
c© 2016 by Lewis Tseng. All rights reserved.

FAULT-TOLERANT CONSENSUS IN DIRECTED GRAPHS
AND CONVEX HULL CONSENSUS

BY

LEWIS TSENG

DISSERTATION

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Computer Science

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2016

Urbana, Illinois

Doctoral Committee:

Professor Nitin H. Vaidya, Chair
Professor Chandra Chekuri
Associate Professor Indranil Gupta
Professor Jennifer L. Welch, Texas A&M University

Abstract

As distributed systems nowadays scale to thousands or more of nodes, fault-tolerance becomes one of the

most important topics. This dissertation studies the fault-tolerance aspect of the consensus algorithm, which

is a fundamental building block for the distributed systems. Particularly, the dissertation has the following

two main contributions on fault-tolerant consensus in message-passing networks:

• We explore various fault-tolerant consensus problems under different fault models in communication

networks that are modeled as arbitrary directed graphs, i.e., two pairs of nodes may not share a bi-

directional communication channel, and not every pair of nodes may be able to communicate with each

other directly or indirectly. We prove the tight condition of the underlying communication graphs for

solving each of the consensus problem, i.e., the necessary condition is equal to the sufficient condition.

• We propose a new consensus problem – convex hull consensus – in which the input is a vector of reals

in the d-dimensional space, and the output is a convex polytope contained within the convex hull

of all inputs at fault-free nodes. For asynchronous systems, we present an approximate convex hull

consensus algorithm with optimal fault tolerance that reaches consensus on optimal output polytope

under crash fault model. Convex hull consensus may be used to solve related problems, such as vector

consensus and function optimization with the initial convex hull as the domain.

ii

To Father, Mother and Wife.

iii

Acknowledgments

I have spent my past ten and half years in Champaign.“Wow” is the most reaction I got from people.

However, I have quite enjoyed my time here, because I have met lots of good people and friends. I would

like to use this space to thank all of them. Specifically, I want to thank Tyrone L. Roach (a.k.a. Dr. Roach),

who played basketball with me and helped me assimilate into American culture.

My deepest gratitude is to my advisor, Prof. Nitin H. Vaidya, for his guidance and support. I appreciate

all his contributions of time, ideas and funds which made this dissertation possible. Beyond research, he

taught me how to think critically, how to express ideas, and most importantly, how to be an ethical researcher

– these are among the most important things that I have learned during my PhD journey.

I also thank Prof. Chekuri, Prof. Gupta and Prof. Welch for serving on my doctoral committee, and

providing their insightful comments. Particularly, Prof. Chekuri has given me many useful advices since I

was a dumb undergraduate student. (Hopefully, I am a bit smarter now.) I also enjoyed my time working

as a teaching assistant for Prof. Chekuri.

My research was financially supported by the National Science Foundation, U.S. Army Research Office

and the Boeing Company. My colleagues in the Distributed Algorithms and Wireless Networking Group

have been very helpful in many ways; I thank all of them. I also thank Carol Wisniewski for her kind help

with various administrative matters.

Most importantly, I would like to thank my wife Yutien (Casey) Cheng for her support and love. Without

her constant reminder, my dissertation may not finish in time! I also thank my parents, Yiping Tseng and

Hueichu Liao, for their faith in me. Finally, I thank my dearest friends, who I would rather call my brothers

– Hao (Joseph) Chen and Yung-Hsin Chang, for making me a better man. Joseph, may your soul rest in

peace.

iv

Table of Contents

Chapter 1 Introduction . 1
1.1 Main Contributions . 1

1.1.1 Fault-tolerant Consensus in Arbitrary Directed Graphs 1
1.1.2 New Consensus Problem: Convex Hull Consensus . 5

1.2 Models . 5
1.2.1 System Model . 5
1.2.2 Fault Model . 6

1.3 Dissertation Outline . 7

Chapter 2 Related Work . 8
2.1 Consensus with Different Assumptions on Graphs . 8
2.2 Iterative Approximate Consensus in Incomplete Graphs . 9
2.3 Consensus in the Presence of Link Faults . 10
2.4 Reliable Communication and Broadcast . 11
2.5 Consensus with High-Dimensional Input/Output . 12

Chapter 3 Fault-tolerant Consensus Under f-total Faults 13
3.1 Introduction . 13
3.2 Terminology . 14
3.3 Main Results of Chapter 3 . 14
3.4 Exact Crash-tolerant Consensus in Synchronous Systems . 16

3.4.1 Necessity of Condition CCS . 16
3.4.2 Sufficiency of Condition CCS . 17

3.5 Approximate Crash-tolerant Consensus in Asynchronous Systems 23
3.5.1 Necessity of Condition CCA . 24
3.5.2 Sufficiency of Condition CCA . 25

3.6 Exact Byzantine Consensus in Synchronous Systems . 30
3.6.1 Terminology and Notations . 30
3.6.2 Necessity of Condition BCS . 32
3.6.3 Equivalent Condition . 39
3.6.4 Useful Definitions . 44
3.6.5 Sufficiency of Condition BCS . 47
3.6.6 Application to Multi-Valued Consensus . 58

3.7 Discussion . 60
3.7.1 Comparison of Condition CCS, CCA, and BCS . 60
3.7.2 Comparison of Conditions in Undirected and Directed Graphs 61

3.8 Summary . 64

v

Chapter 4 Iterative Approximate Byzantine Consensus Under f-total Faults 65
4.1 Introduction . 65
4.2 IABC Algorithms . 65
4.3 Necessary Condition . 67
4.4 Algorithm 1 . 72
4.5 Sufficiency (Correctness of Algorithm 1) . 73
4.6 Asynchronous Systems . 84
4.7 Summary . 85

Chapter 5 Iterative Approximate Byzantine Consensus Under Generalized Faults . . . 86
5.1 Introduction . 86
5.2 Generalized Byzantine Fault Model . 87
5.3 Necessary Condition . 88
5.4 Algorithm 2 . 91
5.5 Sufficiency (Correctness of Algorithm 2) . 93

5.5.1 Matrix Preliminaries . 93
5.5.2 Transition Matrix Representation . 94
5.5.3 Construction of Transition Matrix . 95
5.5.4 Validity and Convergence of Algorithm 2 . 102

5.6 Summary . 105

Chapter 6 Iterative Approximate Byzantine Consensus Under Link Faults 106
6.1 Introduction . 106
6.2 Transient Byzantine Link Fault Model . 107
6.3 Necessary Condition . 107
6.4 Algorithm 3 . 112
6.5 Sufficiency (Correctness of Algorithm 3) . 113

6.5.1 Validity Property . 119
6.5.2 Termination Property . 119
6.5.3 ε-agreement Property . 119

6.6 Summary . 123

Chapter 7 Iterative Approximate Crash-tolerant Consensus in Asynchronous Systems . 124
7.1 Introduction . 124
7.2 Necessary Condition . 127
7.3 Algorithm 4 . 129
7.4 Sufficiency (Correctness of Algorithm 4) . 130
7.5 Summary . 133

Chapter 8 Broadcast Using Certified Propagation Algorithm Under f-local Faults . . . 134
8.1 Introduction . 134
8.2 Feasibility of CPA under f -local fault model . 135
8.3 CPA without prior knowledge of f . 137
8.4 Discussion . 139

8.4.1 Broadcast Channel . 139
8.4.2 Asynchronous Systems . 140
8.4.3 Complexity . 140

8.5 Summary . 140

vi

Chapter 9 Convex Hull Consensus under Crash Faults with Incorrect Inputs 141
9.1 Introduction . 141

9.1.1 Models . 142
9.1.2 Convex Hull Consensus . 142

9.2 Preliminaries . 144
9.3 Algorithm CC . 146
9.4 Correctness of Algorithm CC . 147

9.4.1 Matrix Preliminaries . 149
9.4.2 Algorithm CC in Matrix Form . 152
9.4.3 Property of Transition Matrix . 153
9.4.4 Correctness Proof . 154

9.5 Optimality of Algorithm CC . 160
9.6 Convex Hull Consensus under Crash Faults with Correct Inputs 162
9.7 Convex Hull Consensus under Byzantine Faults . 163
9.8 Convex Hull Function Optimization . 163
9.9 Summary . 166

Chapter 10 Conclusions . 167
10.1 Dissertation Summary . 167
10.2 Future Work . 168

Appendix A Asynchronous Iterative Approximate Byzantine Consensus 169
A.1 Algorithm Structure . 169
A.2 Notations . 170
A.3 Necessary Condition . 171
A.4 Useful Lemmas . 174
A.5 Sufficient Condition . 177

A.5.1 Algorithm 5 . 177
A.5.2 Sufficiency . 178

Appendix B Asynchronous Iterative Approximate Crash-tolerant Consensus 186
B.1 Proof of Lemma 47 . 186
B.2 Correctness of Algorithm 4 (Theorem 18) . 187

References . 192

vii

Chapter 1

Introduction

In recent years, we have seen tremendous growth in large-scale distributed systems, such as networked multi-

agent systems [56, 38], distributed robots [63, 59] and distributed storage systems [21, 22, 25, 1, 44, 16].

These systems are usually designed to scale to thousands or more of nodes.1 As a result, failures become

a norm rather than an exception [25, 23], and it is important to design systems that tolerate failures. In

other words, the systems should behave correctly even if some failures happen. Consensus algorithm is one

of the fundamental building blocks for fault-tolerant distributed systems. Roughly speaking, fault-tolerant

consensus allows multiple nodes to coordinate with each other in the presence of faults, and it has received

significant attention over the past three decades [5, 52] since the seminal work by Pease, Shostak, and

Lamport [60]. Fault-tolerant consensus has been studied extensively in academia, e.g., [29, 31, 2, 45], and

has been adopted in many practical systems for various usages, such as state-machine replication [68], lock

service [15], data aggregation [40], decentralized estimation [66], and flocking [38]. This dissertation studies

fault-tolerant consensus in point-to-point message-passing network, and has two main contributions: fault-

tolerant consensus in arbitrary directed graphs (Chapters 3, 4, 5, 6, 7, 8), and a new type of consensus

problem – convex hull consensus (Chapter 9). In the rest of this Chapter, we briefly discuss the main

contributions, formally define the system and fault models, and present the dissertation outline.

1.1 Main Contributions

1.1.1 Fault-tolerant Consensus in Arbitrary Directed Graphs

We consider the consensus problem in a point-to-point message-passing network, which is modeled as a

directed graph. Thus, we will often use the terms graph and network interchangeably. Consensus problem

has been studied extensively both in complete graphs [60, 29, 31, 2, 45] and in undirected graphs [32, 27].

However, the conditions identified in these papers are not adequate to fully characterize the directed graphs

1Throughout the discussion of this dissertation, we will use the term “node” to represent a computation entity, such as
servers, devices or processes.

1

in which consensus is possible. In arbitrary directed communication network, not every pair of nodes shares

a communication channel, and the communication channel between neighboring nodes are not necessarily bi-

directional. This research topic is motivated by the presence of directed links in wireless networks. However,

we believe that the results are of independent interests as well. This dissertation explores various consensus

problems in arbitrary directed graphs and proves the tight condition of the underlying communication graphs

in which each consensus problem is solvable. Particularly, for each consensus problem, we derive a necessary

condition that must be satisfied by the communication graph so that a correct consensus algorithm exists.

For graphs that satisfy this necessary condition, we provide a correct consensus algorithm, proving that

the necessary conditions are also sufficient (i.e., tight condition). As we will see later, the algorithms for

directed graphs presented in this dissertation are substantially different from those previously developed for

undirected graphs, e.g., [60, 29, 31, 2, 45, 32, 27].

In the fault-tolerant consensus problem [5, 52], each node is given an input, and after a finite amount

of time, each fault-free node should produce an output, which satisfies appropriate validity and agreement

conditions. We limit our consideration to scalar input and output in this part of the dissertation. There are

four dimensions to formally define a consensus problem – output type, fault model, system synchrony, and

algorithm type. We briefly discuss each of the dimensions below. The formal definitions will be presented

in each relevant Chapter.

Output Type We consider both exact consensus [60, 45] and approximate consensus [29, 31]. Intuitively,

exact consensus requires the fault-free nodes to agree on exactly the same output; whereas, approximate

consensus requires the fault-free nodes to produce outputs within a certain constant ε (ε > 0) of each

other. Obviously, output type is related to how agreement and validity conditions are defined. The formal

definitions of the agreement and validity conditions are discussed later in each relevant Chapter.

Fault Model We explore both node and link faults.

• For node faults, we address crash faults and Byzantine faults both. A node that suffers crash failure

simply stops taking steps; whereas, a Byzantine faulty node may misbehave arbitrarily [5, 52, 60]. For

the location of node failures, we consider f -total fault model (up to f nodes in the system may be

faulty), f -local fault model (up to f incoming nodes of a fault-free node may be faulty) and generalized

fault model (a fault model specifying potential locations of failures).

• For link faults, we consider transient Byzantine link failures [64, 65].

The formal definitions of the fault models are presented later in Chapter 1.2.

2

System Synchrony We study both synchronous and asynchronous systems.

• In synchronous systems, nodes proceed in a lock-step fashion, and we consider both exact and approx-

imate consensus. The notion of approximate consensus is of interest in synchronous systems, since

approximate consensus can be achieved using distributed algorithms that do not require complete

knowledge of the network topology [9, 29].

• In asynchronous systems, no known bound on the communication delay or processing speed exists.

Moreover, it is known that exact consensus is impossible to achieve in asynchronous systems [33];

hence, we consider only approximate consensus.

Algorithm Type We study two types of consensus algorithms: (i) general algorithms: nodes have com-

plete knowledge of the network topology, and (ii) iterative algorithms: nodes are constrained to only have

knowledge of the local network topology, particularly their immediate neighbors. General algorithms usually

achieve consensus more efficiently; however, they require extra information and overhead, such as topology

knowledge and routing mechanism. Therefore, we also consider iterative algorithms. Moreover, as we will

see later, each node only needs to maintain minimal state in each iteration.

Summary of Consensus Problems For each consensus problem, our goal is to characterize the tight

necessary and sufficient conditions on the underlying communication network for solving the consensus.

Table 1.1 summarizes the results on fault-tolerant consensus under f -total fault model. Recall that in f -

total fault model, up to f nodes may become faulty in the system. For problems that are solved previously,

the corresponding entries cite the relevant papers. For problems solved in this dissertation, the entries list

the dissertation chapters that discuss the tight condition. The table also identifies two problems that remain

open. Below, we also list all the consensus problems that we explore in this first part of the dissertation.

Note that the consensus problems of the first five bullets are included in Table 1.1 as well.

• General algorithms for f -total fault model:

1. Exact crash-tolerant consensus in synchronous systems (Chapter 3.4)

2. Approximate crash-tolerant consensus in asynchronous systems (Chapter 3.5)

3. Exact Byzantine consensus in synchronous systems (Chapter 3.6)

• Iterative algorithms:

1. Approximate Byzantine consensus in both synchronous and asynchronous systems under f -total

fault model (Chapter 4)

3

Table 1.1: Results on fault-tolerant consensus under f -total fault model
Fault Model System Output Graph General Alg. Iterative Alg.

Crash
Sync.

Exact
Undirected [5, 52]
Directed Chapter 3.4

Approx.
Undirected [9, 38]
Directed [9, 38, 17, 18]

Async. Approx.
Undirected [5, 52]
Directed Chapter 3.5 Chapter 7

Byzantine
Sync.

Exact
Undirected [60, 32]
Directed Chapter 3.6 Open

Approx.
Undirected [32, 27, 29]
Directed [72] Chapter 4

Async. Approx.
Undirected [32, 27, 29]
Directed Open Chapter 4

2. Approximate crash-tolerant consensus in asynchronous systems under f -total fault model

(Chapter 7)

3. Approximate Byzantine consensus in synchronous systems under generalized fault model

(Chapter 5)

4. Approximate consensus in synchronous systems under transient Byzantine link fault model

(Chapter 6)

Inspired by famous matrix tools [38, 93, 9, 34], we develop a proof technique based on the notion

of transition matrix, and we use the technique to prove the correctness of fault-tolerant iterative

algorithms. The correctness proofs of these algorithms share some similarities because of the nature

of the iterative algorithm. We will point out these similarities when we present the proofs. These

iterative algorithms share the same iterative structures; however, the implementation details of each

algorithm are quite different from each other to accommodate different types of faulty behavior.

One closely related problem is reliable broadcast, in which a single fault-free source needs to transmit

an input to all the other fault-free nodes (also called peers). For the broadcast problem, we consider f -

local model, where up to f incoming neighbors of each fault-free node may become Byzantine faulty. This

dissertation also proves the tight condition for the following problem:

• Reliable broadcast using certified propagation algorithm in the presence of Byzantine peers

(Chapter 8)

4

1.1.2 New Consensus Problem: Convex Hull Consensus

The traditional fault-tolerant consensus problem formulation assumes that each node has a scalar input.

As a generalization of this problem, recent work [54, 88, 87] has addressed vector consensus (also called

multidimensional consensus) in the presence of Byzantine faults, wherein each node has a d-dimensional

vector of reals as input (d ≥ 1). Define the initial convex hull as the convex hull of the inputs at fault-

free nodes. Vector consensus requires the nodes to reach consensus on a d-dimensional vector within the

initial convex hull. We propose the problem of convex hull consensus, where the output at each node is a

convex polytope contained within the initial convex hull. Intuitively, the goal is to reach consensus on the

“largest possible” polytope, allowing the node to estimate the domain of inputs at the fault-free nodes. For

the convex hull consensus problem, we consider complete graphs with reliable links, in which every pair of

nodes can communicate with each other reliably. In the asynchronous systems under crash fault models,

we present an approximate convex hull consensus algorithm. The algorithm has optimal fault tolerance and

reaches consensus on largest possible output polytope. We can also use the simulation techniques [20, 5] to

transform our algorithm so that it tolerate Byzantine faults. Convex hull consensus may be used to solve

related problems, such as vector consensus [54, 88] and function optimization with the initial convex hull as

the domain. We present the results on convex hull consensus in Chapter 9.

1.2 Models

We formally introduce the models used in this dissertation. The models are typical in the literature [5, 52].

1.2.1 System Model

We consider a point-to-point message-passing network in which nodes are connected by directed links. The

communication network is static, and it is represented by a simple directed graph G(V, E), where V is the

set of n nodes, and E is the set of directed edges between the nodes in V. We assume that n ≥ 2, since the

consensus problem for n = 1 is trivial. Node i can transmit messages to another node j if directed edge (i, j)

is in E . Each node can send messages to itself as well; however, for convenience, we exclude self-loops from

set E . Note that we consider arbitrary directed graphs; thus, not every pair of nodes may be connected. In

other words, the communication network may be incomplete.

All the communication links are assumed to be reliable, FIFO (first-in first-out) and deliver each trans-

mitted message exactly once – the only exception is the link fault model considered in Chapter 6, where a

subset of links may be faulty, and faulty links may not transmit messages reliably. When node i wants to

5

send message M on link (i, j) to node j, it puts the message M in a send buffer for link (i, j). No further

operations are needed at node i; the mechanisms for implementing reliable, FIFO and exactly-once semantics

are transparent to the nodes. When a message is delivered on link (i, j), it becomes available to node j in a

receive buffer for link (i, j). We will often use the terms edge and link interchangeably.

System Synchrony We consider both synchronous and asynchronous systems [5, 52]. In synchronous

systems, there is a known finite bound on both nodes’ processing operations and on communication delay

over communication channel. In other words, nodes proceed in a lock-step fashion in synchronous systems. In

contrast, there is no such bound in asynchronous systems. Thus, a very slow node cannot be distinguished

from a faulty node in asynchronous systems – this is the main issue why it is impossible to reach exact

consensus in asynchronous systems with node faults [32]. Hence, we consider only approximate consensus

in asynchronous systems.

1.2.2 Fault Model

This dissertation explores several types of fault models, including link and node faults. All chapters consider

node faults with the exception of Chapter 6. For node faults, there are two dimensions under consideration:

location and behavior of the failures.

• Location: We consider f -total fault model (up to f nodes in the system may be faulty), f -local fault

model (up to f incoming neighbors of each fault-free node may be faulty) and generalized fault model

(location of the failures is specified by a fault location model as discussed in Chapter 5). Note that

both f -total and f -local fault models are special cases of the generalized fault model.

• Behavior: We consider both crash and Byzantine faults. Crash fault is considered to be a benign fault

model, because a crashed node simply stops executing the algorithm without sending any tampered

messages. In contrast, a Byzantine faulty node may misbehave arbitrarily. Possible misbehavior

includes sending incorrect and mismatching (or inconsistent) messages to different neighbors. The

Byzantine nodes may potentially collaborate with each other. Moreover, the Byzantine nodes are

assumed to have a complete knowledge of the execution of the algorithm, including the states of all

the nodes, contents of messages the other nodes send to each other, the algorithm specification, and

the network topology.

6

For link failures, we adopt transient Byzantine link fault [64, 65] models, in which an omniscient adversary

controls up to f directed communication links at any point of time, but the nodes are assumed to be fault-

free. The faulty link may misbehave arbitrarily. Moreover, a different set of links can be faulty at different

time. The detail of the fault model is presented in Chapter 6. For brevity, “crash fault” and “Byzantine

fault” refer to node faults only. We will explicitly use “link fault” in the case when links may misbehave.

1.3 Dissertation Outline

• In Chapter 2, we present the related work.

• In Chapter 3, we present the results related to fault-tolerant consensus in directed graphs using general

algorithms. We consider both f -total Byzantine and f -total crash fault models. This Chapter explores

the problem in both synchronous and asynchronous systems. Work presented in this Chapter has

resulted in the conference publication [83] and technical reports [76, 80].

• In Chapters 4, 5, 6, and 7, we explore the problem of achieving fault-tolerant approximate consensus

in directed graphs using iterative algorithms. We consider different fault models, including f -total

Byzantine fault model (Chapter 4), generalized Byzantine fault model (Chapter 5), transient Byzantine

link fault model (Chapter 6), and f -total crash fault model (Chapter 7). Chapters 4, 5 and 6 consider

synchronous systems; whereas, Chapters 4 and 7 also consider asynchronous systems. Work presented

in these Chapters has resulted in conference publications [79, 89, 81] and technical reports [84, 82, 90,

91].

• In Chapter 8, we present the results related to reliable broadcast using certified propagation algorithm.

We consider f -local Byzantine fault model in this Chapter. Work presented in this Chapter has resulted

in the journal publication [75] and technical report [85].

• In Chapter 9, we propose the convex hull consensus problem, and provide an iterative algorithm that

tolerates crash faults in asynchronous systems. Work presented in this Chapter has resulted in the

conference publication [79] and technical report [78].

