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Abstract

The spectroscopic investigation of molecular ions is key to facilitating a better understanding

of chemical and physical processes that occur both here on Earth and among distant stars.

However, numerous challenges are encountered when attempting to study these highly reac-

tive species in the laboratory that can only be overcome by the most sensitive spectroscopic

techniques. This thesis discusses the first implementation of concentration-modulated noise-

immune cavity-enhanced optical heterodyne molecular spectroscopy (cm-NICE-OHMS) on

a continuous gas-flow pinhole supersonic expansion discharge source for the study of cooled

molecular ions. The instrument, which began as a difference-frequency generation (DFG)

based system, is upgraded to include a continuous-wave optical parametric oscillator (OPO)

easily tunable from 2.5−4.6 µm. With the implementation of the OPO the system demon-

strates a noise equivalent absorption of ∼1 × 10−9 cm−1. The effectiveness of cm-NICE-

OHMS is tested through the acquisition of transitions of H+
3 and HN+

2 . This study pro-

vides confirmation that the source produces H+
3 rotationally cooled to 80−120 K, while the

more efficiently cooling HN+
2 ion demonstrates a temperature of ∼29 K for low rotational

states. Further improvements are discussed that will enable cm-NICE-OHMS to reach its

full potential for the detection of molecular ions formed in supersonic expansion discharges.

Additionally, the current and future status of molecular ion spectroscopy is discussed, and

potential molecular ion targets are highlighted to provide direction for investigations of ions

of fundamental and chemical importance.
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Chapter 1

Molecular Ions and NICE-OHMS

1.1 The Importance of Molecular Ions

Molecular ions are integral to chemical processes we encounter routinely in life, including

combustion [1, 2]. As such, a better understanding of these species could be the key to

developing more efficient, cost-effective combustion engines. Molecular ions also serve as key

components of atmospheric processes that uphold Earth as an inhabitable environment [3].

The prevalent role of molecular ions as reactive intermediates in many chemical and physical

terrestrial processes stresses the desire for a better understanding of these species through

theoretical and experimental methods.

Beyond our physical reach, molecular ions are known to play a large role in the chem-

istry of the interstellar medium (ISM). In the low densities of interstellar space, long-range

interactions between ions and neutrals initiate a rich chemistry that has helped to shape

our universe [4, 5]. From a theoretical viewpoint, molecular ions often serve as the simplest

systems on which to test and verify ab initio methods. Here, comparison between theoretical

predictions and experimental results acts iteratively to improve the accuracy of calculations

for simple systems before applying these methods to more complex systems. It is up to spec-

troscopists to take these low accuracy predictions and improve experimental measurements

to enable better-developed ab initio methods for continually larger molecular systems.
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1.2 Molecular Ion Spectroscopy

Spectroscopy remains the principal tool used to investigate the properties of molecular ions,

with mid-IR spectroscopy providing a distinct advantage. While spectroscopy performed in

the near-IR spectral region is largely limited to overtones and combination bands of molec-

ular transitions, the mid-IR provides access to fundamental absorptions that are orders of

magnitude more intense. Additionally, nearly all ions of interest have fundamental transi-

tions in the mid-IR.

As it takes more energy to make a molecule vibrate than rotate, excitation of a nor-

mal vibrational mode of a molecule results in the population of many rotational states.

High-resolution rotational-vibrational (rovibrational) mid-IR spectroscopy, which resolves

the rotational fine-structure of vibrational bands, is a powerful tool used to examine the

rotational structure of strong fundamental vibrations. From the information obtained via

this method it is possible to determine rotational constants and molecular structure [6].

Additionally, when conducted at sufficiently high precision this method also allows for the

indirect determination of pure rotational transition frequencies through the use of combina-

tion differences [7].

Many challenges arise when investigating molecular ions in the laboratory. Ions are

formed in small abundances in laboratory plasmas and successful detection requires the

use of highly sensitive spectroscopic techniques. In addition, neutral species are orders

of magnitude more abundant, and a means of discerning the ion signal from the largely

neutral background must be achieved. Finally, the high temperatures inherent to traditional

laboratory ion sources prompts the population of many quantum states and result in dilute,

complex spectra.
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1.3 Cooled Molecular Ions

Ion sources capable of producing high densities of ions for study in the laboratory have long

been realized in hollow cathode and positive column discharge sources [8–10]. However, even

when cryogenically cooled the internal temperatures of ions formed by such sources are on the

order of 100 K, at which temperatures many rotational states remain populated. Weakened

spectral signals then result from the decreased population of any one state. Cooling molecular

ions to low temperatures overcomes this problem by concentrating population into low-

energy states, thus strengthening low-lying rotational transitions and reducing the spectral

complexity of large systems.

Molecular ions cooled to temperatures of tens of kelvin can be produced through the

coupling of electric discharges to supersonic expansions. Here, a precursor gas is seeded in

a carrier gas at high pressure and forced through a small orifice into vacuum. Striking a

discharge along the length of the expansion channel allows ions formed in the nozzle of the

expansion to be cooled to low temperatures as the ionized gas expands adiabatically into

vacuum. In addition to producing cold molecular ions, supersonic expansion discharges have

the unique ability to efficiently produce ions that other sources cannot, including primary

and cluster ions [11–16].

The effect of cooling on the intensities of rovibrational transitions is demonstrated in

Figure 1.1, where the ν1 band of HN+
2 centered near 3234 cm−1 has been simulated using

PGopher [18]. An improved relative intensity for low J transitions is clearly seen at lower

temperature (30 K), whereas the higher temperature simulations show the population of

more quantum states with a weakened intensity of each individual state. While cooling ions

to low temperatures efficiently concentrates ion population into low rotational states and

strengthens low-lying transitions, the stringent pumping demands required for expansion

discharges restrict such sources to small path lengths and limits the sensitivity with which

ions formed by these sources can be detected.
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Figure 1.1: Simulations of the ν1 band of HN+
2 centered near 3234 cm−1 at 30 K, 300 K,

and 750 K. Simulations were performed using PGopher with upper and lower state
constants taken from Nakanaga et al. [17, 18].

1.4 NICE-OHMS

Direct absorption spectroscopy (DAS) provides the most straightforward method for the

spectroscopic investigation of molecular species. However, experimental implementation of

this method often results in sensitivities that are orders of magnitude above the theoretical

shot noise limit due to noise contributed by the light source. To improve the sensitivity

of DAS, frequency modulation spectroscopy (FMS) has been demonstrated as an effective

means of noise reduction and has enabled sensitivities down to 10−6 Hz−1/2. The sensitivity

of DAS has also been improved by increasing the strength of the observable signal through

the use of an optical cavity. Here, techniques such as cavity ring-down spectroscopy (CRDS)

typically exhibit sensitivities on the order of 10−8 Hz−1/2 [19].

Superior spectroscopic sensitivity can be achieved through the combination of FMS and

cavity enhancement. The merging of the strengths of these techniques is key to the high
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sensitivities achieved by noise-immune cavity-enhanced optical heterodyne molecular spec-

troscopy (NICE-OHMS), where heterodyne detection for the reduction of technical noise

is combined with cavity enhancement to increase the sample pathlength interaction. This

technique avoids the frequency-to-amplitude noise common in cavity-enhanced techniques

by matching the heterodyne frequency to an integer multiple of the free spectral range (FSR)

of the optical cavity. This allows all components of the frequency-modulated (fm) triplet

to be transmitted through the cavity in an identical manner. Detection of the transmitted

signal is then achieved through demodulation of the sum of the beat notes of the carrier

with the upper and lower sidebands. In the absence of intracavity absorption or dispersion

the sidebands are equal in magnitude and opposite in phase so that the beat notes exactly

cancel, yielding no net signal and making NICE-OHMS a zero-background technique [19].

NICE-OHMS has demonstrated sensitivities down to 1 × 10−14 cm−1 Hz−1/2 for detection

of neutrals in the near-IR [20]. This model sensitivity was achieved at 1.064 µm with

a cavity finesse of 100,000, which required an ultrastable laser (1 mHz) be used as the

excitation source [20]. NICE-OHMS in the near-IR benefits from a variety of well-developed

light sources and detectors that are readily available. With a considerable lag in analogous

technology in the mid-IR, it follows that implementations of mid-IR NICE-OHMS have been

less prevalent than those of its near-IR counterparts. Specifically, smaller detection band-

gaps, slower detectors, and weaker light sources make it more difficult to implement this

technique in the mid-IR. Nevertheless, successful implementations of NICE-OHMS in the

mid-IR have been demonstrated [21,22].
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Chapter 2

Mid-Infrared NICE-OHMS of a
Supersonic Expansion Discharge

2.1 Supersonic Expansion Discharge

The design of the continuous gas-flow supersonic expansion (SSE) source has been described

in detail in an earlier publication [16]. While the cathode used in this work retains the

dimensions and shape described there (a trumpet-flared pinhole with 1.0 mm starting and 2.4

mm ending inner diameters), it has been replaced by one machined from tungsten (previously

stainless steel) in order to further improve the lifetime of the source. It has been found

previously that the density of H+
3 ions produced varies with the current supplied to the

source (1010−1012 cm−3 for 30−120 mA), and HN+
2 is expected to be formed in similar

quantities in a predominantly hydrogen expansion [16].

