 2.11, was derived by Bommel et al. [4] under the assumption that λ

for a given phonon branch is independent of frequency and two phonon groups are present. This is applicable

for a bulk structure for which only the longitudinal and transverse modes are present. In a low dimensional

structure, such as a nanowire, the presence of a surface splits the phonon spectrum into sub-band[26, 69].

The assumptions used in deriving Eqn 2.11 are, therefore, not applicable for nanostructures.

Under the approximation ωτph−ph ≤ 1 , Woodruf and Enrich [76] derived an expression for damping of

elastic waves by solving the Boltzmann transport equation. An expression for the attenuation coefficient, α,
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Figure 2.5: a) Q Factor vs. Frequency for nickel nano-structure with free surfaces.
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was obtained as

α = β
ω2T

ρvo2

∑
q,j

τ(q, j)λ2(q, j)C(q, j), (2.16)

where β is a numerical coefficient, v is the sound velocity, τ(q, j), λ(q, j) and C(q, j) are the relaxation time,

the Gruneisen parameter and specific heat capacity of the phonon branch labelled as q,j. Q is related to α as

Q =
ω

2α
and hence Eqn(2.16) shows that Q scales as ω−1. This explains the trend as has been observed for

the case of 7.1× 7.1nm2 cross-section area. The deviation in case of smaller sizes needs to explored further.

We studied the size dependence of Q factor for finite sized case for a fixed frequency of 25 GHz, The

cross-section area was varied from 12.51 nm2 to 50.41 nm2. Figure 2.6 shows that the Q factor first shows an

improvement with the decrease in size and then drops below some critical size. This trend in the variation

of Q factor with size indicates the role of different competing factors.

The initial decrease in the dissipation rate with the decrease in size can be explained by the role of

surface on the ensemble of thermal phonons. Akhiezer damping takes place as a result of the modulation

of thermal phonons with the applied strain field. The strain field disturbs the equilibrium of the thermal

phonons which then relax towards equilibrium with a finite relaxation time. Faster relaxation of phonons

towards thermal equilibrium would decrease the lag between the stress and the strain and would result in a

lower dissipation rate. A manifestation of this effect was observed by Harding and Wilks[23] who found that

that the attenuation of sound in liquid helium decreased by the addition of small amount of 3He impurity.
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The presence of surfaces act as an additional scattering mechanism[68] and reduces the relaxation time of

thermal phonons in nano-structures. Such an effect has been studied before and has been accounted for as

a reason for the decrease in thermal conductivity of nano-wires [82].
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Figure 2.7: Relaxation time for longitudinal phonons in nickel nanowire and its comparison with bulk value.

The phonon relaxation time for a finite sized case was computed using the method described by Mc-

Gauhney and Kaviany[50]. A nickel structure with 20 × 12 × 12 unit cells was used. Periodic boundary

condition was imposed in the direction of 20 unit cells while free surface boundary condition was used

otherwise. Computing the phonon relaxation time in this case would entail using the eigen modes for the

one-dimensional structure. The bulk mode shape was used instead. For large wave vectors the bulk modes

corresponded to the eigen modes of the structure considered, this was evident from the correlation function

of the mode potential or kinetic energy which showed a dominant single frequency. The relaxation time

was computed only for large wave vectors for which the eigen modes are sufficiently given by the bulk mode

shapes. Figure 2.7 shows the plot of relaxation time for longitudinal phonons obtained from the finite-sized

case. The bulk values are also plotted for comparison. For the higher frequency values, both the finite

structure and bulk have similar relaxation time. In this case, the relaxation is dominated by the Umklapp

process. The relaxation time deviates with the decrease in frequency, with the finite-sized case having a

lower value. The presence of surfaces therefore reduces the mean phonon relaxation time and hence the

dissipation rate initially decreases with the decrease in size.

The autocorrelation function S(t) of the heat current vector q(t) can be used to estimate phonon mean

relaxation times[51]. For a fcc crystal, S(t) shows a two-stage decay. A biexponential fit of S(t) gives two

relaxation times[49]. The relaxation time with the smaller value is the mean lifetime of short-wavelength
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phonons τsp. Physically, τsp corresponds to the time an atom takes to transfer energy to its neighboring

atoms. The second relaxation time obtained from the biexponential fit is the long wavelength phonons mean

lifetime τlp.

Figure 2.8: Variation of the long-wavelength phonons mean relaxation time τlp with size..

τsp and τlp values were estimated for nickel nanowires of varying cross-sectional area. The periodic

boundary condition was used in the longitudinal direction, while the free surface boundary condition was

used otherwise. S(t) was computed by taking the autocorrelaton of the component of q(t) in the longitudinal

direction. A total simulation time of 6 ns was used to compute S(t). The biexponential fitting was done on

the values of S(t) for a period of 5 ps. τsp was estimated to be of the order of a few femtoseconds. For the

frequency range under consideration, this time scale is not of importance and hence was not considered for

analysis. Figure 2.8 shows the τlp values for different cross-sectional areas. The plot shows that τlp decreases

with the decrease in size. This decrease in τlp value with the decrease in size is expected to govern the Q

factor variation for larger sizes. For the Akhiezer mechanism, dissipation rate and relaxation time have a

direct relationship and, hence, the dissipation rate initially decreases with the decrease in size.

The surface atoms, because of lower coordination number, have intrinsic properties that are different from

the bulk atoms. The increasing role of surface atoms, with the increase in surface to volume ratio, results in

change in the properties of a nanostructure. The length scale at which such an effect becomes important is

of the order of a few nanometers. The magnitude of this length scale depends on the material property of

interest and the nature of the material itself. For example, the Youngs modulus of a silicon nanowire drops

sharply below a cross-section area of 10 nm2[72].

The physical origin of the Akhiezer damping mechanism lies in the flow of heat current between different
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phonon modes. The flow of heat takes place due to the difference in λ(q, j) values between different modes,

with λ(q, j) being a measure of the change in temperature of each mode when strained adiabatically. The

higher the difference in the λ(q, j) value for different modes, the higher will be the temperature difference.

This effect on the dissipation rate is quantified by a nonlinearity parameter[76] D given as

D = 3

[
3
∑
q,j [λ

2(q, j)]

n
− λ2CvT

E0

]
(2.17)

where n is the number of the modes, E0 is the total thermal energy, and λ is the volume Gruneisen constant.

The attenuation due to the Akhiezer mechanism is related to D as αt =
Dω2E0τph−ph

6ρv3
.

D by definition is therefore a metric of the variance in the λ(q, j) value. In a bulk crystal, the main

contribution to D comes from the difference in the λ(q, j) value between the transverse and the longitudinal

branches. The presence of surface leads to additional modes in a nanostructure. Some of these modes, called

the surface modes, have displacement profiles in which the surface atoms share most of the amplitude. λ(q, j)

for such modes will therefore depend on the property of the surface atoms and will be different from that

of the bulk-like modes. The presence of such modes will therefore contribute to an increase in the value of

D and, hence, an increase in the dissipation rate. The fraction of such modes to the total number of modes

depends on the ratio of the number of surface atoms to that of the bulk atoms and is expected to become

significant only at very small dimension.

Figure 2.9: Variation of the nonlinearity parameter D with size as computed using the LQHM model..

The local quasiharmonic (LQHM) model[73] was used to estimate the D value for nickel nanobeams. In

the LQHM model, the motion of each atom is decoupled from the rest. A local stiffness matrix Φ(α) is

obtained by taking the double derivative of the potential energy with respect to displacement vector of an
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atom α. From the eigenvalues of Φ(α), three vibrational frequencies ωαi(i = 1, 2, 3) are determined. The

local Gruneisen parameter λαi is given as λαi = − V

ωαi

dωαi
dV

, where V is the volume of the crystal. We define

Cαi as

Cαi =
kb(

~ωαi
kbT

)2exp(~ωαi
kbT

)

[exp(~ωαi
kbT

)− 1]2
(2.18)

and Eαi as

Eαi =
~ωαi

exp(~ωαi
kbT

)− 1
. (2.19)

Here, kb is the Boltzmann constant, ~ =
h

2π
and h is the Plancks constant. In the LQHM model, λ is

obtained as

λ =

∑nt
α=1

∑3
i=1 Cαiλαi∑nt

α=1

∑3
i=1 Cαi

. (2.20)

Here, nt is the total number of atoms in the structure, Cv and E0 in the LQHM model are given as

Cv =
1

V

nt∑
α=1

3∑
i=1

Cαi and E0 =
1

V

nt∑
α=1

3∑
i=1

Eαi.

Finite-sized nickel nanostructrues, as used in the MD simulations, were considered for LQHM analysis.

λαi values were computed by imposing a uniaxial deformation on the structure. The values of λαi, λ, Cv,

and E0 thus obtained using the LQHM model were substituted in Eq.(2.17) to get the value of D. Figure 2.9

shows the value of D for nickel nanobeams of different cross-sectional area. The plot shows that D increases

with the decrease in size. For the smallest size considered, the increase in the value of D is expected to

become significant and compensate for the decrease in the relaxation-time value. This effect of surface on

the D value plausibly explains the observed nonmononotic scaling of the Q factor with size.

2.5 Conclusions

MD simulations have been used to investigate the dissipation in a nickel nanowire. A nearly uniform strain

field was applied to eliminate TED. In such a case, we expect the dissipation to be dominated by the Akhiezer

mechanism. From the scaling of the Q factor with ω for the bulk case, τph−ph was estimated. The value

was comparable with the estimate obtained from other methods. The finite-sized case showed an inverse

scaling of Q factor with ω, and for the smallest size considered, a slight deviation was observed. The size

dependence of the Q factor showed a positive role of the surface wherein the Q factor initially increased

with the decrease in thickness. This was explained by the role of the surface as a scattering medium for the

thermal phonons. For dimensions below some critical value, a drop in Q factor with size was observed, and

this was attributed to the contribution of surface atoms to increase the variance in the D value.
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Chapter 3

Dissipation - Flexure Mode

3.1 Methods

We use MD simulations to compute dissipation rate in nano-wires[38]. We consider two different modes

of deformation, the bending and the stretching mode. The bending mode was excited using free vibration

method. For stretching deformation we use the method of forced vibration. Since, dissipation rate strongly

depends on the frequency of mechanical motion, a study on the effect of deformation mode on energy loss

requires that both the modes have the same oscillation time period. Using the method of forced vibration,

we could consider the same frequency of operation for stretching deformation as that for bending. Also,

as discussed later, forced vibration results in a nearly uniform strain field, an essential characteristic for

stretching motion. In the rest of the paper, we shall term free vibration method as method A and forced

vibration as method B. We now provide a description of the two methodologies.

Different variants of method A have been used earlier [17, 30, 31] in the computation of Q factor. In

this method, we perturb the desired mode of the structure. The perturbation can be provided by either

increasing the mode velocity or by displacing the structure along the given mode. The structure is isolated

from the environment (in-order to study intrinsic dissipation) and is left to evolve. The excess energy of the

excited mode gets absorbed by the system and is converted into the internal energy. The modal amplitude,

therefore, shows a sinusoidal decaying behavior. The modal frequency, fm, and its relaxation time, τm, are

determined from the sinusoidal decaying amplitude. Q factor is, then, computed as

Q = πfmτm. (3.1)

We now provide the details of implementing method A for the fundamental bending mode of a fixed-fixed

beam.

The structure is first equilibrated using the canonical ensemble (NVT). Nosé-Hoover thermostat was

used for equilibrating the structure at desired temperature. A relaxation time of 0.5 ps was used for the

thermostat. Subsequent to equilibration, a point is selected from phase space. The set of position and
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velocity vector of all the atoms constitutes a point in the phase space. Alternatively, the phase space can

also be described using the modal co-ordinates. The modal co-ordinates can be obtained from the atomic

co-ordinates by projecting them on to the mode shapes. The relation between the two is described in the

subsequent paragraph. Since the phase space point is selected from an equilibrated ensemble, the different

modes satisfy equipartition principle. We disturb the equilibrium of the system by adding excess energy to

one of the modes of interest, in our case this is the fundamental bending mode. We use the method of giving

an initial velocity disturbance.

In-order to perturb the velocity of a given mode we need to know the corresponding modal vector. A

modal vector describes the correlated motion between different degrees of freedom of a system. Let ~mi denote

the relative displacement of an atom i with respect to its mean position for the mode under consideration.

The set of ~mi for all the atoms forms the modal vector. Let ~vi be the velocity of the ith atom in the phase

space point that is selected from canonical ensemble. The modal velocity, vm, for the given configuration is

then obtained as

vm =

∑natoms
i=1 ~vi.~mi∑natoms
i=1 ~mi.~mi

(3.2)

Here, natoms is the total number of atoms. We wish to perturb the mode velocity by an amount ∆vm.

This can be done by changing the velocity vector of the ith atom by an amount ∆~vi such that ∆~vi =

∆vm ~mi∑natoms
i=1 ~mi.~mi

.

The atomic velocities are, thus, changed to ~vi + ∆~vi while keeping the space co-ordinates fixed. Subse-

quently, the structure is evolved as a micro-canonical (NVE) ensemble. Micro-canonical ensemble ensures

that the total energy of the system, E, remains conserved. As the system evolves, the phase space point

spreads itself on the constant energy sphere. In the process, excess energy of the excited mode is uniformly

shared with the rest of the modes. This can be seen by either monitoring the modal amplitude, am, or its

velocity, vm.

We excited the fundamental bending mode of a fixed-fixed nano-beam using method A. Figure 3.1(a)

shows a schematic of the simulation step-up. The bending mode in the y direction was excited and we

term it as mode 1. Mode shape for mode 1 was obtained using continuum theory. Using beam theory for a

fixed-fixed beam we get

~mi = ~e2
(
cos(βxmi )− cosh(βxmi )− 0.9825(sin(βxmi )− sinh(βxmi ))

)
. (3.3)

~mi denotes the modal displacement for atom i, xmi is the mean x co-ordinate, ~e2 is a unit vector in the y

direction and β is a constant. For a beam of length L0, β =
4.730

L0
. The velocity increment was provided
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Figure 3.1: a) A schematic of simulation set-up for computing the dissipation rate using method A. b) Time
evolution of ycm subsequent to mode 1 excitation.

such that the center of the beam had an initial maximum displacement of around 2.5 Å. This corresponds to

giving the center atoms a velocity increment ∆vc such that ∆vc = 2.5ωf . Here, ωf is the angular frequency

of mode 1. For providing the velocity increment an initial estimate of ωf was made using beam theory. The

velocity increment for the rest of the atoms was scaled in accordance with the mode shape given in Eqn.(3.3).

The co-ordinates (either displacement or velocity) of mode 1 can be obtained in accordance with Eqn.(3.2)

using ~mi from Eqn.(3.3). Alternatively, one can also monitor ycm, the y co-ordinate of the center-of-mass of

the system. For a system with the rest of modes in equilibrium and with mode 1 exited, ycm is a measure

of mode 1 displacement (see appendix A.1 for more details). Figure 3.1(b) shows the time evolution of ycm

with mode 1 excited. A sinusoidal decaying behavior is observed. From the fit of data, fm and τm were

determined. Q factor was computed using the relation provided before.

For stretching deformation method B was used. Figure 3.2(a) shows a schematic of the simulation set-up

for this method. In this method, the structure is isolated from the environment and subjected to a periodic

deformation. For a dissipative system, periodic forcing of the system results in an increase in the internal

energy. Thus, from the rate of increase of internal energy the dissipation rate, Edisp, can be computed. Let

Estored be the maximum elastic energy stored in the structure. Q factor, using method B, is determined

as Q = 2π
Estored
Edisp

. The details of implementing this method, for the case of stretching deformation, is now

described .

The structure was first equilibrated at desired temperature using Nosé-Hoover thermostat. Subsequent

to equilibration, the length of the structure was deformed periodically with an amplitude A and with an

angular frequency ωf . The structure was decoupled from thermostat during periodic forcing. Forcing the

structure, at any finite rate, results in disturbance of thermal equilibrium. Since the system is driven out-
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Figure 3.2: a) A schematic of the simulation set-up for computing the dissipation rate using method B. The
length of the structure in x direction is changed periodically with an amplitude A and angular frequency ωf .
The structure has periodic boundary condition in x direction, the dotted circles show the image atoms. b)
Increase in internal energy of structure with number of oscillation periods.

of-equilibrium, energy will be dissipated and work done during one complete cycle (one period of sinusoidal

motion) will be non-zero. The second law of thermodynamics states that the entropy of an isolated system

never decreases. From the law it can be inferred that for a thermally isolated system, that exchanges

work with the environment, no net work can be extracted during a cyclic loading. Further, for finite rate

deformations (under which the system moves out of equilibrium) the average work done on the system will

be positive. The average work done during a cyclic loading process is a measure of dissipation rate. Since the

system is decoupled from thermostat during loading, the work done will result in an increase in its internal

energy. Let ∆U be the increase in internal energy of system after n oscillation periods and W be the total

work done. From the first law of thermodynamics, it follows that W = ∆U . From the rate of increase of

mean energy, < U >, per unit period, the energy dissipated, Edisp, can be determined. Figure 3.2(b) shows

the plot of < U > with the number of oscillations for one of the ensembles under forced excitation. < U >

increases nearly linearly, the slope of the curve gives Edisp.

Method B was used to excite the stretching mode and to generate a spatially homogenous strain field. It

would be useful to deduce under what condition the resulting strain profile is nearly uniform. The equation

for longitudinal motion (in the forced direction) with no body force is given as

Estretch
∂2u(x, t)

∂x2
= ρ

∂2u(x, t)

∂t2
(3.4)

Here, Estretch is the Young’s modulus for stretching deformation, ρ is the density and u(x, t) is the x

displacement field. For the boundary conditions, we have u(0, t) = 0 and u(L0, t) = Asin(ωf t). L0 is the
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length of the structure considered. The steady state displacement profile with these boundary conditions is

obtained as u(x, t) = A
sin(ωf

√
Estretch

ρ x)

sin(ωf

√
Estretch

ρ L0)
sin(ωf t). Further, under the condition that ωf

√
Estretch

ρ
L0 <=

1, we have u(x, t) ≈ A x

L0
sin(ωf t). For a given value of ωf , L0 can be chosen such that a linear displacement

profile (and hence uniform strain field) is obtained. For stretching motion, ωf was taken to be the same as

that of mode 1 for a nano-wire with same cross-sectional area. The value of L0 was, then, considered such

that a nearly linear displacement profile is obtained.

For stretching deformation, the maximum elastic energy stored, Estored, is obtained as Estored =
1

2
V Estretchε

2
0.

Here, V is the volume of structure and ε0 is the strain amplitude. ε0 is related to displacement amplitude

as ε0 =
A

L0
. For our simulations we considered the value of ε0 = 0.002. Q factor, using method B, is

then obtained as Q =
2πEstored
Edisp

. For our studies, we considered two different materials, nickel and copper.

Embedded atomic method (EAM) potential [14] was used to model the force field for each of these materials.

Q factor was computed for bending (method A) and stretching (method B) deformation for structures with

different sizes. All MD simulations were performed using large-scale atomic/molecular massively parallel

simulator [59].

3.2 Results and Discussion

3.2.1 Size Study

Q factor was computed using method A for structures with a fixed length of 100 lc. lc is the lattice constant,

and has value of 3.5374 Å for nickel and a value of 3.615Å for copper. The cross-sectional area was varied

from 10 lc×10 lc to 18 lc×18 lc. Figures 3.3(a) and 3.3(b) show the plot of Q factor versus size (width)

obtained under bending deformation for nickel and copper, respectively. The plot shows that the Q factor

increases with the decrease in cross-sectional area for both the materials .