• In Chapter 10, we conclude the dissertation and point out future research directions.

7

Chapter 2

Related Work

This Chapter discusses work related to consensus problem in message-passing network. Since Pease, Shostak,

and Lamport posed the fault-tolerant consensus problem [60], it has received significant attention over the

past three decades [5, 52]. Below, we present relevant papers in the literature and compare this dissertation

with closely related work.

2.1 Consensus with Different Assumptions on Graphs

The fault-tolerant consensus problem has been studied extensively in complete networks (e.g., [60, 45, 5, 52])

and in undirected networks (e.g., [32, 27]). However, these conditions are not adequate to fully characterize

the directed graphs in which fault-tolerant consensus is feasible. Moreover, as we will see later, the algorithms

for directed graphs presented in this dissertation are substantially different from those previously developed

for undirected graphs. Previous work also studies graph properties for other related problems. Bansal et al.

[8] identified tight conditions for achieving exact Byzantine consensus with authentication tools in undirected

graphs. Bansal et al. discovered that all-pair reliable communication is not necessary to achieve consensus

when using authentication. Our work differs from Bansal et al. in that our results apply in the absence of

authentication or any other security primitives; also our results apply to directed graphs. We show that even

in the absence of authentication, all-pair reliable communication is not necessary for Byzantine consensus

(more details can be found in Chapter 3.7). Alchieri et al. [3] explored the problem of achieving exact

consensus in unknown networks with Byzantine nodes, but the underlying communication graph is assumed

to be fully-connected (complete network). In our work related to global algorithms, the network is assumed

to be known to all nodes, and when we consider iterative algorithms, nodes only have knowledge of the

one-hop neighbors (both incoming and outgoing neighbors), and do not need to learn the network topology.

Moreover, we consider arbitrary directed graphs that may be incomplete.

Recently, researchers have explored consensus problem in directed dynamic networks [13, 12, 17, 18, 69],

where communication network changes over time. For synchronous systems, [17, 18] solved approximate

8

crash-tolerant consensus in directed dynamic networks using local averaging algorithms – whereas, in the

static networks, we solve (i) exact consensus for synchronous systems in directed networks (Chapter 3), and

(ii) approximate consensus under different fault models (Chapters 4, 5, 6, and 7). which require different

types of algorithms. In the asynchronous setting, [17, 18] addressed approximate consensus with crash

faults in complete graphs (which are necessarily undirected) – whereas, we solve approximate consensus

in asynchronous systems using both general algorithms and iterative algorithms in static directed graphs,

in which the graph may be incomplete. We also consider Byzantine faults, which is not considered in

[13, 12, 17, 18, 69].

[13, 69, 12] considered the message adversary, which controls the communication pattern, i.e., the ad-

versary has the power to specify the sets of communication graphs. Biely et al. studied the exact consensus

problem [12] and k-set consensus problem [13, 69] (i.e., at most k different outputs at fault-free nodes) in

dynamic networks under message adversary, and the system is assumed to be synchronous. All the nodes

are assumed to be fault-free in [13, 69, 12]. No message is tampered in message adversary model; hence, it

is different from transient Byzantine link fault model considered in Chapter 6.

2.2 Iterative Approximate Consensus in Incomplete Graphs

There is also rich work on using iterative algorithms to solve approximate consensus in the presence of faults.

Dolev et al. presented the early results on Byzantine fault-tolerant iterative consensus [29]. The initial

algorithms [29, 52] were proved correct in fully connected networks (i.e., complete networks). Fekete [31]

studied the convergence rate of approximate consensus algorithms. Abraham et al. proposed an algorithm

for approximate Byzantine consensus [2] that has optimal resilience (optimal number of nodes for achieving

consensus).

There have been attempts at achieving approximate fault-tolerant consensus iteratively in partially con-

nected graphs. Kieckhafer and Azadmanesh examined the necessary conditions in order to achieve “local

convergence” in synchronous [41] and asynchronous [7] systems. Azadmanesh and Bajwa [6] presented a spe-

cific class of networks in which convergence condition can be satisfied using iterative algorithms. However,

[7, 41, 6] did not identified the tight condition of the communication networks.

A restricted fault model – called “malicious” fault model – in which the faulty nodes are restricted to

sending identical messages to their neighbors has also been explored extensively [47, 48, 94, 49]. In contrast,

our Byzantine model allows a faulty node to send different messages to different neighbors. LeBlanc and

Koutsoukos [47] addressed a continuous time version of the consensus problem with malicious faults in

9

complete graphs. Under both malicious and Byzantine fault models, LeBlanc and Koutsoukos [48] have

identified some sufficient conditions under which the continuous time version of iterative consensus can be

achieved with up to f faults in the network; however, these sufficient conditions are not tight.

For the malicious fault model, LeBlanc et al. [49] have obtained tight necessary and sufficient conditions

for tolerating up to f faults in the network (f -total fault model). Under the malicious fault model, since

a faulty node must send identical messages to all the neighbors, the necessary and sufficient conditions are

weaker than those developed for the Byzantine fault model (in Chapter 4). For instance, under the malicious

model, iterative consensus is possible in a complete graph consisting of 2f + 1 nodes, whereas at least 3f + 1

nodes are necessary for consensus under the Byzantine fault model.

Iterative approximate consensus algorithms that do not tolerate faulty behavior have been studied ex-

tensively in the decentralized control area. Bertsekas and Tsitsiklis [9] and Jadbabaei, Lin and Morse [38]

have explored approximate consensus in the absence of faults, using only near-neighbor communication in

systems wherein the communication graph may be partially connected and dynamic. The proof technique

used for proving correctness of our iterative algorithms (Chapters 5, 6, 7) is inspired by the prior work on

non-fault-tolerant iterative algorithms [9, 38].

2.3 Consensus in the Presence of Link Faults

Much effort has also been devoted to the problem of achieving consensus in the presence of link failures

[19, 14, 64, 65, 67]. Charron-Bost and Schiper proposed the HO (Heard-Of) model that captures both the

link and node failures at the same time [19]. However, the failures are assumed to be benign in the sense that

no corrupted message will ever be received in the network. Santoro and Widmayer proposed the transient

Byzantine link failure model: a different set of links can be faulty at different time [64, 65]. The nodes are

assumed to be fault-free in the model. They characterized a necessary condition and a sufficient condition

for undirected networks to achieve consensus in the transient link failure model; however, the necessary and

sufficient conditions do not match: the necessary and sufficient conditions are specified in terms of node

degree and edge-connectivity,1 respectively. Subsequently, Biely et al. proposed another link failure model

that imposes an upper bound on the number of faulty links incident to each node [14]. As a result, it is

possible to tolerate O(n2) link failures with n nodes in the new model. Under this model, Schmid et al.

proved lower bounds on number of nodes, and number of rounds for achieving consensus [67]. However,

incomplete graphs were not considered in [14, 67].

1A graph G = (V, E) is said to be k-edge connected, if G′ = (V, E −X) is connected for all X ⊆ E such that |X| < k.

10

For exact consensus problem, it has been shown that (i) an undirected graph of 2f+1 node-connectivity2

is able to tolerate f Byzantine nodes [32]; and (ii) an undirected graph of 2f + 1 edge-connectivity is able

to tolerate f Byzantine links [65]. Researchers also showed that 2f + 1 node-connectivity is both necessary

and sufficient for the problem of information dissemination in the presence of either f faulty nodes [73] or f

fixed faulty links [74].3 Link failures have also been addressed in other contexts, such as distributed method

for wireless control network [58], reliable transmission over packet network [51], and estimation over noisy

links [66]. These papers considered different problem formulations than the one we consider in Chapter 6.

2.4 Reliable Communication and Broadcast

Several papers have also addressed communication between a single source-receiver pair, i.e., reliable com-

munication problem. Dolev et al. [28] studied the problem of secure communication, which achieves both

fault-tolerance and perfect secrecy between a single source-receiver pair in undirected graphs, in the presence

of node and link failures. Desmedt and Wang considered the same problem in directed graphs [26]. Shankar

et al. [71] investigated reliable communication between a source-receiver pair in directed graphs allowing

for an arbitrarily small error probability in the presence of a Byzantine failures. Maurer et al. explored

the problem in directed dynamic graphs [53]. In this dissertation, we do not consider secrecy, and address

the consensus problem rather than the single source-receiver pair problem. Moreover, our work addresses

deterministically correct algorithms.

There has also been work on reliable broadcast problem, in which a fault-free source needs to transmit an

input to all the other fault-free nodes in the f -local Byzantine fault model. Recall that in this fault model,

up to f incoming neighbors of each fault-free nodes may become Byzantine faulty. [42] studied the problem

in an infinite grid. [10, 11] developed a sufficient condition in the context of arbitrary network topologies,

but the sufficient condition proposed is not tight. [61] provided necessary and sufficient conditions, but the

two conditions are not tight either. [37] provided another condition that can approximate (within a factor of

2) the largest f for solving reliable broadcast. Independently, [57] presented the tight condition in undirected

graphs. The condition presented in [57] is a special case of our condition presented in Chapter 8. In other

words, for undirected graphs, the condition in [57] is equivalent to the condition in Chapter 8.

2A graph G = (V, E) is said to be k-node connected, if G′ = (V −X, E) is connected for all X ⊆ V such that |X| < k.
3Unlike the “transient” failures in our model, the faulty links are assumed to be fixed throughout the execution of the

algorithm in [74].

11

2.5 Consensus with High-Dimensional Input/Output

In complete networks, the recent papers by Mendes and Herlihy [54] and Vaidya and Garg [88] addressed

approximate vector consensus in the presence of Byzantine faults. These papers yielded lower bounds on the

number of nodes, and algorithms with optimal resilience for asynchronous [54, 88] as well as synchronous

systems [88]. Subsequent work [87] has explored the vector consensus problem in incomplete graphs. These

papers are different from our work in Chapter 9 because in our formulation, fault-free nodes have to agree

on “largest possible” polytope in the d-dimensional space (d ≥ 1) that may not necessarily equal to a

d-dimensional vector (a single point).

Herlihy et al. [35] introduced the problem of Barycentric agreement (BA). Barycentric agreement has

some similarity to convex hull consensus (discussed in Chapter 9), in that the output of Barycentric agreement

is not limited to a single value (or a single point). However, the correctness conditions and assumptions on

possible input values for Barycentric agreement (BA) are different from those of our convex hull consensus

problem, including (i) For a given d-dimensional space, the inputs for BA are vertices of some simplex;

whereas, the inputs for convex hull consensus are arbitrary points; (ii) the outputs for BA are sets of vertices

of a simplex; whereas, the outputs in our case are convex polytopes (sets of points); and (iii) the agreement

property for BA requires containment (i.e., sets of output vertices at fault-free nodes are totally ordered by

containment); whereas, convex hull consensus adopts the “approximate” notion, i.e., the distance between

the outputs at any pair of fault-free nodes is within ε (ε > 0).

12

Chapter 3

Fault-tolerant Consensus Under
f-total Faults

3.1 Introduction

The goal of this Chapter is to characterize the necessary and sufficient conditions on the underlying commu-

nication graph for solving exact and approximate consensus, respectively, in synchronous and asynchronous

systems in the presence of crash and Byzantine node faults. Here, we consider f -total fault model, which

assumes that up to f nodes in the system may be faulty, and all the links are assumed to be reliable. Please

refer to Chapter 1.2 for details of our system and fault models. Our problem formulation allows nodes to

have complete knowledge of the communication graph. In other words, we assume the usage of general

algorithms. The results presented in this Chapter are published in [83].

Table 3.1 identifies the results presented in this Chapter. Where prior work has already obtained the

necessary and sufficient conditions, those conditions are also enumerated. Recall that n is the number of

nodes in the system. The table on the left is for consensus with up to f crash faults, whereas the table on

the right is for consensus with up to f Byzantine faults. The term connectivity is used here to mean node

connectivity. We will often use the terms graph and network interchangeably.

The problem of asynchronous Byzantine consensus in directed graphs remains open. To prove that the

necessary conditions presented in this Chapter are also sufficient, we have developed algorithms that achieve

consensus in graphs satisfying those conditions. It turns out that the algorithms required for directed graphs

Table 3.1: Summary of tight conditions using general algorithms
Crash-Tolerant Consensus Byzantine Consensus

Synchronous Asynchronous Synchronous Asynchronous
Undirected
graph

f + 1- connectiv-
ity, n > f (follow
from well-known
results [52, 5])

f + 1- connec-
tivity, n > 2f
(follow from well-
known results [52,
5])

Undirected
graph

2f + 1- connec-
tivity, n > 3f
[32, 27]

2f+1- connectiv-
ity, n > 3f (fol-
lows from [2, 32])

Directed
graph

This Chapter This Chapter Directed
graph

This Chapter Open problem

13

are substantially different from those previously developed for undirected graphs, e.g., [32, 5, 27].

As noted above, our problem formulation allows nodes to have complete knowledge of the network

topology. It is also possible to achieve consensus when nodes are constrained to only have knowledge of the

local network topology, particularly their immediate neighbors. We note, however, that the algorithms using

only the local neighborhood information require richer communication graphs. Such algorithms (iterative

algorithms) have been a topic of prior work [17, 9, 38, 49, 18], including our own work [84, 89, 72]. We will

present our work on iterative algorithms in Chapters 4, 5, 6 and 7.

3.2 Terminology

Before presenting our results, we introduce some terminology to facilitate the discussion of this Chapter.

Upper case letters are used to name sets. Lower case italic letters are used to name nodes. All paths used

in our discussion are directed paths. Recall that we consider the directed graph G(V, E). In G, node j is

said to be an incoming neighbor of node i if (j, i) ∈ E . Let N−i be the set of incoming neighbors of node i,

i.e., N−i = {j | (j, i) ∈ E}. Define N+
i as the set of outgoing neighbors of node i, i.e., N+

i = {j | (i, j) ∈ E}.

For set B ⊆ V, node i is said to be an incoming neighbor of set B if i 6∈ B, and there exists j ∈ B such that

(i, j) ∈ E . Given subsets of nodes A and B, set B is said to have k incoming neighbors in set A if A contains

k distinct incoming neighbors of B.

Definition 1 Given disjoint non-empty subsets of nodes A and B, A
x7−→ B if B has at least x distinct

incoming neighbors in A. When it is not true that A
x7−→ B, we will denote that fact by A

x

67−→ B.

Consider the network in Figure 3.1, which contains two cliques K1 and K2, each consisting of 7 nodes.

Within each clique, each node has a directed link to the other 6 nodes in that clique – these links within

each clique are not shown in the figure. There are 8 directed links with one endpoint in clique K1 and the

other endpoint in clique K2. In the network, K2 has 4 incoming neighbors in K1, namely u1, u2, u3 and u4.

Thus, K1
47−→ K2. Similarly, K2

47−→ K1.

3.3 Main Results of Chapter 3

The main contribution of this Chapter is to identify necessary and sufficient conditions on the underlying

communication networks G(V, E) for achieving fault-tolerant consensus in directed graphs. We summa-

rize the main results in three theorems below. Each theorem below requires the graph to satisfy a certain

14

Figure 3.1: Edges within cliques K1 and K2 are not shown. Figure 3.2: Another example.

condition: we name the conditions presented in Theorems 1, 2 and 3 as CCS (abbreviating Crash-Consensus-

Synchronous), CCA (Crash-Consensus-Asynchronous) and BCS (Byzantine-Consensus-Synchronous), re-

spectively. Characterization of the necessary and sufficient condition for approximate Byzantine consensus

in asynchronous systems remains open.

The precise validity conditions that need to be satisfied for different versions of the consensus problem

are specified at the start of Chapters 3.4, 3.5 and 3.6, respectively. In brief, for Theorem 1, the output at

the nodes must equal the input of one of the nodes. For Theorem 2, the output must be in the range of the

inputs of all the nodes. For Theorem 3, the validity condition depends on whether the inputs are binary or

not: for binary inputs, the output must be the input of a fault-free node, whereas for multi-valued inputs,

the output must equal the input of fault-free nodes when they all have the same input. These conditions

are standard in the literature [52, 5].

Theorem 1 Exact crash-tolerant consensus in a synchronous system is feasible iff for any partition1 F,L,C,R

of V, where L and R are both non-empty, and |F | ≤ f , either L ∪ C 17−→ R or R ∪ C 17−→ L.

(Condition CCS)

Theorem 2 Approximate crash-tolerant consensus in an asynchronous system is feasible iff for any partition

L,C,R of V, where L and R are both non-empty, either L ∪ C f+17−→ R or R ∪ C f+17−→ L.

(Condition CCA)

Theorem 3 Exact Byzantine consensus in a synchronous system is feasible iff for any partition F,L,C,R

of V, where L and R are both non-empty, and |F | ≤ f , either L ∪ C f+17−→ R or R ∪ C f+17−→ L.

(Condition BCS)

The network shown in Figure 3.1 above satisfies Condition BCS for f = 2, whereas the network in Figure

3.2 above satisfies Condition CCS for f = 1.

1Sets X1, X2, X3, ..., Xp are said to form a partition of set X provided that (i) ∪1≤i≤pXi = X, and (ii) Xi ∩Xj = ∅ if i 6= j.

15

Intuition For consensus to be achieved, there must be a way for information to “flow between” different

subsets of fault-free nodes (subsets L and R in the theorems above), despite the presence of faulty nodes.

The different conditions above capture this intuition. Observe that, in each case, for different values of x,

we obtain the requirement of the form “either L ∪ C x7−→ R or R ∪ C x7−→ L”. Intuitively, information must

“flow” either from L ∪ C to R, or from R ∪ C to L, but it is not necessary that the information flows in

both directions – this “asymmetry” in the necessary and sufficient condition is a consequence of the directed

nature of the communication network. Note that in Condition CCA (in Theorem 2), the partition does not

need set F , unlike Conditions CCS and BCS for the synchronous case.

Lower Bounds on n As shown below, the tight conditions imply the lower bounds on the number of

nodes, n. Recall that by definition, |V| = n. These lower bounds are well-known results in complete and

undirected graphs [5, 52]. We include them here for completeness. Recall that by assumption, up to f nodes

may be faulty in the system.

• Condition CCA implies that n ≥ 2f + 1 (Lemma 7).

• Condition BCS implies that n ≥ 3f + 1 (Lemma 11).

We do not include the implication of Condition CCS, since f+1 is a trivial lower bound for crash-tolerant

consensus in synchronous systems.

3.4 Exact Crash-tolerant Consensus in Synchronous Systems

An exact crash-tolerant consensus algorithm must satisfy the following three properties: (i) Agreement:

the output (i.e., decision) at all the fault-free nodes is identical. (ii) Validity: the output of each fault-free

node equals the input of one of the nodes. (iii) Termination: every fault-free node decides on an output

in finite amount of time.

Theorem 1 in Chapter 3.3 presents the necessary and sufficient condition (named Condition CCS) for

solving the above problem in directed graphs.

3.4.1 Necessity of Condition CCS

It is straightforward why Condition CCS is necessary, since to achieve exact consensus, some information

needs to “flow” between two subsets of nodes after some nodes crash. The lemma below formally shows the

necessity of Condition CCS using this intuition.

16

Lemma 1 Condition CCS is necessary for exact crash-tolerant consensus in a synchronous system.

Proof: The proof is by contradiction. Suppose that there exists a consensus algorithm for graph G(V, E),

but G(V, E) does not satisfy the condition in the lemma. Thus, there exists a node partition F,L,C,R of V

such that (i) |F | ≤ f , (ii) L and R are both non-empty, and (iii) L ∪ C
1

67−→ R and R ∪ C
1

67−→ L. The last

two assumptions imply that nodes in L ∪ C have no links to nodes in R, and nodes in R ∪ C have no links

to nodes in L.

Now, consider an execution of the consensus algorithm where F is the set of faulty nodes which crash

before the start of the algorithm. All the other nodes are fault-free. This is possible, since by assumption,

|F | ≤ f . Also, suppose that all the nodes in L have input 0, and all the nodes in R have input 1. Nodes in

C may have input either 0 or 1.

Consider any node x ∈ L. Since nodes in F fail before taking any steps in the algorithm, and as noted

above, there are no links from C ∪ R to any node in L, the only input value learned by x throughout the

execution of the algorithm is 0. Then to satisfy the validity property, 0 must be the output of node x.

Similarly, any node y in R can only learn input values 1 throughout the execution of the algorithm, and

thus, 1 must be the output of node y. Since L and R are non-empty and consist of fault-free nodes, the

above observations imply that the agreement property is violated. This is a contradiction. 2

3.4.2 Sufficiency of Condition CCS

We prove the sufficiency of Condition CCS constructively by presenting an algorithm, called MVC, and

proving its correctness. Algorithm MVC can achieve consensus with multi-valued inputs. MVC uses Algo-

rithm Min-Max presented below as a component. Algorithm Min-Max can achieve consensus with binary

inputs (0 or 1). The proposed algorithms prove sufficiency of Condition CCS, but they are not necessarily

the most efficient. Development of optimal algorithms needs further research.

Binary Consensus

Note that Algorithm Min-Max has input parameter xi. To achieve binary consensus, each node i performs

Algorithm Min-Max passing its binary input value as parameter xi to Algorithm Min-Max. Algorithm Min-

Max uses Compute as a sub-routine. Compute has two parameters: t, which is a binary value, and Function,

which may be specified as Min and Max. In the last step of each round in Compute at node i, the Function

is applied to set Si. Min(Si) returns minimum of the values in set Si, and Max(Si) returns the maximum

of the values in set Si.

17

Algorithm Min-Max(xi) for node i ∈ V

Initialization: vi[0] := parameter xi passed to Min-Max

• For phase number p := 1 to 2f + 2:

If p mod 2 = 0, then (Min Phase)

vi[p] := Compute (vi[p− 1], Min)

Else, (Max Phase)

vi[p] := Compute (vi[p− 1], Max)

• Return vi[2f + 2]

Compute(t, Function) for node i ∈ V

• τi := t

• Perform n− 1 rounds, each round consisting of the four steps below:

Send τi to all the nodes in N+
i ∪ {i}

Receive values from N−i ∪ {i}

Denote the set of values received

in the previous step as Si

τi := Function(Si)

• Return τi

Correctness of Algorithm Min-Max with Binary Inputs We first prove an useful lemma, and

introduce the notion of source of the graph.

Lemma 2 Suppose that graph G(V, E) satisfies Condition CCS. For any F ⊆ V, such that |F | ≤ f , let GF

denote the subgraph of G induced by the nodes in V − F . There exists at least one node in GF that has

directed paths in GF to all nodes in V − F . Such a node is said to be a source for GF .