To form cooled H+
3 , pure H2 is flowed through the main pipeline of the source at backing

pressures ranging from 30−36 psig. It should be noted that at backing pressures below 30

psig significant cooling of H+
3 is not consistently observed. HN+

2 is formed in the source from

a mixture of hydrogen and nitrogen gas each regulated to control their respective gas flow

rates and combined before being flowed into the source. Here, equal backing pressures (34

psig H2, 34 psig N2) gives the strongest HN+
2 signal. While scanning H+

3 and HN+
2 , chamber

background pressures of 600−750 mTorr (as recorded by a Varian 531 thermocouple gauge

tube sensor) are typically used as this range of pressures gives the most pronounced barrel-

Sections 2.1, 2.3, and 2.5−2.7 have been submitted for publication in Review of Scientific Instruments
with authors C. N. Talicska, M. W. Porambo, A. J. Perry, and B. J. McCall.
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shock structure and strongest ion signal. The background pressure is easily adjusted by

partially closing the gate-valve on the expansion chamber.

2.2 DFG NICE-OHMS Instrument

The first instance of NICE-OHMS applied to a supersonic expansion discharge source was

realized through the use of a previously designed broadly tunable mid-IR NICE-OHMS

spectrometer [22]. This instrument utilized difference-frequency generation (DFG) between a

fixed-wavelength Nd:YAG (1064 nm) and tunable Ti:Sapph (∼700-1100 nm) laser to produce

160−200 µW of mid-IR light tunable from 2.8−4.8 µm. The experimental setup is shown in

Figure 2.1 and is detailed further in the work of Porambo et al. [22].

Figure 2.1: Block diagram of the DFG NICE-OHMS instrument. AOM: acousto-optic
modulator; EOM: electro-optic modulator; FI: Faraday isolator; PBS: polarizing beam
splitter; PPLN: periodically-poled lithium niobate; PS: phase shifter; PZT: piezoelectric
transducer; QWP: quater wave plate; VCO: voltage-controlled oscillator

Due to noise in the system and the limited power of the DFG, efforts to observe H+
3

utilizing DFG NICE-OHMS yielded no signal. Careful mode-matching improved the amount

of light coupled into the cavity, thus increasing the amount of light interacting with the

discharge and reaching the transmission detector. However, noise in the system still impeded
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a detection of even H+
3 and it was necessary to devise a method to improve the sensitivity

of the instrument.

2.3 Concentration-Modulated NICE-OHMS

The sensitivity of spectroscopic techniques used to probe molecular ions in an expansion

discharge source can be improved through electrical modulation of the source, which results

in a periodically varying concentration of ions. Lock-in detection at the source modulation

frequency then provides high selectivity of the desired ion signal while rejecting much of the

unwanted noise in the system. Davis et al. demonstrated improved sensitivity of a direct

absorption technique used to probe an expansion discharge source using this method [15].

Despite its ability to enable improved detection of molecular ions, until this work modulation

of an expansion discharge had not yet been applied to the sensitive NICE-OHMS technique.

Figure 2.2: Diagram of the custom high-voltage circuit used to modulate the discharge.

To implement modulation of the supersonic expansion discharge source a custom high-

voltage modulation circuit was designed in collaboration with Thomas Houlahan Jr. of the

Electrical and Computer Engineering Department. This circuit, shown in Figure 2.2, uses an

optoisolator (Avago Technologies ACNV2601-000E) to separate the low-voltage input of a

function generator from the high-voltage power supply. The output of the optoisolator is fed

into a gate-driver (ON Semiconductor MC33153PG) for an insulated-gate bipolar transistor

(IGBT) (Infineon IHW30N160R2) before being output through the ballast resistor to the
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cathode of the source. Performance of the modulation circuit was assessed for modulation

frequencies ranging from ∼25 Hz−85 kHz. The circuit was found to break down in the low

frequency regime (<25 Hz) due to high transient voltage spikes.

Integration of the source modulation with the DFG NICE-OHMS instrument was achieved

by sending the output of the electronic mixers used to isolate the NICE-OHMS signals into a

pair of lock-in amplifiers referenced to the trigger applied to the source. Thus, in this setup,

the ion signal is first demodulated at the heterodyne frequency (∼100 MHz) and then at the

source modulation frequency (∼1 kHz). This concentration-modulated (cm) NICE-OHMS

instrument, which enabled the detection of H+
3 and HN+

2 , is detailed in Figure 2.2.

Figure 2.3: A scan of the R(1,0) and R(1,1)u transitions in the ν2 fundamental band of H+
3

near 2726 cm−1 using DFG cm-NICE-OHMS.

To ensure cm-NICE-OHMS can be accurately used to determine the extent of cooling of

molecular ions formed by the source, the rotational temperature of H+
3 was determined and

compared to that of H+
3 formed in the same source but analyzed previously by CRDS [16].

As in the CRDS analysis, the rotational temperature was estimated by the ratio of the nor-

malized intensities of the R(1,0) and R(1,1)u transitions in the ν2 fundamental band near

2726 cm−1. A scan of these transitions is given in Figure 2.3 and is representative of the
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typical signal-to-noise achieved for R(1,0) of H+
3 using this instrument. The estimated tem-

perature of 80−120 K was further verified through a Boltzmann analysis including R(2,2)l,

and agrees well with the temperature of 80−110 K obtained by CRDS [16].

2.4 A More Powerful Light Source

While DFG cm-NICE-OHMS was successful in enabling the detection of H+
3 and HN+

2 , the

limited power and complexity of the instrument left much room for improvement. The poor

noise rejection of the sensitive mid-IR detector required to detect the µW of DFG power

transmitted through the cavity greatly limited the signal-to-noise of transitions acquired

using this method. In addition, drastic wavelength changes required changing poling periods

in the PPLN crystal, which often led to loss of the DFG and long instrument downtimes due

to the complexity of the optical layout. To overcome these limitations a commercial turnkey

optical parametric oscillator (OPO) was integrated with cm-NICE-OHMS. This new light

source is capable of producing 100s of milliwatts of mid-IR light and is easily tunable from

2.5−4.6 µm.

The OPO used to improve the cm-NICE-OHMS instrument was concurrently shared

between two projects. As such, the OPO was mounted on a separate optics table, and a

method of transmitting the idler beam to the table surrounding the SSE had to be devised.

First attempts to achieve this were done using a long mid-IR fiber (11 m, 100 µm core

diameter InF3, ThorLabs) strung through runners above the two tables. A mode-matching

telescope was used to shape the idler beam before being launched into the fiber, and another

telescope was positioned after the exit for optimal mode-matching into the cavity surrounding

the source. With the full force of the OPO incident on the fiber, ∼300 mW of light was

transmitted to the SSE table.

With this method it was possible to improve the amount of light reaching the optical

cavity to 100s of mW, nearly three orders of magnitude greater than that achieved using the
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DFG light source (140−200 µW). However, the mode-structure of the light coupled into the

cavity was found to change over time and with movement of the fiber as illustrated by beam

profile measurements as shown in Figure 2.4. The changing mode-structure is inherent to

the large core of the fiber (∼100 µm), which allows multiple modes to propagate, and was

extreme enough to severely change the cavity-mode strength even over a small scan window.

This changing mode-structure drastically interfered with the efficiency of the laser-to-cavity

lock, and the use of the mid-IR fiber as a means of transmitting the idler to the SSE table

was subsequently abandoned.

Figure 2.4: Beam profile measurements of the output of the mid-IR fiber over a 10 V (∼5
GHz) scan of the pump laser of the OPO. Drastic changes in the mode-structure are seen
even for small scan windows (7.5−10 V, ∼1.25 GHz)

Instead, the idler beam was directed over free-space from the OPO to the SSE table as

shown in Figure 2.5. To ensure safe direction of the idler across the ∼10 ft. of open space, the

beam was directed through a 3-inch diameter PVC pipe held in place by two custom-made

Unistrut supports that stood on the lab floor. In this design, the idler passes through only

one mode-matching telescope designed to ensure efficient coupling into the optical cavity.

Thus, more light reaches the transmission detector than in the mid-IR fiber setup.
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Figure 2.5: Block diagram of the free-space OPO setup.

The free-space setup is sensitive to the relative positions of the two individual optical

tables, and significant perturbations result in changes to the transmitted cavity power. How-

ever, after the cavity is optimized, the system is robust enough to allow for a full day of

uninterrupted scanning provided no drastic changes are made to components on the two

tables. With this setup scans of H+
3 and HN+

2 were successfully obtained.

2.5 OPO cm-NICE-OHMS Instrument

A block diagram of the OPO cm-NICE-OHMS instrument is given in Figure 2.6. The

OPO simplifies the cm-NICE-OHMS instrument considerably as many of the free-space

optics required in the DFG setup are replaced with fiber components. In this setup a

ytterbium-doped fiber laser is phase-modulated by a fiber electro-optic modulator (EOM)

to produce RF sidebands for heterodyne detection and Pound-Drever-Hall (PDH) locking.

The modulated light is amplified to 10 W before being used to pump a singly-resonant OPO

(Acculight Argos 2400 SF). As a result, the heterodyne (∼106 MHz) and PDH locking (2−10

MHz) sidebands are imprinted onto the idler beam (2.5−4.6 µm).

The idler beam is then coupled into the ∼1.4 m cavity placed symmetrically about the

source chamber such that the idler passes perpendicularly through the axis of the expansion.

Light reflected from the cavity is picked off using a CaF2 window and focused onto a fast InSb

detector (Kolmar KISDP-0.5-J1/DC, 30 MHz bandwidth), where it is then demodulated at
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Figure 2.6: Block diagram of the cm-NICE-OHMS instrument. EOM: electro-optic
modulator; OPO: optical parametric oscillator shown with pump (P), signal (S), and idler
(I) beams; PS: phase shifter; PZT: piezoelectric transducer; YDFL: Ytterbium-doped fiber
laser

the PDH locking frequency. Slow locking corrections (<70 Hz) are made to the cavity

length by a piezoelectric transducer (PZT) attached to one of the cavity mirrors, and fast

corrections (0.07−10 kHz) are sent to a PZT attached to one of the signal cavity mirrors

within the OPO head.