We next computed the Q factor using method B for stretching deformation. The length of the structure

was taken to be 12lc. The choice of this length resulted in a nearly uniform strain field. The cross-sectional

area was, again, varied from 10 lc×10 lc to 18 lc×18 lc. For a given cross-section area, the excitation frequency

was taken to be the same as that for bending deformation in the previous case.

Figures 3.3(a) and 3.3(b) also show Q factor versus size, as obtained, using method B. Q factor increases

with the decrease in size. Further, with the decrease in size the difference in Q factor between the two

deformation modes increases. The structure, therefore, has lower dissipation in bending in comparison with

stretching motion for smaller sizes.
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Figure 3.3: Variation of Q factor with size for bending and stretching deformation (a) Nickel and (b)
Copper.
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Using classical theory, dissipation is obtained by solving the coupled thermo-elastic equation. The equa-

tion for heat flow, in the presence of a strain field, is given as [45]

∂θ

∂t
= χ∇2θ − EαT0

(1− 2σ)Cv

∂

∂t

∑
j

εjj (3.5)

Here, χ is the thermal diffusivity, θ is the change in temperature from initial value, E is Young’s modulus,

σ is Poisson’s ratio, α is the linear thermal expansion coefficient, T0 is the equilibrium (initial) temperature

and εjj are the diagonal components of the strain tensor. For the case of uniform strain, the term
∑
j

εjj in

Eqn.(3.5) has no spatial dependence. For such a case, and with the initial condition θ(x, 0) = 0, the above

equation admits a solution of the form θ(x, t) = θ(t). The spatial uniformity of temperature field implies

that there is no heat flow and, therefore, no entropy generation. Hence, the dissipation value is predicted to

be zero for the case of uniform strain field. For the case of flexure, where the strain field is non-uniform, heat

flow takes place and dissipation admits a finite positive value. Thus, from the classical theory we expect

that dissipation will be more for the case of flexure. However, for the sizes studied, we observe that flexure

deformation is less dissipative in comparison with the case of uniform strain field.

In-order to understand the observed trend in dissipation rate, we first elucidate the governing dissipation

mechanism. For stretching deformation the resulting strain field is spatially uniform. For uniform strain

field and in the frequency range studied, dissipation takes place due to Akhiezer mechanism [1]. We provide

a brief description of Akhiezer damping.

Akhiezer mechanism

Akhiezer dissipation takes place due to the difference in the interaction of strain field with the vibrational

modes of the structure. The internal vibrational modes of a structure constitute the thermal phonons. The

underlying Akhiezer dynamics can be understood by considering a simplified case of two vibrational modes

which have different interaction with the strain field. Figure 3.4 depicts the Akhiezer damping mechanism.

The modes are represented as harmonic oscillators 1 and 2. The oscillators are initially in equilibrium, hence,

each of them have a thermal energy of kbT . Here, kb is the Boltzmann constant and T is the temperature of

system. Strain field modulates the potential energy curve and, hence, the frequency of oscillators. For the

ith oscillator, frequency, ωi, varies with strain, ε, as

ωi = ω0
i (1− ελi). (3.6)

Here, ω0
i is the frequency in reference configuration and λi is the Grüneisen parameter.
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Figure 3.4: A schematic illustrating Akhiezer dynamics. The two oscillators, 1 and 2, are initially in equilib-
rium. Strain modulates the potential energy profile for the oscillators. The solid curve shows the potential
energy profile in the reference configuration while the dashed ones correspond to strained configuration. For
oscillator 1 strain increases the curvature while it decreases for 2.

Frequency modulation results in a change in modal energy. The change in energy due to the imposed

strain can be obtained by using the concept of adiabatic invariant. When the curvature of an oscillator is

modulated, such that the rate of modulation is slow in comparison with the frequency of the oscillator, the

ratio of its energy to frequency remains conserved [34]. It then follows that
dEiωi
dε

= 0. Ei is the energy of

the ith oscillator. Expanding the differential operator we get dEεi = −dωi
ωi

Ei. dE
ε
i represents the differential

change in energy for the ith oscillator due to the change in ε. Using the relation between ωi and ε from

Eqn.(3.6) we obtain

dEεi = −λiEidε (3.7)

For the case, when the two oscillators have different values of λi, the applied strain will result in an energy

difference between them. The modes will interact with each other and tend to restore energy equipartition.

The differential energy change, dEmi , due to the inter-modal interaction can be described using the relaxation

time approximation as dEmi =
(< E > −Ei)dt

τ
. Here, < E > is the mean energy of the system and τ is the

relaxation time. The total energy change, dEi, for the ith mode is then given as dEi = dEεi + dEmi . For an

oscillating strain field with strain amplitude ε0 and oscillation frequency ωε we obtain

dEi
dt

=
< E > −Ei

τ
− λiEiωf ε0cos(ωf t) (3.8)

The time rate of change of < E > can be obtained by adding Eqn.(3.8) for different values of i and is
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given as

d < E >

dt
=< λ >< E > ωf ε0cos(ωf t) +∆λ∆Eωf ε0cos(ωf t) (3.9)

Here, < λ >=
λ1 + λ2

2
, ∆λ =

λ1 − λ2
2

and ∆E =
E1 − E2

2
. Integrating Eqn.(3.9) for the nth oscillation

period and taking < E > to be constant in the R.H.S we obtain

< E((n+ 1)Tp) > − < E(nTp) >=

∫ (n+1)Tp

nTp

∆λ∆E(t)ωf ε0cos(ωf t)dt. (3.10)

Tp is the oscillation time period and is related to ωf as Tp =
2π

ωf
. Further, using Eqn.(3.8) we obtain

d∆E

dt
+
∆E

τ
= ∆λ < E > ωf ε0cos(ωf t). (3.11)

Approximating < E >= kbT , the above equation admits an analytical solution. Using the analytical solution

for ∆E in Eqn.(3.10) we obtain

Edisp = πkbT∆λ
2ε20

ωfτ

1 + (ωfτ)2
(3.12)

Here, Edisp =< E((n+ 1)Tp) > − < E(nTp) >. Eqn.(3.12) represents the change in mean energy of thermal

oscillators for one oscillation period. Clearly, for ∆λ 6= 0, the mean energy of the oscillators increases with

time. This increase in energy takes place at the expense of mechanical energy and is the case for Akhiezer

damping.

For the case when ωfτ < 1, Eqn.(3.12) gives Edisp ∝ ωf . For stretching deformation ωf was taken to be

the same as that for bending. Using beam theory, ωf for mode 1 is obtained as ωf = w

√
Ebend
12ρ

(4.730

L0

)2
.

In this expression, Ebend is the effective Young’s modulus in bending, L0 is the length and w is the width of

the beam. From the expression for ωf we observe that for structures with fixed L0, ωf decreases with the

decrease in w. Hence, Edisp is expected to decrease with the decrease in w, assuming other parameters in

Eqn.(3.12) have a weaker size dependence. This explains the increase in Q factor with the decrease in size

as observed using MD simulation.

We now consider the phonon dynamics in an oscillating nano-wire with spatial flow of energy. We first

consider the case of flexure deformation. The results for the flexure deformation are, then, compared with

the case of uniform strain field.

Phonon Dynamics

In flexure deformation, the resulting strain field is no longer uniform. The strain field varies linearly along

the lateral direction (see appendix A.2 for strain field calculation). Figure 3.5 shows the strain field variation
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along the lateral (y) direction as obtained using MD simulation. A non-uniform strain field results in a

spatial energy gradient. The flow of energy due to the imposed spatial gradient results in an additional

dissipation known as the thermo elastic damping (TED).

0 1 2 3 4 5 6 7 8
−0.025

−0.02

−0.015

−0.01

−0.005

0

0.005

0.01

0.015

0.02

0.025

y (nm)

ε
x
x

 

 

MD

Linear Profile

Figure 3.5: Variation of strain profile along the lateral direction.

In-order to understand the observed trend, we first develop equations governing the energy for thermal

modes when the resulting strain field is non-uniform. We, again, consider a simple case where we have two

different thermal modes 1 and 2. In-order to consider energy transport, the modes are now represented

as traveling waves. We consider a one dimensional case with the flow of energy confined along the lateral

direction(y) of the beam. Since, the strain gradient is maximum along the y direction for bending defor-

mation, this is a valid approximation. For such a case, we can have the wave as either traveling upward

or downward. Figure 3.6 depicts the thermal modes represented as upward and downward traveling waves

along the lateral direction of an oscillating beam. Henceforth, the superscripts + and − refers to waves

traveling along the positive and negative y axis, respectively.

Let E+
i (y) and E−i (y) represent the energy density associated with the upward and downward traveling

waves for thermal mode i. The change in the energy density due to strain and inter-modal interaction is

described using the equations developed before for the case of Akhiezer damping. The strain, however, for

the present case is a spatially varying field and needs to be taken into consideration. Further, we also need

to account for the energy change due to the spatial flow. The energy change due to the spatial flow is

given using the wave equation [68]. The equation governing the energy density for a thermal mode i is then

obtained as

∂E+,−
i (y, t)

∂t
+ v+,−g

∂E+,−
i (y, t)

∂y
=
< E(y, t) > −E+,−

i (y, t)

τ
− λiE+,−

i

dε(y, t)

dt
(3.13)
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Figure 3.6: Thermal modes represented as upward and downward traveling waves for the case of flexure
motion.

Here, v+,−g represents the mode group velocity and satisfies the relation v+g = −v−g = |vg|. < E(y, t) >

is the mean energy density given as < E(y, t) >=
1

4

2∑
i=1

E+
i (y, t) + E−i (y, t). Eqn.(3.13) is the phonon

Boltzmann transport equation [68] represented in terms of modal energy. A source term, due to mechanical

coupling, has been included in the transport equation. Further, we have considered a simplified case with

wave velocity confined along one-dimension. Also, we have considered only two thermal modes, effectively

representing the longitudinal and transverse modes. The value of |vg| was determined using the relation

|vg| =

√
C11

ρ
. Here, C11 is the elastic constant and ρ is the material density. For the one dimensional case,

the effective group velocity needs to be scaled [52] by a factor of
1

2
and was taken into consideration.

We consider ε(y, t) = −κysin(ωf t) as the strain field along the lateral direction for bending. κ is

curvature of the deformed beam. For small strain in the elastic regime, the computed Q factor was found

to be independent of κ and hence we set κ =
0.02

w
. Eqn.(3.13) needs to be supplemented with a proper

boundary condition at the ends. Adiabatic boundary condition implies that the energy density for + and −

waves for a given mode should be the same at y = +
w

2
and y = −w

2
. Eqn.(3.13) was solved numerically using

the finite difference method. Adiabatic boundary condition was used. The case of nickel was considered.

The same width size, as taken in MD simulations, was used. For a given size, oscillation frequency was also

taken to be the same as that obtained using MD. The value of τ was considered as a function of size and was

obtained from previous studies. We set λ1 = 1.8 and λ2 = 0.60. The dissipation rate, Edisp, was computed

as the rate of increase of average internal energy, < U >, per unit period. < U > for the nth period is

obtained as < U >=
1

Tp

∫ (n+1)Tp

nTp

∫ w/2

−w/2
< E(y, t) > dydt. The energy stored, Estored, was obtained using
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the relation Estored =

∫ w/2

−w/2

1

2
Ebend(ε(y))2dy. Q factor was then computed as Q = 2π

Estored
Edisp

.

We also obtained the Q factor for stretching deformation using Eqn.(3.13). For stretching deformation

we used ε(y, t) = ε0sin(ωf t). For a given cross-sectional area, the oscillation frequency was taken to be the

same as that for bending deformation. Figure 3.7 shows the plot of Qr with size for the case of nickel as

obtained using Eqn.(3.13). Qr is defined as the ratio of Q factor for bending to that of stretching deformation.

The plot also depicts the values of Qr obtained from MD simulations. The results computed from phonon

dynamics are in agreement with MD simulations with some deviations for smaller size.
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Figure 3.7: Variation of Qr, the ratio of Q factor for bending to stretching deformation, with size as obtained
using one-dimensional model.

From this simple model, we can infer why dissipation is lower for the case of flexure for smaller sizes.

When the strain field is uniform, dissipation takes place due to difference in energy between the two thermal

modes. In the case of flexure, energy difference between the two groups varies linearly along the lateral

direction and attains a maximum value at the boundaries. A spatial flow of energy takes place due to

the established energy gradient. Surface aids in establishing local equilibrium between the incoming and

outgoing waves. This effectively reduces the time required for energy transfer between the two groups and

thus helps in lowering dissipation.

It would, also, be useful to identify the important parameters that govern dissipation for the two defor-

mation modes. For the case of stretching deformation, we established before that dissipation takes place due

to difference in the energy between the two mode groups.The imposed strain results in an energy difference

between the groups. An inter-modal current flow takes place leading to entropy generation. In the limit that

λ1 = λ2, the two modes will always have the same energy value. In this limit, the stretching deformation

will have no dissipation (using Eqn.(3.12)). For such a case, dissipation will be higher for the case of flexure
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for all the sizes.

Since, there is no transport of energy between different regions for the case of stretching, Q factor does

not depend on the wave velocity magnitude |vg|. However, for the case of flexure |vg| plays an important

role. A higher wave speed enhances the rate of energy transport. This results in lowering the equilibration

time and hence reduces the dissipation rate. This was, indeed, confirmed by solving Eqn.(3.13) for different

values of |vg|. Edisp was found to decrease with the increase in |vg| and keeping other parameters constant.

3.2.2 Role of Tension

We also studied the role of tension on Q factor for a fixed-fixed nickel beam and under flexure deformation.

The initial tension was provided by giving the structure a strain along the length direction and then keeping

the ends fixed. Q factor was, then, computed using method A as described in the methods section. The

structure with zero axial stress was taken as the reference configuration. The purpose of studying the role of

tension on Q factor is two-fold. It has been shown that tensile stress can be used to enhance the Q factor for

a nano-wire[74? ]. It would, therefore, be useful to study the role of tension for the case of intrinsic damping.

We develop scaling relations for the variation of Q factor with the initial tension using continuum theory.

Also, the under co-ordinated surface atoms in a nano-structure have residual stress. This residual stress can

be accounted for by considering an effective initial tension in the nano-beam. Thus, a study of the role of

tension would also provide an understanding of the role of surface tension on damping in a nano-structure.

We computed Q factor for a nickel nano-beam with a cross-sectional area of 12.51 Å2 and with different

values of initial strain (or tension). Figure 3.8 shows the plot of Q factor with strain in the structure, as

obtained using MD simulation. Q factor shows a non-monotonic dependence on strain. It first increases with

the increase in tensile strain and then decreases. A similar observation was also made in previous study[? ].

In-order to understand the observed scaling of Q factor with strain, we first study the variation of resonant

frequency with axial tension.

Let T0 be the tension in nano-beam and Ebend be the effective Young’s modulus in bending. The equation

governing the free vibration of a beam is given as [55]

EbendI
∂4u

∂x4
− T0

∂2u

∂x2
+ µ

∂2u

∂t2
= 0 (3.14)

Here, u is the displacement in the y direction, I is the moment of inertia and µ is the mass per-unit

length. The mode shape, Φ(x), and the resonant frequency, ωm, can be obtained by assuming a solution of

the form u(x, t) = Φ(x)exp(iωmt). Using this variable-separable solution in Eqn.(3.14), we get an eigen-value
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Figure 3.8: Variation of Q factor with axial strain for the case of nickel.

problem for Φ(x) and ωm as (
EbendI

d4

dx4
− T0

d2

dx2

)
Φ(x) = µω2

mΦ(x) (3.15)

The eigen-value problem was solved numerically using the finite element (FEM) to determine Φ(x) and ωm.

For a beam subjected to an axial strain, εs, the resultant tension, T0, is given as T0 = AEstretchεs. Here, A is

the cross-sectional area and Estretch is the effective Young’s modulus of the beam in stretching deformation.

Estretch is, in general, different from Ebend for the case of a nano-wire. We provide a brief description of the

method to obtain Estretch and Ebend using the quasi-harmonic theory in the Appendix.

Figure 3.9 shows the plot of ωm versus strain as obtained using Eqn.(3.15). The plot, also, depicts the

results obtained using MD simulation. A good agreement between the two results is obtained. The resonant

properties of a nano-beam are, therefore, aptly captured using the beam theory.
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Figure 3.9: Variation of resonant frequency for the fundamental bending mode with axial strain.
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The resonant properties of a nano-beam can, now, be used to study its dissipative behavior. In-order

to describe dissipation using continuum theory, one needs to account for the viscous component, σv, of

the stress. A constitutive relation governing the time evolution of σv is also required. We consider the

phenomenological relation [40]

σv = Elossε̇. (3.16)

Here, Eloss is the loss modulus and ε̇ is the strain rate. The value of Eloss was determined such that we

get the same Q factor, as that obtained using MD, for the zero strain case. The energy dissipated per unit

period, Edisp, is then obtained as

Edisp =

∫ 2π
ωm

0

∫ ∫ ∫
σv ε̇(x, y, z, t)dvdt (3.17)

Here ε(x, y, z, t) is the strain field in the vibrating nano-beam. For a beam with a displacement profile, u(x),

the strain field, ε(x, y, z), is given as

ε(x, y, z) = −y d
2u(x)

dx2
+

1

2

(du(x)

dx

)2
(3.18)

The first term in the above expression corresponds to bending deformation and the second term corresponds

to increase in length (or stretching) of the neutral axis of the beam. The stretching component is a non-linear

term and can be neglected for small deformation. Thus, for an oscillating beam with mode shape Φ(x) and

angular frequency ωm we get ε(x, y, z, t) = −y d
2Φ(x)

dx2
sin(ωmt). This expression for strain field was used in

Eqn.(3.17) to determine Edisp. The value of Eloss was taken to match Edisp obtained from MD simulation

for the case of no initial tension. For a structure under resonant motion, the maximum elastic energy is

equal to the maximum kinetic energy. The maximum elastic energy stored, Estored, was thus obtained as

Estored =

∫ L

0

1

2
µΦ2(x)ω2

mdx. From these values Q factor was determined. Figure 8 shows the plot of Q

factor vs. strain, as obtained, using continuum theory. The initial increase in Q factor with applied strain is

described using continuum relation. However, the theory fails to capture the decrease in Q factor observed

for higher strains. For higher strain values, Eloss can no longer be assumed to be a constant as has been

used in our model. The value of Eloss depends on the material properties such as the relaxation time,

thermal conductivity, etc. These properties are expected to change for large strain values. Also, additional

mechanisms, such as mode coupling, can become active for larger strains and hence modify the value of

Eloss.
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3.3 Conclusions

Dissipation in nano-wires under two different modes of deformation, stretching and bending, were studied. Q

factor was found to be lower for the stretching motion in comparison with the bending mode. Further, with

the decrease in cross-sectional area of the beam the difference in Q factor between the two modes increased.

A simple model using phonon dynamics was developed to explain the observed scaling of Q factor with

size. We also studied the effect of axial strain on dissipation rate in the flexure motion. A non-monotonic

dependence for Q factor was observed. The initial increase in Q factor with the applied strain was explained

using continuum theory.
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Chapter 4

Multi-Scale Modeling

4.1 Introduction

Intrinsic dissipation takes place as a result of the coupling between the mechanical deformation and the

internal thermal vibrations in a structure. An irreversible flow of energy takes place resulting in an increase

in the entropy of the system. In the classical thermo-elasticity, the thermal vibrations are quantified in

terms of the temperature field. Such a description invokes the condition of local equilibrium. The mean

thermal energy or the temperature field, then, suffices as a complete description of the system. However,

this approximation is not valid in the case of nano-resonators.