Proof: The proof of the lemma is by contradiction. Suppose that Graph G(V, E) satisfies Condition CCS,

and for some F ⊆ V, |F | ≤ f , there exists a pair of nodes i, j 6∈ F such that there is no node s that has

directed paths to both i and j in subgraph GF induced by nodes in V − F . For the subgraph GF and a

node x in V − F , define Sx as the set of all nodes that have directed paths in GF to node x. Note that Sx

contains x as well, because x trivially has a path to itself.

18

By assumption, Si and Sj are disjoint. Moreover, there must be no path from any node in Si to any

node in Sj in GF , and vice versa, since otherwise, there would exist some node that can reach both nodes i

and j, which contradicts our assumption above. Now, define L,C,R as follows:

• L := Si

• R := Sj

• C := V − F − L−R

Then, we make the following observations:

• F and C may be empty, but L and R are non-empty : This is true because i ∈ Si = L and j ∈ Sj = R.

• Nodes in C (if non-empty) have no link to nodes in L∪R: If some node c ∈ C has a link to some node

x ∈ L = Si, then c will be able to reach node i on a directed path via node x (since x ∈ Si has a path

to i, by definition of set Si). This would then imply that c must be in Si, however, that contradicts

the definition of C as V − F − L− R. By a similar argument, nodes in C cannot have links to nodes

in R.

• There is no link from any node in L to nodes in R, and vice versa: Recall that L = Si and R = Sj .

If some node x ∈ L has a link to a node y ∈ R, then x will have a directed path to node j via node y.

However, this contradicts our assumption above that no node has directed paths to both i and j.

These observations together imply that L ∪ C
1

67−→ R and C ∪ R
1

67−→ L. That is, G(V, E) does not satisfy

Condition CCS. This is a contradiction. Thus, Lemma 2 is proved. 2

The lemma defines the notion of a source node. Essentially, the lemma shows the existence of a directed

rooted spanning tree in the induced graph GF , which has the source node as the root. Presence of such

“source” nodes (or root) is crucial in achieving consensus. Similar observations were first made in the

context of fault-free consensus [9, 38], and also in the context of other versions of fault-tolerant consensus

problems [17, 89, 84, 12] (although the exact manner in which the source node is identified differs for

the different problems). The key distinguishing feature of the results presented in this Chapter is in the

algorithms developed to solve the consensus problems. For instance, the structure of the above Min-Max

algorithm – making alternating use of Min and Max function – has not been applied for consensus previously,

to the best of our knowledge.

Now, we are ready to show the correctness of Algorithm Min-Max. The proof of correctness assumes

that graph G(V, E) satisfies Condition CCS.

19

Lemma 3 Algorithm Min-Max satisfies termination, agreement and validity properties.

Proof:

Since Algorithm Min-Max executes a fixed number of phases, its termination occurs in finite time.

Validity is satisfied trivially as well. Now we prove that the algorithm satisfies the agreement property when

the inputs are binary (0 or 1). We start by observing that Compute(t,Min) never returns a value larger

than parameter t passed to Compute, and Compute(t,Max) never returns a value smaller than parameter

t passed to Compute.

Fix an execution of the algorithm. Since there are 2f + 2 phases. There must exist a pair of consecutive

phases p∗, p∗ + 1 such that no node crashes in phases p∗ and p∗ + 1. Without loss of generality, let p∗ be

the Min Phase (i.e., p∗ mod 2 = 0) and p∗ + 1 be the Max Phase. Denote by F the set of nodes that crash

before starting phase p∗.

Lemma 2 shows the existence of a source node that has directed paths in GF to all nodes in V − F (GF

is defined in the Lemma). In general, there may be multiple such source nodes in GF . Consider the two

cases below. In each case, we show that agreement is achieved.

• Case I: There exists a source s in GF for which vs[p
∗−1] = 0: Thus, during the Min Phase p∗, node s

will call Compute(0,Min). Then during the first round of Compute in phase p∗, those nodes in V − F

with incoming links from node s will update their τ variable (within Compute) to be 0. Recall that

we are presently assuming binary inputs. Since the source node has directed paths (of length at most

n − 1) to all the nodes in GF , it follows by induction that each node i in V − F will update its state

τi to be 0 by the end of the n − 1 rounds performed within Compute. Thus, when Compute returns,

vi[p
∗] at each i ∈ V − F will be set to 0. It should be easy to see that the remaining phases will not

change the value of vi at the fault-free nodes, ensuring agreement when the algorithm terminates.

• Case II: For each source s in GF , vs[p
∗ − 1] = 1:

In this case, we argue that, for each source s, vs[p
∗] = 1. Suppose, by way of contradiction, that each

source s of GF has vs[p
∗ − 1] = 1, but there exists a source node s′ for which vs′ [p

∗] = 0. For this to

happen, node s′ must receive 0 on a path from some other non-source node z during phase p∗. This

implies that vz[p
∗ − 1] = 0; additionally, the fact that there exists a path in GF from z to the source

node s′ implies that z is also a source in GF . This contradicts the assumption that all source nodes in

GF have state equal to 1 at the start of phase p∗.

This shows that, for each source node s, we have vs[p
∗] = 1. Now consider Max Phase p∗ + 1. Recall

that no node crashes in Phases p∗ and p∗ + 1. Thus, by an argument analogous to that used for Min

20

Phase p∗ in Case I above, it follows that, for all i ∈ V − F , vi[p
∗ + 1] = 1, achieving agreement. Any

additional phases beyond phase p∗ + 1 will not result in violation of the agreement, similar to Case I.

2

Multi-Valued Consensus

Algorithm Min-Max above is proven correct for binary inputs. We will prove that the Algorithm MVC

presented below performs exact consensus with inputs being some integer in the range [0,K], where K ≥ 1.

Algorithm MVC uses Algorithm Min-Max as well as Compute defined above.

Algorithm MVC for node i

Initialization: wi[0] := input of node i

Repeat for l := 0 to K

1. wi[l + 1] := Compute(wi[l],Max)

2. if wi[l] = l, then yi[l] := 0; otherwise, yi[l] := 1

3. if Min-Max(yi[l]) returns 0, then

terminate with output l

Step 3 of the algorithm performs Algorithm Min-Max, with node i passing yi[l] as the parameter to

Min-Max. The “if” statement in step 3 checks the value returned by Algorithm Min-Max, and terminates

the algorithm if the returned value is 0. Recall that the system is synchronous. Thus, all fault-free nodes

perform Min-Max in step 3 in iteration l of the algorithm synchronously. Similarly, all fault-free nodes

perform Compute (in step 1) in iteration l of the algorithm synchronously.

Correctness of Algorithm MVC The proof assumes that graph G(V, E) satisfies Condition CCS. Ob-

serve that Algorithm MVC specifies up to K + 1 iterations, each iteration consisting of 3 steps enumerated

in the algorithm. However, the algorithm may potentially terminate before completing all K + 1 iterations

(due to the check in step 3).

Since Min-Max is a binary consensus algorithm, each node that completes execution of Algorithm Min-

Max in iteration l of MVC (i.e., without crashing before this instance of Min-Max) will obtain the same

return value from Min-Max in iteration l. This ensures that all fault-free nodes terminate after completing

21

an identical number of iterations. Now we present a lemma that is useful to prove correctness of Algorithm

MVC.

Lemma 4 If a node i initiates iteration l of Algorithm MVC (0 ≤ l ≤ K), then (i) wi[l] ≥ l, and (ii) wi[l]

equals the input of some node in the system.

Proof: The proof is by induction. Consider l = 0. wi[0] is initialized to be the input of node i. All inputs

are in the range [0,K], which implies that wi[0] ≥ 0. Thus, both parts of the statement of the lemma are

true for l = 0.

Now assume that the statement of the lemma is true for some l, where 0 ≤ l < K. Thus, for each node i

that initiates iteration l, wi[l] ≥ l and wi[l] is the input of some node in the system. Now, if Algorithm MVC

terminates without performing iteration l + 1, the proof of the lemma is complete. Therefore, let us now

consider the case that Algorithm MVC is not terminated after completing l iterations. This implies that

Min-Max(yi[l]) returns 1 in Step 3 of iteration l. Since Algorithm Min-Max is a binary consensus algorithm,

the validity condition and the fact that it returns 1 implies that there exists some node j with yj [l] = 1 such

that (i) j did not crash before starting the execution of Min-Max(yj [l]) in step 3 of iteration l at node j,

and (ii) node i has a path from node j consisting only of nodes that have not crashed before initiating step

3 of iteration l. Due to the rules for setting the value of yj [l] in step 2, and the fact that yj [l] = 1, we can

infer that that wj [l] > l.

Finally, all nodes that are fault-free at least until initiating step 3 in iteration l must also be fault-free

until they finish performing step 1 in iteration l. This implies that when Compute is performed in step 1 of

iteration l, there exists a path from node j to node i. Existence of this path then ensures that, at node i,

Compute returns a value ≥ wj [l] > l. Thus, wi[l + 1] > l. That is, wi[l + 1] ≥ l + 1.

Secondly, Compute at node i in iteration l will only return a value that is passed as the first parameter

to Compute by at least one of the nodes initiating the execution of Compute in iteration l. Thus, wi[l + 1]

must equal wj [l] for some node j – by induction basis, wj [l] must be the input of some node in the system,

and therefore, wi[l + 1] also equals the input of that node. This concludes the proof. 2

Lemma 5 Algorithm MVC satisfies termination, agreement and validity properties.

Proof: Termination in finite time occurs because Algorithm Min-Max and Compute return in finite time,

and Algorithm MVC performs a finite number of iterations. As discussed earlier, all fault-free nodes termi-

nate after completing an identical number of iterations. There are two cases to consider depending on the

number of iterations completed before the algorithm is terminated.

22

Case 1: Algorithm MVC terminates only after completing the last iteration with l = K. Due to Lemma

4, for each node j that initiates iteration with l = K, we have wj [K] ≥ K. However, since all inputs are in

the range [0,K], and due to the use of Compute to update wj , we have that wj [K] ≤ K as well. This means

that wj [K] = K. But by Lemma 4, wj [K] is also the input of some node in the system; it then follows that

some node in the system had value K as the input.

Since wj [K] = K, in iteration l = K, yj [K] = 0 for each node j that completes step 2, and thus Min-Max

can only return 0 in step 3, resulting in the output value of K at all fault-free nodes. Thus agreement is

achieved. As argued above, K is the input of some node, the validity property is also satisfied.

Case 2: Algorithm MVC terminates after completing iteration l < K. This implies that all nodes that

are fault-free until the end of iteration l must have necessarily obtained the return value of 0 from Min-Max

in iteration l, and therefore, they will all terminate with output value l. Thus agreement is achieved. The

fact that the return value from Min-Max is 0 implies that at least one node, say node j, must have initiated

Min-Max in iteration l with yj [l] = 0, implying (due to step 2) that wj [l] = l. By Lemma 4, wj [l] = l must

be the input of some node. Since l is also the output of the algorithm in this case, validity condition is also

satisfied. 2

Lemma 5 shows that Condition CCS is sufficient.

3.5 Approximate Crash-tolerant Consensus in Asynchronous

Systems

Approximate crash-tolerant consensus must satisfy the following three properties, where ε > 0: (i) ε-

agreement: the difference between outputs at any two fault-free nodes is < ε. (ii) Validity: the output at

any fault-free node is within the range of the inputs at all the nodes. (iii) Termination: every fault-free

node decides on an output in finite amount of time. For simplicity, we assume that the input at each node

is some real number in the range [0,K]. Note that if K < ε, then the problem is trivial, so K is assumed to

be ≥ ε.

Theorem 2 in Chapter 3.3 presents the necessary and sufficient condition (named Condition CCA) for

solving the above problem in directed graphs.

23

3.5.1 Necessity of Condition CCA

The proof of the following lemma is different from Lemma 1 even though it follows similar intuition. Here,

to achieve approximate consensus, some “information” must be able to flow between two subsets of nodes

even if some links may be slow – a result due to asynchrony assumption.

Lemma 6 Condition CCA is necessary for approximate crash-tolerant consensus in an asynchronous sys-

tem.

Proof: The proof is by contradiction. Suppose that there exists a correct approximate consensus algorithm

in G(V, E), but G(V, E) does not satisfy the condition in the lemma. That is, there exists a node partition

L,C,R such that L and R are non-empty, and L ∪ C
f+1

67−→ R and C ∪ R
f+1

67−→ L. Let O(L) denote the set of

nodes in C ∪R that have outgoing links to nodes in L, i.e., O(L) = {i | i ∈ C ∪R, N+
i ∩L 6= ∅}. Similarly,

define O(R) = {j | j ∈ L∪C, N+
j ∩R 6= ∅}. Since L∪C

f+1

67−→ R and C ∪R
f+1

67−→ L, we have |O(L)| ≤ f and

|O(R)| ≤ f .

Consider the scenario where (i) each node in L has input 0; (ii) each node in R has input ε; (iii) nodes

in C (if non-empty) have arbitrary inputs in [0, ε]; (iv) no node crashes; and (v) the message delay for

communications channels from O(L) to L and from O(R) to R is arbitrarily large compared to all the other

channels. Recall that such a scenario is possible, since we have assumed that the input range is [0,K], where

K ≥ ε. Consider nodes in L.

Since messages from the set O(L) take arbitrarily long to arrive at the nodes in L, and |O(L)| ≤ f ,

from the perspective of the nodes in L, the nodes in O(L) appear to have crashed. Thus, nodes in L must

decide on their output without waiting to hear from the nodes in O(L). Consequently, to satisfy the validity

property, the output at each node in L has to be 0, since 0 is the input of all the nodes in L. Similarly,

nodes in R must decide their output without hearing from the nodes in O(R); they must choose output as ε,

because the input at all the nodes in R is ε. Thus, the ε-agreement property is violated, since the difference

between outputs at fault-free nodes is not < ε. This is a contradiction. 2

The lemma below shows the lower bound on the number of nodes for solving approximate crash-tolerant

consensus in asynchronous systems. Recall that |V| = n by definition.

Lemma 7 If G(V, E) satisfies Condition CCA, then n ≥ 2f + 1.

Proof: For f = 0, the lemma is trivially true, since we assume that n ≥ 2 as stated in Chapter 1.2. Now

consider f > 0. The proof is by contradiction. Suppose that n ≤ 2f . Partition V into three subsets A,B, F

24

such that F = ∅, 0 < |A| ≤ f , and 0 < |B| ≤ f . Such a partition can be found because 2 ≤ n ≤ 2f . Since

A,B are both non-empty, and contain at most f nodes each, we have A
f+1

67−→ B and B
f+1

67−→ A, violating

Condition CCA. This proves the lemma. 2

3.5.2 Sufficiency of Condition CCA

We prove the sufficiency of Condition CCA constructively by presenting an algorithm, called Algorithm WA

(Wait-and-Average), and proving its correctness. The algorithm, presented below, assumes that each node

has the knowledge of the network topology, and the algorithm proceeds in asynchronous phases. In each

phase, nodes flood messages containing the current value of their state variable v, their identifier, and a

phase index. Each node i waits until it has received an “adequate” set of values from other nodes, where

“adequate” is made precise by Condition WAIT defined below. Then, node i updates its state variable v to

be the average of set of values received in the current phase, and then proceeds to the next phase. When

node i has finished pend phases, it produces an output that equals the current value of state variable v; pend

is an integer > logn/(n−1)
K
ε .

In Algorithm WA, observe that heardi[p] is the set of nodes from which node i has received values

during phase p. As seen in the algorithm pseudo-code, node i performs the averaging operation to update

its state variable vi if Condition WAIT below holds for the first time. Algorithm WA is an extension of an

approximate consensus algorithm for complete graphs [29]. The key contribution of our work is to identify

Condition WAIT.

Condition WAIT: For Fi ⊆ V, where |Fi| ≤ f , denote by reachi(Fi) the set of nodes that have paths to

node i in the subgraph induced by the nodes in V−Fi (i.e., the paths do not contain nodes in Fi). Condition

WAIT is satisfied at node i if there exists a set Fi ⊆ V, where |Fi| ≤ f , such that reachi(Fi) ⊆ heardi[p].

(reachi(Fi) may be different in each phase, since it depends on the message delays. For simplicity, we ignore

the phase index p in the notation.)

Algorithm WA for node i ∈ V

pend is an integer > logn/(n−1)
K
ε .

• vi[0] := input at node i

• For Phase p := 1 to pend:

– On entering phase p:

Ri[p] := {vi[p− 1]}

25

heardi[p] := {i}

Send message (vi[p− 1], i, p) to

all the outgoing neighbors

– When message (h, j, p) is received for the first time:

Ri[p] := Ri[p] ∪ {h} // Ri[p] is a multiset

heardi[p] := heardi[p] ∪ {j}

Send message (h, j, p) to

all the outgoing neighbors

– When Condition WAIT holds for the first time in phase p:

vi[p] :=
∑
v∈Ri[p]

v

|Ri[p]|

If p < pend, begin the next phase

Else, output vi

Note that Ri[p] is a multiset, and thus may contain multiple instances of the same value.

Correctness of Algorithm WA We first prove an useful lemma. Let heard∗i [p] denote the set heardi[p]

when Condition WAIT holds for the first time at node i in phase p. The correctness of Algorithm WA relies

on the following lemma, which assumes graph G(V, E) satisfies Condition CCA. In a given execution, define

F [p] as the nodes that have not computed value v[p] in phase p, i.e., nodes in F [p] have crashed before

computing v[p].

Lemma 8 For phase p ≥ 1, consider two nodes i, j ∈ V − F [p]. Then, heard∗i [p] ∩ heard∗j [p] 6= ∅.

Proof: By construction, there exist two sets Fi and Fj such that Condition WAIT holds for sets heard∗i [p]

and Fi at node i, and for sets heard∗j [p] and Fj at node j. In other words, (i) Fi ⊆ V and |Fi| ≤ f , (ii) Fj ⊆ V

and |Fj | ≤ f , (iii) reachi(Fi) ⊆ heard∗i [p], and (iv) reachj(Fj) ⊆ heard∗j [p]. If reachi(Fi) ∩ reachj(Fj) 6= ∅,

then the proof is complete, since reachi(Fi) ⊆ heard∗i [p] and reachj(Fj) ⊆ heard∗j [p]. Thus, heard∗i [p] ∩

heard∗j [p] 6= ∅.

Now, consider the case when reachi(Fi) ∩ reachj(Fj) = ∅. We will derive a contradiction in this case.

Recall that reachi(Fi) is defined as the set of nodes that have paths to node i in the subgraph induced by

the nodes in V − Fi. This implies that in graph G, the incoming neighbors of set reachi(Fi) are contained

in set Fi. Similarly, in graph G, the incoming neighbors of set reachj(Fj) are contained in set Fj .

In graph G, we will find subsets of nodes L,C,R that violate Condition CCA. Let L = reachi(Fi),

R = reachj(Fj) and C = V − L − R. Observe that since reachi(Fi) ∩ reachj(Fj) = ∅, L,C,R form a

26

partition of V. Moreover, i ∈ reachi(Fi) and j ∈ reachj(Fj); hence, L = reachi(Fi) and R = reachj(Fj)

are both non-empty. Let N(L) be the set of incoming neighbors of set L. By definition, N(L) is contained

in R ∪ C. Since L = reachi(Fi), the only nodes that may be in N(L) are also in Fi as argued above, i.e.,

N(L) ⊆ Fi. By assumption, |Fi| ≤ f . Therefore, |N(L)| ≤ f , which implies that R ∪ C
f+1

67−→ L. Similarly,

we can argue that L ∪ C
f+1

67−→ R. These two conditions together show that G violates Condition CCA,

a contradiction. Thus, reachi(Fi) ∩ reachj(Fj) 6= ∅, which implies that heard∗i [p] ∩ heard∗j [p] 6= ∅. This

completes the proof. 2

Lemma 9 Algorithm WA satisfies termination, ε-agreement and validity properties.

Proof:

Validity and termination properties are trivially true. Now, we prove that Algorithm WA achieves

ε-agreement. The methodology in this proof below is borrowed from other related work (e.g., [29, 5, 52, 9]).

Recall that F [p] is defined as the nodes that have not computed value v[p] in phase p, i.e., nodes in F [p]

have crashed before computing v[p]. Thus, V − F [p] is the set of nodes that complete the computation of

v[p].

For p ≥ 1, define

M [p] = max
i∈V−F [p]

vi[p] (3.1)

and

m[p] = min
i∈V−F [p]

vi[p] (3.2)

With a slight abuse of terminology, let M [0] and m[0] denote the upper bound and the lower bound on

the inputs, respectively. Recall that we have assumed that the input range is [0,K], where K ≥ ε. Thus,

M [0] = K and m[0] = 0.

Define ψ[p] as the maximum difference between states at nodes in V −F [p] in the end of phase p. Thus,

ψ[p] = M [p]−m[p] (3.3)

Let us denote by ‖x‖ the absolute value of a real number x. Then,

ψ[p] = max
i,j∈V−F [p]

‖vi[p]− vj [p]‖ (3.4)

27

By definition of m[p− 1] and M [p− 1], for each node k ∈ V − F [p− 1], we have

m[p− 1] ≤ vk[p− 1] ≤M [p− 1] (3.5)

m[p− 1] ≤ vk[p− 1] ≤M [p− 1] (3.6)

Now consider nodes i, j ∈ V−F [p]. The multiset Ri[p] at node i changes when node i receives new messages.

Let R∗i [p] denote the multiset Ri[p] used by node i to compute vi[p]. Similarly, let R∗j [p] denote the multiset

Rj [p] used by node j to compute vj [p].

Let ri = |R∗i [p]|, the size of the multiset R∗i [p]. Similarly, let rj = |R∗i [p]|. For brevity, the notation ri

and rj does not include the phase index [p].

By Lemma 8, there exists a common value in R∗i [p] and R∗j [p]. Denote by c the common value. Note

that by construction c is a state of some node in V − F [p− 1]. Thus, m[p− 1] ≤ c ≤M [p− 1]. Define

γ =
1

n
.

By Algorithm WA, we have

vi[p] =
∑

k∈R∗i [p]

1

ri
vk[p− 1]

≤ c

ri
+ (1− 1

ri
)M [p− 1] due to (3.1)

≤ γc+ (
1

ri
− γ)c+ (1− 1

ri
)M [p− 1]

≤ γc+ (1− γ)M [p− 1] (3.7)

The last inequality is because γ ≤ 1
ri

and c ≤M [p− 1].

vj [p] =
∑

k∈R∗j [p]

1

rj
vk[p− 1]

≥ c

rj
+ (1− 1

rj
)m[p− 1] due to (3.2)

≥ γc+ (
1

rj
− γ)c+ (1− 1

rj
)m[p− 1]

≥ γc+ (1− γ)m[p− 1] (3.8)

28

The last inequality is because γ ≤ 1
rj

and c ≥ m[p− 1].