Transmitted cavity light is focused onto a fast photodiode (Vigo PVM-10.6-1, ∼125 MHz

bandwidth) before being demodulated at ∼106 MHz by a pair of electronic mixers set to

be 90◦ out of phase with each other. To implement cm-NICE-OHMS, an additional layer of

modulation is added through electrical modulation of the discharge as discussed in Section

2.3. The periodically varying ion signal is then recovered by sending the outputs of the

electronic mixers used to isolate the NICE-OHMS signals to a pair of lock-in amplifiers

referenced to the modulation frequency applied to the source. As with DFG cm-NICE-

OHMS, the output of the lock-in amplifiers are then fed into a custom-made program for

data acquisition.
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2.6 Characterization of the Source using OPO

cm-NICE-OHMS

Previous characterization of the unmodulated supersonic expansion discharge source using

CRDS revealed a rotational temperature for H+
3 of 80−110 K [16]. With its larger rotational

constants (B = 43.5605 cm−1, C = 20.6158 cm−1 [23]) and thus lower density of rotational

states, H+
3 does not cool as efficiently in a supersonic expansion as HN+

2 (B = 1.5539 cm−1

[24]). Due to its capacity to cool more efficiently, HN+
2 was used in this work to investigate

the cooling abilities of the source using concentration-modulated NICE-OHMS.

Figure 2.7: Scans of the R(2) transition of the ν1 fundamental band of HN+
2 taken 0.5 cm

(a), 1.5 cm (b), 2.0 cm (c), and 2.5 cm (d) from the source nozzle, shown with approximate
frequency detunings from linecenter. All scans were obtained at backing pressures of 34
psig, 750 mTorr chamber pressure, a source modulation frequency of 1 kHz, and a current
of 110 mA.

To assess the rotational cooling of HN+
2 in the source, transitions in the ν1 fundamental

band of HN+
2 , centered near 3234 cm−1, were recorded. All scans used in the analysis were

obtained at just over 2 cm downstream of the source nozzle. At distances closer to the

expansion nozzle a peculiar lineshape was observed, as shown in Figure 2.7 and discussed

in detail elsewhere [25]. An unprocessed scan of each transition is given in Figure 2.8.

These scans were taken at a detection phase of ∼160◦ as fit by a lineshape model taken from

equations 1−3 in the work of Foltynowicz et al. [19]. The acquired scans were then smoothed

using a 10-point boxcar averaging algorithm. The average of peak-to-peak intensities from at

least three boxcar-smoothed scans of each line were normalized to their respective transition

dipole moments as calculated in Townes et al. [26]. Due to a dead spot in the frequency
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coverage of the OPO, the R(1) transition was not recorded.

Figure 2.8: Scans of the R(0), and R(2−6) transitions of the ν1 fundamental band of HN+
2 .

Each tick on the frequency axis represents 0.01 cm−1.

Figure 2.9 shows the Boltzmann analysis of these normalized intensities, plotted against

lower state energies calculated using the rotational constants reported by Kabbadj et al. [24].

The two distinct slopes are representative of the non-equilibrium nature of the expansion as

has been reported in similar analyses by Xu et al. [13] and Louviot et al. [27]. Analyzing

the slope of the low J transitions (J ≤ 3) gives a rotational temperature of ∼29 K. This

temperature is similar to the 33 K rotational temperature determined for low J transitions

of HN+
2 in a corona slit nozzle discharge expansion reported by Xu et al. [13] and also agrees

well with the 25 K rotational temperature reported by Anderson et al. for low J transitions

of this ion in a pulsed slit expansion discharge [14].

Utilizing equations detailed in the work of Ma et al. the NICE-OHMS saturation pa-

rameter associated with the work presented here has an upper bound of ∼6 [28]. At this

degree of saturation, the effect on the peak-to-peak intensity of the absorption Doppler pro-

file is demonstrated to be <5%, and is not large enough to alter the temperature calculated

by the Boltzmann analysis. To further support the determined temperature, this analy-

sis was repeated with the intensities of the predominantly dispersion-phase channel, which

demonstrate peak-to-peak intensities unaffected by this level of saturation. The tempera-

tures calculated from the absorption and dispersion-phase channels agree, substantiating the

rotational temperature of ∼29 K calculated for HN+
2 formed in the expansion.
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Figure 2.9: A Boltzmann diagram of the rotational distribution of HN+
2 shown with 2σ

error bars. The fit to the low J (R(0), R(2), and R(3), solid line) gives a temperature of
∼29 K, while the fit to the high J values (R(4)−R(6), dotted line) gives a temperature of
∼84 K. The dashed line corresponds to a fit to all J values.

The lower temperature obtained for HN+
2 (∼29 K) compared to H+

3 (80−110 K [16]) in the

same continuous gas-flow supersonic expansion discharge source was anticipated due to the

higher density of rotational states associated with low J values of HN+
2 . The low temperature

achieved for HN+
2 in this work also agrees well with those achieved for comparable ions in

studies of a concentration-modulated pulsed-gas slit expansion discharge where HD2O
+ and

H2DO+ were cooled to 34 K and 40 K, respectively [29,30]. The cooling abilities of the source

as verified by the concentration modulated NICE-OHMS technique are thus in accordance

with the cooling achieved in expansion discharges probed by other spectroscopic methods.

The high J transitions (J ≥ 4) indicate a warmer temperature of ∼84 K, similar to

the phenomenon reported by Xu et al. where higher J transitions of HN+
2 gave warmer

temperatures [13]. The observed increase in temperature for high J levels is an expected

result of larger energy spacings among these levels which results in less efficient cooling

through rotation-to-translation energy transfer. As shown by the dashed line in Figure 2.9,

a fit to all J values does not encapsulate the normalized intensities of all J levels, even when

including 2σ errors in the measurements. This is indicative of the non-equilibrium nature of
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supersonic expansions and highlights the need for separate fits to the low and high J values

of the Boltzmann analysis.

The FWHM of HN+
2 scans acquired in this work is ∼100−110 MHz as supported by the

Doppler-broadened lineshape model of Foltynowicz et al. [19]. As the FWHM of HN+
2 is

already on the order of the heterodyne sideband spacing, further optimizing the sideband

spacing is not expected to yield a significant increase in the acquired signal. For ions with

larger FWHMs (such as H+
3 ) the sideband spacing may be adjusted to optimize the obtained

signal, but is limited by the fact that the heterodyne frequency must be an integer multiple

of the free-spectral-range of the cavity and must be within the bandwidth of the mid-infrared

detector used to recover the transmitted signal.

Improved detection of ions formed by the source may be achieved by increasing the

source modulation frequency, further reducing noise in the system. Throughout the course

of this study scans were obtained at a source modulation frequency of ∼1 kHz. At higher

frequencies the source current was found to take time to stabilize during the plasma “on”-

cycle as evidenced by monitoring the source current using a Hall-effect sensor placed just

before the source. Resolving this current instability would allow the source modulation

frequency to be limited only by the expansion of ions through the laser probe region. For an

expansion velocity of ∼2 km/s and a beam diameter of ∼2 mm, the theoretical upper limit

to this modulation would be ∼500 kHz barring any limits due to the modulation circuit and

lock-in amplifier bandwidth [15].

2.7 Conclusions

The work presented here highlights the successes of the first implementation of concentration-

modulated NICE-OHMS for the investigation of molecular ions formed in a supersonic ex-

pansion discharge source. This technique has been used to characterize the cooling of both

H+
3 (80−120 K) and HN+

2 (∼30 K) formed by the source, with HN+
2 serving as a good
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approximation of the low-temperature limit for efficiently cooling molecular ions. This low

temperature tailors this spectroscopic setup toward the investigation of larger molecular ions

which would exhibit dilute, congested spectra in higher-temperature ion sources.

The main advantage of this instrument over previously designed FMS, CRDS, and multi-

pass setups is the potential for achieving a higher sensitivity through the combination of

cavity-enhancement, heterodyne detection, and lock-in detection. Here, the performance

of the concentration-modulated NICE-OHMS spectrometer is characterized by the noise

equivalent absorption sensitivity. This value is derived from the rms of the baseline noise

present in the scans and, after correction for amplification in the detection train, is found

to be ∼1 × 10−9 cm−1. This sensitivity is nearly two orders of magnitude better than that

achieved by CRDS of a slit-expansion discharge (2 × 10−7 cm−1) [31]. The signal-to-noise

ratio of the observed spectra may be improved by increasing the sample pathlength (through

the use of a slit expansion and/or improvements to the cavity finesse). Additionally, reducing

noise by increasing the source modulation frequency, and by finding and eliminating sources

of noise in the system, will further improve the effectiveness of this instrument.

To fully realize the potential of concentration-modulated NICE-OHMS of a supersonic

expansion discharge source for the investigation of ions formed in less abundance than HN+
2 ,

it will be necessary to continue to improve the sensitivity of the instrument. Increasing the

sample pathlength through the use of a slit geometry could easily improve the sensitivity

by a factor of 3 or 4, as slits with lengths of 3−4 cm have previously been used in expan-

sion discharges [15]. In addition, the cavity finesse is currently limited by the presence of

Brewster’s windows on the expansion chamber. If a method of directly mounting the cavity

mirrors to the chamber can be realized, the finesse could be improved to the limit of the

reflectivity of obtainable mirrors and the locking bandwidth of the system. However, this im-

provement is made difficult by the mechanical vibrations of the Roots blower pump. Overall,

the instrument described here makes important steps towards the more sensitive detection

of molecular ions formed in supersonic expansion discharges, and can be further improved
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upon to take full advantage of the concentration-modulated NICE-OHMS technique.