Nano-resonators have vibrational frequency in the order of few GHz. For such high frequencies of vibra-

tion, the time-scale of mechanical deformation becomes comparable to the phonon relaxation time. Deforma-

tion of a structure, at rates comparable to the phonon relaxation time, drives the phonon out of equilibrium.

For such cases, the mean thermal energy or the temperature, is not an adequate description of the thermal

field. Additional variables, that characterize the deviation from equilibrium, are required to describe the

thermal field. The out of equilibrium phonon population, then, results in the absorption of energy from the

mechanical deformation. Akhiezer mechanism [1] characterizes the damping due to this local disturbance of

the phonon population. The dissipation rate due to the Akhiezer mechanism is, often, quantified using a

reduced order two oscillator model [4]. In this work, we provide a detailed quasi-harmonic based multi-scale

approach to model intrinsic dissipation due to perturbation of the local phonon distribution.

The thermal vibrations in a structure and its coupling with the mechanical field are, accurately, de-

scribed using the QHM method[72, 80]. The existing QHM frame-work is, however, valid for quasi-static

deformation. In this work we extend the QHM method to model the intrinsic dissipation in solids under

the high frequency vibrations. We introduce a non-equilibrium component of the stress tensor, σneqb. The

stress tensor characterizes the deviation from local equilibrium and vanishes under quasi-static deformation.

A constitutive relation, that governs the time evolution of σneqb, is obtained. The time evolution for σneqb

is described by a forcing and a relaxation term. The forcing rate is parametrized in terms of a dissipation
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tensor D which is obtained using QHM. We, also, discuss a stochastic sampling method to obtain D. The

relaxation dynamics for σneqb is obtained using Langevin dynamics in the basis of normal modes. In this

approach, each of the modes is modeled as a noisy harmonic oscillator. The proposed methodology is, then,

used to study the effect of different parameters on the dissipation rate. Vibrations with frequency in the

range of few GHz are considered. The results are compared with those obtained using non-equilibrium MD.

The chapter is organized as follows. In section 4.2 we obtain the constitutive relation for σneqb using

QHM. Methods to obtain the dissipation tensor, D, and the stress relaxation rates are, then, discussed. In

section 4.3 we apply the method to compute the dissipation rate as a function of different parameters. The

comparisons with the MD results are provided alongside. Finally, the conclusions are given in section 4.4.

4.2 Theory and Method

In the methods section we will first obtain an expression for the non-equilibrium stress using the QHM

method. We will then, derive, a constitutive relation that governs the time evolution of the non-equilibrium

stress. The constitutive relation, as obtained, shows two physical processes, a forcing term and a relaxation

term. The forcing term will be characterized in terms of a dissipation tensor D. An expression for D, in

terms of the material parameters, will be obtained. We will also discuss a non-equilibrium sampling method

to parametrize D. We will, then, describe the stress relaxation behavior. Lanegvin dynamics and Green

Kubo forumation will be used in this regard.

4.2.1 Non-Equilibrium Stress

In this section we shall derive an expression for stress tensor under non-equilibrium condition. We consider

the case of crystalline structure that is amenable to the quasi harmonic approximation. This implies that

the atoms undergo small thermal vibrations about the mean positions. For a given mean position of atoms,

the quasi-harmonic approximation, then, suffices to describe the thermal vibrations. We briefly describe

the QHM method. For the details of QHM the reader is referred to [72, 80]. In essence, the QHM method

considers a Taylor series expansion of the governing inter-atomic potential for a given mean position of the

atoms. The potential energy is, then, approximated by retaining the second order terms in the expansion.

The quadratic expression for the truncated Hamiltonian is decoupled using normal modes. These normal

modes constitute a set of orthogonal directions in the configuration space. For the quadratic Hamiltonian,

the motion along one direction is independent along the other.

Using QHM, the Hamiltonian, can, thus, be written in terms of the modal co-ordinates. Let ai denote

the mode displacement, ωi denote the frequency and vi be the velocity for a mode i. The Hamiltonian, H,
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is, given as

H =

nmodes∑
i=1

1

2
mω2

i a
2
i +

1

2
mv2i . (4.1)

Here, nmodes is the number of modes and m is the atomic mass. nmodes = 3×nat, where nat is the number

of atoms in the system.

The thermal state of the system is completely described by specifying the probability density function

(PDF) for the mode co-ordinates. Under the equilibrium condition, characterized by temperature, T , the

PDF for ai is given as

P (ai) =
1

Z
exp

(
−mω

2
i a

2
i

2kbT

)
. (4.2)

Here, kb is the Boltzmann constant and Z is the partition function.

The PDF in Eq.(4.2) is only valid under the condition of local equilibrium. When this condition is

violated, the modes no longer satisfy the energy equi-partition principle. Instead, each mode i is characterized

by a non-equilibrium temperature Ti. The PDF, Pneqb(ai), for ai for such a state is, then, given as

Pneqb(ai) =
1

Z
exp

(
−mω

2
i a

2
i

2kbTi

)
. (4.3)

This expression for Pneqb(ai) has been obtained using the principle of maximum entropy[29]. A derivation

for this is provided in the appendix section B.1.

We, shall, now derive an expression for the stress tensor for the non-equilibrium state. Let σ denote the

thermal stress tensor and let σij denote its components. σij is given as

σij =
1

V

∂ < H >

∂εij
. (4.4)

Here, and for all future purpose, the symbol < ... > refers to the ensemble average. V is the volume

and εij are the components of the strain tensor, ε. Using the expression for H in Eq.(4.1) and the PDF in

Eq.(4.3), we obtain

σij =
1

V

nmodes∑
n=1

∫
1

2
m
∂ω2

n

∂εij
a2nP (an)dan (4.5)

We define λijn such that λijn =
−1

ωn

∂ωn
∂εij

. Using the definition of λijn and further simplifying Eq.(4.5) we

get

σij =
1

V

nmodes∑
n=1

λijnEn. (4.6)

Here, En is the mean energy for mode n and is related to Tn as En = kbTn. Using a little algebra, the
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expression for σij can be, further, re-casted as

σij =
nmodes

V
λij E +

1

V

nmodes∑
n=1

∆λijn∆En. (4.7)

Here, and for all future reference, the symbol x is defined as x =
1

nmodes

nmodes∑
n=1

xn, where xn is any mode

variable for a mode n. Also, ∆En = En−E and ∆λijn = λijn −λij . We have, thus, decomposed the stress into

two components. Under the condition of equilibrium, the modes satisfy the energy equi-partition principle

and we have ∆En = 0. The second term in Eq.(4.7), then, vanishes. We, thus, identify this term as the

non-equilibrium component of the stress tensor, σneqb. While the equilibrium stress is a state property, the

non-equilibrium stress depends on the rate of deformation of the system. In the next section we will derive

an Eq. that governs the time evolution of σneqb. For all future purpose we shall, simply, refer to σneqb as

σ. The components of σ are, therefore, given as

σij =
1

V

nmodes∑
n=1

∆λijn∆En. (4.8)

4.2.2 Constitutive Relation

In this section we will derive the constitutive relation that governs the time evolution of σ. Using physical

arguments we first state the result. We shall, then, provide a derivation for the different terms in the expres-

sion based on the QHM method. We will also present a non-equilibrium sampling approach to parametrize

the constitutive relation in the next section.

The time evolution of σ is given as

dσ

dt
= D

∂ε

∂t
+

(
∂σ

∂t

)
relax

. (4.9)

Here, D is a fourth order dissipation tensor, the second term on the R.H.S describes the relaxation of the

stress tensor. An expression for D will be derived subsequently. Eq.(4.9) shows that the evolution of σ results

from two competing factors. Deformation of the system at any finite rate drives it out of equilibrium. Under

the linear approximation, the rate at which the system deviates from the equilibrium state is proportional to

the driving rate. The first term in the above Eq. describes this phenomenon. Further, if left unperturbed,

the system tends to relax towards the corresponding equilibrium state. σ, which measures the deviation

from the equilibrium state, correspondingly relaxes towards a zero value. This is described by the second

term in Eq.(4.9).
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In-order to derive the Eq. that governs the time evolution of σneqb we take the derivative of Eq.(4.8)

with respect to time. We, then, obtain

σ̇ij =
1

V

nmodes∑
n=1

∆λijn∆Ėn. (4.10)

In the above Eq. we need to substitute the time derivative of ∆En. The energy of a mode changes due to

two processes. The applied deformation field injects (or extracts) energy from each of the modes. Further,

the modes interact with each other and an inter-modal flow of energy takes place. We shall first consider

the energy change due to the applied strain. The rate of change of En due to the change in strain, εij , is

obtained as

∂En
∂εij

=

∫
1

2
m
∂ω2

n

∂εij
a2nPneqb(an)dan. (4.11)

Using the expression for Pneqb(an) in Eq.(4.3) and carrying out the integration we obtain

(
∂En
∂t

)
εij

= λijnEn
dεij
dt

. (4.12)

Here,

(
∂En
∂t

)
εij

denotes the time rate of change of En due to the change in εij .

Adding the above Eq. for all values of n we obtain

(
∂E

∂t

)
εij

= λij E
dεij
dt

+∆λij∆E
dεij
dt

. (4.13)

Here,

(
∂E

∂t

)
εij

denotes the time rate of change of E due to the change in εij . For small deformations in

the linear regime, the system shows a weak deviation from the equilibrium state. Under such a condition, the

second term in the RHS of Eq.(4.13) is negligible in comparison with the first term. Using this approximation

and taking the difference between Eq.(4.13) and Eq.(4.12) we get

(
∂∆En
∂t

)
εij

= ∆λijn kbT
dεij
dt

. (4.14)

Here,

(
∂∆En
∂t

)
εij

denotes the time rate of change of ∆En due to the change in εij . In deriving the above

expression we have also used the approximation that Em ≈ kbT . We have, thus, obtained an expression for

the time rate of change of ∆Em due to change in εij . We will now discuss the case of inter-modal interaction.

Let

(
∂∆En
∂t

)
coll

denote the time rate of change of ∆En due to inter modal interaction. Using a single

relaxation time approximation this is, often, given as

(
∂∆En
∂t

)
coll

= −∆En
τ

. Here, τ denotes the single
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relaxation time for all the modes. We will, however, not use the single relaxation time approximation.

Instead, we shall resort to mode Langevin dynamics and obtain an effective relaxation rate for σneqb. In this

approach, each mode n has its own characteristic relaxation time τn. The details of stress relaxation will be

discussed in the later section. For the time being we shall just retain the expression

(
∂∆Em
∂t

)
coll

to denote

the energy change due to collision.

The total rate of change of ∆En due to strain and the inter-modal interaction is, then, obtained as

d∆En
dt

= ∆λijn
dεij
dt

+

(
∂∆En
∂t

)
coll

. (4.15)

Using this expression in Eq.(4.10) we obtain

dσij
dt

=
1

V

[
3,3∑

p=1,q=1

nmodes∑
n=1

∆λijn∆λ
pq
n

dεpq
dt

+

nmodes∑
n=1

(
∂∆λijn∆Em

∂t

)
coll

]
. (4.16)

In-order to write the above Eq. in a compact form we define the fourth order dissipation tensor D. The

components of D are given as

Dijkl =
3kbTρ

m
∆λijn∆λkln . (4.17)

Here, ρ is density and m is the atomic mass. We realize that the second term in Eq.(4.16) denotes the

relaxation of the non-equilibrium stress. Eq.(4.16) can, therefore, be re-casted as

dσ

dt
= D

∂ε

∂t
+

(
∂σ

∂t

)
relax

. (4.18)

We, thus, obtain a constitutive relation that governs the time evolution of σ. The dissipation tensor, D,

can be obtained from QHM using Eq.(4.17) . It, still, remains to parametrize the relaxation term in the

governing Eq., this will be pursued in the latter section. Before discussing the relaxation dynamics we will

discuss an alternative approach to parametrize D. In this approach a stochastic method is used to sample

the non-equilibrium states.

4.2.3 Non-Equilibrium Stochastic Sampling

In the previous section, the QHM approximation was used to obtain an expression for the non-equilibrium

stress tensor, σ. Subsequently, we derived an expression for the time evolution of σ. We obtained a

dissipation tensor, D that characterizes the time rate of change of σ due to the change in ε. We can,

alternatively, obtain D by measuring the stress for a system as a function of its deviation from the equilibrium

state. In this approach, we use virial stress tensor obtained using the inter-atomic potential. The QHM
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approximation for the stress, as used in the previous section, is not invoked. In-order to motivate this

approach we shall, first, provide a physical interpretation of D.

We consider a system that is initially in thermal equilibrium and is subjected to a differential strain dεij .

Let dσVij denote the differential change in the virial component of stress and as measured instantaneously.

The term instantaneous, here, implies time scales which are small compared with the time required for

thermalization. dσVij , then, results from two processes. First, it results from the change in the mean position

of the atoms and corresponds to the elastic contribution. Secondly, it results from the system being driven

out of the equilibrium state and corresponds to the dissipative component. Let dσDij denote the component

of σVij that results from the second effect. The dissipation tensor D can, then, be obtained such that its

components are given as

Dijkl =
∂σDij
∂εkl

. (4.19)

We, will, use the above Eq. to compute Dijkl. For this purpose, we need to extract the stress component

that results from the deviation of the system from the equilibrium state. In-order to obtain this, we will

generate atomic configurations in the non-equilibrium state and with same mean position of the atoms. The

difference in the stress value of the non-equilibrium state from the equilibrium configurations, then, gives

us σDij . Stochastic sampling approach will be used for this purpose. In essence, the stochastic sampling

approach generates the micro-states according to a given PDF. For computing D we use a non-equilibrium

PDF. Hence, the method is referred to as non-equilibrium stochastic sampling. We will briefly outline the

approach here. The details of the algorithm, for performing the stochastic sampling, is discussed in the

appendix section B.2.

For sampling a non-equilibrium state we, first, need to characterize it and construct the corresponding

PDF. We construct the PDF in the basis of the mode co-ordinates. We consider a non-equilibrium state

that results from applying an instantaneous strain εkl on the system. This results in different modes having

different temperature. For a mode i, the temperature Ti is given as Ti = T + ∆λkli εkl. The different terms

have the same representation as introduced before. The PDF for ai is, then, obtained, as

P (ai) =
1

Z
exp

(
−mω

2
i a

2
i

kbTi

)
. (4.20)

For a given value of εkl we, first, determine the values of Ti for all the modes. The PDF for ai is, then,

constructed, using Eq.(4.20). We sample the values of ai using the given PDF. The ai values are used

to determine the atomic displacement using the linear transformation. An atomic configuration is, thus,

obtained. Different samples are generated in this manner. The sampled sets are, then, used to compute the
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virial stress tensor. Let σVij denote the mean virial stress tensor for a given non-equilibrium state. We also

determine σVij for the equilibrium configuration. The difference between the two values gives the dissipative

stress σDij . From the slope of the linear fit of σDij vs εkl, Dijkl is determined.

4.2.4 Stress Relaxation

The constitutive relation for the time evolution of σ in Eq.(4.9) has two governing terms. The first term on the

R.H.S corresponds to the forcing term while the second one describes the relaxation towards equilibrium.

The forcing term was characterized using D. We have, already, discussed methods to obtain D in the

previous sections. In this section we seek to characterize the relaxation behavior of the non-equilibrium

stress component.

Microscopically, stress relaxation results from the interaction between the different modes. We, therefore,

need to model the modal dynamics to characterize this behavior. We will use the Langevin frame-work to

describe the dynamics of the modes. Further, we shall resort to the Green-Kubo formulation and obtain

the stress relaxation. For the systems considered, the stress relaxation shows an exponentially decaying

behavior. We will, therefore, eventually characterize the relaxation of σ using an effective relaxation rate,

τrelax, such that (
∂σ

∂t

)
relax

= − σ

τrelax
. (4.21)

The objective of this section is to provide an algorithm to determine τrelax for different structures. It would

be useful, here, to briefly outline the main steps in the algorithm. This will aid the reader in understanding

the general flow of the section. We will use mode Langevin dynamics to determine τrelax. The first step

required for the Langevin simulation is the parametrization. Langevin simulation needs as an input the

momentum relaxation time, τmi , for mode i. We shall use a stochastic sampling approach to determine τmi .

For determining τmi using the stochastic sampling approach, one needs an additional information of the noise

relaxation time, τni . This closure is provided by performing a MD simulation of a reference bulk structure.

The τmi values are, then, used to perform the Langevin simulation and determine τrelax.

The section is organized as follows. We will, first, state the governing Eq. for the mode Langevin dynamics

and describe the different input parameters. We will, then, discuss the method to determine τni using MD

for a bulk reference structure. Next, we shall discuss the stochastic sampling approach to determine the

momentum relaxation time τmi . This completes the discussion on parametrization step. Finally, the method

to determine τrelax using the mode Lagevin dynamics will be discussed.
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Langevin Dynamics

The Eq. governing the dynamics of a mode i, using the Langevin approximation, is given as[15]

m
d2ai
dt2

+
2m

τmi
vi +mω2

i ai = ri(t). (4.22)

Here, m is the effective mass, ωi is the mode frequency and τmi is the momentum relaxation time. ri is the

noise force with a correlation time τni such that ri(0)ri(t) =< r2i > exp(−t/τni ). For the cases considered, τni

is of order of few fs. Hence, the Langevin approximation suffices for describing the mode dynamics. Further,

τni , τmi and ri are related using the fluctuation dissipation theorem[15] as

< r2i >=
2mkbT

τni τ
m
i

(4.23)

This relation will be used in the parametrization step. For evolving Eq.(4.22) we need to know the values

of different terms. The mode frequency, ωi, is obtained using the QHM method. We first use bulk MD as a

parametrization step to determine τni .

We consider a bulk structure with a dimension of 8 unit cells in each direction. The structure is first

equilibrated at a desired temperature using a Nosé-Hoover thermostat. It is, then, evolved as a micro-

canonical ensemble. The generated trajectories are used to determine the time series data of the mode

variables. We, thus, obtain the mode displacement, ai(t), the mode velocity, vi(t), and the mode force, fi(t)

as a function of time.

We construct the velocity auto-correlation function (VACF), Cvivi(t), such that Cvivi(t) =< vi(0)vi(t) >.

VACF shows an oscillatory decaying behavior. From the decay rate, the momentum relaxation time, τmi ,

is determined for the bulk structure. We need to determine the value of τni . For determining τni , we first

equate the MD modal force with the mode force from the Langevin model. We, thus, obtain

fi(t) = −mω2
i ai(t)−

2mvi(t)

τmi
+ ri(t). (4.24)

Further, rearranging the above Eq. and taking the second moment of the L.H.S and the R.H.S we get

< (fi +mω2
i ai)

2 >=<

(
2mvi
τmi

)2

> + < r2i > . (4.25)

In deriving this expression we used the condition that < fivi >= 0. This indeed is true for the equilibrium
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state. Further, using < v2i >=
kbT

m
and the relation in Eq.(4.23) we obtain

< (fi +mω2
i ai)

2 >=
4mkbT

(τmi )2
+

2mkbT

τni τ
m
i

. (4.26)

The L.H.S of the above Eq. can be computed using the time series data of mode variables fi(t) and ai(t).

These are obtained from the bulk MD simulation. τmi was determined using the VACF and as discussed

before. These values are, then, substituted in Eq.(4.26) to determine τni . We compute τni for different

modes. A strong dependence of τni on ωi was observed. We perform a polynomial fit of τni vs. ωi using the

data set obtained. The fitted function is the first step in the parametrization for Langevin simulation. This

information will now be used to determine the τmi values of any other structure of interest.