Now, subtracting (3.8) from (3.7), we get

vi[p]− vj [p] ≤ (1− γ)(M [p− 1]−m[p− 1]) (3.9)

By swapping the role of i and j above, we can show that

vj [p]− vi[p] ≤ (1− γ)(M [p− 1]−m[p− 1]) (3.10)

(3.9) and (3.10) together imply that

‖vi[p]− vj [p]‖ ≤ (1− γ)(M [p− 1]−m[p− 1])

≤ (1− γ)ψ[p− 1] due to (3.3)

Note that the first inequality is because M [p − 1] ≥ m[p − 1]. The above inequality holds for each pair

of nodes i, j that have computed v[p] in phase p, so we have

max
i,j∈V−F [p]

‖vi[p]− vj [p]‖ ≤ (1− γ)ψ[p− 1]

This together with (3.4) implies that

M [p]−m[p] ≤ (1− γ)(M [p− 1]−m[p− 1]) (3.11)

By repeated application of (3.11), we get

M [p]−m[p] ≤ (1− γ)p(M [0]−m[0]) (3.12)

Therefore, for a given ε > 0, if

p > log1/(1−γ)
M [0]−m[0]

ε
, (3.13)

then

M [p]−m[p] < ε (3.14)

29

Recall that we have assumed that the input range is [0,K]. Also, γ = 1
n . Then, if we choose

pend > logn/(n−1)
K

ε
,

then Algorithm WA satisfies ε-agreement property due to (3.13) and (3.14). 2

3.6 Exact Byzantine Consensus in Synchronous Systems

This Chapter considers Byzantine faults. An exact Byzantine consensus algorithm with binary inputs must

satisfy the following properties: (i) Agreement: the output (i.e., decision) at all the fault-free nodes is

identical. (ii) Validity: the output of every fault-free node equals the input of a fault-free node. (iii)

Termination: every fault-free node decides on an output in finite amount of time. Note that the validity

property is slightly different from the one for crash-tolerant consensus. For multi-valued Byzantine consensus,

we consider the weaker version of validity (as discussed in Chapter 3.6.6). Theorem 3 in Chapter 3.3 presents

the necessary and sufficient condition (named Condition BCS) for solving the above problem in directed

graphs. We prove that Condition BCS is necessary in Chapter 3.6.2. Then, we show that Condition BCS

is sufficient for Byzantine consensus with binary inputs in Chapter 3.6.5. Finally, we discuss how Condition

BCS is also sufficient for Byzantine consensus with multi-valued inputs (and weaker version validity property)

in Chapter 3.6.6.

3.6.1 Terminology and Notations

For simplicity of presentation, we introduce the following notations:

In Chapter 3.6, we define → and 6→ to be

f+17−→ and
f+1

67−→ , respectively.

Recall that
f+17−→ and

f+1

67−→ are defined in Chapter 3.3. We will use → and 6→ throughout the discussion

on Condition BCS (Byzantine Consensus in Synchronous systems), i.e., discussion in Chapter 3.6.

We now describe terminology that is used in this Chapter. Upper case italic letters are used below to

name subsets of V, and lower case italic letters are used to name nodes in V.

Incoming neighbors:

• Node i is said to be an incoming neighbor of node j if (i, j) ∈ E .

30

• For set B ⊆ V, node i is said to be an incoming neighbor of set B if i 6∈ B, and there exists j ∈ B

such that (i, j) ∈ E . Set B is said to have k incoming neighbors in set A if set A contains k distinct

incoming neighbors of B.

Directed paths: All paths used in our discussion are directed paths.

• Paths from a node i to another node j:

– For a directed path from node i to node j, node i is said to be the “source node” for the path.

– An “(i, j)-path” is a directed path from node i to node j. An “(i, j)-path excluding X” is a

directed path from node i to node j that does not contain any node from set X.

– Two paths from node i to node j are said to be “disjoint” if the two paths only have nodes i and

j in common, with all remaining nodes being distinct.

– The phrase “d disjoint (i, j)-paths” refers to d pairwise disjoint paths from node i to node j. The

phrase “d disjoint (i, j)-paths excluding X” refers to d pairwise disjoint (i, j)-paths that do not

contain any node from set X.

• Every node i trivially has a path to itself. That is, for all i ∈ V, an (i, i)-path excluding V −{i} exists.

• Paths from a set S to node j 6∈ S:

– A path is said to be an “(S, j)-path” if it is an (i, j)-path for some i ∈ S. An “(S, j)-path excluding

X” is a (S, j)-path that does not contain any node from set X.

– Two (S, j)-paths are said to be “disjoint” if the two paths only have node j in common, with all

remaining nodes being distinct (including the source nodes on the paths).

– The phrase “d disjoint (S, j)-paths” refers to d pairwise disjoint (S, j)-paths. The phrase “d

disjoint (S, j)-paths excluding X” refers to d pairwise disjoint (S, j)-paths that do not contain

any node from set X.

Definition 2 Given disjoint subsets A,B, F of V such that |F | ≤ f , set A is said to propagate in V − F to

set B if either (i) B = ∅, or (ii) for each node b ∈ B, there exist at least f + 1 disjoint (A, b)-paths excluding

F .

We will denote the fact that set A propagates in V − F to set B by the notation

A
V−F
 B.

31

When it is not true that A
V−F
 B, we will denote that fact by

A
V−F
6 B.

Definition 3 For F ⊂ V, graph G−F is obtained by removing from G(V, E) all the nodes in F , and all the

links incident on nodes in F .

Definition 4 A subgraph S of G is said to be strongly connected, if for all nodes i, j in S, there exists an

(i, j)-path in G.

3.6.2 Necessity of Condition BCS

Recall that Condition BCS (Byzantine Consensus in Synchronous systems) is defined in Chapter 3.3. The

following lemma proves that Condition BCS is necessary.

Lemma 10 Exact Byzantine consensus in a synchronous system is feasible only if Condition BCS holds

in G(V, E), i.e., for any partition F,L,C,R of V, where L and R are both non-empty, and |F | ≤ f , either

L ∪ C → R or R ∪ C → L.

Recall that in Chapter 3.6, we define → and 6→ to be
f+17−→ and

f+1

67−→ , respectively. Our necessity proof is

based on the state-machine approach [32, 27]. The technique is also similar to the withholding mechanism,

which was developed by Schmid, Weiss, and Keidar [67] to prove impossibility results and lower bound on the

number of nodes for synchronous consensus under transient link failures in fully-connected graphs; however,

we do not assume the transient fault model as in [67], and thus, our argument is more straightforward.

Intuition of Necessity Proof We first present the intuition behind the proof. Suppose that there exists

a partition L,C,R, F where L,R are non-empty and |F | ≤ f such that C ∪R 6→ L, and L∪C 6→ R. Assume

that the nodes in F are faulty, and the nodes in sets L,C,R are fault-free. Note that fault-free nodes are

not aware of the identity of the faulty nodes.

Consider the case when all the nodes in L have input m, and all the nodes in R∪C have input M , where

m 6= M . Suppose that the nodes in F (if non-empty) behave to nodes in L as if nodes in R ∪ C ∪ F have

input m, while behaving to nodes in R as if nodes in L ∪ C ∪ F have input M . This behavior by nodes in

F is possible, since the nodes in F are all assumed to be faulty here.

Consider nodes in L. Let NL denote the set of incoming neighbors of L in R ∪ C. Since R ∪ C 6→ L,

|NL| ≤ f . Therefore, nodes in L cannot distinguish between the following two scenarios: (i) all the nodes in

32

NL (if non-empty) are faulty, rest of the nodes are fault-free, and all the fault-free nodes have input m, and

(ii) all the nodes in F (if non-empty) are faulty, rest of the nodes are fault-free, and fault-free nodes have

input either m or M . In the first scenario, for validity, the output at nodes in L must be m. Therefore, in

the second scenario as well, the output at the nodes in L must be m. We can similarly show that the output

at the nodes in R must be M . Thus, if Condition BCS is not satisfied, nodes in L and R can be forced to

decide on distinct values, violating the agreement property.

Necessity Proof Now, we present the proof of Lemma 10, which shows that Condition BCS is necessary

for exact Byzantine consensus in synchronous systems. The proof below relies on our assumption of the

system model presented in Chapter 1.2, particularly, on how messages are transmitted between nodes.

Proof:

The proof is by contradiction. Suppose that a correct Byzantine consensus algorithm, say ALGO, exists

in G(V, E), and there exists a partition F,L,C,R of V such that C ∪ R 6→ L and L ∪ C 6→ R. Thus, L has

at most f incoming neighbors in R ∪ C, and R has at most f incoming neighbors in L ∪ C. Let us define:

NL := set of incoming neighbors of L in R ∪ C

NR := set of incoming neighbors of R in L ∪ C

Then,

|NL| ≤ f (3.15)

|NR| ≤ f (3.16)

The behavior of each node i ∈ V when using ALGO can be modeled by a state machine that characterizes

the behavior of each node i ∈ V.

We construct a new network called N , as illustrated in Figure 3.3. In N , there are three copies of each

node in C, and two copies of each node in L ∪R ∪ F . In particular, C0 represents one copy of the nodes in

C, C1 represents the second copy of the nodes in C, and C2 represents the third copy of the nodes in C.

Similarly, R0 and R2 represent the two copies of the nodes in R, L0 and L1 represent the two copies of the

nodes in L, and F1 and F2 represent the two copies of the nodes in F . Even though the figure shows just one

vertex for C1, it represents all the nodes in C (each node in C has a counterpart in the nodes represented

by C1). Same correspondence holds for other vertices in Figure 3.3.

33

Figure 3.3: Network N

34

The communication links in N are derived using the communication graph G(V, E). The figure shows

solid edges and dotted edges, and also edges that do not terminate on one end. We describe all three types

of edges below.

• Solid edges: If a node i has a link to node j in G(V, E), i.e., (i, j) ∈ E , then each copy of node j in N

will have a link from one of the copies of node i in N . Exactly which copy of node i has link to a

copy of node j is represented with the edges shown in Figure 3.3. For instance, the directed edge from

vertex R0 to vertex F1 in Figure 3.3 indicates that, if for r ∈ R and k ∈ F , link (r, k) ∈ E , then there

is a link in N from the copy of r in R0 to the copy of k in F1. Similarly, the directed edge from vertex

F2 to vertex L0 in Figure 3.3 indicates that, if for k ∈ F and l ∈ L, link (k, l) ∈ E , then there is a

link from the copy of k in F2 to the copy of l in L0. Other solid edges in Figure 3.3 represent other

communication links in N similarly.

• Dotted edges: Dotted edges are defined similar to the solid edges, with the difference being that the

dotted edges emulate a broadcast operation. Specifically, in certain cases, if link (i, j) ∈ E , then one

copy of node i in N may have links to two copies of node j in N , with both copies of node j receiving

identical messages from the same copy of node i. This should be viewed as a “broadcast” operation

that is being emulated unbeknownst to the nodes in N . There are four such “broadcast edges” in the

figure, shown as dotted edges. The broadcast edge from L0 to R0 and R2 indicates that if for l ∈ L

and r ∈ R, link (l, r) ∈ E , then messages from the copy of node l in L0 are broadcast to the copies

of node r in R0 and R2 both. Similarly, the broadcast edge from R0 to C0 and C1 indicates that if

for r ∈ R and c ∈ C, link (r, c) ∈ E , then messages from the copy of node r in R0 are broadcast to

the copies of node c in C0 and C1 both. There is also a broadcast edge from L0 to C0 and C2, and

another broadcast edge from R0 to L0 and L1.

• “Hanging” edges: Five of the edges in Figure 3.3 do not terminate at any vertex. One such edge

originates at each of the vertices C1, L1, R2, C2, and C0, and each such edge is labeled as R, L or F,

as explained next. A hanging edge signifies that the corresponding transmissions are discarded silently

without the knowledge of the sender. In particular, the hanging edge originating at L1 with label R

indicates the following: if for l ∈ L and r ∈ R, (r, l) ∈ E , then transmissions by the copy of node l in

L1 to node r are silently discarded without the knowledge of the copy of node l in L1. Similarly, the

hanging edge originating at C0 with label F indicates the following: if for c ∈ C and k ∈ F , (c, k) ∈ E ,

then transmissions by the copy of node c in C0 to node k are silently discarded without the knowledge

35

of the copy of node c in C0.

It is possible to avoid using such “hanging” edges by introducing additional vertices in N , i.e., dummy

vertices that do not send any outgoing message. We choose the above approach to make the represen-

tation more compact.

Whenever (i, j) ∈ E , in network N , each copy of node j has an incoming edge from one copy of node i,

as discussed above. The broadcast and hanging edges defined above are consistent with our communication

model in Chapter 1.2. As noted there, each node, when sending a message, simply puts the message in the

send buffer. Thus, it is possible for us to emulate hanging edges by discarding messages from the buffer,

or broadcast edges by replicating the messages into two send buffers. (Nodes do not read messages in send

buffers.)

Now, let us assign input of m or M , where m 6= M , to each of the nodes in N . The inputs are shown

next to the vertices in small rectangles Figure 3.3. For instance, M next to vertex C1 means that each node

represented by C1 has input M (recall that C1 represents one copy of each node in C). Similarly, m next

to vertex L0 means that each node represented by L0 has input m.

Let β denote a particular execution of ALGO in N given the input specified above. Now, we identify

three executions of ALGO in G(V, E) with a different set of nodes of size ≤ f behaving faulty. The behavior

of the nodes is modeled by the corresponding nodes in N .

• Execution α1:

Consider an execution α1 of ALGO in G(V, E), where the incoming neighbors of nodes in R that are

in L or C, i.e., nodes in NR, are faulty, with the rest of the nodes being fault-free. In addition, all the

fault-free nodes have inputs M . Now, we describe the behavior of each node.

– The behavior of fault-free nodes in R, F , C −NR and L−NR is modeled by the corresponding

nodes in R0, F1, C1, and L1 in N . For example, nodes in F send to their outgoing neighbors in

L the messages sent in β by corresponding nodes in F1 to their outgoing neighbors in L1.

– The behavior of the faulty nodes (i.e., nodes in NR) is modeled by the behavior of the senders for

the incoming links at the nodes in R0. In other words, faulty nodes are sending to their outgoing

neighbors in R the messages sent in β by corresponding nodes in C0 or L0 to their outgoing

neighbors in R0.

Recall from (3.16) that |NR| ≤ f . Since ALGO is correct in G(V, E), the nodes in R must agree on

M , because all the fault-free nodes in have input M .

36

• Execution α2:

Consider an execution α2 of ALGO in G(V, E), where the incoming neighbors of nodes in L that are

in R or C, i.e., nodes in NL, are faulty, with the rest of the nodes being fault-free. In addition, all the

fault-free nodes have inputs m. Now, we describe the behavior of each node.

– The behavior of fault-free nodes in R −NL, F , C −NL, and L is modeled by the corresponding

nodes in R2, F2, C2, and L0 in N . For example, nodes in F send to their outgoing neighbors in

R the messages sent in β by corresponding nodes in F2 to their outgoing neighbors in R2.

– The behavior of the faulty nodes (i.e., nodes in NL) is modeled by the behavior of the senders for

the incoming links at the nodes in L0. In other words, faulty nodes are sending to their outgoing

neighbors in L the messages sent in β by corresponding nodes in C0 or R0 to their outgoing

neighbors in L0.

Recall from (3.15) that |NL| ≤ f . Since ALGO is correct in G(V, E), the nodes in L must agree on m,

because all the fault-free nodes in have input m.

• Execution α3:

Consider an execution α3 of ALGO in G(V, E), where the nodes in F are faulty, with the rest of the

nodes being fault-free. In addition, nodes in R∪C have inputs M , and the nodes in L have inputs m.

Now, we describe the behavior of each node.

– The behavior of fault-free nodes in R, C and L is modeled by the corresponding nodes in R0, C0,

and L0 in N . For example, nodes in R are sending to their outgoing neighbors in L the messages

sent in β by corresponding nodes in R0 to their outgoing neighbors in L0.

– The behavior of the faulty nodes (i.e., nodes in F) is modeled by the nodes in F1 and F2. In

particular, faulty nodes in F send to their outgoing neighbors in R the messages sent in β by

corresponding nodes in F1 to their outgoing neighbors in R0. Similarly the faulty nodes in F

send to their outgoing neighbors in L the messages sent in β by corresponding nodes in F2 to

their outgoing neighbors in L0.

Then we make the following two observations regarding α3:

– Nodes in R must decide M in α3 because, by construction, nodes in R cannot distinguish between

α1 and α3. Recall that nodes in R decide on M in α1.

37

– Nodes in L must decide m. because by construction, nodes in L cannot distinguish between α2

and α3. Recall that nodes in L decide on m in α2.

Thus, in α3, the fault-free nodes in R and L decide on different values, even though |F | ≤ f . This

violates the agreement condition, contradicting the assumption that ALGO is correct in G(V, E). Thus,

the proof of Lemma 10.

2

Useful Observations Here, we prove some important properties on the graph G(V, E) implied by Con-

dition BCS. Recall that |V| = n.

Lemma 11 If G(V, E) satisfies Condition BCS, then n ≥ 3f + 1.

Proof: For f = 0, the lemma is trivially true. Now consider f > 0. The proof is by contradiction. Suppose

that n ≤ 3f . As stated in Chapter 1.2, we assume n ≥ 2, since consensus for n = 1 is trivial. Partition V

into three subsets A,B, F such that |F | ≤ f , 0 < |A| ≤ f , and 0 < |B| ≤ f . Such a partition can be found

because 2 ≤ |V| ≤ 3f . Since A,B are both non-empty, and contain at most f nodes each, we have A
V−F
6 B

and B
V−F
6 A, violating Condition BCS. This proves the lemma. 2

Corollary 1 Suppose that a correct Byzantine consensus algorithm exists for G(V, E). Then, (i) n ≥ 3f+1,

and (ii) if f > 0, then each node must have at least 2f + 1 incoming neighbors.

Proof: Since n ≥ 3f + 1 is a necessary condition for Byzantine consensus in undirected graphs [32, 5], it

follows that n ≥ 3f + 1 is also necessary for directed graphs. Obviously, Theorem 3 and Lemma 11 together

also imply that the condition is necessary.

Now, for f > 0, we show that it is necessary for each node to have at least 2f + 1 incoming neighbors.

The proof is by contradiction. Suppose that for some node i ∈ V, the number of incoming neighbors is at

most 2f . Partition V −{i} into two sets L and F such that L is non-empty and contains at most f incoming

neighbors of i, and |F | ≤ f . It should be easy to see that such L,F can be found, since node i has at most

2f incoming neighbors.

Define A = {i} and B = V − A − F = L. Thus, A,B, F form a partition of V. Then, since f > 0 and

|A| = 1, |B| = |L| > 0, it follows that A
V−F
6 B. Also, since B contains at most f incoming neighbors of

node i, and set A contains only node i, there are at most f node-disjoint (B, i)-paths. Thus, B
V−F
6 A. The

above two conditions violate Condition BCS. 2

38

3.6.3 Equivalent Condition

To facilitate the discussion of exact Byzantine consensus algorithms in directed graphs, we present a condition

that is equivalent to Condition BCS, namely Condition BCS-Prop. Recall that is introduced in Definition

2.

Definition 5 (Condition BCS-Prop) For any partition of A,B, F of V such that A,B are non-empty

and |F | ≤ f , either A
V−F
 B or B

V−F
 A.

Lemma 12 Condition BCS is equivalent to Condition BCS-Prop.

Here, we first prove that Condition BCS-Prop implies Condition BCS, and then prove that Condition

BCS implies Condition BCS-Prop. Thus, the two conditions are proved to be equivalent.

Two Useful Lemmas We begin with the two lemmas below (Lemmas 13 and 14). The proofs use

the following version of Menger’s theorem [92]. Given a graph G(V, E) and two nodes x, y ∈ V, then a

set S ⊆ V − {x, y} is an (x, y)-cut if there is no (x, y)-path excluding S, i.e., every path from x to y

must contain some nodes in S. Define κG(x, y) = min{|S| such that S is an (x, y)-cut}, and λG(x, y) =

max{|P | such that P is a set of disjoint (x, y)-paths}.

Theorem 4 (Menger’s Theorem) Given G(V, E) and two distinct nodes x, y ∈ V such that (x, y) 6∈ E,

then κG(x, y) = λG(x, y).

Lemma 13 Assume that Condition BCS holds for G(V, E). For any partition A,B, F of V, where A is

non-empty, and |F | ≤ f , if B 6→ A, then A
V−F
 B.

Proof: Suppose that A,B, F is a partition of V, where A is non-empty, |F | ≤ f , and B 6→ A. If B = ∅,

then by Definition 2, the lemma is trivially true. In the rest of this proof, assume that B 6= ∅.

Add a new (virtual) node v to graph G, such that, (i) v has no incoming edges, (ii) v has an outgoing

edge to each node in A, and (iii) v has no outgoing edges to any node that is not in A. Let G+v denote the

graph resulting after the addition of v to G(V, E) as described above.

We want to prove that A
V−F
 B. Equivalently,2 we want to prove that, in graph G+v, for each b ∈ B,

there exist f + 1 disjoint (v, b)-paths excluding F . We will prove this claim by contradiction.

2 Footnote: Justification: Suppose that A
V−F
 B. By the definition of A

V−F
 B, for each b ∈ B, there exist at least f + 1

disjoint (A, b)-paths excluding F ; these paths only share node b. Since v has outgoing links to all the nodes in A, this implies
that there exist f + 1 disjoint (v, b)-paths excluding F in G+v ; these paths only share nodes v and b. Now, let us prove the
converse. Suppose that there exist f + 1 disjoint (v, b)-paths excluding F in G+v . Node v has outgoing links only to the nodes
in A, therefore, from the (f + 1) disjoint (v, b)-paths excluding F , if we delete node v and its outgoing links, then the shortened
paths are disjoint (A, b)-paths excluding F .

39

Suppose that A
V−F
6 B, and therefore, there exists a node b ∈ B such that there are at most f disjoint

(v, b) paths excluding F in G+v. By construction, there is no direct edge from v to b. Then Menger’s theorem

[92] implies that there exists a set F1 ⊆ (A ∪ B) − {b} with |F1| ≤ f , such that, in graph G+v, there is no

(v, b)-path excluding F ∪ F1. In other words, all (v, b)-paths excluding F contain at least one node in F1.