19



Chapter 3

The Past and Future of Molecular Ion
Spectroscopy

Noise-immune cavity-enhanced optical heterodyne velocity modulation spectroscopy, or NICE-

OHVMS, was developed in the McCall lab and has enabled precise determination of tran-

sition line-centers for numerous molecular ions including HeH+, H+
3 , HCO+, and OH+

[7,21,32–34]. As the name implies, this method retains the high sensitivity achieved through

the pathlength enhancement and heterodyne detection of NICE-OHMS, but adds ion-neutral

discrimination by integrating velocity modulation of ions formed in a positive column dis-

charge source. The high sensitivity of NICE-OHVMS will enable the successful detection of

molecular ions that have evaded spectroscopists thus far. This chapter summarizes many of

the molecular ions that have already been studied, as well as those for which NICE-OHVMS

may pave the way for high-resolution study. In addition, future spectrometers utilizing a

quantum cascade laser (QCL) may allow for the study of low-frequency vibrational bands

near 8.5 µm. While not an exhaustive search, the ion targets and references provided herein

serve as a starting point for the experimentalist looking to further the cause of ion spec-

troscopy in the mid-IR.

3.1 Hydrogen/Deuterium Ions

One of the most widely studied hydrogen ions, H+
3 , was discovered more than 100 years

ago by J. J. Thomson in a hydrogen discharge [35]. H+
3 is known to be the dominant

positively charged ion present in hydrogen plasmas, and its rovibrational spectrum was first

observed in 1980 [36,37]. Theoretical studies have since successfully reproduced the obtained
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laboratory spectra and have predicted the frequencies of new lines to guide future laboratory

studies [36]. Beyond Earth’s atmosphere H+
3 was first detected by emission spectroscopy in

Jupiter’s aurora, and is known to be responsible for much of the chemistry that occurs in

interstellar space [4, 38]. The importance of H+
3 is extremely far-reaching and, as such, this

ion continues to be the subject of spectroscopic investigations to this day.

Hydrogen cluster ion systems have been demonstrated to exist mostly as H+
3 ions sur-

rounded by H2 molecules [39]. These systems often serve as benchmarks for the development

of theoretical methods focused on molecular structure, energy, and dynamics. Additionally,

these ions are of interest in modeling the nucleation dynamics of planetary and interstellar

conditions, and may be useful as a means of storing energy [40, 41]. Odd-n H+
n clusters are

known to be more stable than their even-n counterparts, with hydrogen clusters up to n=47

having been observed for the odd-n species [40]. Further spectroscopic investigation of these

cluster ions is necessary to fully characterize the behavior and dynamics of these systems,

as well as to provide benchmarks for further improvements to theoretical methods.

H+
5 and Isotopologues

First discovered more than fifty years ago, H+
5 has long been studied by experimental

and theoretical methods [42]. From a fundamental view, this ion serves as a comparatively

simple system through which the spectroscopic consequences of large amplitude motions

can be explored [43]. In its ground vibrational state, H+
5 is best visualized as a symmetric

proton-bound dimer wth D2d symmetry with the central proton equally shared between two

almost freely rotating H2 molecules [40,43,44]. The “floppy” nature of this ion makes exact

quantum calculations of the IR spectrum unworkable, but several ab initio studies utilizing

high-level theoretical methods have predicted the frequencies of several vibrational modes

of this ion [43,45–47].

In order to gain a better understanding of H+
5 , experiment and theory have worked

together for many years, iteratively predicting and attempting assignments of vibrational

bands [43–46, 48]. The shared proton mode has been observed near 1180 cm−1 (1184 cm−1

21



predicted by theory) [44]. Low-resolution experimental studies have utilized action spectra,

free electron lasers, and IR multi-photon dissociation spectroscopy to show the existence of

further vibrational bands near 2603, 3520, and 3904 cm−1 for H+
5 , as well as bands near

2546, 2815, and 3044 for its deuterated counterpart, D+
5 [39, 44, 45]. The vibrational bands

observed for D+
5 are red-shifted by approximately a factor of 21/2, as would be expected

for the heavier isotopologue [45]. Furthermore, rotational spectra have been predicted for

additional dueterated species of H+
5 (H2D

+
3 , H3D

+
2 , H4D

+), which may help to guide future

laboratory searches for this ion [49].

Ion Frequency (cm−1) Notes

H+
5

1180 [44]
Experimental value agrees with 1184 cm−1

predicted by theory in this study

2603 [45]

3520 [45]

3904 [45]

D+
5

1196 [44] Very weak, theoretical prediction

2546 [45] Assigned to ν8

2815 [45] Strongest band

3044 [45] Very weak

H+
7 3982 [41] 3980 cm−1 reported by Okumura et al. [39]

D+
7 2871 [41]

H+
9 4033 [41] 4020 cm−1 reported by Okumura et al. [39]

D+
9 2894 [41]

Table 3.1: Vibrational frequencies of hydrogen and deuterium cluster ions. Unless
otherwise noted, reported frequencies are based on experimental observations.

H+
7 , D

+
7 , H

+
9 , D

+
9

Extending spectroscopic investigations to larger cluster ions will provide further informa-

tion on the dynamic behavior of these systems, and will provide benchmarks for the further

development of theoretical methods for more complex systems. A study done by Okumura et

al. in 1985 provides experimental evidence for vibrational frequencies of H+
7 and H+

9 near 3980
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and 4020 cm−1, respectively [39]. This work utilized electron impact ionization of neutral

clusters formed in a molecular beam (10 µm expansion orifice) to generate these ions, which

were then trapped in an RF octuple ion trap and examined using a tunable IR laser [39]. The

observed frequencies agree well with a later theoretical investigation conducted by Young

et al. in which vibrational bands or H+
7 and H+

9 were both experimentally and theoretically

verified to lie near 3982 and 4083 cm−1, respectively [41]. This observed agreement between

experiment and theory provides further validation for using the frequencies predicted by the

same study for D+
7 (2871 cm−1) and D+

9 (2894 cm−1) as accurate frequencies at which to

begin high-resolution searches for these ions [41].

3.2 Carbo-Ions

The work of the Oka Ion Factory provides a good foundation for the spectroscopy of molec-

ular ions containing only carbon and hydrogen atoms, or “carbo-ions”. Of particular note

is CH+
5 , which was first observed spectroscopically in 1999, but remains unassigned to this

day [50]. Previous successes in acquiring and interpreting the spectra of single-carbon carbo-

ions include CH+
2 , CH+

3 , and CH+
4 [51–54]. In the realm of two-carbon species, Oka’s group

has successfully obtained high-resolution spectra of C2H
+
2 and C2H

+
3 using both positive-

column and hollow-cathode discharge cells [55–58]. The vast majority of lines associated

with these species have been identified through the analysis of spectral patterns and the

observed linewidth (the positive-column studies utilized velocity-modulation spectroscopy

(VMS) which provides a degree of mass-information and allows for the discrimination be-

tween one and two-carbon species). To be successful in observing and assigning these spectra,

it was necessary for the Oka group to work closely with theorists − similar collaborations

will likely be necessary for those daring to take on the carbo-ions discussed further below.

Like C2H
+
2 , C2H

+
4 and C2H

+
6 are primary ions formed from their neutral parent compound

ethylene and ethane, respectively. These ions are expected to be formed in some amount
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whenever their parent compound is present, and are likely to be present in hydrocarbon

discharges used to study C2H
+
5 and C2H

+
7 . Protonated ethylene and protonated ethane join

protonated acetylene in the realm of cations existing in two conformers that are close in

energy, namely the “classical” and “non-classical” structures [12,55,59]. In addition, proton

scrambling is hypothesized to occur due to the highly dynamic nature of these species.

Evidence of tunneling may be found in high-resolution studies due to the splitting of spectral

lines, as was observed for C2H
+
3 [55]. High-resolution and high-precision studies remain

necessary to concretely unravel the behavior and structure of these ions.

CH+
5

The infamous CH+
5 ion has baffled spectroscopists for years. Upon protonation, the well-

defined structure of CH4 transforms into an extremely floppy system that is remarkably

stable. Protonated methane has been known (from mass spectra) to exist since the 1950s,

and was even observed spectroscopically in 1999, but a full understanding of the structure

and motions of this ion remains unsecured [50,60]. This ion may be thought of as a “protoype

of hypercoordinated carbon and of three-center two-electron bonding [61]” due to five equiv-

alent protons continuously scrambling around the central carbon atom [62]. With nearly

barrierless proton scrambling, large amplitude motions exist even at very low temperatures,

leading to a highly fluxional ion that makes interpreting experimentally obtained spectra

exceptionally difficult [60].

An experimental spectrum of CH+
5 was first obtained by White et al. in 1999 using veloc-

ity modulation spectroscopy of a liquid-nitrogen cooled positive column discharge cell [50].

Of the lines observed from ∼2770−3150 cm−1, lines belonging to other molecular ions inad-

vertently formed in the CH4/H2/He plasma were easily identified (H+
3 , CH+

3 , C2H
+
3 , HCO+,

HCNH+, etc.) [50]. This left behind approximately 900 lines with no obvious spectral pat-

tern, many of which are believed to belong to CH+
5 [50]. In an attempt to gain insight to the

behavior of CH+
5 , Huang et al. obtained a jet-cooled spectra of this ion in 2006. This study

combined theory and experiment to tentatively assign vibrational motions corresponding to
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a HCH bend (1246 cm−1), and CH symmetric (3121 cm−1) and asymmetric (2854 cm−1,

3237 cm−1) stretches [63].