We consider the case of a structure with free surface. In-order to describe the mode dynamics for this

structure, we need to estimate the values of τmi . The values of τmi for structures with free surface is,

in general, different from the bulk case. The presence of surfaces modifies the phonon spectrum and its

dynamics. The surface effect on the phonon dynamics is, often, described using a phenomenological relation

for the surface scattering term. Here, we will use the underlying inter-atomic potential and a stochastic

sampling approach to capture the surface effect on the phonon dynamics.

We shall use Eq.(4.26) to determine τmi for the finite sized structure of interest. The unknowns in

Eq.(4.26) are the terms on the L.H.S and the value of τni . We already parametrized τni as a function of ωi

using a reference bulk structure and, hence, is known. For estimating the term on the L.H.S of Eq.(4.26), we

recognize that an ensemble averaging is required. We, therefore, need to generate ensembles of micro-states.

For this purpose we will use a stochastic sampling approach. The details of the stochastic sampling approach

will be discussed in the appendix section B.2. Here, we briefly outline the main steps.

In the stochastic method, we generate different samples of the mode variables ai with a given PDF. The

PDF for ai is obtained using the QHM approximation and is given using Eq(4.2). Using this PDF, different

instances of ai are generated. The ai values are, then, transformed to obtain the per-atom displacement. For

each sampled set of ai values, an atomic configuration is, thus, obtained. For the given atomic configuration

the per atom forces are computed using the underlying inter-atomic potential. These are used to compute

the mode force fi. The L.H.S of Eq.(4.26) is, then, determined as

< (fi +mω2
i ai)

2 >=
1

nensb

nensb∑
j=1

[(fi +mω2
i ai)

2]j . (4.27)

Here, nensb is the number of ensemble considered and [...]j is the value of the enclosed variable for the jth

ensemble. Eq.(4.26) is, then, used to compute τmi . This completes the parametrization step for the Langevin
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simulation. We will, now, use the Langevin dynamics to study the stress relaxation behavior.

We integrate the Langevin Eq. for each of the mode. We get a time series data of ai(t) and vi(t). The

energy, Ei(t), for a mode i is estimated as

Ei(t) =
1

2
mω2

i a
2
i +

1

2
mv2i . (4.28)

The modes satisfy equipartition of energy, this implies that < Ei >= kbT . Hence, ∆Ei(t) = Ei(t) −

kbT . We, now, use the Green-Kubo forumation and determine the non-equilibrium stress relaxation rate

from the auto-correlation of equilibrium fluctuations. The stress component, σij , is computed as σij =
nmodes∑
k=1

∆Ek∆λ
ij
k . We construct the stress auto correlation function, Cσijσij (t), such that

Cσijσij (t) =< σij(0)σij(t) > . (4.29)

Cσijσij (t) shows a decaying exponential behavior. From the decay rate of Cσijσij (t) the stress relaxation

rate, τrelax is determined.

4.3 Results and Discussion

We, first, consider the case of a bulk Ni structure and study the dissipation rate as a function of frequency

under uni-axial deformation. Morse potential is used to model the force field. Frequency values in the GHz

range are considered. The dissipation rate is computed using non-equilibrium MD for comparing the results

obtained using the multi-scale method. Here, we provide a brief description of the MD simulation set-up.

All MD simulations were performed using the open source software LAMMPS[59].

The structure is first equilibrated at a desired temperature of 300 K. It is, then, decoupled from the

thermostat. The structure is periodically deformed along the x direction and is evolved as a micro-canonical

ensemble. The work done on the system results in an increase in the internal energy. From the rate of increase

of internal energy per-unit period, the dissipation rate, Edisp, is computed. We considered 5 ensembles for

each frequency of operation. For each ensemble 100 oscillation periods were taken.

For estimating the dissipation rate using the multi-scale method we need to compute the different pa-

rameters in the constitutive relation. We, first, determine the components of the dissipation tensor, D, for

the bulk structure. For uni-axial deformation along the x direction, the only required value is the D1111.

We determined the value of D1111 using the QHM method. This requires computing λ11i for all the modes.

Using the λ11i values in Eq.(4.17), D1111 is estimated to be 1.365 GPA at 300 K.
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We also determined D1111 using the non-equilibrium stochastic sampling method. Using this method,

the dissipative component of the stress tensor, σDij , is obtained for different values of ε11. Figure 4.1 shows

the variation of σD11 vs ε11. The slope of this curve gives D1111 and is determined to be 1.37 GPA. This is

agreement with the value of D1111 computed using the QHM method. Figure 4.1, also, shows the variation

of σD22 vs ε11. The negative slope of this curve corresponds to a negative value of D1122. The value of D1122

will be used, later, in computing the dissipation for the case of bi-axial deformation.
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Figure 4.1: The dissipative component of the stress, σDij , as a function of ε11, obtained using the non-
equilibrium stochastic sampling approach.

We, also, need to estimate the stress relaxation rate, τrelax. For this purpose, we obtain the mode

relaxation time, τmi , using MD. The mode frequencies, ωi, are determined using the QHM method. Using

these values as input, mode Langevin dynamics is performed. The stress auto-correlation function, Cσ11σ11
(t)

is computed using Eq.(4.29). From the decay of Cσ11σ11
(t), τrelax is estimated to be 2.07 ps.

These parameters are, then, used to determine the time evolution of σ11. We consider a spatially uniform

strain field that varies sinusoidally in time such that ε11(x, t) = ε0sin(ωf t). Here, ε0 is the strain amplitude

and ωf is the forcing frequency. The time evolution of σ11 is obtained using Eq.(4.9). The dissipation rate,

Edisp, per unit period is, then, computed as

Edisp =

∫ ∫ 2π
ωf

0

σ : ε̇dtdV. (4.30)

Figure 4.2(a) shows the plot of Edisp vs ωf obtained using the multi-scale approach. The figure also

shows the MD results. The two results are in good agreement with each other. The multi-scale approach,

therefore, aptly describes the intrinsic dissipation in bulk solids.
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Figure 4.2: (a) Edisp as a function of the oscillation frequency, ωf , for the case of bulk nickel structure. (b)
Eloss as a function of α for the bulk nickel structure forced under an oscillation frequency of 40 GHz.
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We next consider the case of bi-axial deformation. The strain field for the bi-axial deformation is given

as εij(x, t) = ε0(δ1iδ1j + αδ2iδ2j)sin(ωf t). Here, α is the ratio of the strain in the y direction to that in the

x direction. We consider different values of α for a fixed vibrational frequency of 40 GHz. Figure 4.2(b)

shows the plot of Edisp obtained for different values of α. We observe that Edisp increases for negative

values of α. This is because D1122 is negative. Further, there exists an optimum value of α for which Edisp

becomes minimum. Thus, by operating the resonator under such a desired strain state, the dissipation can

be minimized. The negative sign of D1122 also suggests that it would be efficient to vibrate the structure

under a dilation strain field. It would, also, be interesting to further explore the class of materials for which

D1122 is positive. For such a material, an increase in dissipation with the increase in α value will be observed.

Figure 4.3: A schematic of the simulation set-up to study dissipation in structure with free surface. Periodic
boundary condition is used in x and z direction (out-of-plane).

We, now, consider the case of structure with free surfaces. Figure 4.3 shows a schematic of the simulation

set-up. The structure has free surfaces along the y direction while it is periodic in the other two directions. A

sinusoidal strain, ε11(x, t) = ε0sin(ωf t), is applied along the x direction. Here, ε0 is the strain amplitude and

ωf is the oscillation frequency. Since the structure has free surfaces along the y direction, the applied strain

also results in motion along the y direction. Using elasticity theory we shall, first, obtain the displacement

field along the y direction. The strain field, thus, obtained will be used an input to compute the dissipation

rate.

Let v(y, t) denote the displacement field along the y direction. For a linear elastic solid with cubic

symmetry, the stress component, σ22(y), is given as

σ22(y) = C11
∂v

∂y
+ C12ε0sin(ωf t). (4.31)

Here, C11 and C22 are the elastic constants. Using the expression for σ22 in the momentum balance Eq.
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we obtain

∂2v

∂t2
= C11

∂2v

∂y2
. (4.32)

Further, we also have the boundary conditions as σ22(0) = σ22(L) = 0, where L is the transverse length

of the structure. The above Eq. admits a solution of the form v(y, t) = (Asin(ky) + Bcos(ky))sin(ωf t)

where k = ωf

√
ρ

C11
. The constants A and B are obtained using the boundary condition. The displacement

field, v(y, t), is, then, given as

v(y, t) = −C11

C22

ε0
k

(
sin(ky) +

cos(kl)− 1

sin(kl)
cos(ky)

)
sin(ωf t). (4.33)

Here, k is the wave number. For the frequency range and the dimensions of the structure considered, the

strain field in Eq.(4.33) is nearly uniform. The average strain, ε22(t), in the y direction is, then, obtained as

ε22(t) =
v(L, t)− v(0, t)

L
. Using the expression for v(y, t) we get

ε22(t) = −C12

C11

tan(kl/2)

kl/2
ε11(t). (4.34)

The value of ε22 will be used to compute dissipation for structures with free surfaces.

We consider a structure with a dimension of 10lc×8lc×10lc and with free surfaces along the y direction.

Here, lc is the lattice constant and has a value of 3.5322 Å for nickel. The strain field is a bi-axial strain field

given as εij(t) = (δi1δj1ε11 + δi2δj2ε22)sin(ωf t). Here, ε22 is related to ε11 using Eq.(4.34). Figure 4.4(a)

shows the plot of the ratio ε22/ε11 as a function of ωf for this structure. The plot shows, that, the ratio

increases with the increase in ωf . The values are in good agreement with MD. We, shall, now use these

strain values to compute dissipation using the multi-scale method.

For performing the multi-scale analysis for this structure, different parameters are determined. The value

of τrelax is estimated to be 1.45 ps. The strain field is plugged in the constitutive relation in Eq.(4.9) to

obtain σ(t). Edisp is, then, computed using Eq(4.30). Figure 4.4(b) shows the plot of Edisp vs. ωf . A

non-monotonic behavior is observed. We also observed a non-monotonic behavior for the bulk structure.

However, the frequency value corresponding to the maximum value of Edisp shifts to a higher value for the

free surface case. This is because the stress relaxation time decreases because of the surface scattering. This,

effectively, increases the value of ωf corresponding to the maximum value of Edisp.

We, next, studied the scaling of Edisp with size. For this purpose, the length along the free surface

(y) direction was varied, the other dimensions were kept constant. For each of the size D1111 and D1122

were obtained using the non-equilibrium sampling method. Figure 4.5 shows the plot of D1111 and D1122 as

function of size.
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Figure 4.4: (a)The ratio −ε22/ε11 as a function of ωf for a Ni structure with free surface. The structure
has dimensions of 10lc × 8lc × 10lc. Here, lc is the lattice unit. (b) Edisp as a function of ωf for the same
structure.
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We, then, computed τrelax as a function of size. The τrelax value for a structure with a lateral dimension

L is given as

1

τrelax
=

1

τb
+

L0

Lτs
. (4.35)

Here, τb is stress relaxation rate for the bulk structure and τs is the surface scattering rate for reference

structure with a lateral dimension L0. τb was obtained for the case of bulk structure. We, also, determined

τrelax for a structure with free surface using the mode Langevin dynamics. The value of τrelax is used to

parametrize τs. We, then, use Eq.(4.35) to determine τrelax for a structure with any given lateral dimension

L.
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Figure 4.5: The components of the dissipation tensor, D, as a function of size. The values have been
normalized with respect to the bulk value.

The different parameters, thus, obtained are used to compute Edisp as a function of size. Figure 4.6

shows the plot Edisp as a function of L and as obtained using the multi-scale theory. The MD values

are also plotted alongside. The plot shows that Edisp decreases with the decrease in size. This can be

understood, predominantly, from the effect of surface on τrelax. The surface scattering of phonon reduces

τrelax. The faster relaxation of the non-equilibrium stress implies weaker deviation from the equilibrium

condition. Dissipation is governed by the deviation from the equilibrium path. Hence, Edisp, decreases with

the decrease in τrelax.

4.4 Conclusions

A multi-scale approach to model intrinsic dissipation under high frequency vibrations in solid was developed.

A non-equilibrium stress, that characterizes the deviation of the phonon distribution from the equilibrium

state, was obtained. A constitutive Eq. that governs the time evolution of the stress tensor was derived.

The different parameters in the model were characterized using the QHM method and a stochastic sampling
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Figure 4.6: Edisp as a function of size for structures with free surface. The size denotes the lateral dimension,
L, of the structure along the free surface direction. The dimension in the other two (periodic) directions are
kept constant.

approach. Langevin dynamics in the mode space was used to obtain the stress relaxation. We studied

dissipation in the frequency range of few GHz. Using the proposed formulation, the dissipation rate was

computed for different cases. The results were compared with those obtained using non-equilibrium MD.
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Chapter 5

Thermo-elastic Dissipation

5.1 Introduction

Thermo-elastic dissipation (TED) takes place in the presence of a non-uniform strain field. The strain field

sets up a temperature gradient. This results in heat flow and entropy generation leading to dissipation.

Classically, heat flow is described using the Fourier law. Zener derived an expression for the Q factor in a

beam considering the Fourier law[78]. The solution for the temperature field was expanded in terms of the

eigen-functions of the heat equation. For cases, when the first eigen-mode has the predominant contribution

an expression for the Q factor was obtained as

Q−1 = C
ωτm

1 + (ωτm)2
. (5.1)

Here, C is the coupling strength and τm is the thermal relaxation time. The theory of TED has been extended

and improved for the case of micro-resonators[10, 45]. A more accurate analytical solution of the coupled

thermo-elasticity Eq. was obtained in these studies. Also, the case of complicated geometries and higher

order modes have been considered[21, 22, 43, 60]. These theories correctly describe the damping for the case of

micro-resonators. For such structures, the mean free path is much smaller than the characteristic dimension.

Also, the time-scale of the mechanical oscillation is larger in comparison with the phonon relaxation time.

However, for the case of nano-resonators the frequency of vibration becomes comparable to the phonon

relaxation time. For such fast oscillations, the finite relaxation time of the heat-flux is expected to play an

important role. The ballistic nature of the heat flow, also, becomes important at length scales which are

comparable to the phonon mean free path. The classical expression for the TED are, therefore, expected to

break down at such length and time-scales. Phenomenological theories, that describe micro/nano-scale heat

transfer, have been proposed[47]. These non-classical theories have been used to model TED[19, 67, 71].

These models describe the correct physics under certain cases. However, these theories may fail to capture

the essential phonon dynamics under other conditions. The motion of the phonon quasi-particles is analogous

to that of dilute gases and is aptly described using the phonon Boltzmann transport Eq.(BTE)[68].
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In this work, we consider the BTE for the heat flow and coupled with the elastic strain field. Using

numerical solution for the coupled BTE elasticity frame-work, we investigate TED for the longitudinal modes.

Frequencies in the range of few GHz are considered. Deviations from classical theories are observed. We

provide corrections to the classical expression for the Q factor. The corrected formula takes into consideration

the finite relaxation of the phonons and is derived using BTE. The effect of the ballistic nature of the heat

flow on the Q factor is, also, discussed.

5.2 Theory

We consider the BTE in terms of the mode energies. Dissipation involves the transfer of energy from the

elastic field to the thermal motion. Recasting BTE in terms of the energy variables, thus, offers a practical

advantage to study dissipation. We, also, use the gray approximation. The approximation reduces the

computational cost considerably. The essential physics is, however, retained for most of the cases. Also, the

simplified form of BTE is more amenable to analytical investigation. Under the gray approximation, the

phonon dynamics is described in terms of the energy density averaged over the frequency space. Figure 5.1

shows the set-up for phonon dynamics under an oscillating displacement field. For the one dimensional case,

the BTE for the phonon transport is given in terms of the energy density, E(x, θ, t), as

∂E(x, θ, t)

∂t
+ vgcos(θ)

∂E(x, θ, t)

∂x
= −E(x, θ, t)− Eeqb(x, θ, t)

τ
. (5.2)

Here, E(x, θ, t) is the mean energy density of the phonons with wave vector ~k inclined at an angle θ with

the x axis. Further, vg is the group velocity, Eeqb is the equilibrium value of the energy density and τ is the

phonon relaxation time. Introducing a variable µ such that µ = cos(θ) the above Eq. can be written as

∂E(x, µ, t)

∂t
+ vgµ

∂E(x, µ, t)

∂x
= −E(x, µ, t)− E(x, t)

τ
. (5.3)

Here, E is the mean energy and is given as E =
1

2

∫ 1

−1
E(µ)dµ. We consider the case of the phonon

sub-system coupled with an elastic strain field, ε(x, t). The coupling results in the change of the thermal

energy density of each mode and is characterized in terms of a material Grüneisen parameter, λ. For the

case of TED, the λ value is taken to isotropic. The Eq. for the phonon dynamics is, then, obtained as

∂E(x, µ, t)

∂t
+ vgµ

∂E(x, µ, t)

∂x
= −E(x, µ, t)− E(x, t)

τ
+ λε̇(x, t)E(x, µ, t). (5.4)

We consider the time evolution of the above Eq. under an oscillating strain field. Due to dissipation, and
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Figure 5.1: A schematic illustrating the phonon dynamics under an oscillating strain field.

in the presence of adiabatic boundaries, the energy of the phonons will increase with time. The dissipation

rate is, then, estimated from the rate of increase of the thermal energy. Let Etot represent the total energy

of the phonon and is given as

Etot(t) =

∫ L

0

∫ 1

−1
E(x, µ, t)dµdx. (5.5)

Here, L is the length of the structure. The average value of Etot shows a nearly linear increase with time.

The dissipation rate, Edisp, per unit-period is, then, computed as

Edisp =< Etot >(n+1)τp − < Etot >nτp . (5.6)

Here, <>nτp refers to the average value of Etot for the nth period and τp is the time-period of the oscillating

strain field. The maximum elastic energy stored, Estored, in the structure is obtained as

Estored =

∫ L

0

1

2
Emodε

2
0(x)Adx. (5.7)

Here, Emod is the Young’s modulus, ε0(x) is the strain amplitude, A is the cross-sectional area and L is the

length. The Q factor is, then, estimated as Q = 2π
Estored
Edisp

.

Eq.(5.4) was evolved in time. The unknowns in the coupled elastic BTE are the displacement field,

u(x, t), and the phonon energy density E(x, t). The BTE, in essence, is an Eq. that describes the energy

conservation. The closure to Eq.(5.4) is provided by the momentum balance Eq. and is obtained using

the elasticity theory. The two Eqs. need to be solved consistently. However, we shall follow an alternative

approach here. For the under-damped case, one can obtain the displacement field without considering the

dissipation. The displacement field, thus, obtained is substituted in the energy balance Eq. and is used to

compute the dissipation rate. For the cases considered, Q >> 1. Hence, the above approximation is valid

and is used for our analysis.

We obtain the strain field using the elasticity theory and without considering dissipation. The strain

field is, then, used as an input in the coupled BTE. For solving the BTE, finite difference method was

employed. Backward difference scheme was used for µ > 0, forward difference scheme was used otherwise.
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We considered the case of diffuse boundary such that E(µ, 0, t) = E(0, t) and E(µ,L, t) = E(L, t). The

diffuse boundary scattering results in an isotropic distribution of the phonons at the boundaries. From the

rate of increase of Etot and the elastic energy stored, Estord, the Q factor was estimated as Q =
2πEstored
Edisp

.

We, next, seek to obtain a closed from expression for the Q factor for the case of the longitudinal modes.

For this purpose we consider an approximate solution of the coupled elastic BTE. In the results section we

shall illustrate the condition under which the approximation is valid.

The unknowns in the coupled elastic BTE are the displacement filed, u(x, t) and the phonon energy

density E(x, t) For computing the displacement field we, first consider the solution of the momentum balance

eqn. The strain field, obtained, is taken as an input in the coupled elasticity BTE frame-work. Such an

approximation holds good for an under-damped vibration. This, indeed, is true for the cases considered.