Let us define the following sets L,R,C. Some of the sets defined in this proof are illustrated in Figure

3.4.

• L = A.

L is non-empty, because A is non-empty.

• R = { i | i ∈ B − F1 and there exists an (i, b)-path excluding F ∪ F1}.

Thus, R ⊆ B − F1 ⊆ B.

Note that b ∈ R. Thus, R is non-empty.

• C = B −R.

Thus, C ⊆ B. Since R ⊆ B, it follows that R ∪ C = B.

Figure 3.4: Illustration for the proof of Lemma 13

Observe that L,R,C are disjoint sets, because A and B are disjoint, and L ∪R ∪ C = A ∪B. Since set

F1 ⊆ A ∪B, L = A, and R ∩ F1 = ∅, we have F1 ⊆ L ∪C, and F1 ∩B ⊆ C. Thus, set C can be partitioned

into disjoint sets B1 and B2 such that

40

• B1 = C ∩ F1 = B ∩ F1 ⊆ C ⊆ B, and

• B2 = C −B1 ⊆ C ⊆ B. Note that B2 ∩ F1 = ∅.

We make the following observations:

• For any x ∈ A− F1 = L− F1 and y ∈ R, (x, y) 6∈ E .

Justification: Recall that virtual node v has a directed edge to x. If edge (x, y) were to exist then

there would be a (v, b)-path via nodes x and y excluding F ∪F1 (recall from definition of R that y has

a path to b excluding F ∪ F1). This contradicts the definition of set F1.

• For any p ∈ B2, and q ∈ R, (p, q) 6∈ E .

Justification: If edge (p, q) were to exist, then there would be a (p, b)-path via node q excluding F ∪F1,

since q has a (q, b)-path excluding F ∪ F1. Then node p should have been in R by the definition of R.

This is a contradiction to the assumption that p ∈ B2, since B2 ∩R ⊆ C ∩R = ∅.

Thus, all the incoming neighbors of set R are contained in F ∪ F1 (note that F1 = (A ∩ F1) ∪ B1). Recall

that F1 ⊆ L ∪ C. Since |F1| ≤ f , it follows that

L ∪ C 6→ R (3.17)

Recall that B 6→ A. By definitions of L,R,C above, we have A = L and B = C ∪R. Thus,

C ∪R 6→ L (3.18)

(3.17) and (3.18) together violate Condition BCS. Thus, we have proved that A
V−F
 B. 2

Lemma 14 Assume that Condition BCS holds for G(V, E). Consider a partition A,B, F of V, where A,B

are both non-empty, and |F | ≤ f . If B
V−F
6 A then there exist A′ and B′ such that

• A′ and B′ are both non-empty,

• A′ and B′ form a partition of A ∪B,

• A′ ⊆ A and B ⊆ B′, and

• B′ 6→ A′.

Proof: Suppose that B
V−F
6 A.

41

Add a new (virtual) node w to graph G, such that, (i) w has no incoming edges, (ii) w has an outgoing

edge to each node in B, and (iii) w has no outgoing edges to any node that is not in B. Let G+w denote

the graph resulting after addition of w to G(V, E) as described above.

Since B
V−F
6 A, for some node a ∈ A there exist at most f disjoint (B, a)-paths excluding F . Therefore,

there exist at most f disjoint (w, a)-paths excluding F in G+w.3 Also by construction, (w, a) 6∈ E . Then,

by Menger’s theorem [92], there must exist F1 ⊆ (A ∪ B) − {a}, |F1| ≤ f , such that, in graph G+w, all

(w, a)-paths excluding F contain at least one node in F1.

Define the following sets (also recall that V − F = A ∪B):

• X = { i | i ∈ V − F − F1 and there exists an (i, a)-path excluding F ∪ F1 }. Note that by definition,

a ∈ L. Thus, L is non-empty.

• Y = { j | j ∈ V − F − F1 and there exists in G+w a (w, j)-path excluding F ∪ F1 }.

Set R contains B − F1 since all nodes in B have edges from w. Note that Y may be empty.

• Z = V − F −X − Y = (A ∪B)−X − Y .

Observe that F1 ⊆ C (because nodes of F1 are not in X∪Y). Also, by definition of Z, Z∩(X∪Y) = ∅.

Observe the following:

• X ∩ Y = ∅, and set X ⊆ A− F1 ⊆ A. Also, A ∪B = X ∪ Y ∪ Z.

Justification: F1 ∩X = F1 ∩ Y = ∅. By definition of F1, all (w, a)-paths excluding F contain at least

one node in F1. If X ∩ Y were to be non-empty, we can find a (w, a)-path excluding F ∪ F1, which is

a contradiction.

Note that V − F − F1 = (A ∪ B) − F1; therefore, X ⊆ (A ∪ B) − F1. B − F1 ⊆ Y , since all nodes

in B − F1 have links from w. Since X ∩ Y = ∅, it follows that (B − F1) ∩ X = ∅, and therefore,

(A− F1) ∩X = X; that is, X ⊆ A− F1 ⊆ A.

• For any z ∈ Z − F1 and x ∈ X, (z, x) 6∈ E .

Justification: If such a link were to exist, then z should be in X, which is a contradiction (since

Z ∩X = ∅).

• There are no links from nodes in Y to nodes in X.

Justification: If such a link were to exist, it would contradict the definition of F1, since we can now

find a (w, a)-path excluding F ∪ F1.

3See footnote 2.

42

Thus, all the incoming neighbors of set X must be contained in F ∪ F1. Recall that F1 ⊆ Z and |F1| ≤ f .

Thus,

Y ∪ Z 6→ X (3.19)

Note that Y ∪Z is non-empty, since B∪F1 ⊆ Y ∪Z and B is non-empty. Now define A′ := X, B′ := Y ∪Z.

Observe the following:

• A′ and B′ form a partition of A ∪B.

Justification: X ∩ (Y ∪Z) = ∅ by construction; therefore A′ = X and B′ = Y ∪Z are disjoint. By the

definition of sets X,Y, Z, it follows that A′ ∪B′ = X ∪ (Y ∪ Z) = V − F = A ∪B.

• A′ is non-empty and A′ ⊆ A.

Justification: By definition, set X contains node a. Thus, A′ = X is non-empty. We have already

argued that X ⊆ A. Thus, A′ ⊆ A.

• B′ is non-empty and B ⊆ B′.

Justification: Recall that X ∩ (Y ∪ Z) = ∅, and X ∪ Y ∪ Z = A ∪ B by definition. Thus, Y ∪ Z =

(A ∪ B) −X. Since X ⊆ A, it follows that B ⊆ Y ∪ Z = B′. Also, since B is non-empty, B′ is also

non-empty.

• B′ 6→ A′

Justification: Follows directly from (3.19), and the definition of A′ and B′.

This concludes the proof of Lemma 14. 2

Proof of Lemma 12 Now, we are ready to prove Lemma 12, i.e., showing that Condition BCS is equivalent

to Condition BCS-Prop.

Lemma 15 Condition BCS implies Condition BCS-Prop.

Proof:

Assume that Condition BCS holds for G(V, E). Consider a partition of A,B, F of V such that A,B are

non-empty and |F | ≤ f . Then, we must show that either A
V−F
 B or B

V−F
 A.

Consider two possibilities:

43

• B V−F A: In this case, the proof is complete.

• B
V−F
6 A: Then by Lemma 14, there exist non-empty sets A′, B′ that form a partition of A ∪ B such

that A′ ⊆ A, B ⊆ B′, and B′ 6→ A′. Lemma 13 then implies that A′
V−F
 B′.

Because A′
V−F
 B′, for each b ∈ B′, there exist f + 1 disjoint (A′, b)-paths excluding F . Since B ⊆ B′,

it then follows that, for each b ∈ B ⊆ B′, there exist f + 1 disjoint (A′, b)-paths excluding F . Since

A′ ⊆ A, and F ∩A = ∅, each (A′, b)-path excluding F is also a (A, b)-path excluding F . Thus, for each

b ∈ B, there exist f + 1 disjoint (A, b)-paths excluding F . Therefore, A
V−F
 B.

2

Then, we prove the other direction of Lemma 12.

Lemma 16 Condition BCS-Prop implies Condition BCS.

Proof: We will prove the lemma by showing that if Condition BCS is violated, then Condition BCS-Prop

is violated as well.

Suppose that Condition BCS is violated. Then there exists a partition L,C,R, F of V such that L,R are

both non-empty, |F | ≤ f , L ∪ C 6→ R and R ∪ C 6→ L.

Since L ∪ C 6→ R, for any node r ∈ R, there exists a set Fr, |Fr| ≤ f , such that all the (L ∪ C, r)-paths

excluding F contain at least one node in Fr. Since L ⊆ L∪C, Menger’s theorem [92] implies that there are

at most f disjoint (L, r)-paths excluding F . Thus, because r ∈ R ∪ C, L
V−F
6 R ∪ C.

Similarly, since R∪C 6→ L, for any node l ∈ L, there exists a set Fl, |Fl| ≤ f , such that all the (R∪C, l)-

paths excluding F contain at least one node in Fl. Menger’s theorem [92] then implies that there are at

most f disjoint (R ∪ C, l)-paths excluding F . Thus, R ∪ C
V−F
6 L.

Define A = L, and B = R ∪ C. Thus, A,B, F is a partition of V such that |F | ≤ f and A,B are

non-empty. The two conditions derived above imply that A
V−F
6 B and B

V−F
6 A, violating Condition

BCS-Prop. 2

Lemma 15 together with Lemma 16 prove Lemma 12, i.e., Condition BCS is equivalent to Condition

BCS-Prop. Note that by Theorem 1, Condition BCS-Prop is also necessary.

3.6.4 Useful Definitions

Before proving the sufficiency of Condition BCS, we introduce some definitions and results to facilitate the

discussion. In particular, we present the notion of source component and reduced graph that are useful for

designing the consensus algorithms in directed graphs.

44

Definition 6 (Graph Decomposition) Let H be a subgraph of G(V, E). Partition graph H into non-

empty strongly connected components, H1, H2, · · · , Hh, where h is a non-zero integer dependent on graph H,

such that nodes i, j ∈ Hk if and only if there exist (i, j)- and (j, i)-paths both excluding nodes outside Hk.

Construct a graph Hd wherein each strongly connected component Hk above is represented by vertex ck,

and there is an edge from vertex ck to vertex cl if and only if the nodes in Hk have directed paths in H to

the nodes in Hl.

It is known that the decomposition graph Hd is a directed acyclic graph [24].

Definition 7 (Source Component) Let H be a directed graph, and let Hd be its decomposition as per

Definition 6. Strongly connected component Hk of H is said to be a source component if the corresponding

vertex ck in Hd is not reachable from any other vertex in Hd.

Definition 8 (Reduced Graph) For a given graph G(V, E), and sets F ⊂ V, F1 ⊂ V − F , such that

|F | ≤ f and |F1| ≤ f , reduced graph GF,F1(VF,F1 , EF,F1) is defined as follows: (i) VF,F1 = V − F , and (ii)

EF,F1
is obtained by removing from E all the links incident on the nodes in F , and all the outgoing links from

nodes in F1. That is, EF,F1
= E − {(i, j) | i ∈ F or j ∈ F} − {(i, j) | i ∈ F1}.

Next, we present two lemmas that show the properties of the reduced graph of G given that G satisfies

Condition BCS.

Lemma 17 Suppose that graph G(V, E) satisfies Condition BCS. For any F ⊂ V and F1 ⊂ V − F , such

that |F | ≤ f and |F1| ≤ f , let S denote the set of nodes in the source component of GF,F1
. Then, S

V−F

V − F − S.

Proof: Since GF,F1
contains non-zero number of nodes, its source component S must be non-empty. If

V−F −S is empty, then the corollary follows trivially by Definition 2. Suppose that V−F −S is non-empty.

Since S is a source component in GF,F1 , it has no incoming neighbors in GF,F1 ; therefore, all of the incoming

neighbors of S in V − F in graph G(V, E) must belong to F1. Since |F1| ≤ f , we have,

(V − S − F) 6→ S

Lemma 13 then implies that

S
V−F
 V − F − S

2

45

Lemma 18 For any F ⊂ V, F1 ⊂ V − F , such that |F | ≤ f , |F1| ≤ f :

• The source component of GF,F1
is strongly connected in G−F . (G−F is defined in Definition 3 in

Chapter 3.6.5.)

• The source component of GF,F1
does not contain any nodes in F1.

• The source component of GF,F1
is unique.

Proof: By Definition 6, each pair of nodes i, j in the source component of graph GF,F1
has at least one

(i, j)-path and at least one (j, i)-path consisting of nodes only in GF,F1 , i.e., excluding nodes in F .

Since F1 ⊂ V − F , GF,F1
contains other nodes besides F1. Although nodes of F1 belong to graph GF,F1

,

the nodes in F1 do not have any outgoing links in GF,F1
. Thus, a node in F1 cannot have paths to any other

node in GF,F1 . Then, due to the connetedness requirement of a source component, it follows that no nodes

of F1 can be in the source component.

Now, we prove the third claim. The proof is by contradiction. Suppose that there exist two source

components S1 and S2 of GF,F1 . Now, consider the following set:

• L := S1 ∪ F1,

• R := S2, and

• C := V − L−R− F .

Observe that L,C,R, F are disjoint, and L∪C ∪R∪F = V. Also, L and R are non-empty, since S1 and

S2 are non-empty. Then, we have

• (L ∪ C − F) 6→ R.

This is because by definition, the possible incoming neighbors of R in V − R − F are all in F1 and

|F1| ≤ f .

• (R ∪ C − F) 6→ L.

This is because by definition, there is no incoming neighbor of L in V − L− F .

The two conditions above derive a contradiction. Thus, the source component is unique.

2

46

3.6.5 Sufficiency of Condition BCS

In the discussion below, we assume that graph G(V, E) satisfies Condition BCS, even if this is not stated

explicitly again. By Lemma 12, G(V, E) satisfies Condition BCS-Prop as well. The proof consists of two

parts. When f = 0, all the nodes are fault-free, and the proof of sufficiency is trivial. We include it below

for completeness. When f > 0, we present Algorithm BC (Byzantine Consensus) and prove its correctness

in all graphs that satisfy Condition BCS. This proves that Condition BCS is sufficient.

Sufficiency of Condition BCS when f = 0

Lemma 19 When f = 0, Condition BCS is sufficient for achieving exact Byzantine consensus in syn-

chronous systems.

The proof below uses the terminologies and results presented in Chapter 3.6.4. Intuitively, Condition

BCS ensures that there exists a node that can reach every other node in the graph. Hence, consensus is

trivial in this case, since f = 0, and there is no failure.

Proof: Consider the case when f = 0, and suppose that the graph G satisfies Condition BCS. Consider the

source component S in reduced graph G∅,∅ = G, as per Definition 8 in Chapter 3.6.4. Note that F = F1 = ∅

in this case, and by definition, S is non-empty. Pick a node i in the source component. By Lemma 18 in

Chapter 3.6.4, S is strongly connected in G, and thus, i has a directed path to each of the nodes in S. By

Lemma 17, because F = ∅, S V
 V − S, i.e., for each node j ∈ V−S, an (S, j)-path exists. Since S is strongly

connected, an (i, j)-path also exists. Then consensus can be achieved simply by node i routing its input to

all the other nodes, and requiring all the nodes to adopt node i’s input as the output (or decision) for the

consensus. It should be easy to see that termination, validity and agreement properties are all satisfied. 2

Sufficiency of Condition BCS when f > 0

In the rest of our discussion below, we will assume that f > 0. Note that by Corollary 1, n ≥ 3f + 1, and

the number of incoming neighbors of each node is at least 2f + 1. Also recall that here, we consider only

binary inputs. The algorithm for consensus with multi-valued inputs is discussed in Chapter 3.6.6. Below,

we present Algorithm BC.

Structure and Intuition of Algorithm BC:

In the algorithm, each node i maintains two state variables that are explicitly used in our algorithm: vi

and ti. Each node maintains other state as well (such as the routes to other nodes); however, we do not

introduce additional notation for that for simplicity.

47

• Variable vi: Initially, vi at any node i equals the binary input at node i. During the execution of the

algorithm, vi at node i may be updated several times. Value vi at the end of the algorithm represents

node i’s decision (or output) for Algorithm BC. The output at each node is either 0 or 1. At any

time during the execution of the algorithm, the value vi at node i is said to be valid, if it equals some

fault-free node’s input. Initial value vi at a fault-free node i is valid, because it equals its own input.

Lemma 20 proved later implies that vi at a fault-free node i always remains valid throughout the

execution of Algorithm BC.

• Variable ti: Variable ti at any node i may take a value in {0, 1,⊥}, where ⊥ is distinguished from

0 and 1. Algorithm BC makes use of procedures Propagate and Equality that are described soon

below. These procedures take ti as input, and possibly also modify ti. Under some circumstances, as

discussed later, state variable vi at node i is set equal to ti, in order to update vi.

Algorithm BC consists of two loops, an OUTER loop, and an INNER loop. The OUTER loop is

performed for each subset of nodes F , |F | ≤ f . For each iteration of the OUTER loop, many iterations of

the INNER loop are performed. The nodes in F do not participate in any of these INNER loop iterations.

For a chosen F , each iteration of the INNER loop is performed for a different partition of V − F .

Since there are at most f faults, one iteration of the OUTER loop has F exactly equal to the set of faulty

nodes. Denote the actual set of faulty nodes as F ∗. Algorithm BC has two properties, as proved later:

• State vi of each fault-free node i at the end of any particular INNER loop iteration equals the state of

some fault-free node at the start of that INNER loop iteration. Thus, Algorithm BC ensures that the

state vi of each fault-free node i remains valid at all times.

• By the end of the OUTER loop iteration for F = F ∗, all the fault-free nodes reach agreement.

The above two properties ensure that, when Algorithm BC terminates, the validity and agreement properties

are both satisfied.

Each iteration of the INNER loop, for a given set F , considers a partition A,B of the nodes in V − F

such that A
V−F
 B. Having chosen a partition A,B, intuitively speaking, the goal of the INNER loop

iteration is for the nodes in set A to attempt to influence the state of the nodes in the other partition. A

suitable set S ⊆ A∪B is identified and agreed a priori using the known topology information. There are two

possible cases. In Case 1 in Algorithm BC, S ⊆ A, and nodes in S use procedure Equality (step (b) in the

pseudo-code) to decide the value to propagate to nodes in V − F − S (step (c)). In Case 2, S ⊆ A ∪B, and

nodes in S first learn the states at nodes in A using procedure Propagate (step (f)), and then use procedure

Equality (step (g)) to decide the value to propagate to nodes in V − F − S (step (h)). These steps ensure

48

that if F = F ∗, and nodes in A have the same v value, then S will propagate that value, and all nodes in

V − F ∗ − S (step (d) of Case 1) or in V − F ∗ − (A ∩ S) (step (i) of Case 2) will set v value equal to the

value propagated by S, and thus, the agreement is achieved. As proved later, in at least one INNER loop

iteration with F = F ∗, nodes in A have the same v value.

Algorithm BC: Below, we present the pseudo-code of Algorithm BC and the two procedures.

Algorithm BC

Comment: Note that Algorithm BC can be implemented distributedly if every node has prior knowledge

of the topology. For the convenience of reader, the pseudo-code below is presented in a centralized fashion.

(OUTER LOOP)

For each F ⊂ V, where 0 ≤ |F | ≤ f :

(INNER LOOP)

For each partition A,B of V − F such that A,B are non-empty, and A
V−F
 B:

STEP 1 of INNER loop:

• Case 1: if A
V−F
 B and B

V−F
6 A:

Choose a non-empty set S ⊆ A such that S
V−F
 V − F − S, and S is strongly connected in G−F

(G−F is defined in Definition 3).

(a) At each node i ∈ S : ti := vi

(b) Equality(S)

(c) Propagate(S,V − F − S)

(d) At each node j ∈ V − F − S : if tj 6=⊥, then vj := tj

• Case 2: if A
V−F
 B and B

V−F
 A:

Choose a non-empty set S ⊆ A∪B such that S
V−F
 V − F − S, S is strongly connected in G−F ,

and A
V−F
 (S −A).

(e) At each node i ∈ A : ti = vi

(f) Propagate(A,S −A)

(g) Equality(S)

(h) Propagate(S,V − F − S)

49

(i) At each node j ∈ V − F − (A ∩ S) : if tj 6=⊥, then vj := tj

STEP 2 of INNER loop:

(j) Each node k ∈ F receives vj from each j ∈ Nk, where Nk is a set consisting of f + 1 of k’s

incoming neighbors in V − F . If all the received values are identical, then vk is set equal to this

identical value; else vk is unchanged.

Procedure Propagate(P,D):

Propagate(P,D) assumes that P ⊆ V − F , D ⊆ V − F , P ∩D = ∅ and P
V−F
 D. Recall that set F is the

set chosen in each OUTER loop as specified by Algorithm BC.

Propagate(P,D)

(1) Since P
V−F
 D, for each i ∈ D, there exist at least f + 1 disjoint (P, i)-paths that exclude F . The

source node of each of these paths is in P . On each of f + 1 such disjoint paths, the source node for

that path, say s, sends ts to node i. Intermediate nodes on these paths forward received messages as

necessary.

When a node does not receive an expected message, the message content is assumed to be ⊥.

(2) When any node i ∈ D receives f + 1 values along the f + 1 disjoint paths above:

if the f + 1 values are all equal to 0, then ti := 0; else if the f + 1 values are all equal to 1, then ti := 1;

else ti :=⊥. (Note that := denotes the assignment operator.)

For any node j 6∈ D, tj is not modified during Propagate(P,D). Also, for any node k ∈ V, vk is not modified

during Propagate(P,D).

Procedure Equality(D):

Equality(D) assumes that D ⊆ V − F , D 6= ∅, and for each pair of nodes i, j ∈ D, an (i, j)-path excluding

F exists, i.e., D is strongly connected in G−F (G−F is defined in Definition 3).

Equality(D)

(1) Each node i ∈ D sends ti to all other nodes in D along paths excluding F .

(2) Each node j ∈ D thus receives messages from all nodes in D. Node j checks whether values received

from all the nodes in D and its own tj are all equal, and also belong to {0, 1}. If these conditions are

not satisfied, then tj :=⊥; otherwise tj is not modified.

50

For any node k 6∈ D, tk is not modified in Equality(D). Also, for any node k ∈ V, vk is not modified in

Equality(D).

INNER Loop of Algorithm BC for f > 0:

Recall that we assumed that f > 0 and the graph satisfies both Condition BCS and Condition BCS-Prop.