The most ground-breaking study of protonated methane was conducted by Asvany et al.

in 2015. Here the authors used action spectroscopy methods to investigate trapped CH+
5

at two different temperatures. At a temperature of 10 K, 2897 lines were observed from

2886−3116 cm−1 while 185 lines were observed at a temperature of 4 K. By constructing

a combination difference coincidence spectrum the authors were able to isolate and assign

individual lines of CH+
5 [60]. In the event that some of the rotational assignments determined

by this work turn out to be erroneous, Oka stresses that the combination differences obtained

will remain correct. It is these combination differences that are the key to unraveling the

mysteries of protonated methane, and the work of Asvany et al. is cited as putting experiment

years ahead of theory in deciphering CH+
5 [62].

The highly fluxional nature of CH+
5 requires that high-level interactions be included in

ab initio calculations in order to generate accurate results, posing a formidable challenge to

theorists [64]. The potential energy surface (PES) of protonated methane has been calculated

to have 120 equivalent global minima (corresponding to indistinguishable states of the five

equivalent protons), all separated from each other by remarkably small barriers [60]. Despite

even the best efforts, it is surmised that recent and continued experimental findings will

enable the interstellar discovery of CH+
5 long before a theoretical understanding of this ion

can be achieved [62].

In the McCall lab, CH+
5 could be investigated at multiple vibrational modes through the

use of both the QCL and OPO. With a sensitive enough CRDS setup, or perhaps an 8.6

µm implementation of NICE-OHMS or NICE-OHVMS, it would be possible to investigate

the CH bend frequency of CH+
5 at 1250 cm−1 [50]. If necessary, high repetition-rate CRDS

may be used to improve the sensitivity of the QCL spectrometer. With this method the

sensitivity of CRDS may be improved by keeping the laser on resonance with the cavity

and allowing for the more frequent acquisition of ringdowns. Regardless of the spectroscopic
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method used, the frequency coverage of the QCL offers the basis for an instrument primely

situated for investigation of the low-frequency bending motion of CH+
5 . Additionally, the

frequency coverage of the OPO allows for the investigation of the perceived CH stretching

modes of protonated methane using NICE-OHVMS.

C2H
+
4

The ethylene cation is the simplest alkene cation, with one electron occupying a π bonding

orbital in its ground electronic state [65]. Unlike neutral ethylene, ground state C2H
+
4 has

been shown to have a nonplanar structure that is twisted around the carbon-carbon bond

[66]. Thus, this ion is believed to have torsional motion with calculations of the torsional

angle having reported values varying from 14−33 degrees [65]. This twisting motion is

expected to lie very close to 84 cm−1 and the nonplanarity of C2H
+
4 results in a classification

of D2 symmetry for this ion [67].

Infrared studies of the ethylene cation are largely rooted in photoelectron spectroscopy

of both gaseous and solid-matrix deposited samples. An IR-vacuum ultraviolet pulsed field

ionization-photoelectron method was used by Xing et al. in 2006 to verify the ν1 to ν12 bands

of C2H
+
4 with some success [68]. A study by Chen et al. in 2015 confirmed a number of these

bands in addition to providing low-resolution studies of several combination bands [65].

Table 3.2 summarizes the current state of knowledge of the mid-IR vibrational bands of this

cation. While these studies provide enough information to enable investigations of these

bands and occasionally yield partial rotational resolution, studies of C2H
+
4 have yet to be

performed at high-precision in the gas-phase.

C2H
+
5

The ethyl cation, C2H
+
5 , represents the simplest alkene that can be formed through

protonation of a double bond. C2H
+
5 has been used as a theoretical testbed for ab initio

methods, and is of particular interest due to the similar energies of its classical and non-

classical structures. Extensive theoretical investigations have established the non-classical

bridged-proton structure of C2H
+
5 as the global minimum on the PES [59,69]. Furthermore,
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the classical H3C−CH+
2 structure is predicted to be only a saddle point which the non-

classical structure traverses during the proton shift [59].

Experimental investigations have been conducted using IR photodissociation (IRPD)

spectroscopy of C2H
+
5 −Ar [70], C2H

+
5 −Ar2 [70], and C2H

+
5 −N2 [71]. These studies have

confirmed the absence of a CH stretching band from 2800−2900 cm−1, which provides evi-

dence that the sp3 moiety of a classical H3C−CH+
2 conformer is not present in the gas phase.

Vibrational bands above 3000 cm−1 consistent with the non-classical structure were also de-

tected in these studies, and IRPD has provided direct evidence of the bridged-proton stretch

near 2158 cm−1 [70]. The previous work has been successful in confirming non-classical

C2H
+
5 as the stable conformer in the gas phase, but the presence of Ar/N2 necessary to

enable IRPD affects the observed band center. In addition, the lack of resolved rotational

structure make these studies ineffective for guiding astronomical searches.

C2H
+
6

While C2H
+
4 and C2H

+
5 remain largely uninvestigated at high-resolution, experimental

studies exist to help guide future gas-phase studies of these ions. C2H
+
6 , on the other hand,

has never been observed experimentally. As of this writing, the only study that exists to

guide future investigations of this ion is found in the work of Kurosaki and Takayanagi where

vibrational frequencies are calculated from the expected equilibrium geometry of C2H
+
6 [72].

The accuracy of these frequencies should be noted with caution as the ab initio methods

of the 1990s were not as developed as the methods available today. A collaboration with

theoreticians is likely necessary to facilitate a high-resolution investigation of C2H
+
6 .

C2H
+
7

Protonated ethane (C2H
+
7 ) is the key intermediate in the reaction of CH4 with CH+

3 to

form C2H
+
5 [73]. Additionally, like C2H

+
3 and C2H

+
5 , C2H

+
7 is most stable in its non-classical

form with the two carbon atoms and one hydrogen atom participating in a three-center,

two-electron bond. Using a two-color laser scheme to probe mass-selected ions in a radio-

frequency octopole ion trap, Yeh et al. observed what they deduced to be both the classical
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and non-classical forms of C2H
+
7 using an expansion discharge [12]. This deduction followed

from the strong dependence of the obtained spectrum on the backing pressure and ratio of

hydrogen to ethane used. In this work, the more stable structure was reasoned to not depend

on the source backing pressure, and the experimentally obtained vibrational frequencies of

this non-classical conformer are reported in Table 3.2 [12].

Ion Frequency (cm−1) Notes

CH+
5

1246 [63]

2854 [63]

3121 [63]

3237 [63]

C2H
+
4

2873 [68] ν11, 68 km/mol

2979 [68] ν2+ν12 combination band

C2H
+
5

2996 [71] b2 symmetry, CH symmetric stretch, 34 km/mol

3117 [71] b1 symmetry, CH asymmetric stretch, 70 km/mol

C2H
+
7

2945 [12] ν6, symmetric CH stretch out of phase

3082 [12] ν4, asymmetric CH stretch out of phase

3128 [12] ν2, asymmetric CH stretch in phase

Table 3.2: Carbon-ion vibrational frequencies within the range of the OPO and QCL laser
systems.

3.3 Nitrogen-Only Ions

Simple molecular ions comprised of nitrogen have long been a focus of spectroscopic in-

vestigations. NH+
2 , NH+

3 , and NH+
4 have all been analyzed by high-resolution techniques,

allowing the structure and dynamics of these species to be well-characterized (See [74–77]

and references therein). Likewise, protonated nitrogen has been the focus of many studies

due to its importance in laboratory discharge plasmas and the ISM [24]. The ν1, ν2, and

ν3 fundamental bands of HN+
2 have been studied at high-resolution using diode laser and
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velocity-modulated color-center laser spectrometers [78–81]. Protonated nitrogen was also

the first ion to be studied by infrared-microwave double resonance spectroscopy [82,83].

Interestingly, the spectrum of HN+
2 was discovered in the ISM prior to any laboratory

microwave or infrared studies were conducted [84]. In the same issue of The Astrophysical

Journal, the unidentified triplet of lines at 93.174 GHz was tentatively assigned to HN+
2

based on self-consistent field calculations of the rotational constant and hyperfine structure

of this ion [85]. This assignment was quickly confirmed by Thaddeus and Turner in 1975

through further resolution of the hyperfine structure of the nitrogen nucleus [86]. Following

this confirmation, a laboratory microwave study of HN+
2 provided an additional check of

these astronomical measurements [87].

Despite their hypothesized importance to interstellar and terrestrial chemical processes,

studies of more complex nitrogen-containing ions remain scarce. Ab initio theoretical inves-

tigations and low-resolution photoelectron spectroscopy studies constitute much of the work

that has been done on these ions, and provide a basis for future high-resolution studies as

highlighted in the subsequent paragraphs.

N2H
+
2

The diazene cation, N2H
+
2 , is important to the atmospheric chemistry of Jupiter’s moon,

Titan, and is believed to be an important component of biological nitrogen fixation [88].

Similar to O2H
+
2 , the diazene cation is expected to be most stable in its planar trans-HNNH+

form [89, 90]. Isomerization between trans-HNNH+ and the next most stable conformer,

isodiazene (H2NN+), requires an energy of 54.0 kcal/mol to facilitate the transfer of an

H-atom between the heavy atoms [90]. The other local minimum present on the N2H
+
2

PES corresponds to the cis-HNNH+ isomer, which exists slightly higher in energy than the

isodiazene cation conformer.