The strain field for the fundamental longitudinal mode, and with clamped boundaries, is given as

ε(x, t) = ε0cos(
2πx

L
)sin(ωf t). (5.8)

This strain field will be used as an input in Eq.(5.4).

For solving the PDE, we consider a Taylor series expansion for E(x, µ, t) such that

E(x, µ, t) = E0(x, t) + µE1(x, t). (5.9)

Here, E0 and E1 are the expansion variables. Substituting the expression for E(x, µ, t) in Eq.(5.4), we obtain

Ė0(x, t) + µĖ1(x, t) + vgµ(E′0(x, t) + µE′1(x, t)) = −E1(x, t)µ

τ
+ λε̇(x, t)(E0(x, t) + E1(x, t)µ). (5.10)

Here, ′ denotes partial derivative with respect to space. Integrating the L.H.S and R.H.S of the above Eq.

with respect to dµ gives

Ė0 +
vgE

′

3
= λε̇(x, t)E0(x). (5.11)

For obtaining the second eqn. for the time evolution of E1(x, t) we multiply each side w.r.t µ and then

perform the integration. This yields

Ė1 + vgE
′
0(x) +

E1

τ
= λε̇(x, t)E1(x). (5.12)

We, thus, obtain a coupled PDE for the variables E0 and E1. We, further, wish to reduce the PDE

into a set of ODEs. For this we express the spatial dependence as E0(x, t) = E0
0(t) + E1

0(t)cos(
2πx

L
) and
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E1(x, t) = E0
1(t)sin(

2πx

L
). The expansion is motivated by the spatial nature of the strain field and the

boundary conditions. For example, the boundary condition dictates that E1(0, t) = E1(L, t) = 0. The

considered functional form, indeed, satisfies this condition. Using the series solution and the orthogonality

of the expansion functions, we obtain ODE for the different expansion terms Eji . We get

Ė0
0 =

1

2
λε0ωfcos(ωf t)E

1
0 , (5.13)

Ė1
0 +

2πvg
3L

E1
1 = λε0ωfcos(ωf t)E

0
0 (5.14)

and

Ė1
1 −

2πvg
L

E1
0 +

E1
1

τ
= λε0ωfcos(ωf t)E

1
1 . (5.15)

In the above set of Eqs., the explicit dependence of Eji on time is implied.

We, thus, have a set of coupled ODE. These are, further, decoupled using algebra and some approxima-

tions. We, then, obtain an Eq. for E1
0 as

Ë1
0 +

(
2πvg√

3L

)2

E1
0 +

Ė1
0

τ
= λε0E

0
0ωf (

cos(ωf t)

τ
− ωfsin(ωf t)). (5.16)

The Eq. for E1
0 resembles that of a damped harmonic oscillator. Consider E0

0 as a constant in the R.H.S

the above Eq. admits an analytical solution as

E1
0(t) = Re(

A

B
exp(iωf t)). (5.17)

Here, A and B are complex numbers given as A = λε0E
0
0ωf (

1

τ
+ iωf ) and B = −(ω2

f + (
2πvg√

3L
)2) + i

ωf
τ

. The

expression of E1
0(t) is used to compute the energy dissipated per unit period. Edisp is obtained as

Edisp = E0
0Lπλ

2ε20
1 + (ωτm)2

(1− ω2ττm)2 + (ωτm)2
ωτm

1 + (ωτm)2
. (5.18)

Here, τm is the relaxation time for temperature field and is given as τm =

(
L

v2gτhf2nπ

)2

. E0
0 is thermal

energy density per unit length per unit value of µ and is obtained as E0
0 =

3kbTρ

2mat
. ρ is the mass per unit

length and mat is the atomic mass. Using the expression for Estored and Edisp the Q factor is derived as

Q−1 =
CvT0λ

2

Emod

1 + (ωτm)2

(1− ω2ττm)2 + (ωτm)2
ωτm

1 + (ωτm)2
. (5.19)
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Here, Cv is the specific heat capacity per unit volume and T0 is the reference temperature. We recognize

that the classical expression for Q factor is given as Q−1classcl =
CvT0λ

2

Emod

ωτm
1 + (ωτm)2

. The derived expression

for Q can, thus, be re-casted as

Q−1 =
1 + (ωτm)2

(1− ω2ττm)2 + (ωτm)2
Q−1.classcl. (5.20)

The prefactor provides a correction for the classical expression and becomes important for high frequency

values. We will use this expression to compare the Q factor obtained using the coupled BTE.

5.3 Results and Discussion

We, first, study the effect of frequency on the Q factor. The phonon relaxation time is of the order of few

ps for most materials. The finite relaxation time of the phonons is expected to become important in the

frequency range of few GHz. We consider the case of nickel crystal and with the longitudinal direction along

the [1 0 0] direction. For the BTE in the gray approximation, we need to provide a single value of the

relaxation time. We take τ = 1.2 ps and vg = 30 Å ps−1. The average Grüneisen parameter is estimated to

be 1.00 and the elastic constant Emod = 200 GPa.

For the fundamental longitudinal mode, the angular frequency ωf is given as

ωf =
2π

L

√
C11

ρ
. (5.21)

Here, ρ is the density. In-order to study the effect of ωf we consider structures with different values of L.

For a given L, ωf is estimated using the above eqn. The oscillating strain field is, then, used an input in

the BTE. The Q factor is determined using the method discussed. Figure 5.2 shows the plot of Q factor vs

ωf . The other parameters were kept constant for this study. The plot, also, shows the Q factor obtained

using Eq.(5.20) and the prediction from the classical theory. The results show that the classical prediction

deviates with the increase in the frequency. The corrected formula, however, takes the finite relaxation effect

into consideration and is in good agreement with the BTE result.

It would, also, be useful to comment on the Knudsen number, Λ, for this analysis. The Λ value for the

structure with the smallest dimension (or highest frequency) considered is estimated to be 0.1. Deviation

from the classical theory is observed for even a small value of Λ = 0.1. This results, predominantly, from

the high frequency of oscillation in these structures.

We, next, study the effect of Λ value on the Q factor and keeping ωf constant. The Λ value can be
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Figure 5.2: Q factor for the longitudinal modes as a function of the oscillation frequency.

changed by changing different parameters. For a structure with a given dimension L, the mean free path,

γ is given as γ =
vgτ

L
. We consider varying the phonon relaxation rate τ . For a given structure, τ can be

easily tuned by changing its temperature. vg, however, has a weak temperature dependence and is difficult

to vary.

We consider different values of τ and keeping the other parameter constant. The dissipation rate and

the Q factor is estimated for each of the cases. Figure 5.3 shows the variation of Q with Λ and as obtained

using the BTE. A non-monotonic dependence is observed. The classical theory fails to predict the observed

non-monotonic behavior. Further, the Q factor obtained using the classical formula is lower in comparison

with the simulation results.

In predicting the dissipation using Eq.(5.20) we provide an additional correction in this analysis. With

the increase in Λ values, the surface scattering of phonons becomes important. This needs to be accounted

for in the expression for the Q factor. The total relaxation rate, τT , for the diffuse scattering is given as

1

τT
=

1

τ
+
L

vg
. (5.22)

For small value of Λ, τT ≈ τ . However, with the increase in Λ, τT decreases because of the surface scattering.

We considered this effect in Eq.(5.20). Figure 5.3 shows the Q factor estimated. The results are in good

agreement with those obtained using BTE. The plot, also, shows the results obtained without taking surface

scattering into consideration. The predicted Q value is higher for such cases.
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Figure 5.3: Q factor as a function of the Knudsen number, Λ. For varying Λ, the phonon relaxation rate, τ ,
was changed. All other parameters were kept fixed. NS refers to the case when the surface scattering is not
taken into consideration. SC denotes the case when this effect is accounted for.

Before concluding, it would be useful to analyze the spectral distribution of the phonons obtained using

BTE. Figure 5.4 shows the phonon energy density as a function of µ and x. We consider two representative

regions, the bulk and the surface. The surface region corresponds to the left end of the beam. Figure 5.4(a)

shows the spectral distribution for the bulk region. A nearly linear dependence of E with µ is observed. This

shows that it is accurate to consider a first order expansion of E in µ. In deriving the analytical expression

for Q, we indeed considered a first order expansion in µ. Figure 5.4(b) shows the distribution of E near

the surface. For µ > 1, the distribution is nearly flat. A jump is observed at µ = 0. The nature of the

phonon energy distribution can be understood from the diffuse surface scattering. The diffuse scattering

ensures that the distribution is isotropic at the boundaries. For the right moving phonons, this information

is carried along due to the ballistic motion. Hence, we observe a near flat distribution for some region near

the boundary. In our theory, this effect was considered by changing the effective relaxation time for the

phonons. The discontinuous nature of the distribution at the boundaries may have important implications

for the case when λ is not isotropic.

60



−1

−0.5

0

0.5

1

11

11.2

11.4

11.6

11.8

12

0.95

0.96

0.97

0.98

0.99

1

1.01

1.02

µ
x (nm)

E
(
x
,

µ
)

(a)

−1

−0.5

0

0.5

1

0

0.5

1

1.5

1.035

1.04

1.045

1.05

1.055

1.06

µ
x (nm)

E
(
x
,

µ
)

(b)

Figure 5.4: Spectral distribution of energy in an oscillating beam. (a) The distribution for the the bulk
region. (b) The distribution near the left end of the beam.

5.4 Conclusions

We used BTE coupled with the elastic strain field to study TED in nano-resonators. We observed that the

finite relaxation rate of the heat flux becomes important at high frequency values. We provided correction to

the classical expression for Q factor and for the case of longitudinal modes. The surface scattering of phonon

plays an important role for high Knudsen number. An effective relaxation time, that takes boundary effects

into consideration, was used in the corrected expression for the Q factor.
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Chapter 6

Dissipation in Graphene

6.1 Introduction

Intrinsic dissipation involves transfer of energy from the excited mode to internal thermal vibrations or

phonons. The inherent non-linearity of the molecular forces couples the different vibrational modes and this

leads to an irreversible transfer of energy from the slow mechanical modes to the thermal phonons. The

classical mechanisms of intrinsic dissipation, namely the thermo-elastic dissipation, Akhiezer damping and

Landau-Rumer coupling, are fundamentally the result of material non-linearity. In the case of nano-systems,

nonlinearities can emerge due to the geometric effect [61]. For example, the transverse deformation of a

nano-beam is coupled with the stretching motion. These geometric non-linearities therefore introduce new

channels for the flow of energy between different vibrational modes and hence may lead to novel mechanisms

of dissipation. The relation between damping and the underlying dynamics however remains elusive for most

nano-systems. In this work we identify the mechanism of dissipation in graphene under in-plane motion.

Graphene, a one atom thick sheet of carbon atoms, is known for its remarkable thermal, electrical [54]

and mechanical properties [41]. It is the limiting case of a nano-electromechanical system in terms of the

thickness. Experimental study has demonstrated the use of graphene sheet as a potential nano-resonator [6].

Different studies have been carried out to understand the dissipation mechanism in a graphene resonator

[8, 11, 31, 65, 77] under flexure deformation, and the edge atoms were identified to be an important source

of dissipation under such mode. While attempts have been made to understand the different dissipation

mechanisms operative in the flexure mode, the dynamic behavior of graphene under longitudinal in-plane

motion remains largely unexplored. A rich and exciting physics can be expected in the study of attenuation

of longitudinal waves in a sheet which is an atomic layer thick. The anharmonic coupling between the

bending and stretching mode is known to stabilize a two dimensional membrane [13]. Such a coupling can

also lead to an irreversible transfer of energy from one to the other.

In this work[36], using MD simulations, we show that an irreversible transfer of energy indeed takes place

from the in-plane longitudinal motion to the out-of-plane vibrations. We identify this to be the dominant
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loss mechanism for the in-plane motion under the frequency range studied (20 - 100 GHz). The irreversible

energy transfer is shown to take place due to hysteresis behavior in the fundamental out-of-plane mode

in the loading direction. The dissipation rate, measured as Q factor, shows a non-monotonic scaling with

frequency, becoming maximum at some value. The maximum in the dissipation rate is shown to correspond

to a maximum hysteresis in the fundamental out-of-plane mode amplitude. We propose that the hysteresis

takes place due to periodic modulation of the potential energy profile for the out-of-plane mode.

6.2 Simulation Details

Graphene was initially relaxed using NPT simulation at 300 K with periodic boundary condition in the

in-plane (x-y) directions. We consider two different relaxed configurations which are identified as structure

A and structure B. The dimensions of structure A are 96.66 Å ×100.45 Å and dimensions of structure B

are 96.66 Å ×133.87 Å. The relaxed structures were further equilibrated at 300 K using NVT ensemble

for 2 ns. After equilibration, the structure was given a periodic in-plane deformation. Figure 6.1 shows

a schematic of the simulation set-up. The in-plane excitation was given by periodically changing the box

dimension in the y direction. The length in the y direction, lyd, was varied as lyd = ly + asin(ωt). Here ly is

the undeformed length, a is the amplitude of deformation, ω is the angular frequency of excitation and t is

the elapsed time. The amplitude of deformation was taken to correspond to a strain amplitude of 0.18% in

the y direction. Frequency values in the range of 20 GHz to 100 GHz were considered. For each frequency

value 10 different ensembles were taken and for each ensemble 200 oscillation periods were considered for

computing the dissipation rate.

During the loading process no thermostating was performed. This implies that dQ = 0, where dQ is

the differential heat exchanged with the environment. Let dW be the differential work done on the system

and dE be the differential increment in its internal energy. From the first law of thermodynamics it then

follows that dW = dE. For an equilibrium process, net work done during a cyclic deformation is zero. For

non-equilibrium process, such as loading at finite rate, net work is done on the system during cyclic loading.

The average work done per unit period is a measure of the dissipation rate. For an isolated system, the work

done will result in an increase in the internal energy and hence the temperature of the system.

Let ∆Wavg be the average work done per unit period and ∆E be the change in internal energy after n

periods. From the relation dW = dE it follows that ∆E = n∆Wavg. Thus, from the rate of increase of

internal energy per unit period ∆Wavg can be determined. Figure 6.2 shows the plot of average internal

energy, Eavg, with the number of oscillation periods for one of the ensemble excited at 40 GHz. The plot

shows that Eavg increases linearly with the number of periods. The slope of Eavg vs. the number of period
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Figure 6.1: A schematic of the simulation set-up to study dissipation in graphene under in-plane motion.
Periodic boundary condition is used in x and y direction. The box length in the y direction is changed
harmonically with an amplitude a and frequency ω.

of oscillation gives the energy dissipated per unit period, Edisp. For forced vibration Edisp is a measure of

the rate of energy input required to sustain the motion (in our case the in-plane vibration). In the absence

of such energy input the motion will die down. Also, Edisp corresponds to the rate at which the excited

mode looses its energy to other degrees of freedom.

Dissipation is often measured in terms of dimensionless Q factor which is defined as the ratio of maximum

elastic energy stored in the structure to the average energy lost per unit oscillation period. It should be

pointed out that the energy lost here refers to the loss of energy from the excited deformation (in our

case the in-plane motion). The mechanical energy stored, Estr, in uni-axial deformation is obtained as

Estr =
1

2

E

1− ν2
V ε2y. E is the Young’s modulus, V is the volume of the structure, ν is the Poisson’s ratio

and εy is the strain amplitude. The Q factor is then computed as Q = 2π
Estr
Edisp

. The material properties of

graphene, required for computing Estr, were taken from previous studies [79].

MD simulations were performed using large-scale atomic/molecular massively parallel simulator(LAMMPS)

[59] and adaptive intermolecular reactive empirical bond order (AIREBO) potential [70] was used to model

the force field for carbon atoms. A time step of 0.5 fs was used with the velocity Verlet integration scheme.

During the equilibration process, the thermostating was performed using Nosé-Hoover thermostat.

Intrinsic dissipation is mediated by the interaction between the different vibrational modes present in
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Figure 6.2: The increase in the average internal energy with the number of periods for an ensemble excited
at 40 GHz.

a structure. The mechanism of dissipation can be understood by computing the amplitude and velocity

for different modes. We have used modal analysis to resolve the dissipation mechanism for graphene under

stretching deformation. A section on modal analysis follows. The methodology discussed in this section shall

be used in the later section to identify the mechanism of dissipation.

6.3 Modal analysis

The mode amplitude and velocity can be computed by projecting the positions and velocities obtained from

molecular dynamics simulations on to the mode shapes. In particular, we are interested in the out-of-plane

modes for graphene sheet. In a two dimensional structure, such as graphene, the in-plane motion is strongly

coupled to out-of-plane vibrations. We therefore expect the out-of-plane modes to be dominant modes

responsible for dissipation under stretching deformation.

The mode shapes, required for computing the modal co-ordinates, can be obtained by different methods.

We use the results from continuum theory to compute the out-of-plane mode shapes. Using linearized plate

theory the mode shapes, φ(~x), are obtained as φ(~x) = ~Pexp(i~k.~x). ~P is the polarization vector, ~k is the

wave vector and ~x is the mean position vector of the atom. For periodic boundary condition in the in-

plane directions (x and y) ~k is given as ~k =
2nπ

lx
~i +

2mπ

ly
~j. Here n,m refers to the mode number and can

take positive integral values. lx and ly are the length in x and y direction, respectively. We consider the

fundamental out-of-plane mode in the y direction (n = 0,m = 1) which is identified as mode 1. Mode 1

spatially depends only on the y coordinate. The mode shape, φ(ymj), for mode 1 can be expressed as

φ(ymj) = cos

(
2πymj
ly

)
+ isin

(
2πymj
ly

)
. (6.1)

Here ymj is the mean y coordinate of the atom labeled j.
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Let zj and vzj denote the z displacement and velocity for the jth atom. The mode amplitude, Am, and

the mode velocity, Vm, for mode 1 are obtained as

Am =

∣∣∣∣∣∣ 1

Nf

nat∑
j=1

zjφ(ymj)

∣∣∣∣∣∣ (6.2)

and

Vm =

∣∣∣∣∣∣ 1

Nf

nat∑
j=1

vzjφ(ymj)

∣∣∣∣∣∣ . (6.3)

Here nat is the total number of atoms in the structure and Nf is the normalization factor obtained as

Nf =

nat∑
j=1

(
cos

(
2πymj
ly

))2

=

nat∑
j=1

(
sin

(
2πymj
ly

))2

=
nat

2
. (6.4)

Let Vr and Vc be defined as

Vr =
1

Nf

nat∑
j=1

cos

(
2πymj
ly

)
vzj (6.5)

and

Vc =
1

Nf

nat∑
j=1

sin

(
2πymj
ly

)
vzj . (6.6)

The kinetic energy of an atom j, Kej , for mode 1 is given as

Kej =
1

2
m

(
Vrcos

(
2πymj
ly

)
+ Vcsin

(
2πymj
ly

))2

, (6.7)

where m is the mass of each atom. The total kinetic energy for mode 1, Kem, is then obtained as

Kem =

nat∑
j=1

Kej . (6.8)

Vm, Vc and Vr are related as V 2
m = V 2

r + V 2
c . Using this and the orthogonality properties of the sin and cos

functions in eqn(8) we get Kem =
1

2
nat×mV 2

m

2
.

6.4 Results and Discussion

We studied the scaling of dissipation rate with frequency for two different graphene structures, A and B.