We discuss more details of INNER Loop. For each F chosen in the OUTER loop, the INNER loop of

Algorithm BC examines each partition A,B of V − F such that A,B are both non-empty. From Condition

BCS-Prop (Definition 5), we know that either A
V−F
 B or B

V−F
 A. Therefore, with renaming of the sets

we can ensure that A
V−F
 B. Then, depending on the choice of A,B, F , two cases may occur: (Case 1)

A
V−F
 B and B

V−F
6 A, and (Case 2) A

V−F
 B and B

V−F
 A.

In Case 1 in the INNER loop of Algorithm BC, we need to find a non-empty set S ⊆ A such that

S
V−F
 V − F − S, and S is strongly connected in G−F (G−F is defined in Definition 3). In Case 2, we

need to find a non-empty set S ⊆ A ∪ B such that S
V−F
 V − F − S, S is strongly connected in G−F , and

A
V−F
 (S −A). The following claim ensures that Algorithm BC can be executed correctly in G.

Claim 1 Suppose that G(V, E) satisfies Condition BCS. Then,

• The required set S exists in both Case 1 and 2 of each INNER loop.

• Each node in set F has enough incoming neighbors in V −F to perform step (j) of Algorithm BC with

f > 0.

Proof: The proof below uses the terminologies and results presented in Chapter 3.6.4.

Observation:

We first prove a simple observation: Given a partition A,B, F of V such that B is non-empty, and |F | ≤ f ,

if A
V−F
 B, then size of A must be at least f + 1. Now, we argue that the observation holds. By definition,

there must be at least f + 1 disjoint (A, b)-paths excluding F for each b ∈ B. Each of these f + 1 disjoint

paths will have a distinct source node in A. Therefore, such f + 1 disjoint paths can only exist if A contains

at least f + 1 distinct nodes.

Proof of first claim:

Consider the two cases in the INNER loop.

• Case 1: A
V−F
 B and B

V−F
6 A:

Since B
V−F
6 A, by Lemma 14, there exist non-empty sets A′, B′ that form a partition of A∪B = V−F

51

such that A′ ⊆ A and

B′ 6→ A′

Let F1 be the set of incoming neighbors of A′ in B′. Since B′ 6→ A′, |F1| ≤ f . Then A′ has no

incoming neighbors in GF,F1
. Therefore, the source component of GF,F1

must be contained within A′.

(The definition of source component is in Chapter 3.6.4.) Let S denote the set of nodes in this source

component. Since S is the source component, by Lemma 17,

S
V−F
 V − S − F .

Since S ⊆ A′ and A′ ⊆ A, S ⊆ A. Then, B ⊆ (A ∪ B) − S = V − S − F ; therefore, V − S − F

is non-empty. Also, since S
V−F
 V − S − F , set S must be non-empty (by observation above). By

Lemma 18 in Chapter 3.6.4, S is strongly connected in G−F . Thus, set S as required in Case 1 exists.

• Case 2: A
V−F
 B and B

V−F
 A:

Recall that we consider the case of f > 0.

By Corollary 1, since |V| = n > 3f , |A ∪ B| = |V − F | > 2f . In this case, we pick an arbitrary

non-empty set F1 ⊂ A ∪B = V − F such that |F1| = f > 0, and find the source component of GF,F1
.

Let the set of nodes in the source component be denoted as S. Since S is the source component, by

Lemma 17 in Chapter 3.6.4,

S
V−F
 V − F − S

Also, since A
V−F
 B, and (S − A) ⊆ B, we have A

V−F
 (S −A). Also, since V − S − F contains F1,

and F1 is non-empty, V −S −F is non-empty; also, since S
V−F
 V − S − F , set S must be non-empty

(by observation above).By Lemma 18 in Chapter 3.6.4, S is strongly connected in G−F . Thus, set S

as required in Case 2 exists.

Proof of second claim: Consider nodes in set F . As shown in Corollary 1, when f > 0, each node in V has

at least 2f + 1 incoming neighbors. Since |F | ≤ f , for each k ∈ F there must exist at least f + 2 incoming

neighbors in V −F . Thus, the desired set Nk exists, satisfying the requirement in step (j) of Algorithm BC.

2

Correctness of Algorithm BC for f > 0:

Now, we are ready to prove that Algorithm BC achieves binary exact Byzantine consensus correctly.

Recall that by assumption, F ∗ is the actual set of faulty nodes in the network (0 ≤ |F ∗| ≤ f). Thus, the

52

set of fault-free nodes is V − F ∗. When discussing a certain INNER loop iteration, we sometimes add

superscripts start and end to vi for node i to indicate whether we are referring to vi at the start, or at the

end, of that INNER loop iteration, respectively. We first show that INNER loop preserves validity.

Lemma 20 For any given INNER loop iteration, for each fault-free node j ∈ V−F ∗, there exists a fault-free

node s ∈ V − F ∗ such that vend
j = vstart

s .

Proof: To avoid cluttering the notation, for a set of nodes X, we use the phrase

a fault-free node j ∈ X

as being equivalent to

a fault-free node j ∈ X − F ∗

because all the fault-free nodes in any set X must also be in X − F ∗.

Define set Z as the set of values of vi at all fault-free i ∈ V at the start of the INNER loop iteration

under consideration, i.e., Z = {vstart
i | i ∈ V − F ∗ }.

We first prove the claim in the lemma for the fault-free nodes in ∈ V − F , and then for the fault-free

nodes in F . Consider the following two cases in the INNER loop iteration.

• Case 1: A
V−F
 B and B

V−F
6 A:

Observe that, in Case 1, vi remains unchanged for all fault-free i ∈ S. Thus, vend
i = vstart

i for i ∈ S,

and hence, the claim of the lemma is trivially true for these nodes. We will now prove the claim for

fault-free j ∈ V − F − S.

– step (a): Consider a fault-free node i ∈ S. At the end of step (a), ti is equal to vstart
i . Thus,

ti ∈ Z.

– step (b): In step (b), step 2 of Equality(S) either keeps ti unchanged at fault-free node i ∈ S or

modifies it to be ⊥. Thus, now ti ∈ Z ∪ {⊥}.

– step (c): Consider a fault-free node j ∈ V − F − S. During Propagate(S,V − F − S), j receives

f + 1 values along f + 1 disjoint paths originating at nodes in S. Therefore, at least one of the

f + 1 values is received along a path that contains only fault-free nodes; suppose that the value

received by node j along this fault-free path is equal to α. As observed above in step (b), ti

at all fault-free nodes i ∈ S is in Z ∪ {⊥}. Thus, α ∈ Z ∪ {⊥}. Therefore, at fault-free node

j ∈ V − F − S, step 2 of Propagate(S,V − F − S) will result in tj ∈ {α,⊥} ⊆ Z ∪ {⊥}.

– step (d): Then it follows that, in step (d), at fault-free j ∈ V − F − S, if vj is updated, then

vend
j ∈ Z. On the other hand, if vj is not updated, then vend

j = vstart
j ∈ Z.

53

• Case 2: A
V−F
 B and B

V−F
 A:

Observe that, in Case 2, vj remains unchanged for all fault-free j ∈ A∩S; thus vend
j = vstart

j for these

nodes. Now, we prove the claim in the lemma for fault-free j ∈ V − F − (A ∩ S).

– step (e): For any fault-free node i ∈ A, at the end of step (e), ti ∈ Z.

– step (f): Consider a fault-free nodem ∈ S−A. During Propagate(A,S−A), m receives f+1 values

along f + 1 disjoint paths originating at nodes in A. Therefore, at least one of the f + 1 values is

received along a path that contains only fault-free nodes; suppose that the value received by node

m along this fault-free path is equal to γ ∈ Z. Therefore, at node m ∈ S−A, Propagate(A,S−A)

will result in tm being set to a value in {γ,⊥} ⊆ Z ∪{⊥}. Now, for m ∈ S∩A, tm is not modified

in step (f), and therefore, for fault-free m ∈ S ∩ A, tm ∈ Z. Thus, we can conclude that, at the

end of step (f), for all fault-free nodes m ∈ S, tm ∈ Z ∪ {⊥}.

– step (g): In step (g), at each m ∈ S, Equality(S) either keeps tm unchanged, or modifies it to

be ⊥. Thus, at the end of step (g), for all fault-free m ∈ S, tm remains in Z ∪ {⊥}.

– step (h): Consider a fault-free node j ∈ V − F − S. During Propagate(S,V − F − S), j receives

f + 1 values along f + 1 disjoint paths originating at nodes in S. Therefore, at least one of the

f + 1 values is received along a path that contains only fault-free nodes; suppose that the value

received by node j along this fault-free path is equal to β. As observed above, after step (g), for

each fault-free node m ∈ S, tm ∈ Z ∪ {⊥}. Therefore, β ∈ Z ∪ {⊥}, and at node j ∈ V − F − S,

Propagate(S,V − F − S) will result in tj being set to a value in {β,⊥} ⊆ Z ∪ {⊥}.

– step (i): From the discussion of steps (g) and (h) above, it follows that, in step (i), if vj is updated

at a fault-free j ∈ V −F − (S ∩A), then vend
j ∈ Z; on the other hand, if vj is not modified, then

vend
j = vstart

j ∈ Z.

Now, consider a fault-free node k ∈ F . Step (j) uses set Nk ⊂ V − F such that |Nk| = f + 1. As shown

above, at the start of step (j), vend
j ∈ Z at all fault-free j ∈ V − F . Since |Nk| = f + 1, at least one of the

nodes in Nk is fault-free. Thus, of the f + 1 values received by node k, at least one value must be in Z. It

follows that if node k changes vk in step (j), then the new value will also in Z; on the other hand, if node k

does not change vk, then it remains equal to vstart
k ∈ Z. 2

Lemma 21 Algorithm BC satisfies the validity property for Byzantine consensus.

Proof: Recall that the state vi of a fault-free node i is valid if it equals the input at a fault-free node.

For each fault-free i ∈ V, initially, vi is valid. Lemma 20 implies that after each INNER loop iteration, vi

54

remains valid at each fault-free node i. Thus, when Algorithm BC terminates, vi at each fault-free node i

will satisfy the validity property for Byzantine consensus, as stated in Chapter 3.6. 2

Lemma 22 Algorithm BC satisfies the termination property for Byzantine consensus.

Proof: Recall that we are assuming a synchronous system, and the graph G(V, E) is finite. Thus, Algorithm

BC performs a finite number of OUTER loop iterations, and a finite number of INNER loop iterations for

each choice of F in the OUTER loop, the number of iterations being a function of graph G(V, E). Hence,

the termination property is satisfied. 2

As mentioned in the beginning of this Chapter, Algorithm BC has poor time complexity. A more efficient

algorithm is left as a future work. The next lemma shows the final correctness property.

Lemma 23 Algorithm BC satisfies the agreement property for Byzantine consensus.

Proof: Recall that F ∗ denotes the actual set of faulty nodes in the network (0 ≤ |F ∗| ≤ f).

Since the OUTER loop of Algorithm BC considers all possible F ⊆ V such that |F | ≤ f , eventually, the

OUTER loop will be performed with F = F ∗.

In the INNER loop for F = F ∗, different partitions A,B of V − F = V − F ∗ will be considered. We

will say that such a partition A,B is a “conformant” partition if vi = vj for all i, j ∈ A, and vi = vj for all

i, j ∈ B. A partition A,B that is not conformant is said to be “non-conformant”. Further, we will say that

an INNER loop iteration is a “deciding” iteration if one of the following condition is true.

C1 : The A,B partition of V − F considered in the iteration is conformant.

In Case 1 with conformant partition, every node in S has the same value t after step (a). Hence, at

the end of step (b), every node in S has the same value t. Now, consider Case 2 with conformant

partition. Denote the value of all the nodes in A by α (α ∈ {0, 1}). Then, in step (e), each node i

in A (including S ∩ A) sets ti equal to α. In step (f), all the nodes in S ∩ B receive identical values

α from nodes in A, and hence, they set value t equal to α. Therefore, every node in S has the same

value t ∈ {0, 1} at the end of step (g).

C2 : The A,B partition of V −F considered in the iteration is non-conformant; however, the values at the

nodes are such that, at the end of step (b) of Case 1, or at the end of step (g) of Case 2 (depending

on which case applies), every node in the corresponding set S has the same value t ∈ {0, 1}. (The

definition of source component is in Chapter 3.6.4.) That is, for all i, j ∈ S, ti = tj .

55

In both C1 and C2, all the nodes in the corresponding source component S have the identical value t in the

deciding iteration (at the end of step (b) of Case 1, and at the end of step (g) of Case 2). The iteration that

is not deciding is said to be “non-deciding”.

Claim 2 In the INNER loop with F = F ∗, value vi for each fault-free node i will stay unchanged in every

non-deciding iteration.

Proof: Suppose that F = F ∗, and the INNER loop iteration under consideration is a non-deciding iteration.

Observe that since the paths used in procedures Equality and Propagate exclude F , none of the faulty

nodes can affect the outcome of any INNER loop iteration when F = F ∗. Thus, during Equality(S) (step

(b) of Case 1, and step (g) of Case 2), each node in S can receive the value from other nodes in S correctly.

Observe that C1 and C2 above together imply that in the deciding iteration, all nodes in S have the same

value t ∈ {0, 1} (after step (b) of Case 1 or step (g) of Case 2). Thus, in a non-deciding iteration, there is

a pair of nodes j, k ∈ S such that tj 6= tk (after step (b) of Case 1 or step (g) of Case 2). Then, every node

in S will set value t to be ⊥ at the end of Equality(S) of the non-deciding iteration. Hence, every node in

V − F − S will receive f + 1 copies of ⊥ after Propagate(S,V − F − S) (step (c) of Case 1, and step (h) of

Case 2), and will set value t to ⊥. Finally, at the end of the INNER loop iteration, the value v at each node

stays unchanged based on the following two observations:

• nodes in S in Case 1, and in A ∩ S in Case 2, will not change value v as specified by Algorithm BC,

and

• ti =⊥ for each node i ∈ V − F − S in Case 1, and for each node i ∈ V − F − (A ∩ S) in Case 2.

Thus, no node in V − F will change their v value (where F = F ∗).

Note that by assumption, there is no fault-free node in F = F ∗, and hence, we do not need to consider

STEP 2 of the INNER loop. Therefore, Claim 2 is proved. 2

Let us divide the INNER loop iterations for F = F ∗ into three phases:

• Phase 1: INNER loop iterations before the first deciding iteration with F = F ∗.

• Phase 2: The first deciding iteration with F = F ∗.

• Phase 3: Remaining INNER loop iterations with F = F ∗.

Claim 3 At least one INNER loop iteration with F = F ∗ is a deciding iteration.

56

Proof: The input at each node is in {0, 1}. Therefore, by repeated application of Lemma 20, it is always

true that vi ∈ {0, 1} for each fault-free node i. Thus, when the OUTER iteration for F = F ∗ begins, a

conformant partition exists (in particular, set A containing all fault-free nodes with v value 0, and set B

containing the remaining fault-free nodes, or vice-versa.) By Claim 2, nodes in V −F will not change values

during non-deciding iterations. Then, since the INNER loop considers all partitions of V − F , the INNER

loop will eventually consider either the above conformant partition, or sometime prior to considering the

above conformant partition, it will consider a non-conformant partition with properties in (C2) above. 2

Thus, Phase 2 will be eventually performed when F = F ∗. Now, let us consider each phase separately:

• Phase 1: Recall that all the nodes in V − F = V − F ∗ are fault-free. By Claim 2, the vi at each

fault-free node i ∈ V − F stays unchanged.

• Phase 2: Now, consider the first deciding iteration of the INNER loop.

Recall from Algorithm BC that a suitable set S is identified in each INNER loop iteration. We will

show that in the deciding iteration, every node in S will have the same t value. Consider two scenarios:

– The partition is non-conformant: Then by definition of deciding iteration, we can find an α ∈

{0, 1} such that vi = α for all i ∈ S after step (b) of Case 1, or after step (g) of Case 2.

– The partition is conformant: Let vi = α for all i ∈ A for α ∈ {0, 1}. Such an α exists because the

partition is conformant.

∗ Case 1: In this case, recall that S ⊆ A. Therefore, after steps (a) and (b) both, tj at all j ∈ S

will be identical, and equal to α.

∗ Case 2: This is similar to Case 1. At the end of step (e), for all nodes i ∈ A, ti = α. After

step (f), for all nodes i ∈ S ∪ A, ti = α. Therefore, after step (g), for all nodes i ∈ S, ti will

remain equal to α.

Thus, in both scenarios above, we found a set S and α such that for all i ∈ S, ti = α ∈ {0, 1} after

step (b) in Case 1, and after step (g) in Case 2.

Then, consider the remaining steps in the deciding iteration.

– Case 1: During Propagate(S,V − F − S), each node k ∈ V − F − S will receive f + 1 copies of

α along f + 1 disjoint paths, and set tk = α in step (c). Therefore, each node k ∈ V − F − S

will update its vk to be α in step (d). (Each node p ∈ S does not modify its vp, which is already

equal to α.)

57

– Case 2: After step (h), tj = α for all j ∈ (V − F − S) ∪ S. Thus, each node k ∈ V − F − (A ∩ S)

will update vk to be α. (Each node p ∈ A ∩ S does not modify its vp, which is already equal to

α.)

Thus, in both cases, at the end of STEP 1 of the INNER loop, for all k ∈ V − F = V − F ∗, vk = α.

Since all nodes in F ∗ are faulty, agreement has been reached at this point. The goal now is to show

that the agreement property is not violated by actions taken in any future INNER loop iterations.

• Phase 3: At the start of Phase 3, for each fault-free node k ∈ V − F ∗, we have vk = α ∈ {0, 1}. Then

by Lemma 20, all future INNER loop iterations cannot assign any value other than α to any node

k ∈ V − F ∗.

After Phase 3 with F = F ∗, Algorithm BC may perform OUTER loop iterations for other choices of set F .

However, due to Lemma 20, the value vi at each i ∈ V − F ∗ (i.e., all fault-free nodes) continues being equal

to α.

Thus, Algorithm BC satisfies the agreement property. 2

Theorem 5 Algorithm BC is correct, i.e, it satisfies the agreement, validity, and termination conditions.

Proof: The theorem follows from Lemmas 21, 22 and 23. 2

Theorem 5 proves that Condition BCS is sufficient for achieving binary exact Byzantine consensus in

synchronous systems when f > 0.

3.6.6 Application to Multi-Valued Consensus

Algorithm BC can be used to solve exact Byzantine consensus under two (weaker) versions of multi-valued

consensus. These versions are typical in the literature [5, 52].

• Version I: The first version of multi-valued consensus has the following properties:

– Agreement: the output (i.e., decision) at all the fault-free nodes must be identical.

– Validity: If all fault-free nodes have the same input, then the output of every fault-free node

equals its input.

– Termination: every fault-free node eventually decides on an output.

Under these conditions, if all the fault-free nodes do not have the same multi-valued input, then it is

possible for the fault-free nodes to agree on a value that is not an input at any fault-free node. This

58

multi-valued consensus problem for L-bit input values can be solved by Algorithm LBC : executing L

instance of Algorithm BC, one instance for each bit of the input, on graphs that satisfy Condition BCS.

The 1-bit output of each of the L instances put together form the L-bit output of the multi-valued

consensus problem. Correctness of Algorithm LBC follows from Theorem 5.

• Version II: The second version of multi-valued consensus has the following properties:

– Agreement: the output (i.e., decision) at all the fault-free nodes must be identical.

– Validity I: If all fault-free nodes have the same input, then the output of every fault-free node

equals its input.

– Validity II: If all fault-free nodes do not have the same input, then the output of each fault-free

node is either an input of a fault-free node or a special value ⊥.

– Termination: every fault-free node eventually decides on an output.

Version II requires an extra validity condition – validity II. This multi-valued consensus problem for

L-bit input values can be solved using the following algorithm (Algorithm LBC2). Denote by xi the

input at node i.

– Execute Algorithm LBC using input xi. Denote by wi the output at node i of LBC. Note that

wi is an L-bit value.

– For each node i, set zi := 1 if wi = xi; otherwise, set zi := 0.

– Execute Algorithm BC using input zi. Denote by yi the output at node i of BC. Note that yi is

an 1-bit value.

– Output wi if yi = 1; otherwise, output ⊥.

Agreement and termination follow trivially from the correctness of Algorithm BC and Algorithm LBC.

Validity I also holds because if all the fault-free nodes have the same input, then at the end of first step

of Algorithm LBC2, every fault-free node i has the same wi, which equals xi. Thus, at the second step,

every fault-free node i sets zi := 1. Consequently, node i outputs wi = xi due to the correctness of

Algorithm BC. Now, we show that Algorithm LBC2 satisfies validity II. The proof is by contradiction.

Suppose that fault-free node i outputs a value wi := X, which does not equal ⊥ or any input at

fault-free nodes. Since node i outputs X, the output of Algorithm BC at the third step must be 1, i.e.,

yi = 1. This together with the correctness of Algorithm BC imply that there exists some fault-free

node j that has input zj := 1 at the second step. Thus, X = wj = xj , an input at fault-free node j.

A contradiction.

59

The discussion above shows that Condition BCS is sufficient for these two versions of multi-valued Byzantine

consensus. However, if the above validity condition for multi-valued consensus is made stronger, to require

that the output value must be the multi-valued input of a fault-free node, then it is not conclusive whether

Condition BCS is sufficient or not.

3.7 Discussion

As noted in Chapter 3.3, Condition CCS, CCA, and BCS capture how information can “flow between” dif-

ferent subsets of fault-free nodes despite the presence of faulty nodes under different synchrony assumptions.

This section compares the three conditions and the condition for undirected graphs identified in [27, 32].

3.7.1 Comparison of Condition CCS, CCA, and BCS

The following lemma discusses the relationships among the three tight conditions identified in this Chapter.

Lemma 24 Conditions CCS, CCA and BCS are progressively stronger. In particular, (i) Condition BCS

implies Condition CCA, but not vice-versa, and (ii) Condition CCA implies Condition CCS, but not vice-

versa.

Proof:

• Proof of claim (i):

It should be easy to see that Condition CCA can be viewed as a special case of Condition BCS, if we

force set F in Condition BCS to be an empty set. Therefore, Condition BCS implies Condition CCA.

A clique consisting of 2f + 1 nodes satisfies Condition CCA but not Condition BCS; thus, (not sur-

prisingly) Condition CCA does not imply BCS.

• Proof of claim (ii):

We will prove that CCA implies CCS by contradiction. Suppose that graph G does not satisfy Con-

dition CCS, i.e., there exists a node partition F,L,C,R of V such that L∪C
1

67−→ R and R∪C
1

67−→ L.