The only experimental study of the diazene cation to date was performed by Frost et al.

in 1976. Here, photoelectron spectroscopy of diazene (N2H2) was performed by introducing

gas-phase pre-synthesized N2H2 (which necessarily contained small amounts of H2 and N2)

29



into the photoionization chamber. At the time of publication, this study resulted in the

clear identification of a vibrational band near 1180 cm−1 [91]. A theoretical investigation

performed in 2009 highlighted good agreement with the results of Frost et al. and further

identifies additional bands that lie within the range of the OPO and QCL laser, which are

summarized in Table 3.3 [92]. These previous studies provide ample information for initial

high-resolution investigations of gas-phase trans-HNNH+.

N2H
+
3

Organic derivatives of diazene (N2H2) and hydrazine (N2H4) are of interest as potential

hydrogen storage systems, and it follows that investigations into their protonated counter-

parts may offer insight into the mechanisms involved with such systems [93]. Although it

remains uninvestigated experimentally, protonated diazene (N2H
+
3 ) has been the subject of

several theoretical studies that may help to guide a high-resolution study of this ion. The

global minimum on the PES corresponds to the singlet-state, H2N2H
+ planar structure that

is highly stable [90]. A theoretical study performed by Matus et al. in 2006 highlights three

bands within the coverage of lasers available in the lab near 1200, 3330, and 3473 cm−1, but

it should be noted that currently no experimental evidence exists to support these calculated

band frequencies [93].

N2H
+
4

Throughout the literature there is some controversy over whether N2H
+
4 exists in a D2h

or C2h symmetric structure. While a photoelectron spectroscopic study of hydrazine was

conducted in the early 1970s this work provides structural information only about neutral

hydrazine, and no spectroscopic parameters that could be used to guide a search for N2H
+
4

[94]. Theoretical work done by Habas et al. in 1997 predicts vibrational frequencies for

N2H
+
4 in both the D2h and C2h form, with the calculated frequencies differing by only a few

wavenumbers. The D2h structure is calculated to have bands at 3484, 3506, and 3651 cm−1,

while the analogous bands of the C2h structure are calculated to be at 3489, 3510, and 3644

cm−1, respectively [95]. These predictions may be useful for guiding high-resolution studies
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that could help to resolve the discrepancy over the exact structure of this ion.

N2H
+
5

Like protonated diazene, protonated hydrazine (N2H
+
5 ) may be of interest to hydrogen

storage. An experimental study performed in 1952 marked the first observation of N2H
+
5 ,

showing vibrational bands at 1124 cm−1 and multiple bands in the range of 2716−3261

cm−1 [96]. A more recent ab initio study predicts a band near 1210 cm−1 and five bands

in the region of 3355−3519 cm−1 [93]. While these new predicted frequencies differ quite

significantly from those obtained in the first studies of N2H
+
5 , the work by Pearson et al.

suffered from extremely low resolution. Therefore, in this instance it may be more beneficial

to begin a high-resolution survey at the frequencies predicted by Matus et al. rather than

those of early experimental work [93,96].

Ion Frequency (cm−1) Notes

N2H
+
2

1183.9 [90] ν3, symmetric HNN in-plane bending

3080.1 [90] ν4, antisymmetric HN stretch

3083.6 [90] ν1, symmetric HN stretch

N2H
+
3

1200 [93] Theoretical prediction

3330 [93] Theoretical prediction

3473 [93] Theoretical prediction

N2H
+
4

3483/3489 [95]

3506/3510 [95]

3651/3644 [95]

N2H
+
5

1210 [93]

3355−3519 [93] 5 bands predicted within this range

Table 3.3: Vibrational frequencies of nitrogen-only ions. For N2H
+
4 , all reported frequencies

are theoretically predicted and are reported in a D2h/C2h format.
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3.4 Oxygen-Only Ions and Ionized Water Clusters

Oxygen-containing molecular ions play a role in atmospheric chemistry, combustion, plasma

chemistry, and biological processes [97, 98]. To this day several ions containing two oxygen

atoms, including the elusive O2H
+ ion and O2H

+
2 , remain uninvestigated experimentally.

Moving to two-oxygen species of increasing complexity, O2H
+
4 represents the simplest ion that

can be formed from ionization of a water cluster (namely from the removal of an electron from

the water dimer, (H2O)2). As the composition of cationic water cluster systems increases

(O2H
+
5 , O2H

+
6 , etc.), the theoretical methods necessary to successfully model these systems

drastically rise in complexity. The successful experimental observation of these species would

provide the data necessary to guide future ab initio studies of charged water cluster systems.

A better understanding of water clusters is of great importance to the scientific commu-

nity due to water’s existence as one of the most prevalent polar solvents and the importance

of water clusters to atmospheric chemistry [99]. Hydroxyl radicals produced upon ioniza-

tion of neutral water clusters are associated with damage of living cells [100]. Studies have

been conducted to investigate ionized water clusters, electron attachment and localization in

neutral water clusters, and the fragmentation patterns that occur upon ionization of neutral

water clusters [99].

Ionized water clusters can be largely divided into two classes: protonated (H2O)nH+ and

unprotonated (H2O)+n . Despite experimental efforts, the structures of unprotonated ionized

water clusters remain largely unknown due to the fact that these clusters are formed in

highly vibrationally excited states that quickly lead to dissociation [99]. Investigations of

unprotonated water clusters at high-resolution may require the use of a supersonic expansion

discharge to prolong the existence of these clusters for spectroscopic investigation. Here, a

method of sample introduction similar to that used in gas-phase vacuum-UV photoionization

and electron impact ionization studies by Shinohara et al. could be used to yield significant

amounts of unprotonated water clusters [101]. A number of experimental and theoretical
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studies have also focused on protonated water clusters as will be discussed for (H2O)2H
+,

an ion of great importance to the chemistry of the upper atmosphere [99].

O2H
+

Protonated oxygen is expected to play a part in many processes including the chemistry

of combustion and H2/O2 plasmas [97]. In addition, this ion is thought to be important

to atmospheric chemistry and biological respiration [98]. Despite its hypothesized ubiquity,

O2H
+ remains unobserved to this day. Several attempts to predict the ν1 fundamental band

of O2H
+ have been made, with predicted frequencies starting near 3500 cm−1 and lowering

as theoretical methods improve [102]. Utilizing a tagged IR predissociation spectroscopy

study, Nizkorodov et al. predicts the vibrational frequency for the OH stretch of HO+
2 to be

at 3020 ± 40 cm−1 [103]. This lower predicted value may explain why an attempt to observe

O2H
+ by the Oka group in 1991 (∼3250−3600 cm−1) failed to detect this ion, and instead

resulted in the acquisition of a spectrum of H3O
+ [102].

O2H
+
2

The hydrogen peroxide cation (HOOH+) and the oxywater cation (H2OO+) are the two

most stable conformers of the cation composed of two oxygen and two hydrogen atoms.

HOOH+ is calculated to be the most stable of the conformers, with H2OO+ existing as a

local minimum +23 kcal/mol higher on the PES [89]. Isomerization between the two species

requires an activation barrier of ∼33 kcal/mol be surmounted, and in doing so the planar

HOOH+ structure is transformed into the pyramidal shape of H2OO+. The HOOH+ isomer

may exist as either cis or trans-HOOH+, with trans being the more stable planar structure

by 8 kcal/mol [89].

These species have been formed successfully in the gas phase via ionization of gaseous

mixtures of oxygen and water using chemical ionization. Here the ratio of HOOH+ to H2OO+

was shown to be dependent on the composition of the precursor gas mixture [104]. Recently,

Thompson et al. recorded the infrared spectrum of the trans-HOOH+ isomer trapped in

solid neon. In this study a moderately strong peak corresponding to the ν5 vibration of
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trans-HOOH+ was observed near 3237.0 cm−1 [105]. While this band center is likely to be

altered slightly from gas-phase trans-HOOH+ due to the neon matrix, this work provides a

starting point for a high-resolution investigation of this ion using OPO NICE-OHVMS.

O2H
+
4

Under relatively high pressure conditions the water dimer, (H2O)2, is known to form in the

gaseous phase. This structure is stabilized by a strong hydrogen bond that forms between

the two water molecules [106]. Upon ionization the water dimer undergoes a significant

geometric relaxation, as shown by a photoelectron spectroscopy study [107]. The ionized

complex is expected to exhibit large amplitude motion as a result of a hydrogen atom

being shared among the two oxygen centers, and is most accurately modeled by anharmonic

methods [108].

A more recent study combined experiment with theory to unambiguously determine

the structure of the most stable conformer of O2H
+
4 as an ion-radical complex most eas-

ily expressed as H3O
+−•OH. This conclusion was drawn from IR transitions observed

from 1000−4000 cm−1 in argon-tagged predissociation spectra acquired for H4O
+
2 −Ar and

H4O
+
2 −Ar2 formed in a pulsed supersonic expansion photofragmentation spectrometer. Of

particular note from this study is the observation of a band near 3392 cm−1, which was

observed to be independent of the number of argon atoms involved in the predissociation

spectra, and could serve as a starting point in discovery spectroscopy of this ionic water

cluster species [108].