The structures were given a periodic in-plane motion using the method described and the dissipation rate

was computed for different frequency values. Figure 6.3(a) shows the plot of Q factor vs. frequency for the
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two different structures at 300 K. A non-monotonic trend in the dissipation rate is observed. The Q factor

becomes minimum, and hence the dissipation rate maximum, at 80 GHz for structure A and at 60 GHz

for structure B. In order to study the thermal effects on the dissipation rate, we computed the Q factor vs

frequency dependence at a very low temperature of 0.1 K. The structures with the same bond length, as

used for studies at room temperature, were considered for analysis at 0.1 K. This was done to isolate the

effect of temperature from strain effects. The inset of fig. 6.3(a) shows the plot of Q factor vs. frequency

at 0.1 K. The results show a similar non-monotonic trend as observed for the case of 300 K. The frequency

value at which the maximum dissipation occurs, however, shifts to a lower value. The minimum Q factor for

both the structures at 0.1 K roughly remains the same as that obtained at room temperature. This shows

that the mechanism of dissipation is athermal in origin, and the thermal effects only change the frequency

value at which maximum dissipation occurs.

We investigated the role of out-of-plane motion on the dissipation rate using constrained MD simulations.

Structure A was equilibrated at 300 K but with the motion constrained in the x-y plane (no out-of-plane

motion). This was achieved by setting the out-of-plane component of the force on each atom to be zero. The

Q factor vs frequency dependence was then computed using the method discussed before. Figure 6.3(b) shows

the plot of Q factor vs. frequency obtained for the case of constrained in-plane motion. An enhancement

of Q factor by almost two orders of magnitude is observed in this case. The results point out that the

out-of-plane motion is an important medium for extracting energy from the in-plane motion.

We then studied dissipation in graphene subjected to an initial tensile strain. Figure 6.3(b) shows the

plot of Q factor vs. frequency obtained for structure A with an initial tension of 1.7% in the x and y

direction. The Q factor remains constant with frequency. A drop in the dissipation rate by almost an order

of magnitude, in comparison with the case of zero initial strain, is observed. Application of tension to a

thin sheet, such as graphene, has the effect of increasing the stiffness of the out-of-plane modes. Large

deformation plate theory predicts that the out-of-plane stiffness, kstiff , scales as kstiff ∝ (s+
s2

2
), here s is

the in-plane strain. These results indicate that increasing the stiffness of out-of-plane modes has the effect

of decreasing the dissipation for the in-plane motion.

6.4.1 Out-of-plane Mode Dynamics

The results of simulations indicate that the out-of-plane modes are an important channel for absorbing energy

from the in-plane motion. We therefore study the out-of-plane mode dynamics for graphene structure under

in-plane excitation. The MD trajectories for the case of zero initial strain (unless mentioned otherwise) and

with no constrain on the out-of-plane motion are considered for this analysis. We only present the results
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Figure 6.3: (a) Q factor vs. frequency for structures A and B at 300 K. The inset of the plot shows the Q
factor vs. frequency at 0.1 K. (b) Q factor vs. frequency for structure A with an initial tensile strain of 1.7%
in x and y direction. Also shown are the results for the case with motion constrained in the x-y plane (no
out-of-plane motion).
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Figure 6.4: (a) The kinetic energy gained by mode 1 vs. the total energy gained (per unit period) by
structure A under in-plane excitation at 80 GHz and at 300 K. (b) The kinetic energy gained by mode 1 vs.
the total energy gained (per unit period) by structure A under in-plane excitation at 80 GHz with an initial
tensile strain.

obtained from analysis of structure A. For structure B similar results were obtained and are therefore not

presented.

Before studying the out-of-plane mode dynamics from MD data, it would be useful to analyze the role of

in-plane strain on the out-of-plane modes using continuum theory. The continuum theory has been accurate

in predicting dynamical properties, such as vibrational frequency of the out-of-plane modes, for graphene[2].

The potential energy, PE, associated with out-of-plane motion, w(x, y), for a graphene sheet with an in-plane

strain, εy, in the y direction is given as

PE =
x 1

2
Kb

(
∂2w

∂x2
+
∂2w

∂y2

)2

dxdy +
x Eh

2(1− ν2)
εy

((
∂w

∂y

)2

+ ν

(
∂w

∂x

)2
)
dxdy. (6.9)

Here Kb is the bending modulus and h is the thickness of graphene sheet. The potential energy expression

in eqn(6.9) is a leading order approximation for the total energy. We consider the energy associated with

different out-of-plane modes. Let wn,m(x, y) be the out-of-plane displacement for a mode labeled n,m and is

given as wn,m(x, y) = An,mcos(
2nπx

lx
)cos(

2mπy

ly
). An,m is the mode displacement for a mode labeled n,m.

For such displacement profile the potential energy, PEn,m, is obtained as

PEn,m =
Kblxly
C

A2
n,m

((
2mπ

ly

)2

+

(
2nπ

lx

)2
)2

+
Ehlxly

C(1− ν2)
A2
n,nεy

((
2mπ

ly

)2

+ ν

(
2nπ

lx

)2
)
. (6.10)

Here C is a constant which has a value of 8 if n 6=0,m6=0 and is equal to 4 otherwise. For instability we must
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have
d2Pn,m
dA2

n,m

< 0. This implies that

εy <= −
Kb

((
2mπ
ly

)2
+
(
2nπ
lx

)2)2
Eh

(1−ν2)

((
2mπ
ly

)2
+ ν
(
2nπ
lx

)2) . (6.11)

Analysis of this expression shows that the minimum negative strain for instability corresponds to n = 0 and

m = 1. This is mode 1 as referred to in the section on modal analysis. We therefore expect mode 1 to be

the first mode to become unstable when graphene sheet is given a compressive strain. The potential energy

profile for mode 1 (discussed in later section) indeed shows that it becomes unstable. Mode 1 is therefore

expected to dominantly govern the dynamics and is the one considered for further analysis.

We computed the kinetic energy gained by mode 1 during each period of oscillation. The difference in

the Kem values between the beginning and end of each period gives the kinetic energy gained by mode 1,

∆Kem, during each period of oscillation. The difference in the internal energy between the beginning and

end of each period gives total energy gained by the structure, ∆E, during each period of oscillation. Figure

6.4(a) shows the plot of ∆Kem vs ∆E for structure A under periodic in-plane excitation at 80 GHz. From

the plot it is evident that a strong correlation exists between ∆E and ∆Kem. For positive values of ∆E,

∆Kem is of similar magnitudes to that of ∆E. This shows that the structure absorbs energy dominantly

through mode 1. For zero or negative values of ∆E, ∆Kem is negative with a larger absolute value as

compared to ∆E. These periods of oscillations correspond to the transfer of energy from mode 1 to other

vibrational modes in the structure. In the process either total energy of the structure remains constant

(∆E = 0) or is partly transferred back to the forcing medium (∆E < 0). Mode 1 therefore extracts energy

from the in-plane motion and dissipates it into the other vibrational modes. We also computed ∆Kem vs

∆E for structure A with an initial tension. The result of this analysis is depicted in Fig. 6.4(b). No such

correlation between the two quantities is observed. Furthermore, ∆Kem values are roughly two orders of

magnitude smaller than ∆E. This shows that the role of mode 1 in the process of dissipation decreases with

the application of tensile strain.

In order to elucidate the role of mode 1 as a channel for energy dissipation, mode 1 amplitude, Am, values

were computed for graphene under in-plane excitation. Because of periodic deformation, Am is expected

to be a function of time. For each period of oscillation, time instances separated by an interval ∆t = 5

fs were considered and Am values were computed at these instants of time. Let tij denote the time j∆t

from the beginning of the ith oscillation period. Let Aij denote the value of Am at tij and sj the in-plain

strain value at that instant. Aij was then averaged over a number of oscillation periods to get Aj such that
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Figure 6.5: (a-e) The response curve for the mean out of plane amplitude (Aj) vs. the in-plane strain (sj).
Plots a, b, c, d and e correspond to the frequency values 20, 40, 60, 80 and 100 GHz, respectively. The
arrows in the figure show the loading direction.
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Aj =
1

nprds

nprds∑
i=1

Aij , here nprds is the total number of oscillation periods. Figure 6.5(a-e) shows the plot

of Aj vs. sj for structure A under in-plane excitation. The plots correspond to different frequency values in

the range of 20 to 100 GHz. We see that there is a hysteresis in the response of Aj such that for each value

of sj two different Aj values are obtained.

6.4.2 Dynamic Hysteresis - Analysis

We now ascertain the physical cause for mode 1 hysteresis observed during cyclic in-plane loading. The

in-plane strain is an input which results in mode 1 hysteresis. It would therefore be useful to study the

potential energy of graphene sheet as a function of these two deformations. Using AIREBO potential, the

total potential energy for graphene was obtained as a function of Am for different in-plane strain values. In

order to obtain the potential energy profile for mode 1, the flat sheet was first given an in-plane strain. This

was done by scaling the y coordinates corresponding to the strain value, sj . The atoms were then moved in

the z direction such that atom i had a z displacement, zi, given as

zi = Amsin

(
2πymi
lj

)
. (6.12)

Here lj is the deformed length in the y direction and is related to sj as lj = ly(1 + sj). The Am value

was varied from −3.5 Å to 3.5 Å with an increment of 3.5×10−2 Å. For each value of Am the total potential

energy was computed using the AIREBO potential to get U(Am, lj). It should be pointed out that the atoms

were given the specified motion only for computing the potential energy. This was done separately from the

simulations used for computing the dissipation rate, in which case the atoms were free to move in accord

with the Newtons law of motion.

Figure 6.6(a) shows the potential energy as a function of Am for structure A with 0.18% tensile strain

and with a compressive strain of 0.18% in the y direction. These values correspond to the strain amplitude

used for computing the dissipation rate. Under tensile strain the minimum in the potential energy is at

|Am| = 0.26 Å while under compressive strain the minimum shifts to |Am| = 1.428 Å. Further, the potential

energy is maximum at Am = 0 for the compressive case thereby showing that Am = 0 is an unstable point.

An out-of-plane deformation corresponding to mode 1 is therefore an unstable one for the flat graphene sheet.

If the sheet is perturbed with such a deformation it would not tend to return back to the flat configuration.

The shift in the minimum potential energy point for mode 1 was further validated using equilibrium MD

simulation. Structure A was equilibrated at 300 K with initial compressive and tensile strains of 0.18% in

the y direction. The Am values were then computed for the two cases. Figure 6.6(b) shows the probability
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density function (pdf) obtained for Am. Under the tension case the pdf is centered around 0.25 Å while for

the compressive case it is centered around 1.4 Å. This shows that the minimum energy point for mode 1

depends on the in-plane strain.
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Figure 6.6: (a) The potential energy profile as a function of Am obtained using AIREBO potential. The
results are for structure A under 0.18% compressive and tensile strain in the y direction. (b) The probability
density function for Am obtained using equilibrium MD simulations. The results are for structure A under
0.18% compressive and tensile strain in the y direction. (c) The fj vs. sj curve obtained for structure A
under periodic excitation at 80 GHz.

A periodic in-plane strain would therefore keep on modulating the position of the minimum potential

energy point for mode 1. The structure would require a finite amount of time to relax to the new minimum

energy point. This would result in a phase lag between the response (Aj) and the input (sj). The nature of

response curve would depend on the complex potential energy surface traversed by the structure. A simple

estimate of the hysteresis time scale can be made by considering the act of quenching the structure A from

a tensile strain of 0.18% to a compressive strain of 0.18%. When the structure is quenched from tensile to

compressive state, the buckling time is the time required for the structure to move from Am = 0.266 Å to

Am = 1.428 Å. For computing the buckling time, mode 1 dynamics was studied. Dynamics of mode 1 can be

described as the motion of a single particle in the potential energy curve U(Am, lj). The equation of motion
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for mode 1 is given as

nat

2
×mÄm = −∂U(Am, lj)

∂Am
. (6.13)

The equation describes the motion for mode 1 assuming other modes to be absent. The initial velocity

for mode 1 was taken from the equilibrium distribution in the tensile state. The time required to reach

Am = 1.428 Å was computed for different initial velocity. The mean relaxation time, τr, was then determined

by taking an average over the initial conditions. τr for structure 1 at 300 K was estimated to be 2.42 ps.

For dissipation mechanisms due to relaxation, the angular frequency corresponding to maximum dissipation,

ωm, satisfies ωmτd = 1, where τd is the relaxation time specific to the mechanism of dissipation. Assuming

similar behavior for the relaxation of mode 1, the frequency for maximum dissipation, fm, is obtained as

fm =
1

2πτr
= 65.582 GHz for structure A. This is smaller than 80 GHz, the frequency value corresponding

to the maximum dissipation for structure A at 300 K. A more accurate estimate would require considering

the noise and the dissipative forces, which have been neglected in our analysis.

Further, we expect a hysteresis in the response of mode 1 only when the time period of in-plane excitation

is comparable to the buckling time. For time periods much larger than the relaxation time no hysteresis

in Am is expected. We validated this by studying the response of mode 1 for structure A with an in-plane

loading of time period 2 ns. For such deformation, mode 1 gets ample time to relax to the modulated

potential energy curve. The response is then expected to follow the input. Figure 6.7(a) shows the plot

of Am as a function of time for one oscillation period with a time period of 2 ns (frequency of 0.5 GHz).

The input strain (scaled) value has also been plotted alongside. During the tensile half of the cycle Am

is negligibly small. This is expected as the minimum energy point for mode 1 during tension is around

zero. During the compressive half of the cycle the minimum energy point shifts. Am becomes large and

symmetrically follows the input strain. Thus, no hysteresis in the response is observed for this case. The

case for excitation at 80 GHz (time period of 12.50 ps) is then considered for comparative analysis. Figure

6.7(b) shows the plot of Am vs. time for this case. A lag in the response is observed. Am reaches a maximum

value nearly at the end of the oscillation period for the input strain. The mechanism of dissipation due to

out-of-plane hysteresis is therefore important only for time scales comparable to the relaxation time. For

excitations with much longer time period other dissipation mechanisms may become dominant.

6.4.3 Dissipation Mechanism

We now explain the mechanism of loss of energy from the in-plane vibration in view of the observed hysteresis

in the out-of-plane mode amplitude. The loss of energy from the in-plane motion can be ascertained from the

response curve of Aj . We consider the Aj vs sj curve for the loading of structure A at 80 GHz (fig. 6.5(d))
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Figure 6.7: (a-b) The out-of-plane amplitude as a function of time for one oscillation period. Plots a and b
correspond to excitation with time periods of 2 ns and 12.5 ps, respectively.

and compute the force, fj , using the relation fj =
∂U(Aj , lj)

∂lj
. fj was computed numerically using a local

linear fit of U(Am, lj) vs. lj . The slope of the linear fit gives the value of fj . The Hamiltonian for mode 1,

H is given as H = U(Am, lj) +
1

2
nat×mV 2

m

2
. H is therefore a function of lj which itself is a function of time.

For such time varying Hamiltonian, the differential work done on the system, dW , is given as dW =
∂H

∂lj
dlj .

The total work done during a cyclic deformation is then obtained as W =

∮
dW =

∮
fjdl. A hysteresis in

fj would therefore lead to a net non-zero work on the system.

Figure 6.6(c) shows the plot of fj vs sj . The direction of arrows shown in the figure correspond to the

loading direction. For the compressive half of the cycle, we see that the magnitude of force required for

loading from 1 to 2 is more than that required for unloading from 2 to 1. Thus the effective in-plane stiffness

of the structure is higher during loading and decreases during the return path. A similar conclusion can also

be drawn using the continuum theory. The stress in the y direction, σyy, is given as σyy(εy) =
1

V

∂U

∂εy
. Using

the continuum expression of potential energy in eqn (6.9) for the out-of-plane motion and elastic energy

contribution from the in-plane strain, we obtain

σyy(εy) =
E

1− ν2
εy +

1

V

x Eh

2(1− ν2)

((
∂w(x, y)

∂y

)2

+ ν

(
∂w(x, y)

∂x

)2
)
dxdy. (6.14)

Further, assuming that the out-of-plane deformation is dominantly described by mode 1, we get

σyy(εy) =
E

1− ν2
εy +

Eπ2A2
m

(1− ν2)l2y
. (6.15)
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Figure 6.8: A schematic summarizing the dissipation mechanism. The schematic shows a side view of
graphene sheet which is given a deformation in the y direction. The compressive half of the cycle has been
illustrated here. The structure is loaded from state 1 to state 2 and then un-loaded back to state 1. For
the same value of in-plane strain (identified by the length in the y direction) we see that the out-of-plane
amplitude is higher during un-loading. The effective in-plane modulus of a thin sheet is lower for higher
value of out-of-plane amplitude. The magnitude of in-plane stress during loading, |σLyy|, is therefore higher

than the un-loading value, |σULyy |. As a result the structure absorbs energy and heats up.
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We define an effective modulus, Eeff , as Eeff =
σyy(εy)

εy
. Using eqn(15) we get

Eeff =
E

1− ν2
+

Eπ2A2
m

εy(1− ν2)l2y
. (6.16)

For negative values of εy, eqn(6.16) shows that higher is the value of Am lower is the value of Eeff . The

higher value of Am during the return path shows that the effective modulus decreases during the return

path.

The elastic softening during the return path would mean that the energy stored during loading is not

released completely during unloading. This would result in a loss of energy from the in-plane motion.

The schematic illustrated in Fig. 6.8 summarizes the mechanism of dissipation. We expect the loss to be

maximum when the difference in the stiffness (and hence Am) between the forward and the return path

is maximum. From Fig. 6.5(a-e) we can see that the difference in the Am values, between the loading

and unloading path during compression, becomes maximum at 80 GHz. The Q factor therefore becomes

minimum at this frequency value.

The weak dependence of Q factor on temperature observed for the case of in-plane vibration can also be

understood from this mechanism. The minimum potential energy point for the out-of-plane mode depends

on the in-plane strain. The periodic in-plane strain would result in similar modulation of potential energy

profile for mode 1 at low temperature (for low temperature study the same lattice constant as that of

room temperature was considered). The out-of-plane mode hysteresis is, therefore, observed even at low

temperature. The dissipation rate depends on this hysteresis behavior. Hence, the observed Q factor shows

a weak dependence on temperature. This is in contrast with phonon mediated damping which involves

the high frequency thermal phonons. The energy absorbed by thermal phonons depends on the phonon

occupation number. The phonon occupation number is given by the Bose-Einstein statistics and is a strong

function of temperature. Hence, for phonon mediated damping theQ factor strongly depends on temperature.

We expect this to be the case for the flexure mode. As reported in the previous studies [8, 31, 77], for the

flexure mode the inverse Q factor shows a Tn dependence where n is in the range of 0.3− 3.
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Chapter 7

Dissipation in a Nanoribbon

7.1 Introduction

A one-dimensional structure is the limiting case of a nano-resonator and is expected to be an ideal choice for

various applications. However, reduced dimensionality may introduce additional mechanisms of dissipation

and degrade its performance. An understanding of damping mechanism in one-dimensional structures is

therefore of great importance to realize the limiting performance of nano-resonators. With this motivation in

mind, in this work, we study the damping mechanism in graphene nanoribbon(GNR), a quasi one-dimensional

structure. The high in-plane stiffness [79] of this graphene based structure makes it an ideal choice for string

resonator.

In this work[37], we have studied the intrinsic dissipation in GNR under stretching deformation. The

case of stretching deformation was considered to generate a nearly homogeneous strain field. This reduces

the complexity associated with a spatially varying strain field and helps in better analyzing the dissipation

mechanism. Also, it has been shown that it is advantageous to use longitudinal vibration mode for NEMS

operating in viscous environment[75] because of relatively lower fluid damping in comparison with the flexural

mode. Understanding the internal dynamics of longitudinal mode is important for these applications.