Then, define C ′ = C ∪ F . Due to the fact that |F | ≤ f , L ∪ C ′
f+1

67−→ R and R ∪ C ′
f+1

67−→ L, violating

Condition CCA. This proves that CCA implies CCS.

Consider the example network in Figure 3.2 in Chapter 3.3. This network tolerates 1 crash fault in

synchronous systems, since it satisfies Condition CCS; however, it does not satisfy Condition CCA

when L = {v1}, C = ∅ and R = {v2, v3}. Thus, CCS does not imply CCA.

60

2

3.7.2 Comparison of Conditions in Undirected and Directed Graphs

Previously necessary conditions for undirected graphs [32, 27, 5, 52] all imply that each pair of fault-free

nodes can communicate reliably despite the presence of f faulty nodes. In particular, this is true due to

f + 1 connectivity in case of crash faults, and 2f + 1 connectivity for Byzantine faults. Specifically, 2f + 1-

connectivity implies the presence of 2f+1 node-disjoint paths between nodes that are not neighbors, allowing

each pair of nodes to communicate reliably despite f Byzantine faulty nodes. In contrast, in directed graphs,

to be able to achieve consensus, it is not necessary for all node pairs to be able to communicate with each

other reliably (even in just one direction). This is a manifestation of the “asymmetry” noted in our discussion

above. For instance, the network in Figure 3.2 can tolerate 1 crash fault in a synchronous setting; however,

v3 does not have paths to the other nodes. Now, consider a network that consists of 6 nodes, 4 of which

(say, w1, w2, w3, w4) form a clique, and also have directed links to nodes w5 and w6. Node w5 has no path

to w6 and vice versa. Yet, Byzantine consensus can be achieved easily by first reaching consensus within

the 4-node clique, and then propagating the consensus value (for the 4-node consensus) to nodes w5 and w6.

Nodes w5 and w6 can choose majority of the values received from the nodes in the 4-node clique as its own

output. It should be easy to see that this algorithm works correctly for inputs in {0, 1} as required in the

Byzantine consensus formulation considered in this work. However, nodes w5 and w6 cannot communicate

reliably with each other (in either direction).

There exists a family of graphs that satisfy Condition BCS wherein reliable communication may not be

feasible in either direction across a certain cut. In particular, consider the network in Figure 3.1 in Chapter

3.3 again. Observe that there are only 4 directed links from K1 to K2, and 4 directed links from K2 to

K1. Thus, reliable communication is not guaranteed across the cut (K1,K2) in either direction when f = 2

(Byzantine faults). Yet, Byzantine consensus is achievable in synchronous systems since this graph satisfies

Condition BCS for f = 2. We prove this claim by introducing a new family of graphs, namely 2-clique

Network.

2-clique Network Here, we formally introduce 2-clique network, and prove that the any 2-clique network

satisfies Condition BCS,but each pair of the nodes in the network may not be able to communicate reliably

with each other.

Definition 9 A graph G(V, E) consisting of n = 6f + 2 nodes, where f is a positive even integer, is said to

be a 2-clique network if all the following properties are satisfied:

61

• It includes two disjoint cliques, each consisting of 3f + 1 nodes. Suppose that the nodes in the two

cliques are specified by sets K1 and K2, respectively, where K1 = {u1, u2, · · · , u3f+1} ⊂ V, and K2 =

V −K1 = {w1, w2, · · · , w3f+1}. Thus, (ui, uj) ∈ E and (wi, wj) ∈ E, for 1 ≤ i, j ≤ 3f + 1 and i 6= j,

• (ui, wi) ∈ E, for 1 ≤ i ≤ 3f
2 and i = 3f + 1, and

• (wi, ui) ∈ E, for 3f
2 + 1 ≤ i ≤ 3f and i = 3f + 1.

Figure 3.1 is the 2-clique network for f = 2. Note that Chapter 3.6.5 proves that Byzantine consensus is

possible in all graphs that satisfy the necessary condition. Therefore, consensus is possible in the 2-clique

network as well.

We first prove the following lemma for any graph G(V, E) that satisfies the necessary condition.

Lemma 25 Let A,B,C, F be disjoint subsets of V such that |F | ≤ f and A,B,C are non-empty. Suppose

that A
V−F
 B and A ∪B V−F C. Then, A

V−F
 B ∪ C.

Proof: The proof is by contradiction. Suppose that

• A V−F B,

• A ∪B V−F C, and

• A
V−F
6 B ∪ C.

By Definition 2 and Menger’s Theorem [92], the third condition implies that there exists a node v ∈ B ∪ C

and a set of nodes P ⊆ V − F − {v} such that |P | ≤ f , and all (A, v)-paths excluding F contain at least

one node in P . In other words, there is no (A, v)-path excluding F ∪ P . Observe that, because A
V−F
 B, v

cannot be in B; therefore v must belong to set C.

Let us define the sets X and Y as follows:

• Node x ∈ X if and only if x ∈ V−F −P and there exists an (A, x)-path excluding F ∪P . It is possible

that P ∩A 6= ∅; thus, the (A, x)-path cannot contain any nodes in P ∩A.

• Node y ∈ Y if and only if y ∈ V − F − P and there exists an (y, v)-path excluding F ∪ P .

By the definition of X and Y , it follows that for any x ∈ X, y ∈ Y , there cannot be any (x, y)-path

excluding F ∪P . Also, since A
V−F
 B, for each b ∈ B−P , there must exist an (A, b)-path excluding F ∪P ;

thus, B − P ⊆ X, and B ⊆ X ∪ P . For each node a ∈ A− P , there exists an (A, a)-path excluding F ∪ P ,

since each node has a path to itself by definition. Thus, A ⊆ X ∪ P .

62

By definition of X, there are no (X ∪ P, v)-paths excluding F ∪ P . Thus, because A∪B ⊆ X ∪ P , there

are no (A ∪ B, v)-paths excluding F ∪ P . Therefore, since v ∈ C, A ∪ B
V−F
6 C. This is a contradiction to

the second condition above. 2

Now, we use Lemma 25 to prove the following Lemma.

Lemma 26 Suppose that G(V, E) is a 2-clique network. Then graph G satisfies Condition BCS-Prop and

thus, Condition BCS.

Proof:

Consider a partition A,B, F of V, where A and B are both non-empty, and |F | ≤ f . Recall from

Definition 9 that K1,K2 also form a partition of V.

Define A1 = A ∩K1, A2 = A ∩K2, B1 = B ∩K1, B2 = B ∩K2, F1 = F ∩K1 and F2 = F ∩K2.

Define E ′ to be the set of directed links from the nodes in K1 to the nodes in K2, or vice-versa. Thus,

there are 3f
2 + 1 directed links in E ′ from the nodes in K1 to the nodes in K2, and the same number of

links from the nodes in K2 to the nodes in K1. Each pair of links in E ′, with the exception of the link pair

between a3f+1 and b3f+1, is node disjoint. Since |F | ≤ f , it should be easy to see that, at least one of the

two conditions below is true:

(a) There are at least f + 1 directed links from the nodes in K1 − F to the nodes in K2 − F .

(b) There are at least f + 1 directed links from the nodes in K2 − F to nodes the in K1 − F .

Without loss of generality, suppose that condition (a) is true. Therefore, since |K1 − F | ≥ 2f + 1 and the

nodes in K2 − F form a clique, it follows that K1 − F
V−F
 K2 − F . Then, because K1 − F = A1 ∪B1 and

K2 − F = A2 ∪B2, we have

A1 ∪B1
V−F
 A2 ∪B2. (3.20)

|K1 − F | ≥ 2f + 1 also implies that either |A1| ≥ f + 1 or |B1| ≥ f + 1. Without loss of generality,

suppose that |A1| ≥ f + 1. Then, since the nodes in A1 ∪ B1 form a clique, it follows that A1
V−F1−K2 B1

(recall that V − F1 −K2 = A1 ∪B1). Since V − F1 −K2 ⊂ V − F , we have

A1
V−F
 B1 (3.21)

(3.20) and (3.21), along with Lemma 25 above imply that A1
V−F
 B1 ∪A2 ∪B2. Therefore, A1

V−F

B1 ∪B2, and A1 ∪A2
V−F
 B1 ∪B2. Since A = A1 ∪A2 and B = B1 ∪B2, A

V−F
 B. 2

63

3.8 Summary

Necessary and sufficient conditions for solving the following problems in directed graphs are presented in

this Chapter: (i) exact crash-tolerant consensus in synchronous systems, (ii) approximate crash-tolerant

consensus in asynchronous systems, and (iii) exact Byzantine consensus in synchronous systems. Develop-

ment of efficient algorithms for solving these problems is a topic for future work. Also, tight condition for

approximate Byzantine asynchronous consensus in directed graphs remains unknown.

64

Chapter 4

Iterative Approximate Byzantine
Consensus Under f-total Faults

4.1 Introduction

In this Chapter, we consider “iterative” algorithms for achieving approximate Byzantine consensus in syn-

chronous systems (with the exception of Chapter 4.6). Similar to Chapter 3, we study the f -total fault

model, where up to f nodes may become Byzantine faulty, as discussed in Chapter 1.2. Note that we con-

sider only Byzantine node failures, and all links are assumed to be reliable in this Chapter. The iterative

approximate Byzantine consensus (IABC) algorithms of interest have the following properties, which we will

soon state more formally:

• Initial state of each node is equal to a real-valued input provided to that node.

• Validity condition: After each iteration of an IABC algorithm, the state of each fault-free node must

remain in the convex hull of the states of the fault-free nodes at the end of the previous iteration.

• Convergence condition: For any ε > 0, after a sufficiently large number of iterations, the states of the

fault-free nodes are guaranteed to be within ε of each other.

For ease of analysis, this Chapter adopts convergence condition, which has a slightly different presentation

from ε-agreement used in Chapter 3. However, it should be obvious that these two conditions are equivalent.

In this Chapter, for the existence of a correct IABC algorithm, we derive a necessary condition that must

be satisfied by the underlying communication graph. For graphs that satisfy this necessary condition, we

show the correctness of a specific IABC algorithm, proving that the necessary conditions are tight. This

Chapter is a joint work with Nitin H. Vaidya and Guanfeng Liang, and the results are published in [89].

4.2 IABC Algorithms

Here, we describe the structure of the iterative approximate Byzantine consensus (IABC) algorithms of

interest, and state the validity and convergence conditions that they must satisfy.

65

Each node i maintains state vi, with vi[t] denoting the state of node i at the end of the t-th iteration

of the algorithm. Initial state of node i, vi[0], is equal to the initial input provided to node i. At the start

of the t-th iteration (t > 0), the state of node i is vi[t − 1]. The IABC algorithms of interest will require

each node i to perform the following three steps in iteration t, where t > 0. Note that the faulty nodes may

deviate from this specification.

1. Transmit step: Transmit current state, namely vi[t− 1], on all outgoing edges (to nodes in N+
i).

2. Receive step: Receive values on all incoming edges (from nodes in N−i). Denote by ri[t] the vector of

values received by node i from its incoming neighbors. If node i does not receive the value from its

incoming neighbors, then the message value is assumed to be some default value. Therefore, the size of

vector ri[t] is |N−i |, even if some of node i’s incoming neighbors are faulty and choose not to transmit

a message.

3. Update step: Node i updates its state using a transition function Zi as follows. Zi is a part of the

specification of the algorithm, and takes as input the vector ri[t] and state vi[t− 1].

vi[t] = Zi (ri[t] , vi[t− 1]) (4.1)

We now define U [t] and µ[t], assuming that F is the set of Byzantine faulty nodes, with the nodes in V −F

being fault-free.1

• U [t] = maxi∈V−F vi[t]. U [t] is the largest state among the fault-free nodes at the end of the t-th

iteration. Since the initial state of each node is equal to its input, U [0] is equal to the maximum value

of the initial input at the fault-free nodes.

• µ[t] = mini∈V−F vi[t]. µ[t] is the smallest state among the fault-free nodes at the end of the t-th

iteration. µ[0] is equal to the minimum value of the initial input at the fault-free nodes.

The following conditions must be satisfied by an IABC algorithm in presence of up to f Byzantine faulty

nodes:

• Validity: ∀t > 0, µ[t] ≥ µ[t− 1] and U [t] ≤ U [t− 1]

• Convergence: lim t→∞ U [t]− µ[t] = 0

1For setsX and Y , X−Y contains elements that are inX but not in Y . That is, X−Y = {i | i ∈ X, i 6∈ Y }.

66

The objective in this Chapter is to identify the necessary and sufficient conditions for the existence of a

correct IABC algorithm (i.e., an algorithm satisfying the above validity and convergence conditions) for a

given G(V, E).

4.3 Necessary Condition

For a correct IABC algorithm to exist, the network graph G(V, E) must satisfy the necessary condition

proved in Chapter 4.3. Theorems 6 and 7 below state equivalent necessary conditions. The form of the

necessary condition in Theorem 7 is more intuitive, whereas the form in Theorem 6 is used later to prove

sufficiency. We now define relations ⇒ and 6⇒ that are used frequently in the discussion in this Chapter.

Recall that as defined in Chapter 1.2, we use N−i and N+
i to represent incoming and outgoing neighbors,

respectively.

Definition 10 For non-empty disjoint sets of nodes A and B,

• A ⇒ B iff there exists a node v ∈ B that has at least f + 1 incoming edges from nodes in A, i.e.,

|N−v ∩A| > f .

• A 6⇒ B iff A⇒ B is not true.

⇒ is different from 7−→ defined in Definition 1 of Chapter 3. Roughly speaking, A ⇒ B means that

each node in B has enough incoming neighbors that are in A, whereas, A 7−→ B means that all nodes in B

jointly have enough incoming neighbors that are in A. Also, notice that the condition in the theorem below

bears some similarity to Condition BCS in Chapter 3.3. However, the proofs are very different due to the

distinct natures of iterative and general algorithms.

Theorem 6 Suppose that a correct IABC algorithm exists for G(V, E). Let sets F,L,C,R form a partition

of V, such that L and R are both non-empty, and |F | ≤ f . Then, either C ∪R⇒ L, or L ∪ C ⇒ R.

Proof: The proof is by contradiction. Let us assume that a correct iterative consensus algorithm exists,

and C ∪ R 6⇒ L and L ∪ C 6⇒ R. Thus, for any i ∈ L, |N−i ∩ (C ∪ R)| < f + 1, and for any j ∈ R,

|N−j ∩ (L ∪ C)| < f + 1. Figure 4.1 illustrates the sets used in this proof.

Also assume that the nodes in F (if F is non-empty) are all faulty, and the other nodes in sets L,C,R

are fault-free. Note that the fault-free nodes are not aware of the identity of the faulty nodes.

67

Figure 4.1: Illustration for the proof of Theorem 6. In this figure, C ∪R 6⇒ L and L ∪ C 6⇒ R.

Consider the case when (i) each node in L has initial input m, (ii) each node in R has initial input M ,

such that M > m, and (iii) each node in C, if C is non-empty, has an input in the interval [m,M].

In the Transmit Step of iteration 1, suppose that the faulty nodes in F (if non-empty) send m− < m on

outgoing links to nodes in L, send M+ > M on outgoing links to nodes in R, and send some arbitrary value

in interval [m,M] on outgoing links to the nodes in C (if C is non-empty). This behavior is possible since

nodes in F are faulty. Note that m− < m < M < M+. Each fault-free node k ∈ V − F , sends to nodes in

N+
k value vk[0] in iteration 1.

Consider any node i ∈ L. Denote N ′i = N−i ∩ (C ∪R). Since |F | ≤ f , |N−i ∩ F | ≤ f . Since C ∪R 6⇒ L,

|N ′i | ≤ f . Node i will then receive m− from the nodes in N−i ∩ F , and values in [m,M] from the nodes in

N ′i , and m from the nodes in {i} ∪ (N−i ∩ L).

Consider the following two cases:

• Both N−i ∩ F and N ′i are non-empty: Now |N−i ∩ F | ≤ f and |N ′i | ≤ f . From node i’s perspective,

consider two possible scenarios: (a) nodes in N−i ∩ F are faulty, and the other nodes are fault-free,

and (b) nodes in N ′i are faulty, and the other nodes are fault-free.

In scenario (a), from node i’s perspective, the faulty-free nodes have sent values in interval [m,M],

whereas the faulty nodes have sent value m−. According to the validity condition, vi[1] ≥ m. On

the other hand, in scenario (b), the fault-free nodes have sent values m− and m, where m− < m; so

vi[1] ≤ m, according to the validity condition. Since node i does not know whether the correct scenario

is (a) or (b), it must update its state to satisfy the validity condition in both cases. Thus, it follows

68

that vi[1] = m.

• At most one of N−i ∩ F and N ′i is non-empty: Thus, |(N−i ∩ F)∪N ′i | ≤ f . From node i’s perspective,

it is possible that the nodes in (N−i ∩ F) ∪N ′i are all faulty, and the rest of the nodes are fault-free.

In this situation, the values sent to node i by the fault-free nodes (which are all in {i}∪ (N−i ∩L)) are

all m, and therefore, vi[1] must be set to m as per the validity condition.

Thus, vi[1] = m for each node i ∈ L. Similarly, we can show that vj [1] = M for each node j ∈ R.

Now consider the nodes in set C, if C is non-empty. All the values received by the nodes in C are in

[m,M], therefore, their new state must also remain in [m,M], as per the validity condition.

The above discussion implies that, at the end of iteration 1, the following conditions hold true: (i)

state of each node in L is m, (ii) state of each node in R is M , and (iii) state of each node in C is in

the interval [m,M]. These conditions are identical to the initial conditions listed previously. Then, by a

repeated application of the above argument (proof by induction), it follows that for any t ≥ 0, vi[t] = m for

all ∀i ∈ L, vj [t] = M for all j ∈ R and vk[t] ∈ [m,M] for all k ∈ C.

Since L and R both contain fault-free nodes, the convergence requirement is not satisfied. This is a

contradiction to the assumption that a correct iterative algorithm exists. 2

Corollary 2 Suppose that a correct IABC algorithm exists for G(V, E). Let {F,L,R} be a partition of V,

such that L and R are both non-empty and |F | ≤ f . Then, either L⇒ R or R⇒ L.

The proof follows by setting C = ∅ in Theorem 6. Next corollary shows the lower bound on n, the number

of nodes in the system.

Corollary 3 Suppose that a correct IABC algorithm exists for G(V, E). Then, n must be at least 3f + 1,

and if f > 0, then each node must have at least 2f + 1 incoming edges.

Proof: The necessary condition of n ≥ 3f + 1 has been shown previously [32]. We include a proof here for

completeness. For f = 0, n ≥ 3f + 1 is trivially true. For f > 0, the proof is by contradiction. Suppose

that 2 ≤ n ≤ 3f . In this case, we can partition V into sets L,R,C such that 0 < |L| ≤ f , 0 < |R| ≤ f and

0 ≤ |F | ≤ f . Since 0 < |L| ≤ f and 0 < |R| ≤ f , we have L 6⇒ R and R 6⇒ L, respectively. This violates the

necessary condition in Corollary 2.

The proof of the remaining corollary is also by contradiction. Suppose that f > 0, and for some node i,

|N−i | ≤ 2f . Define set L = {i}. Partition N−i into two sets F and H such that |H| = b|N−i |/2c ≤ f and

|F | = d|N−i |/2e ≤ f . Define R = V −F −L = V −F −{i}. Since |V| = n ≥ max(2, 3f + 1), R is non-empty.

Now, N−i ∩ R = H, and |N−i ∩ R| ≤ f . Therefore, since L = {i} and |N−i ∩ R| ≤ f , R 6⇒ L. Also, since

|L| = 1 < f + 1, L 6⇒ R. This violates Corollary 2 above. 2

69

Equivalent Condition In Chapter 4.5, we prove that the condition stated in Theorem 6 is also sufficient

for the existence of a correct IABC algorithm. The condition in Theorem 6 is not very intuitive and does

not provide insights on how to achieve consensus. Thus, in Theorem 7 below, we state another necessary

condition that is equivalent to the necessary condition in Theorem 6, and is somewhat easier to interpret.

To facilitate the statement of Theorem 7, we now introduce the notion and “reduced graph”. Note that it

is similar to the one introduced in Chapter 3.6.4. For brevity, we use the same terminology. However, the

exact construction of reduced graph below is different from the ones in Chapter 3.6.4. The definition below

uses the notions introduced in Definitions 6 and 7 in Chapter 3.6.4.

Definition 11 (Reduced Graph) For a given graph G(V, E) and F ⊂ V, a graph GF (VF , EF) is said to

be a reduced graph, if: (i) VF = V−F , and (ii) EF is obtained by first removing from E all the links incident

on the nodes in F , and then removing up to f other incoming links at each node in VF .

Note that for a given G(V, E) and a given F , multiple reduced graphs GF may exist.

Theorem 7 Suppose that the condition in Theorem 6 holds for graph G(V, E). Then, for any F ⊂ V such

that |F | < |V| and |F | ≤ f , every reduced graph GF obtained as per Definition 11 must contain exactly one

source component.

Proof: Since |F | < |V|, GF contains at least one node; therefore, at least one source component must

exist in GF . We now prove that GF cannot contain more than one source component. The proof is by

contradiction. Suppose that there exists a set F ⊂ V with |F | < |V| and |F | ≤ f , and a reduced graph

GF (VF , EF) corresponding to F , such that the decomposition of GF includes at least two source components.

Let the sets of nodes in two such source components of GF be denoted L and R, respectively. Let

C = V − F − L − R. Observe that F,L,C,R form a partition of the nodes in V. Since L is a source

component in GF it follows that there are no directed links in EF from any node in C ∪ R to the nodes in

L. Similarly, since R is a source component in GF it follows that there are no directed links in EF from

any node in L∪C to the nodes in R. These observations, together with the manner in which EF is defined,

imply that (i) there are at most f links in E from the nodes in C ∪ R to each node in L, and (ii) there are

at most f links in E from the nodes in L ∪ C to each node in R. Therefore, in graph G(V, E), C ∪ R 6⇒ L

and L ∪ C 6⇒ R, violating Theorem 6. Thus, we have proved that GF must contain exactly one source

component. 2

The above proof shows that the condition in Theorem 6 implies the condition in Theorem 7. Now, we

prove the other direction. We achieve this by proving that, if the condition in Theorem 6 does not hold true

70

for G(V, E), then the condition in Theorem 7 also does not hold true.

Theorem 8 Suppose that the condition in Theorem 6 does not hold for graph G(V, E). Then, there exists a

reduced graph GF obtained as per Definition 11 that contains more than one source component.