O2H
+
5

The protonated water dimer, (H2O)2H
+, is generally considered to be the prototypical

system for the study of proton transfer in solution [110]. Proton mobility is of strong

interest to biological and chemical processes, and protonated water clusters are noteworthy

components of the upper atmosphere, with (H2O)2H
+ being the dominant ionized species

present in the D region of the ionosphere [99, 110, 113]. (H2O)2H
+ is also of interest due

to the exceedingly strong nature of the hydrogen bond that binds the central proton to the
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Ion Frequency (cm−1) Notes

O2H
+ 3020 [103] Theoretical prediction

O2H
+
2 3237 [103] trans-HOOH isomer

O2H
+
4 3392 [108]

O2H
+
5

1163 [109]
Disputed, observed at 1252 cm−1 by work of

Asmis et al. [110]

3603 [111] Agrees well with 3609 cm−1 of Yeh et al. [112]

3683 [111] Agrees well with 3684 cm−1 of Yeh et al. [112]

Table 3.4: Vibrational frequencies of oxygen-containing molecular ions.

two surrounding water molecules. While the typical strength of a hydrogen bond is 10−20

kJ/mol, the strength of the hydrogen bond associated with the protonated water dimer is

130 kJ/mol [109]. Both the cause and effects of this abnormally strong hydrogen bond may

be better understood through a thorough investigation into the structure and behavior of

this system.

With its prevalent role in proton transfer in aqueous solution, O2H
+
5 has been studied

by theoretical methods for more than 30 years. However, these theoretical studies are made

difficult due to large amplitude motions that result from the flat nature of the PES near the

global minimum and low-energy pathways for rearrangement [114]. A recent quantum Monte

Carlo study utilizing highly correlated wave functions to investigate the minimum energy

equilibrium structure confirms the Zundel configuration as the minimum energy structure

[115]. The Zundel cation is best described as two water molecules bound by an evenly-shared

central proton, giving the structure C2 symmetry. This finding agrees well with previous

theoretical studies and exhibits an accuracy comparable to more expensive coupled cluster

theory methods, which demonstrates the ubiquity of O2H
+
5 as a test system for improving

the efficacy of ab initio methods for complex systems [115].

Gas-phase experimental spectra of the (H2O)2H
+ structure exist to guide theory, but

many of these studies have been done at low-resolution or are missing crucial information

necessary to fully characterize this system. In 1989, Yeh at al. used two-color infrared multi-
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photon dissociation spectroscopy of a corona discharge source to obtain low-resolution (0.5

cm−1) spectra of O2H
+
5 from 3550−3880 cm−1, identifying two OH stretching bands near

3609 cm−1 (symmetric) and 3684 cm−1 (antisymmetric) [112]. Modifications to the laser

scheme then allowed for a high-resolution (0.01 cm−1) study of the antisymmetric stretch

near 3700 cm−1 in 1994, revealing spectral splittings due to tunneling motion [116]. However,

in this study water absorption of the laser radiation precluded a complete study of the Q-

branch of this ion and further studies into this region are necessary to fully characterize

the extent of the perceived tunneling effects involved with (H2O)2H
+ [116]. It should be

noted that a theoretical study by Vendrell et al. in 2007 further confirmed the presence of

vibrational bands at 3603 cm−1 and 3683 cm−1, in good agreement with the experimental

observations of Yeh and coworkers in 1989 and 1994 [111,112,116].

Lower-frequency (600−1900 cm−1) gas-phase and theoretical studies done in 2003 and

2004 investigated the vibration associated with the proton shared between the two water

molecules in (H2O)2H
+ [109,110,114]. Asmis et al. utilized a tandem mass spectrometer−ion

trap apparatus in combination with a free electron laser to elucidate a shared-proton vibra-

tion near 1252 cm−1 [110]. However, in 2004 an experimental study performed by Fridgen

et al. identified this same band as having a characteristic frequency of 1163 cm−1 [109]. The

discrepancy between these results is still not fully resolved, but future experimental investi-

gations into this band using the QCL may be monumental in characterizing this region and

providing essential benchmarks for theoretical investigations of the shared-proton vibration

of (H2O)2H
+ [109].

Beyond the Zundel cation, investigations into deuterated versions of this ion as well

as larger protonated water clusters will generate insight into proton transfer in solution,

among other processes. For deuterated versions of the protonated water dimer, the work

of Agostini et al. provides extensive theoretical information as to where high-resolution

experimental studies may begin [117]. Additionally, low-resolution experimental studies of

O3H
+
7 and O4H

+
9 provide a springboard for the experimentalist looking to fully resolve the
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role of tunneling and hydrogen-bonding in protonated water clusters [112,116]. It should be

noted that the aforementioned studies show that both of these cluster species are known to

have OH stretching modes within the coverage of the OPO (near 3700 cm−1).

3.5 Carbon-Nitrogen Ions

Regarding molecular ions consisting of carbon and nitrogen, protonated hydrogen cyanide

(HCNH+) has attracted much attention due to its importance in interstellar chemistry as

the main precursor to HCN and HNC molecules in interstellar space. Thanks to millimeter-

wave spectroscopic investigations of this ion, rotational transitions have been determined

that have enabled the detection of HCNH+ in the ISM (in the direction of Sgr B2) [118,119].

Additionally, ν1 − ν5 have been investigated using high-resolution spectroscopy and high-

level ab initio methods [120–126]. Despite their expected prevalence in interstellar chemistry

and physical processes occurring here on Earth, several carbon-nitrogen ions have yet to be

investigated by high-resolution spectroscopy as discussed in more detail below.

HCN+ and HNC+

Neutral hydrogen cyanide (HCN) and hydrogen isocyanide (HNC) have been widely

studied due to their importance in various chemical systems and their presence in dense

interstellar clouds [127]. These studies have led to the determination that HCN is more stable

than HNC by 42−50 kJ/mol, with HNC existing as a metastable isomer. In contrast, the

hydrogen cyanide cation (HCN+) is predicted to be less stable than the hydrogen isocyanide

cation (HNC+), with the two systems having very different chemical reactivities [128]. FT-

IR absorption spectroscopy of HCN deposited in solid neon passed through a microwave

discharge confirms the existence of both HCN+ and HNC+, and has established vibrational

frequencies in good agreement with those determined for gas-phase ionized HCN and HNC.

Specifically, HCN+ has been experimentally determined to have a ν1 (CH stretch) vibration

at 3050 cm−1, HNC+ at 3365 cm−1, DCN+ at 2374 cm−1, and DNC+ at 2664 cm−1 [128].
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As shown in Table 3.5, ab initio predictions of the vibrational bands of these ions differ

significantly for all but the 3465 cm−1 band of HNC+ [127]. Further experimental study of

the isomers and isotopologues of HCN+ are needed to resolve these discrepancies.

H2CN+

The singlet state HCNH+ isomer of protonated hydrogen cyanide has been proven by

many theoretical and experimental methods to exist as the sole global minimum on the PES

of this ion, and this isomer has been widely studied as noted in the introduction [125,126,129].

The triplet-state H2CN+ isomer is predicted to exist as a local minimum on the PES of the

[H2,C,N]+ ion and may be observable experimentally [129, 130]. However, this mode is

believed to lie at 1299 cm−1, and may be just outside of the range currently accessible to

the QCL [129].

Ion Frequency (cm−1)

HCN+ 3050 (3099)

DCN+ 2374 (2416)

HNC+ 3365 (3464)

DNC+ 2665 (2727)

H2CN+ 1299 [129]

Table 3.5: Carbon-Nitrogen molecular ion vibrational frequencies. For those ions with two
frequencies listed, experimentally observed frequencies by Forney et al. [128] are listed first
with theoretically predicted frequencies by Peterson et al. [127] given in parentheses.

[C,N,H3]
+, [C,N,H4]

+

As the number of hydrogen atoms attached to CN increases, the exact structure of carbon-

nitrogen containing ions becomes more difficult to determine. This is evidenced by the lack

of ab initio and experimental data for the [C,N,H3]
+ and [C,N,H4]

+ molecular ions. Since the

mid-1990s there has been debate over the structure of the [C,N,H3]
+ ion, with the HCNH+

2

and H2CNH+ isomers alternately cited as the global minimum on the PES [131, 132]. In

both of these studies it should be noted that the energy difference between the two minima

was very small (∼10 kcal/mol) [131,132]. To this day no experimental or theoretical studies
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of this ion exist, and a collaboration with theorists will be necessary to guide a search for

this ion.

3.6 Carbon-Oxygen Ions

With its large dipole moment of >4 Debye, the formyl cation (HCO+) exhibits strong ro-

tational transitions that enabled its discovery in the interstellar medium years before its

laboratory characterization [133]. In 1970 Buhl and Snyder discovered an unidentified line

at 89.190 GHz while searching for hydrogen cyanide [134]. At the time it was speculated

that this line belonged to HCO+, but this assignment was not confirmed until a labora-

tory study performed by Woods et al. five years later [135, 136]. HCO+ was also the first

ion to be studied by velocity-modulation spectroscopy, and has been extensively character-

ized by various spectroscopic techniques [7]. The molecular structure of HCO+ was first

determined in 1981 through measurements of the J=0→1 rotational transition of this ion

and its isotopically substituted variants [137]. Studies using difference-frequency and diode

lasers quickly followed, resolving numerous lines within the IR-active ν1 and ν3 fundamental

bands [133,138,139]. In 2007, Lattanzi et al. extended the work done on HCO+ to the tera-

hertz regime to provide coverage of frequencies accessible to the Herschel Space Observatory

and the Atacama Large Millimeter Array (ALMA) [140]. Additionally, indirect rotational

spectroscopy was performed on this ion in 2013 to determine the rotational spectrum up to

J=10←9 in the ν1 first excited state [7].

As a precursor to one of the most abundant interstellar molecules (formaldehyde), the

more complex H3CO+ ion has been the subject of numerous theoretical and experimental

studies [141]. While early theoretical methods predicted H3CO+ to be the most stable form

of this ion, more recent calculations revealed H2COH+ to be the most stable isomer [141,142].