Using MD simulation, we first study the frequency scaling of Q factor. In-order to understand the

observed scaling, we investigate the coupling between the out-of-plane modes and in-plane stretching. A

Langevin dynamics framework is developed to describe the motion of out-of-plane modes under in-plane

stretching. Using this formulation we compute the dissipation rate associated with different out-of-plane

modes. From this analysis, we identify two group of modes which show opposite scaling of dissipation

rate with frequency. A novel bi-relaxation time model is developed from this analysis. The characteristic

relaxation times for the model are obtained from the mean relaxation time of the two mode groups. The

two time scales associated with phonon damping is a characteristic feature of this structure. For a regular

three dimensional crystalline solid under uniform strain, dissipation is governed by a single relaxation time.

We then studied the size scaling of Q factor. The observed drop in Q factor with decrease in size
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is explained to be the result of elastic softening of GNR. The temperature variation of Q factor shows,

approximately, an inverse temperature dependence.

7.2 Simulation Method

We utilize classical MD simulation to study the loss mechanism in GNR. Figure 7.1 shows a schematic of the

simulation set-up. The edges of GNR have been terminated with hydrogen atoms. This was done to prevent

the warping and buckling of the structure. The structure was given an initial tensile strain of about 1.4% for

similar reason. Rebo potential [5] was used to model the force field for carbon as well as hydrogen atoms. MD

simulations were performed using large-scale atomic/molecular massively parallel simulator (LAMMPS)[59].

GNR was first equilibrated using Nosé-Hoover thermostat at desired temperature with both ends fixed.

Subsequent to equilibration, one of the ends was given a displacement controlled periodic motion in the

in-plane (x) direction. The amplitude of oscillation was taken to correspond to a strain amplitude of ap-

proximately 1%. Frequency values in the range of 5 to 80 GHz were considered. During loading process the

thermostat was switched off, thus, there was no heat exchanged with the environment.

From the first law of thermodynamics it follows that dU = dW , where dU is the differential increase

in internal energy and dW is the differential work done on the system. For a reversible process (quasi-

static), the average work done during a cyclic deformation is zero. However, deformations at any finite

rate drive the system out of equilibrium. For such cases, energy is dissipated and the average work done

during each deformation cycle is positive. The average positive work is guaranteed from the second law of

thermodynamics. The dissipative work done will result in an increase in internal energy of the system (if

the system is not thermally coupled with the environment). From the rate of increase of internal energy the

average work done per unit period, Wavg, can be inferred. Wavg is a measure of the dissipation rate.

Figure 7.1: A schematic of the simulation set-up.

Dissipation is measured in terms of the dimensionless Q factor which is defined as Q = 2π
Estored
Edisp

. Edisp

79



is the energy dissipated per unit period and is equal to Wavg. Estored is the maximum elastic energy stored

in the structure. Under uni-axial loading the maximum elastic energy stored is given as

Estored =
1

2
kA2 + P0A. (7.1)

k is effective stiffness of the structure, A is amplitude of motion and P0 is tensile force in the reference

configuration.

Independent equilibrium simulations were performed to compute k and P0 for GNR. With one end fixed

the other end of GNR was given an incremental displacement of 0.1 Å. After an incremental displacement,

the ends were held fixed and the structure was equilibrated for a time period of 1 ns. For the next time span

of 1 ns the average force on the end atoms was computed. 8 incremental displacements were given to the

structure. Thus, we obtain a force displacement curve. The slope of the curve gives k while the intercept

provides the value of P0. The values of k and P0 for GNR with different width are provided in Table I.

Table 7.1: The values of k and P0 for GNR

Width (nm) k

(
ev
◦
A

2

)
P0

(
ev
◦
A

)
0.68 0.748 1.575
1.11 1.531 3.206
1.54 2.303 4.849
1.96 3.141 6.513
2.38 3.911 8.172
2.81 4.701 9.861
3.67 6.290 13.256

7.3 Results and Discussion

7.3.1 Frequency Scaling

We first studied the scaling of Q factor with frequency for a GNR with length 10 nm and width 0.68 nm.

Periodic motion with forcing frequency, ωf , values in the range of 5 to 80 GHz were considered. The value of A

was taken to be 1
◦
A for all the frequencies. For each frequency value 10 different equilibrated ensembles were

taken. The rate of increase of internal energy was computed by monitoring the average internal energy over

200 oscillation periods for each of the ensemble. Q factor was then computed using the method described

before. Figure 7.2 shows the variation of Q factor with frequency obtained from MD. A non-monotonic

dependence of Q factor on frequency is observed. The Q factor attains a maximum value at around 40 GHz,

hence, dissipation becomes minimum at this frequency value. The plot also shows the Q factor obtained
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using the bi-relaxation time model discussed later. In order to understand the observed scaling of Q factor

with frequency, we now analyze the dissipation mechanism. From the analysis the bi-relaxation time model

follows.
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Figure 7.2: Variation of Q factor with frequency for GNR. The open circles correspond to the result obtained
from MD simulation. The solid lines are the result obtained using the bi-relaxation time model.

7.3.2 Dissipation Mechanism

The mechanism of dissipation can be understood in terms of the strong coupling that exists between out-

of-plane vibrations and in-plane strain for thin structures such as a membrane or a string. For example,

the frequency of vibration of a string can be tuned by changing the tension (which results from change in

in-plane strain). Dynamic loading in in-plane direction would therefore result in an energy exchange with

out-of-plane vibrations. The energy gained by the out-of-plane modes are then irreversibly transformed into

thermal energy of the structure. Using continuum theory for strings we first study the coupling between

in-plane strain and out-of-plane vibrations. The equation governing the motion of out-of-plane modes for a

periodically stretched string is first obtained. The contribution of different modes to dissipation and their

scaling with frequency is then estimated.
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String Dynamics

We consider a string with bending stiffness Kb and tension P . The string has an out-of-plane deformation

w(x). The potential energy, PE, associated with the out-of-plane motion is given as

PE =

∫ L

0

1

2
Kb

(
∂2w

∂x2

)2

dx+

∫ L

0

1

2
P

(
∂w

∂x

)2

dx. (7.2)

L is length of the string. The boundary conditions are w = 0 at x = 0, L. The nth mode shape, wn(x),

satisfying the given boundary condition is obtained as wn(x) = Ansin
(nπx
L

)
, where An is the amplitude.

Let ωn be the angular frequency for the nth out-of-plane mode. The time dependent displacement, wn(x, t),

associated with nth out-of-plane mode is given as wn(x, t) = wn(x)exp(iωnt). Here, we have considered the

case of free vibration with no dissipation.

The angular frequency can be estimated by equating the maximum potential energy with the maximum

kinetic energy for such case. The maximum kinetic energy, Ken, associated with vibration of nth mode is

obtained as Ken =
1

2
ρA2

nω
2
n

L

2
. ρ is the mass per unit length. Using eqn(7.2) and the expression for mode

shapes, the maximum potential energy, Pen, for the nth out-of-plane mode is derived as

Pen =
1

2
Kb

(nπ
L

)4
A2
n

L

2
+

1

2
P
(nπ
L

)2
A2
n

L

2
. (7.3)

Equating Ken and Pen, we get

ωn =

√
Kb

(
nπ
L

)4
+ P

(
nπ
L

)2
ρ

. (7.4)

ωn is a thus a function of P which depends on in-plane strain. Let P0 be the tension and ω0
n be

the angular frequency for nth mode in undeformed configuration of the string. Using eqn(7.4) we obtain

ω0
n =

√
Kb

(
nπ
L

)4
+ P0

(
nπ
L

)2
ρ

. The string is subjected to an in-plane strain, εs, which changes the tension

in the string as P = P0 +Ksεs. Here, Ks is the stretching stiffness of the string. This changes the angular

frequency as ωn =

√
(ω0
n)2 +

Ksεs
ρ

(nπ
L

)2
. Further, for εs << 1 this can be approximated as

ωn = ω0
n(1 + λnεs). (7.5)

λn is a variable given as

λn =
Ks

(
nπ
L

)2
2P0

(
nπ
L

)2
+ 2Kb

(
nπ
L

)4 . (7.6)

The sensitivity of ωn on εs thus depends on λn. The dependence of frequency on strain is often measured
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in terms of Grüneisen parameter, λgn, defined as λgn = −dlog(ωn(εs))

dlog(vol)
. Here vol is volume of the structure. It

would be useful to derive a correspondence between λn and λgn. For uni-axial deformation vol = vol0(1+ εs),

where vol0 is the reference volume. For such deformation, we get ωn(εs) = ω0
n(1 + εs)

−λng . Further, for

εs << 1 we obtain ωn(εs) = ω0
n(1 − λng εs). Comparing this with eqn(7.5) we see that λn is the negative

Grüneisen parameter for the nth out-of-plane mode.

Physically, λgn is a measure of the change in the temperature of nth mode when the structure is loaded

under adiabatic condition.This can be understood by considering the case for a harmonic oscillator whose

frequency is changed quasi-statically. For such an oscillator, the ratio of energy, E, and frequency, ωn, is an

adiabatic invariant[34]. It then follows that

E0

ω0
n

=
E0 +∆E

ω0
n(1− λng εs)

. (7.7)

Here, E0 is the energy of the oscillator in reference configuration and ∆E is the change in energy of the oscil-

lator resulting from change in frequency (which in-turn results from in-plane strain). Further simplification

of eqn(7.7) gives ∆E = −E0λgnεs. Thus, modes with high values of λgn, and hence λn, will undergo higher

change in temperature with the loading of structure. Such modes are therefore driven out-of-equilibrium, for

in equilibrium all modes have the same average temperature. These modes will then interact with the rest

and tend to relax towards equilibrium. The inter modal interaction results in an irreversible flow of energy.

This in essence is the mechanism of dissipation at work.

We now make an estimate of λn for different out-of-plane modes using MD and compare it with the

continuum theory. In-order to estimate λn, out-of-plane mode frequency values were determined for different

values of in-plane strain. GNR was given an in-plane strain by scaling the x co-ordinate. The ends of GNR

were kept fixed and the structure equilibrated at room temperature (300 K). The out-of-plane(z) co-ordinates

were projected on to the mode shapes to get the modal co-ordinates. Let zi be the z co-ordinate for the ith

atom and natom be the total number of atoms in the structure. Let xmi be the mean x co-ordinate for the

ith atom. The modal co-ordinate, an, for the nth mode is then obtained as

an(t) =

∑natoms
i=1 zi(t)sin

(
nπxmi
L

)
∑natoms
i=1

(
sin
(
nπxmi
L

))2 . (7.8)

The auto-correlation of an shows a sinusoidal decaying behavior. The fft of the sinusoidal data gives ωn. An

exponential fit of the decaying amplitude gives the relaxation time, τn, for the nth mode. ωn is thus obtained

for different in-plane strain. A linear fit between ωn and in-plane strain gives λn in accordance with eqn(7.5).
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Figure 7.3(a) shows the plot of λn with mode number. A fit using the continuum expression of eqn(7.6), for

the parameters Kb and Ks, has also been provided. The plot shows that λn decreases with the increase in

mode number. This can be understood by considering the ratio, r, of bending energy to stretching energy

as a function of n. From the expression of mode potential energy in eqn(7.3), we obtain r =
Kb

(
nπ
L

)2
P

. r

increases with n and, hence, for larger n, deformation becomes bending dominated. A bending dominated

deformation is relatively less sensitive to in-plane strain. Hence, λn decreases with increasing n values.

The analysis shows that the low frequency out-of-plane modes are most strongly coupled to in-plane

motion. The energy transfer between such modes and stretching deformation is therefore expected to be

higher in-comparison with the high frequency modes. While λn gives the coupling strength for the mode,

dissipation also depends on another important parameter, τn. Figure 7.3(b) shows the plot of τn vs n for

GNR. For low n values, the modes have higher relaxation time with a wide variation. For higher n values

the modes have relaxation time of around 3 ps (see inset of figure 7.3(b)).

τn is a measure of how fast the modes relax towards equilibrium. Modes with very low value of τn would

always be in equilibrium and hence would result in lower dissipation. Modes with very high value of τn take

considerably longer time to transfer energy to other modes. This corresponds to an adiabatic situation, the

energy gained by these modes during loading is reversibly transferred back during un-loading. Such modes

also lead to low dissipation. Dissipation is maximum for some intermediate value of τn. The high and low

referred here are relative terms and depend on the forcing time period. The dissipation associated with each

mode is therefore an interplay of coupling strength and relaxation time. In-order to assess the relative modal

contribution to dissipation we now develop an equation for the out-of-plane modes of a string subjected to

in-plane stretching. The values of ωn, λn and τn obtained from this analysis will be used in these equations

to estimate the dissipation rate associated with different out-of-plane modes.

Out-of-plane Langevin Dynamics

The equation of motion for the nth mode of a string with fixed length and for the case of no dissipation

is given as meff än + meffω
2
nan = 0. Here, an is the modal displacement and meff is the effective mass

which is given as meff =
ρL

2
. For a string at any finite temperature, the modes are subjected to additional

noise and dissipative force. The noise and dissipative force result either from coupling with other internal

modes or because of external coupling with the environment. In our formulation, the noise and dissipative

force describe the coupling with other internal modes. The equation of motion, taking these forces into

consideration, is then given as

meff än +meffω
2
nan + cnȧn = χn(t). (7.9)
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Figure 7.3: (a) Variation of λn with mode number n as obtained using MD simulations. A fit using the
continuum relation expressed in eqn(7.6) has also been provided. (b) Variation of τn with n. The values
correspond to GNR in the reference configuration. The inset shows the relaxation time for modes with high
n values.
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Here cn is the damping constant and χn(t) is the noise force. cn is related to τn as cn =
2meff

τn
. The relation

between cn and τn can be established by considering the solution for a damped harmonic oscillator[15].

χn(t) is a delta correlated white noise with zero mean and satisfies the fluctuation-dissipation theorem[15]

as < χn(t)χn(t0) >=
τnkbT

meff
δ(t− t0). T is temperature of the system and kb is the Boltzmann constant.

We now consider the case when the string is subjected to an in-plane motion with strain amplitude

ε0 and forcing frequency ωf . The in-plane motion will modulate the frequency of out-of-plane modes in

accordance with eqn(7.5). Figure 7.4 illustrates the mode dynamics. The equation of motion for the case of

parametrically modulated out-of-plane mode is then given as

meff än +meff (ωon(1 + λnε0sin(ωf t))
2an + cnȧn = χn(t). (7.10)

The above equation describes the dynamics of a noisy oscillator under parametric excitation. The continuous

excitation of the system ensures that the system is always out of equilibrium. For such a system, useful

work extracted from parametric loading will be converted into thermal energy. The dissipation rate can be

measured by estimating the average work done per period.

Figure 7.4: A schematic describing the basic ideas of Langevin simulation. A particle is moving in a harmonic
potential which is modulated in time. The dotted lines show the potential profile at different time instants.
The particle is connected to a thermal bath (which represents the rest of modes). An effective noise and a
dissipative force acts on the particle as a result of this interaction.

The in-plane loading modulates the frequency and hence the potential energy of the oscillator. The

differential work done is equal to the differential change in potential energy (which results from the change
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in frequency). The differential work, dW , done on the oscillator due to loading is then given as

dW =
1

2
meffd(ω2

n)a2n. (7.11)

Further, using the dependence of ωn on εs from eqn(7.5) we get

dW = meffωnω
0
nλnε0ωfcos(ωf t)dt. (7.12)

The average work done per unit period is a measure of dissipation rate, Endisp, for the nth mode and is

obtained as

Endisp =

〈∫ 2π
ωf

0

meffωnω
0
nλnε0ωfcos(ωf t)dt

〉
. (7.13)

The average here refers to the ensemble average.

Eqn(7.10) was solved numerically using the velocity Verlet integration scheme. ω0
n, λn and τn required as

inputs to the equation were estimated from MD simulation (as discussed before). The value of ε0 was taken

to be 1%, this corresponds to the strain amplitude used in the forced vibration analysis of MD simulations.

The initial condition for eqn(7.10) was obtained by evolving eqn(7.9) for an equilibration time of 320 ps. τn

is maximum for mode 1 with a value of around 290 ps. An equilibration time of 320 ps therefore ensures

that all modes are equilibrated prior to loading. A time step of 0.5 fs was used. 8000 ensembles were taken

and for each ensemble 10 oscillation periods were considered for computing Endisp. Forcing frequency values

from 5 to 80 GHz (same as used in MD simulations) were considered.
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Figure 7.5: Variation of dissipation rate (Edisp) with frequency for the two mode groups obtained using
Langevin simulations.
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Rather than analyzing all the modes, we choose some representative modes for studying the scaling of

dissipation rate with forcing frequency. We select 5 modes which have τn in the range of 300 - 10 ps and

another 5 modes with τn < 10 ps. The former set is identified as group A and the latter as group B. The

total dissipation due to A and B was then computed for different frequency values in the range of 5 to 80

GHz. Figure 7.5 shows the variation of dissipation rate with frequency for A and B. The plot shows that

for set A dissipation rate decreases with the increase in frequency while for B the rate increases with the

increase in frequency. Further, the dissipation rate for B is lower in comparison with that of A. The set B

comprises of modes with high n value. For such modes λn is smaller and hence the dissipation rate for set

B is lower.

It would appear from this analysis that group A (for which Edisp is higher) would dominate and govern

the scaling of Q factor with frequency. However, the number of modes with larger n values (that show set

B like behavior) is higher in comparison with the modes with low n values. Though we have computed (see

figure 3) λn and τn for 1 <= n <= 20, n can take higher values.
L

n
is a measure of half wavelength associated

with a given mode. For a lattice structure, wavelength is bounded below by the dimension of its unit-cell.

For GNR considered the unit cell has a dimension of 2.4595
◦
A. This implies that n≤ 75. The number of

modes which show the characteristics of set B would be higher. The collective behavior of such modes is

expected to become comparable to that of group A and govern the dissipation rate in high frequency range.

Bi-relaxation Time Model

From the discussion in the previous section, we note that GNR has two group of modes which show opposite

scaling of dissipation rate with frequency. For lower frequency values, group A dominates and hence Q factor

increases with the increase in frequency. For higher frequency values, the frequency dependence is governed

by the behavior of group B. A non-monotonic dependence of Q factor with frequency is therefore observed.

For dissipation governed by relaxation spectra with different time scales, Q factor is given as [68]

Q−1 =

m∑
i=1

Ci
ωfτ

e
i

1 + (ωfτei )2
. (7.14)

Here Ci is the coupling strength for the given relaxation mechanism, τei is the corresponding relaxation

time and m is the total number of relaxation spectra. It should be pointed out that τei refers to the time

associated with energy relaxation for the given mechanism.

Recognizing that for the case of GNR, dissipation is governed by two mode groups, we consider a bi-

relaxation time model. We take τe1 as τe1 =<
τn
2
>, where the average is taken over n such that τn > 10

ps. The factor of
1

2
is used because τn is a measure of time associated with amplitude relaxation. Energy
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relaxation time is one-half of the amplitude relaxation time. Similarly, τe2 was determined as τe2 as τe2 =<

τn
2

>, where n satisfies the condition that τn < 10 ps. Using the relaxation times obtained from MD

simulation (figure 3(b)), τe1 and τe2 were estimated to be 32.57406 ps and 1.61393 ps, respectively. With

these values of τei the Q factor obtained from MD simulations were fitted in accord with eqn(7.14) to obtain

C1 and C2. Figure 7.2 shows the results obtained from the model and a good agreement with the MD data

is observed.