Experimentally, H2COH+ was first detected through its OH stretch near 2.9 µm by Amano

and Warner in 1989, and rotational spectroscopy of this ion quickly followed [141,143,144].
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These studies enabled the detection of protonated formaldehyde towards SgrB2, OrionKL,

and W51 in 1996, and helped to better characterize the fractional abundance of this ion

in the ISM [145]. Although much work has already been done regarding H2COH+, studies

continue to emerge that offer new insight into further characterization of this ion [142]. In

addition, the primary ion formed from formaldehyde (H2CO+) is also hypothesized to be of

importance to interstellar chemistry, but has not yet been studied at high-resolution [146].

Ion Frequency (cm−1)a Notes

H2CO+ 1210.2 [147] ν3

2580.2 [147] ν1, 170 km/mol

CH3O
+

2469(2367) [142] CH Stretch, 1028 km/mol

2717(2626) [142] Symmetric CH2 stretch, 181.6 km/mol

2747(2649) [142] Asymmetric CH2 stretch, 120.2 km/mol

H2COH+

2967(2977) [142] Symmetric CH2 stretch, 0.9 km/mol

3124(3111) [142] Asymmetric CH2 stretch, 8.9 km/mol

3182(3168) [142]
OH Stretch, 3423 cm−1 reported by Amano and

Warner [141]

Table 3.6: Vibrational frequencies of the formaldehyde cation and isomers of protonated
formaldehyde. For CH3O

+ and H2COH+, experimentally determined frequencies
(Ar-tagged) are listed first, with theoretical predictions given in parentheses.

H2CO+

The primary ion formed as a result of the ionization of formaldehyde remains uninvesti-

gated at high-resolution to this day, but several theoretical and photoelectron spectroscopy

studies exist to guide a study of this ion. A theoretical study done by Sears et al. in 2008

highlights two minima on the PES that lie within 6 kcal/mol of each other. The global min-

imum was found to be the formaldehyde cation form (H2CO+), with trans-HCOH+ existing

at a slightly higher energy. No minimum corresponding to a cis-HCOH+ isomer was found,

providing evidence that only two stable conformers of this molecular ion exist [90].

Photoelectron spectroscopy of formaldehyde entrained in supersonic expansions have

confirmed the infrared spectrum of H2CO+ contains a strong CH stretching mode near
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2580.2 cm−1, corresponding to the ν1 vibration [147, 148]. Additionally, ν3 near 1210.2

cm−1 has also been observed and may be a good target for future investigations using the

QCL [147]. A method of sample introduction can be gleaned from that used to form gaseous

formaldehyde for the study of H2COH+ using a difference frequency laser by Amano and

Warner in 1989. This study utilized a mixture of hydrogen gas (∼1 torr) and H2CO (formed

by heating paraformaldehyde powder, ∼10 mTorr) in a hollow cathode discharge cell to

observe protonated formaldehyde [141]. While this method of sample introduction may work

well for plasma discharge cells, such as Black Widow, in the event that a supersonic expansion

discharge is used other means of sample introduction have also been realized [147,149,150].

H2COH+ and H3CO+

While protonated formaldehyde has been detected in the ISM, there is still much to be

learned about this ion through high-resolution spectroscopy of its IR-active fundamental

bands [145]. H2COH+ has been confirmed as the most stable form of this ion, but further

work has elucidated the potential presence of the H3CO+ isomer as a metastable species

that should be experimentally observable [142]. A thorough analysis of the [H3,C,O]+ ion

PES confirmed the H2COH+ conformer as the most stable structure [142]. This analysis

also highlighted the existence of the H3CO+ isomer as a metastable species +96 kcal/mol

higher in energy than H2COH+, and shows the HCOH+
2 structure as a high-energy local

minimum as well (although there is no experimental evidence to support the existence of

this isomer) [142].

Experimental evidence of the methoxy cation (H3CO+) has been tentatively obtained

through low-resolution IR laser photodissociation spectroscopy of ions expanded in a molec-

ular beam. Further investigation of the experimentally observed bands near 2469, 2717, and

2747 cm−1 would provide more insight on the behavior of the methoxy cation, and would

allow theorists to better characterize the PES of the [H3,C,O]+ ion. Likewise, while the OH

stretch of the H2COH+ isomer has been well-characterized at high-resolution, analysis of

the bands near 2967, 3124, and 3182 cm−1 would provide further benchmarks for theory. It
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should be noted that all of the cited frequencies were obtained by Argon-tagged photodisso-

ciation spectroscopy and may be altered from tag-free gas-phase studies (as Argon binding

location has been demonstrated to affect the frequencies of the CH and OH stretches of this

system) [142].

3.7 Nitrogen-Oxygen Ions

Molecules consisting of nitrogen and oxygen are known to play important roles in combus-

tion, atmospheric chemistry, and in processes that occur in the ISM [151–153]. Despite their

pervasive importance, studies of both neutral and ionic nitrogen-oxygen containing systems

remain scarce. The experimental literature that exists for these species largely derives infor-

mation about their molecular structure from photoelectron spectroscopy [152]. As is the case

for many systems that have yet to be thoroughly investigated in the laboratory, theoretical

studies exist to guide future high-resolution studies of these ions as detailed below [153–155].

The very limited amount of information available for nitrogen-oxygen containing ions high-

lights a substantial gap in the literature that may be addressed through future work using

NICE-OHVMS or a QCL spectrometer.

HNO+ and HON+

Nitroxyl (HNO) is known to be an important intermediate in the combustion of mix-

tures containing NH3, NO, and O2 [152]. In addition, neutral HNO has successfully been

detected in the ISM [151]. The [H,N,O]+ ion has been characterized using a multi-reference

configuration-interaction (MRCI) approach and supports the existence of both HNO+ and

HON+ isomers [153]. Both of these isomers are known to have a bent geometry in their

ground state. HNO+ is the lowest energy isomer, with a barrier to isomerization of nearly

20,000 cm−1 standing in the way of transfiguration to the HON+ form [153]. This work fur-

ther details HNO+ as having a vibrational band near 2900 cm−1, while HON+ is calculated

to have two bands within the coverage of lasers in the lab (∼1170 and 3140 cm−1) [153]. The
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experimentally confirmed existence of a band near 2900 cm−1 for HNO+ agrees well with a

theoretical study done by Bruna et al. substantiating this frequency as a place to start when

pursuing a spectroscopic investigation of this ion [156].

[H2,N,O]+ Ions

H2NO is suspected of being involved in the catalytic destruction of ozone in the strato-

sphere [152]. The PES of the [H2,N,O]+ ion supports the existence of four isomers: H2NO+,

trans-HNOH+, cis-HNOH+, NOH+
2 (listed in order of increasing energy) [154,155]. The least

stable NOH+
2 isomer is known to form from mixtures of N2/H2O subjected to electron impact

ionization, while H2NO+ may be formed by protonation of HNO using H3O
+/CH+

5 [154].

Photoelectron spectroscopy has been used to investigate H2NO+ and D2NO+, with D2NO+

tentatively possessing a vibrational band (ND2 bending mode) within the coverage of the

QCL at 1245 cm−1 [152].

Ion Frequency (cm−1) Notes

HNO+ ∼2900 [153] NH stretching mode

HON+ 1170 [153] Bending mode

3140 [153] NH stretching mode

D2NO+ 1245 [152] Experimentally observed D2N bending mode

Table 3.7: Vibrational frequencies of nitrogen-oxygen containing molecular ions. Unless
specifically noted, listed frequencies are theoretical values.
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Appendix A

Calculation of the Saturation
Parameter of OPO cm-NICE-OHMS

Details of the calculation of the saturation parameter (G) associated with the OPO cm-

NICE-OHMS work are presented here, based on equations presented in Ma et al. [28].

With a coupling efficiency of ∼10%, approximately 50 mW of the ∼500 mW of the

incident laser power enters the cavity. Based on the current cavity parameters, this translates

to light with an intensity of ∼1.02 W/mm2 circulating in the cavity. To calculate the

saturation parameter, one must consider the amount of power present in the sidebands of

the modulated light. Given a modulation index of∼0.6, the intensity present in the sidebands

is ∼0.08 W/mm2, calculated using equations presented in Section 4.9 of the work of A. A.

Mills [157]. It is then possible to calculate the saturation parameter for NICE-OHMS based

on the following equation [28]:

G =
2µ2I

3cε0h̄
2γ2tt

(A.1)

Useful constants and conversions include: 1 D2 = 10−36 erg×cm3 and h̄ = 1.055 × 10−27

erg×s. For a dipole moment of ∼0.2 D, a relaxation rate dictated by the transit time of ions

through the beam of ∼3 MHz, and an intensity of ∼0.08 W/mm2, an upper limit to the

saturation parameter is calculated to be ∼6 for J = 0. This value will be lower for higher J

values, as the dipole moment of each transition is calculated by:
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µJ = µ
J + 1

2J + 1
(A.2)

For comparison to the work of Ma et al. it is important to also determine a value:

y =
√

ln(2)× γtt
δνD

(A.3)

In the Doppler limit (y = 0), only the intensity of absorption is affected by saturation.

For OPO cm-NICE-OHMS the expected y-value is ∼0.01. At this value of y, absorption is

only slightly affected by saturation (< 5% intensity change for G ≤ 10), and the dispersion

intensity is virtually unaffected (< 2% intensity change for G ≤ 10). Even in the limit of

extremely strong saturation (G = 100), saturation effects would only affect the dispersion

intensity by a maximum of ∼7 % [28].
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