The expression in eqn(7.14) is amenable to further analysis. Taking the derivative of Q−1 with respect

to ωf we obtain

dQ−1

dωf
=

2∑
i=1

Ciτ
e
i (1− (ωfτ

e
i )2)

(1 + (ωfτei )2)2
. (7.15)

From the expression we see that for ωfτ
e
1 < 1 (and hence for ωfτ

e
2 < 1, since τe2 < τe1 ),

dQ−1

dωf
> 0. Hence for

this region, Q factor decreases with the increase in frequency. For ωfτ
e
2 > 1 (and hence for ωfτ

e
1 > 1, since

τe1 > τe2 ),
dQ−1

dωf
< 0. For this regime, Q factor increases with the increase in frequency. We haven’t explored

these regions using MD simulations. These regions correspond to forcing with frequency value less than 4.88

GHz (for ωfτ
e
1 < 1) and with frequency value greater than 98.2863 GHz (for ωfτ

e
2 > 1). The exploration

of former case is limited by the computational cost. It would require very long simulation time to capture

sufficient number of periods in the low frequency regime. Further, we expect the model to hold good in the

low frequency region rather than for high frequency cases. For high frequency case, dissipation mechanism

such as the Landau-Rumer coupling will take over. The relaxation time approximation is not adequate to

describe such a case. We need to consider a more detailed description of phonon collision to model these

cases.

7.3.3 Size Scaling

We next studied the scaling of Q factor with width of GNR. The length of GNR was kept fixed while the

width was varied from 0.68 nm to 3.65 nm. The structure was excited with a forcing frequency of 40 GHz.

Using the method discussed in the section on simulation details, Q factor was computed for GNR with

different sizes. 10 different ensembles were considered for each size and for each ensemble 200 oscillation

periods were considered. Independent equilibrium simulations were performed for computing P0 and k for

each size.

Figure 7.6 shows the plot of Q factor vs. size for GNR excited at 40 GHz. The plot shows that Q factor

decreases with the decrease in size. This may be attributed to an increase in dissipation with decrease in

size. However, Q factor is a ratio of energy stored to energy dissipated per unit period. The decrease in Q
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Figure 7.6: Variation of Q factor with width for GNR. The open circles correspond to the result obtained
from MD simulation. The solid lines are the result obtained using continuum analysis.

factor may then also be a result of decrease in energy stored. The hydrogen terminated edge atoms of GNR

store relatively less energy in comparison with the bulk atoms. In-order to investigate this we computed the

quantity
k

w
for a GNR with width w. For a classical elastic strip with Young’s modulus E, stress, σxx, and

strain, εxx, are related as σxx = Eεxx. The total force, F , applied at the end is related to σxx as F = σxxhw,

where h is thickness and w is width of the strip. The change in length, δ, is related to εxx as
δ

L
= εxx, where

L is un-deformed length of the strip. k for the strip is given as k =
F

δ
. Using the relations mentioned before,

we obtain

k

w
=
Eh

L
. (7.16)

k

w
for such structure is therefore independent of w (becasue E is a constant for a classical continuum

structure). Figure 7.7 shows the plot of
k

w
vs. w for the case of GNR. The plot shows that

k

w
decreases with

the decrease in size. The structure therefore becomes softer with the increasing contribution of edge atoms.

We develop a continuum expression based on the assumption that the decrease in Q factor with size is

primarily due to elastic softening. GNR is represented as an elastic strip. The dissipation rate per unit

width, Ew, for a given strain amplitude is assumed to be a constant. Ew is determined by taking the ratio

of Edisp and w for GNR with maximum width (w = 3.67nm). We use Edisp for GNR with w = 3.67 nm

obtained using MD simulation to compute Ew. The value of Ew for A = 1.0
◦
A was estimated to be 1.424

ev

nm
. For a GNR with width w, Edisp is then determined as Edisp = wEw. Further, using the expression for
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Estored in eqn(7.1) Q factor for the elastic strip is obtained as Q =
2π(P0A+ 1

2kA
2)

Eww
. Figure 7.6 shows the

plot of Q factor vs. w obtained using this relation. The results are in good agreement with the Q factor

computed using MD simulations.

Thus, the drop in Q factor with decrease in size is primarily accounted for by the elastic softening of

GNR. The dissipation mechanism discussed before shows that the dissipation rate is a function of τe1 and τe2 .

These are the relaxation times associated with the low and high frequency out-of-plane modes, respectively.

The relaxation times are expected to be a function of size. However, we expect the dependence to be weak

in comparison with the scaling of
k

w
with size. The decrease in

k

w
with the decrease in size then primarily

accounts for the observed drop in Q factor.

7.3.4 Temperature Scaling

We studied the effect of temperature on Q factor for GNR with the smallest width. Temperature was varied

in the range of 50 K to 300 K. The study was done for a forcing frequency of 40 GHz. Figure 7.8 shows

the plot of Q factor vs. temperature. The Q factor increases, and hence dissipation decreases, with the

decrease in temperature. Eqn(7.11) shows that dW∼a2n. Further, for an oscillator in thermal equilibrium

< a2n > ∼T . Therefore we expect that dW∼T , assuming other parameters to be constant. As discussed

before, the average work done per unit period is a measure of dissipation rate. It can then be concluded

that Q factor will scale as Q∼T−1. From the power law fit of the MD data we obtain Q = AT−0.948, this is

close to T−1 scaling.
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Figure 7.8: Variation of Q factor with temperature for GNR. A power law fit for MD data is also shown.

7.4 Conclusions

The dissipation in GNR under stretching deformation was studied. A non-monotonic dependence of Q factor

on the forcing frequency was observed. Using Langevin simulations we identified two mode groups which

show opposite variation of dissipation rate with frequency. A bi-relaxation time model was proposed to

explain the observed scaling of Q factor. A size study showed that Q factor decreases with the decrease

in width. This was attributed to the elastic softening of GNR with decreasing width. The temperature

variation of Q factor showed an inverse temperature dependence.

92



Chapter 8

Conclusions

We used different computational methods to investigate the intrinsic dissipation mechanism in nano-structure.

A MD based simulation method was develop to isolate Akhiezer dynamics and study the size and surface

effect. We observed that the surface aided in reducing the damping rate for the cases considered. This was

understood from the surface scattering of phonons. We, also, identified some deleterious roles of the surface

on the Akhiezer damping.

We, then, studied the damping under the flexure mode of operation. The results were compared with

the case of stretching deformation. Interestingly, we observed that the Q factor was higher for the bending

mode. A reduced order model was considered to understand the observed trend. The role of tension on the

Q factor was investigated and a scaling relation was developed.

The next objective of the work involved the development of multi-scale approach to model intrinsic

dissipation. We extended the quasi-harmonic framework to describe the non-equilibrium dynamics under

high frequencies of vibration. A non-equilibrium stress tensor was derived. A constitutive relation for

the time evolution of the non-equilibrium stress was obtained. Methods to obtain the parameters in the

constitutive relation were discussed. The method was used to compute the damping rate for different cases.

The results were validated against those obtained using MD.

Next, we investigated the thermo-elastic dissipation under high frequency of vibrations. For this purpose,

we used the BTE coupled with the elastic strain field. We observed that the finite relaxation time for the

heat flux plays an important role under high frequencies of vibration. Corrections to classical expression for

the Q factor was provided. Also, the effect of surface scattering on TED was studied.

All of the aforementioned studies involved structures that are essentially three dimensional in nature. We,

next, studied the intrinsic dissipation in low dimensional structures. We considered the case of nano-ribbon

and two dimensional graphene sheet. A strong coupling between the in-plane and the out-of-plane motion

was observed for these structures. We showed that geometric non-linear coupling plays an important role in

the loss of energy from the in-plane motion.
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Appendix A

A.1 Strain Field

For computing strain field from atomistic data we use a method from previous work [18]. We first provide a

brief description of the method. The method is then adapted to deal with the case of a vibrating structure.

We consider a collection of atoms. The co-ordinate in the reference configuration for an atom i is given asXi.

The system is subjected to a deformation such that the co-ordinate of atom i in the deformed configuration

changes to xi. The deformation is assumed to be homogeneous (for non-homogeneous deformation the atoms

can be divided into smaller groups such that for each of the smaller groups the deformation is homogeneous).

The problem, then, reduces to finding a deformation gradient F that maps Xi into xi. In-order to eliminate

rigid body transformation, we consider the motion in the center of mass frame of reference. LetXcm and xcm

denote the center of mass for the group of atoms in the reference and deformed configurations, respectively.

We define Xc
i = Xi −Xcm and xci = xi − xcm. We define tensor A as

A =
∑
i

Xi

⊗
Xi (A.1)

and B as

B =
∑
i

xi
⊗

xi (A.2)

Here, the symbol
⊗

refers to the tensor product. In the index notation the components of the tensor

product are given as (~v1
⊗

~v2)ij = v1iv2j , where ~v1 and ~v2 are arbitrary vectors. F is then obtained as

F = AB−1 (A.3)

For a vibrating beam, we have xi = xi(t). We computed the strain field for flexure vibration excited in

nano-beam using method A. The time instants at which the y co-ordinate of the center of mass attained a

maxima were identified. The strain field computation was performed for one such time instant. Let t1 be
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the time instant for which the strain field is determined. We define xai =
1

2∆t

∫ t1+∆t

t1−∆t
xi(t)dt. Here, ∆t is a

small time window considered for averaging out the thermal vibrations. The value of ∆t was taken to be 200

fs. Since, the structure is dynamically changing one cannot consider a large value of ∆t. Xi were taken as the

mean equilibrium co-ordinates. The structure was divided into two dimensional bins along x and y directions.

The length of bin, in each direction, was taken to be two lattice units. For each bin, B was obtained using

Eqn.(A.2) and with xi = xai. F was then computed using Eqn.(A.3). The Green-Langrangian strain tensor,

E, is obtained from F as

E =
1

2

(
F TF − I

)
(A.4)

A.2 Mode Shape

The mode shape for the fundamental flexure mode (mode 1) was extracted using the free vibration method

from MD. For a beam that is given an initial excitation and undergoes free vibration, the resulting dynamics

can be described as a linear combination of the individual modes. Each of the mode behave as a damped har-

monic oscillator. The amplitude of the higher order modes decay down rapidly. The resultant displacement

profile, then, corresponds to that of mode 1.

We first make an estimate of the decay time for the next higher mode (other than mode 1) that could

have been excited. Since the initial velocity perturbation has an anti-node at the center (we used sinusoidal

profile for the perturbation), the next higher mode corresponds to mode 3. We consider the case of a nickel

beam with cross-sectional area 18 lc×18 lc. From beam theory the oscillation frequency, f3, for mode 3 is

estimated to be f3 = 96.5568 GHz. From the observed scaling relation between Q factor and ω, we compute

Q3, the Q factor for mode 3. Q3 is estimated to be 73.91. From Q3 the relaxation time for mode 3, τ3, is

determined as τ3 = 243.67 ps. For t > τ3 the amplitudes for all the higher modes is expected to decay down

appreciably. The dynamic response of the beam will, then, be dominated by the fundamental mode (mode

1). In-order to further check that mode 1 is indeed the dominant mode, we computed the Fourier transform

(FFT) of ycm, the y center of mass of the excited beam. Figure A.1 shows the FFT for ycm. The FFT shows

a dominant peak corresponding to mode 1 frequency. Mode 1 is, therefore, the dominantly excited mode.

Thus, from the displacement profile of the freely vibrating beam mode 1 shape can be inferred.

A velocity perturbation corresponding to a sinusoidal profile was given to the beam. We, then, obtained

the displacement profile of the beam after around 500 ps from the initial excitation. The initial time period

of 500 ps ensures that all the higher order modes have decayed down. The beam was divided into groups

along the length direction. The time at which the y center of mass (com) attained a maximum value

was identified. Corresponding to that time instant, the y com of each group was obtained. The y com
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Figure A.1: The FFT of ycm for a beam that was given a velocity perturbation along the y direction.

amplitude of each group gives the displacement profile of the beam under free vibration. Figure A.2 shows

the displacement profile obtained. The plot also shows the mode shape obtained using Euler-Bernouli beam

theory. The displacement profile obtained from MD shows good agreement with the theoretical mode shape.

The displacement profile, as discussed before, corresponds to the fundamental flexure mode.
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Figure A.2: The displacement profile for a beam under free vibration as obtained using MD. Also, shown is
the fundamental mode shape obtained using Euler-Bernouli beam theory.
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A.3 Elastic Constants

We use local quasi harmonic method[73] (LQHM) to determine the elastic constants required for beam

theory. The free energy, Fi, for an atom i in the LQHM approximation is given as

Fi = Ui +
1

2

3∑
α=1

~ωαi + kbT

3∑
α=1

ln(1− exp−
~ωαi
kbT ) (A.5)

Here, Ui is the static potential energy, kb is the Boltzmann constant, ~ is the Planck’s constant scaled by

1

2π
, T is the temperature of system and ωαi are the vibrational frequencies.

A homogenous cubic crystal is characterized by elastic constants, C11, C12 and C44. The presence of

surface in a nano-structure modifies these properties. For such a case, the elastic constants are no longer

constant but depend on the position of atom. Using LQHM we first determine these constants for each atom.

The properties are then averaged over to determine the effective elastic modulus for bending and stretching.

Using elasticity theory, the free energy change, ∆F , for a crystal subjected to strain, εij , is given as [40]

∆F

V
= σ0

ijεij +
1

2
Cijklεijεkl (A.6)

Here, V is the volume of the structure, σ0
ij are the components of residual stress tensor, Cijkl are the elastic

constants and εij are the components of strain tensor.

For a crystal with cubic symmetry and subjected to a strain, εij = εδi1δj1, the above relation reduces to

∆F

V
= σ0

11ε+
1

2
C11ε

2 (A.7)

For an atom i with an effective volume Vi, we use the above relation to get
∆Fi
Vi

= σi011ε+
1

2
Ci11ε

2. Here

σ0i
11 and Ci11 are the residual stress and elastic constant associated with atom i. ∆Fi was obtained using

Eqn.(A.5) for different values of ε. A second-order polynomial fit was performed to get σ0i
11 and Ci11.

Subjecting the crystal to a strain εij = ε(δi1δj1−δi2δj2) gives
∆Fi
Vi

= (σi011−σi022)ε+Ci11ε
2−Ci12ε2. ∆Fi was

again obtained using LQHM for different values of ε. Using second-order polynomial fit and predetermined

values of σi011 and Ci11, σ0i
22 and Ci12 were determined.

For a cubic crystal, the Young’s modulus along the [1 0 0] direction, E[100], is given as [40] E[100] =

C11 − 2
C2

12

C11 + C12
. Thus, the Young’s modulus, Ei, associated with atom position i and along the [1 0 0]

direction is obtained as Ei = Ci11 − 2
(Ci12)2

Ci11 + Ci12
. For stretching deformation, all the atoms are subjected to
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the same strain. The effective Young’s modulus, Estretch, is thus derived as

Estretch =

∑natoms
i=1 Ei
natoms

(A.8)

Table A.1: The values of elastic constants for nickel.
Width (nm) Ebend (GPa) Estretch (GPa)

3.54 93.379 96.636
4.24 95.743 98.255
4.95 97.551 99.430
5.66 98.881 100.322
6.37 99.874 101.02

Table A.2: The values of elastic constants for copper.

Width (nm) Ebend (GPa) Estretch (GPa)

3.62 55.165 57.578
4.34 56.760 58.767
5.06 57.913 59.631
5.78 58.786 60.288
6.51 59.470 60.803

For the bending deformation, strain field varies linearly along the lateral direction and the surface atoms

experience the maximum strain. The effective Young’s modulus in bending, Ebend, is, thus, obtained by

taking the second moment of Ei along the y axis with the origin as the neutral axis of beam. The neutral

axis is defined as the line along which the first moment of Young’s modulus vanishes. For a symmetric

structure, which is the case here, the neutral axis passes through the beam geometric center in the y − z

plane. Let yi be the y co-ordinate for atoms i with the origin as the neutral axis of beam. Ebend is then

computed as

Ebend =

∑natoms
i=1 Eiy

2
i∑natoms

i=1 y2i
(A.9)

Table A.1 and A.2 provide values of Estretch and Ebend for nickel and copper, respectively.
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Appendix B

B.1 Non-equilibrium PDF

We derive an expression for the non-equilibrium PDF using the principle of maximum entropy[29, 33]. We

consider a collection of ndof harmonic oscillators. Let ai and vi denote the displacement and velocity for

the ith oscillator. The energy, Ei, for an oscillator i is given as Ei =
1

2
mω2

i +
1

2
mv2i . Here m is the mass

and ωi denotes the frequency.

We have the following constraints on the system. The mean energy, < En >, of an oscillator n is given as

< En >= kbTn. Here, Tn provides a measure of the temperature of the nth oscillator in the non-equilibrium

state. We, then, seek to obtain the probability to observe a micro-state i. The PDF is obtained such that

the entropy of the system is maximized subject to the imposed constraint. Let A denote the set of the

displacement and V denote the set of velocity for all the oscillators for a given micro-state i. Let P (A, V )

denote the probability to observe this micro-state. The entropy, S, of the system is then given as

S = −
∫
P (A, V )logP (A, V )dAdV (B.1)

The constraint on the mean energy for the nth oscillator is given as

∫
P (A, V )(

1

2
mω2

na
2
n +

1

2
mv2n)dAdV = kbTn (B.2)

We, also, have the normalization constraint as

∫
P (A, V )dAdV = 1 (B.3)

Taking these ndof + 1 constraints into account, the extremum problem for the PDF that maximizes the
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entropy can be stated as

sup
P
−
∫ (

P (A, V )logP (A, V ) + αP +

ndof∑
n=1

βn(
1

2
mω2

na
2
n +

1

2
mv2n)P

)
dAdV (B.4)

Here, α and βn are the Lagrange multipliers for enforcing the constraints. Taking the variation of the above

Eq. with respect to P we obtain

P (A, V ) =
1

Z

ndof∏
n=1

exp

(
−

1
2mω

2
na

2
n + 1

2mv
2
n

kbTn

)
(B.5)

Here, Z is the partition function that normalizes P . We, thus, obtain the PDF for the non-equilibrium state

using the maximum entropy principle. We use this PDF to sample the non-equilibrium state and compute

the dissipative stress component, σDij

B.2 Stochastic Sampling

The objective of the stochastic sampling approach is to generate the micro-states from a given PDF. For

the case of crystalline solids, the PDF is given as a Gaussian function. Using a Gaussian random number

generator, the mircostates of a crystalline solid can, therefore, be generated. We will now discuss the details

of this algorithm pertaining to our case.

The method requires as an input the mean position of the atoms, the mode eigen-vectors, ei and the

frequency ωi. For a perfectly crystalline solid, the mean position of the atoms are generated using the

underlying lattice structure. Ni at 300 K has a fcc crystalline structure and was used for our case. Using

the mean atomic position the QHM analysis is performed. We, thus, obtain the values of ωi and ei. We,

next, construct the PDF, P (ai) for the mode co-ordinates, ai. For the equilibrium state, P (ai), is given

using Eq.(4.2). For the non-equilibrium state, additional constrains in terms of the mode temperature,

Ti, are specified. P (ai) for such a case is given using Eq.(4.3). We recognize that the PDF for ai, for

either the equilibrium or the non-equilibrium state, are Gaussian functions. Using an algorithm to generate

Gaussian random number, different instances of ai can be obtained. We use the Box-Muller algorithm, and

as implemented in the GNU package[16], for our purpose. We, thus, obtain different samples of ai. For each

samples of the ai values we determine the per atom displacement. Let uji denote the displacement for an

atom i along the direction j. uji is obtained from an using the linear transformation given as

uji =

nmodes∑
n=1

an(en)ji (B.6)
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Here, (en)ji are the components of the eigen-vector en for an atom i along the direction j. For each sample

of an values, an atomic configuration is thus obtained. The configurations are, then, used to compute the

ensemble averages of the required quantities.
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