Proof: Suppose that the condition stated in Theorem 6 does not hold for G(V, E). Thus, there exists a

partition F,L,C,R of V such that |F | ≤ f , L and R are non-empty, and C ∪R 6⇒ L and L ∪ C 6⇒ R.

We now construct a reduced graph GF (VF , EF) corresponding to set F . First, remove all nodes in F

from V to obtain VF . Remove all the edges incident on F from E . Then because C ∪R 6⇒ L, the number of

incoming edges at each node in L from the nodes in C ∪ R is at most f ; remove all these edges. Similarly,

for every node j ∈ R, remove all incoming edges from L ∪ C (there are at most f such edges at each node

j ∈ R). The resulting graph GF is a reduced graph that satisfies the conditions in Definition 11.

In EF , there are no incoming edges to nodes in R from the nodes L ∪ C; similarly, in EF , there are no

incoming edges to nodes L from the nodes in C ∪ R. It follows that no single node in VF has paths in GF

(i.e., paths consisting of links in EF) to all the other nodes in VF . Thus, GF must contain more than one

source component. Thus, the condition in Theorem 7 does not hold for G(V, E). 2

Therefore, it follows that Theorems 6 and 7 specify equivalent conditions.2

Corollary 4 Suppose that Theorem 6 holds true for graph G(V, E). Then, for any F ⊂ V such that |F | ≤ f ,

the unique source component in every reduced graph GF must contain at least f + 1 nodes.

Proof: Since the source component is non-empty, the claim is trivially true for f = 0.

Now consider f > 0. The proof in this case is by contradiction. Suppose that there exists a set F with

|F | ≤ f , and a corresponding reduced graph GF (VF , EF), such that the decomposition of GF contains a

unique source component consisting of at most f nodes. Define L to be the set of nodes in this unique source

component, and R = V − L− F . Observe that F,L,R form a partition of V. R must contain at least f + 1

nodes, since |L| ≤ f , |F | ≤ f , and by Corollary 3, n ≥ 3f + 1.

Since |L| ≤ f , it follows that in graph G(V, E), L 6⇒ R, Then Corollary 2 implies that, in graph G(V, E),

R ⇒ L. Thus, there must be a node in L, say node i, that has at least f + 1 incoming links in E from the

nodes in R. Since i ∈ L, it follows that i 6∈ F (by definition of a reduced graph). Also, since i has at least

f + 1 incoming links in E from nodes in R, it follows that in EF , node i must have at least one incoming link

from the nodes in R. This contradicts that assumption that set L containing node i is a source component

of GF . 2

2An alternate interpretation of Theorem 7 is that in graph GF , non-fault-tolerant iterative consensus must be possible.

71

4.4 Algorithm 1

We will prove that there exists an IABC algorithm – particularly Algorithm 1 below – that satisfies the

validity and convergence conditions provided that the graph G(V, E) satisfies the necessary condition in

Theorem 6. This implies that the necessary condition in Theorem 6 is also sufficient. Algorithm 1 has the

three-step structure described in Chapter 4.2, and it is similar to algorithms that were analyzed in prior

work as well [29, 52, 41, 49] (although correctness of the algorithm under the necessary condition in Theorem

6 has not been proved previously).

Algorithm 1

1. Transmit step: Transmit current state vi[t− 1] on all outgoing edges.

2. Receive step: Receive values on all incoming edges. These values form vector ri[t] of size |N−i |. When

a fault-free node expects to receive a message from a neighbor but does not receive the message, the

message value is assumed to be equal to some default value.

3. Update step: Sort the values in ri[t] in an increasing order, and eliminate the smallest f values, and

the largest f values (breaking ties arbitrarily). Let N∗i [t] denote the set of nodes from whom the

remaining |N−i | − 2f values were received, and let wj denote the value received from node j ∈ N∗i .

For convenience, define wi = vi[t − 1] to be the value node i “receives” from itself. Observe that if

j ∈ {i} ∪N∗i [t] is fault-free, then wj = vj [t− 1].

Define

vi[t] = Zi(ri[t], vi[t− 1]) =
∑

j∈{i}∪N∗i [t]

ai wj (4.2)

where

ai =
1

|N−i |+ 1− 2f

Note that |N∗i [t]| = |N−i | − 2f , and i 6∈ N∗i [t] because (i, i) 6∈ E . The “weight” of each term on the

right-hand side of (4.2) is ai, and these weights add to 1. Also, 0 < ai ≤ 1. For future reference, let us

define α as:

α = min
i∈V

ai (4.3)

72

4.5 Sufficiency (Correctness of Algorithm 1)

In Theorems 9 and 10 below, we prove that Algorithm 1 satisfies validity and convergence conditions, respec-

tively, provided that G(V, E) satisfies the condition below, which matches the necessary condition stated in

Theorem 6.

Sufficient condition: For every partition F,L,C,R of V, such that L and R are both non-empty, and

|F | ≤ f , either C ∪R⇒ L, or L ∪ C ⇒ R.

Theorem 9 Suppose that F is the set of Byzantine faulty nodes, and that G(V, E) satisfies the sufficient

condition stated above. Then Algorithm 1 satisfies the validity condition.

Proof: Consider the t-th iteration, and any fault-free node i ∈ V − F . Consider two cases:

• f = 0: In this case, all nodes must be fault-free, and F = ∅. In (4.2) in Algorithm 1, note that vi[t] is

computed using states from the previous iteration at node i and other nodes. By definition of µ[t− 1]

and U [t− 1], vj [t− 1] ∈ [µ[t− 1], U [t− 1]] for all fault-free nodes j ∈ V − F = V. Thus, in this case,

all the values used in computing vi[t] are in the interval [µ[t− 1], U [t− 1]]. Since vi[t] is computed as

a weighted average of these values, vi[t] is also within [µ[t− 1], U [t− 1]].

• f > 0: By Corollary 3, |N−i | ≥ 2f + 1, and therefore, |ri[t]| ≥ 2f + 1. When computing set N∗i [t], the

largest f and smallest f values from ri[t] are eliminated. Since at most f nodes are faulty, it follows

that, either (i) the values received from the faulty nodes are all eliminated, or (ii) the values from

the faulty nodes that still remain are between values received from two fault-free nodes. Thus, the

remaining values in ri[t] are all in the interval [µ[t− 1], U [t− 1]]. Also, vi[t− 1] is in [µ[t− 1], U [t− 1]],

as per the definition of µ[t− 1] and U [t− 1]. Thus vi[t] is computed as a weighted average of values in

[µ[t− 1], U [t− 1]], and, therefore, it will also be in [µ[t− 1], U [t− 1]].

Since ∀i ∈ V − F , vi[t] ∈ [µ[t− 1], U [t− 1]], the validity condition is satisfied. 2

Definition 12 For disjoint sets A,B, in(A ⇒ B) denotes the set of all the nodes in B that each have at

least f + 1 incoming edges from nodes in A. More formally,

in(A⇒ B) = { v | v ∈ B and f + 1 ≤ |N−v ∩A| }.

With an abuse of notation, when A 6⇒ B, define in(A⇒ B) = ∅.

73

We introduce a notion of “propagating sequence” below. Note that this is different from the “propagate”

notation introduced in Definition 2 in Chapter 3.

Definition 13 (Propagating Sequence) For non-empty disjoint sets A and B, set A is said to propagate

to set B in l steps, where l > 0, if there exist sequences of sets A0, A1, A2, · · · , Al and B0, B1, B2, · · · , Bl

(propagating sequences) such that

• A0 = A, B0 = B, Al = A ∪B, Bl = ∅, Bτ 6= ∅ for τ < l, and

• for 0 ≤ τ ≤ l − 1,

– Aτ ⇒ Bτ ,

– Aτ+1 = Aτ ∪ in(Aτ ⇒ Bτ), and

– Bτ+1 = Bτ − in(Aτ ⇒ Bτ)

Observe that Aτ and Bτ form a partition of A ∪ B, and for τ < l, in(Aτ ⇒ Bτ) 6= ∅. Also, when set A

propagates to set B, the number of steps l in the above definition is upper bounded by n− f − 1, since set

A must be of size at least f + 1 for it to propagate to B; otherwise, A 6⇒ B.

Lemma 27 Assume that G(V, E) satisfies the sufficient condition stated above. For any partition A,B, F

of V, where A,B are both non-empty, and |F | ≤ f , either A propagates to B, or B propagates to A.

To prove Lemma 27, we first prove the following Lemma.

Lemma 28 Assume that G(V, E) satisfies Theorem 6. Consider a partition A,B, F of V such that A and

B are non-empty, and |F | ≤ f . If B 6⇒ A, then set A propagates to set B.

Proof: Since A,B are non-empty, and B 6⇒ A, by Corollary 2, we have A⇒ B.

Define A0 = A and B0 = B. Now, for a suitable l > 0, we will build propagating sequences A0, A1, · · ·Al

and B0, B1, · · ·Bl inductively.

• Recall that A = A0 and B = B0 6= ∅. Since A⇒ B, in(A0 ⇒ B0) 6= ∅. Define A1 = A0∪ in(A0 ⇒ B0)

and B1 = B0 − in(A0 ⇒ B0).

If B1 = ∅, then l = 1, and we have found the propagating sequence already.

If B1 6= ∅, then define L = A = A0, R = B1 and C = A1 − A = B1 − B. Since B 6⇒ A, R ∪ C 6⇒ L.

Therefore, by Lemma 2, L ∪ C ⇒ R. That is, A1 ⇒ B1.

74

• For increasing values of i ≥ 0, given Ai and Bi, where Bi 6= ∅, by following steps similar to the previous

item, we can obtain Ai+1 = A0∪in(Ai ⇒ Bi) and Bi+1 = Bi−in(Ai ⇒ Bi), such that either Bi+1 = ∅

or Ai+1 ⇒ Bi+1.

In the above construction, l is the smallest index such that Bl = ∅. 2

Proof of Lemma 27 Now, we are ready to prove Lemma 27.

Proof: Consider two cases:

• A 6⇒ B: Then by Lemma 28 above, B propagates to A, completing the proof.

• A⇒ B: In this case, consider two sub-cases:

– A propagates to B: The proof in this case is complete.

– A does not propagate to B: Recall that A ⇒ B. Since A does not propagate to B, propagating

sequences defined in Definition 13 do not exist in this case. More precisely, there must exist k > 0,

and sets A0, A1, · · · , Ak and B0, B1, · · · , Bk, such that:

∗ A0 = A and B0 = B, and

∗ for 0 ≤ i ≤ k − 1,

o Ai ⇒ Bi,

o Ai+1 = Ai ∪ in(Ai ⇒ Bi), and

o Bi+1 = Bi − in(Ai ⇒ Bi).

∗ Bk 6= ∅ and Ak 6⇒ Bk.

The last condition above violates the requirements for A to propagate to B.

Now, Ak 6= ∅, Bk 6= ∅, and Ak, Bk, F form a partition of V. Since Ak 6⇒ Bk, by Lemma 28 above,

Bk propagates to Ak.

Given that Bk ⊆ B0 = B, A = A0 ⊆ Ak, and Bk propagates to Ak, now we prove that B

propagates to A.

Recall that Ai and Bi form a partition of V − F .

Let us define P = P0 = Bk and Q = Q0 = Ak. Thus, P propagates to Q. Suppose that

P0, P1, ...Pm and Q0, Q1, · · · , Qm are the propagating sequences in this case, with Pi and Qi

forming a partition of P ∪Q = Ak ∪Bk = V − F .

75

Let us define R = R0 = B and S = S0 = A. Note that R,S form a partition of A ∪ B = V − F .

Now, P0 = Bk ⊆ B = R0 and S0 = A ⊆ Ak = Q0. Also, R0 − P0 and S0 form a partition of Q0.

Figure 4.2 illustrates some of the sets used in this proof.

Figure 4.2: Illustration for the last part of the proof of Lemma 27. In this figure, R0 = P0 ∪ (R0 − P0) and
Q0 = S0 ∪ (R0 − P0).

∗ Define P1 = P0 ∪ (in(P0 ⇒ Q0)), and Q1 = V − F − P1 = Q0 − (in(P0 ⇒ Q0)). Also,

R1 = R0 ∪ (in(R0 ⇒ S0)), and S1 = V − F −R1 = S0 − (in(R0 ⇒ S0)).

Since R0 −P0 and S0 are a partition of Q0, the nodes in in(P0 ⇒ Q0) belong to one of these

two sets. Note that R0 − P0 ⊆ R0. Also, S0 ∩ in(P0 ⇒ Q0) ⊆ in(R0 ⇒ S0). Therefore, it

follows that P1 = P0 ∪ (in(P0 ⇒ Q0)) ⊆ R0 ∪ (in(R0 ⇒ S0)) = R1.

Thus, we have shown that, P1 ⊆ R1. Then it follows that S1 ⊆ Q1.

∗ For 0 ≤ i < m, let us define Ri+1 = Ri ∪ in(Ri ⇒ Si) and Si+1 = Si − in(Ri ⇒ Si). Then

following an argument similar to the above case, we can inductively show that, Pi ⊆ Ri

and Si ⊆ Qi. Due to the assumption on the length of the propagating sequence above,

Pm = P ∪ Q = V − F and Qm = ∅. Thus, there must exist r ≤ m, such that for i < r,

76

Ri 6= V − F , and Rr = V − F and Sr = ∅.

The sequences R0, R1, · · · , Rr and S0, S1, · · · , Sr form propagating sequences, proving that

R = B propagates to S = A.

2

The lemma below states that the interval to which the states at all the fault-free nodes are confined

shrinks after a finite number of iterations of Algorithm 1. Recall that U [t] and µ[t] (defined in Chapter 4.2)

are the maximum and minimum over the states at the fault-free nodes at the end of the t-th iteration.

Lemma 29 Suppose that G(V, E) satisfies the sufficient condition stated above, and F is the set of Byzantine

faulty nodes. Moreover, at the end of the s-th iteration of Algorithm 1, suppose that the fault-free nodes in

V − F can be partitioned into non-empty sets R and L such that (i) R propagates to L in l steps, and (ii)

the states of nodes in R are confined to an interval of length ≤ U [s]−µ[s]
2 . Then, with Algorithm 1,

U [s+ l]− µ[s+ l] ≤
(

1− αl

2

)
(U [s]− µ[s]) (4.4)

where α is as defined in (4.3).

We first present two additional lemmas (using the notation in Algorithm 1).

Lemma 30 Suppose that F is the set of faulty nodes, and that G(V, E) satisfies the “sufficient condition”

stated in Chapter 4.5. Consider node i ∈ V − F . Let ψ ≤ µ[t− 1]. Then, for j ∈ {i} ∪N∗i [t],

vi[t]− ψ ≥ ai (wj − ψ)

Specifically, for fault-free j ∈ {i} ∪N∗i [t],

vi[t]− ψ ≥ ai (vj [t− 1]− ψ)

Proof: In (4.2) in Algorithm 1, for each j ∈ {i} ∪N∗i [t], consider two cases:

• j is faulty-free: Then, either j = i or j ∈ N∗i [t] ∩ (V − F). In this case, wj = vj [t − 1]. Therefore,

µ[t− 1] ≤ wj ≤ U [t− 1].

• j is faulty: In this case, f must be non-zero (otherwise, all nodes are fault-free). By Corollary 3,

|N−i | ≥ 2f + 1. Then it follows that, in step 2 of Algorithm 1, the smallest f values in ri[t] contain

77

the state of at least one fault-free node, say k. This implies that vk[t− 1] ≤ wj . This, in turn, implies

that µ[t− 1] ≤ wj .

Thus, for all j ∈ {i} ∪N∗i [t], we have µ[t− 1] ≤ wj . Therefore,

wj − ψ ≥ 0 for all j ∈ {i} ∪N∗i [t] (4.5)

Since weights in (4.2) in Algorithm 1 add to 1, we can re-write that equation as,

vi[t]− ψ =
∑

j∈{i}∪N∗i [t]

ai (wj − ψ) (4.6)

≥ ai (wj − ψ), ∀j ∈ {i} ∪N∗i [t] from (4.5)

For fault-free j ∈ {i} ∪N∗i [t], wj = vj [t− 1], therefore,

vi[t]− ψ ≥ ai (vj [t− 1]− ψ) (4.7)

2

Lemma 31 Suppose that F is the set of faulty nodes, and that G(V, E) satisfies the “sufficient condition”

stated in Chapter 4.5. Consider fault-free node i ∈ V − F . Let Ψ ≥ U [t− 1]. Then, for j ∈ {i} ∪N∗i [t],

Ψ− vi[t] ≥ ai (Ψ− wj)

Specifically, for fault-free j ∈ {i} ∪N∗i [t],

Ψ− vi[t] ≥ ai (Ψ− vj [t− 1])

Proof: The proof is similar to Lemma 30 proof. 2

Proof of Lemma 29 Next, we will use Lemmas 30 and 31 to show that Lemma 29 holds.

Proof: Since R propagates to L, as per Definition 13, there exist sequences of sets R0, R1, · · · , Rl and

L0, L1, · · · , Ll, where

• R0 = R, L0 = L, Rl = R ∪ L, Ll = ∅, for 0 ≤ τ < l, Lτ 6= ∅, and

78

• for 0 ≤ τ ≤ l − 1,

* Rτ ⇒ Lτ ,

* Rτ+1 = Rτ ∪ in(Rτ ⇒ Lτ), and

* Lτ+1 = Lτ − in(Rτ ⇒ Lτ)

Let us define the following bounds on the states of the nodes in R at the end of the s-th iteration:

M = maxj∈R vj [s] (4.8)

m = minj∈R vj [s] (4.9)

By the assumption in the statement of Lemma 29,

M −m ≤ U [s]− µ[s]

2
(4.10)

Also, M ≤ U [s] and m ≥ µ[s]. Therefore, U [s]−M ≥ 0 and m− µ[s] ≥ 0.

The remaining proof of Lemma 29 relies on derivation of the three intermediate claims below.

Claim 4 For 0 ≤ τ ≤ l, for each node i ∈ Rτ ,

vi[s+ τ]− µ[s] ≥ ατ (m− µ[s]) (4.11)

Proof of Claim 4: The proof is by induction.

Induction basis: By definition of m, (4.11) holds true for τ = 0.

Induction: Assume that (4.11) holds true for some τ , 0 ≤ τ < l. Consider Rτ+1. Observe that Rτ and

Rτ+1 −Rτ form a partition of Rτ+1; let us consider each of these sets separately.

• Set Rτ : By assumption, for each i ∈ Rτ , (4.11) holds true. By validity of Algorithm 1 (proved in

Theorem 9), µ[s] ≤ µ[s+ τ]. Therefore, setting ψ = µ[s] and t = s+ τ + 1 in Lemma 30, we get,

vi[s+ τ + 1]− µ[s] ≥ ai (vi[s+ τ]− µ[s])

≥ ai α
τ (m− µ[s]) due to (4.11)

≥ ατ+1(m− µ[s]) due to (4.3)

and because m− µ[s] ≥ 0

79

• Set Rτ+1−Rτ : Consider a node i ∈ Rτ+1−Rτ . By definition of Rτ+1, we have that i ∈ in(Rτ ⇒ Lτ).

Thus,

|N−i ∩Rτ | ≥ f + 1

In Algorithm 1, 2f values (f smallest and f largest) received by node i are eliminated before vi[s+τ+1]

is computed at the end of (s+ τ + 1)-th iteration. Consider two possibilities:

– Value received from one of the nodes in N−i ∩ Rτ is not eliminated. Suppose that this value is

received from fault-free node p ∈ N−i ∩ Rτ . Then, by an argument similar to the previous case,

we can set ψ = µ[s] in Lemma 30, to obtain,

vi[s+ τ + 1]− µ[s] ≥ ai (vp[s+ τ]− µ[s])

≥ ai α
τ (m− µ[s]) due to (4.11)

≥ ατ+1(m− µ[s]) due to (4.3)

and because m− µ[s] ≥ 0

– Values received from all (there are at least f + 1) nodes in N−i ∩ Rτ are eliminated. Note that

in this case f must be non-zero (for f = 0, no value is eliminated, as already considered in the

previous case). By Corollary 3, we know that each node must have at least 2f+1 incoming edges.

Since at least f + 1 values from nodes in N−i ∩ Rτ are eliminated, and there are at least 2f + 1

values to choose from, it follows that the values that are not eliminated3 are within the interval to

which the values from N−i ∩Rτ belong. Thus, there exists a node k (possibly faulty) from whom

node i receives some value wk – which is not eliminated – and a fault-free node p ∈ N−i ∩Rτ such

that

vp[s+ τ] ≤ wk (4.12)

3At least one value received from the nodes in N−i is not eliminated, since there are 2f + 1 incoming edges, and only 2f
values are eliminated.

80

Then by setting ψ = µ[s] and t = s+ τ + 1 in Lemma 30, we have

vi[s+ τ + 1]− µ[s] ≥ ai (wk − µ[s])

≥ ai (vp[s+ τ]− µ[s]) by (4.12)

≥ ai α
τ (m− µ[s]) due to (4.11)

≥ ατ+1(m− µ[s]) due to (4.3)

and because m− µ[s] ≥ 0

Thus, we have shown that for all nodes in Rτ+1,

vi[s+ τ + 1]− µ[s] ≥ ατ+1(m− µ[s])

This completes the proof of Claim 4.

Claim 5 For each node i ∈ V − F ,

vi[s+ l]− µ[s] ≥ αl(m− µ[s]) (4.13)

Proof of Claim 5: Note that by definition, Rl = V −F . Then the proof follows by setting τ = l in the above

Claim 4.

Claim 6 For each node i ∈ V − F ,

U [s]− vi[s+ l] ≥ αl(U [s]−M) (4.14)

The proof of Claim 6 is similar to the proof of Claim 5.

Now let us resume the proof of the Lemma 29. Note that Rl = V − F . Thus,

U [s+ l] = max
i∈V−F

vi[s+ l]

≤ U [s]− αl(U [s]−M) by (4.14) (4.15)

81

and

µ[s+ l] = min
i∈V−F

vi[s+ l]

≥ µ[s] + αl(m− µ[s]) by (4.13) (4.16)

Subtracting (4.16) from (4.15),

U [s+ l]− µ[s+ l]

≤ U [s]− αl(U [s]−M)− µ[s]− αl(m− µ[s])

= (1− αl)(U [s]− µ[s]) + αl(M −m)

≤ (1− αl)(U [s]− µ[s]) + αl
U [s]− µ[s]

2
by (4.10)

≤ (1− αl

2
)(U [s]− µ[s])

This concludes the proof of Lemma 29. 2

Theorem 10 Suppose that F is the set of Byzantine faulty nodes, and that G(V, E) satisfies the sufficient

condition stated above. Then Algorithm 1 satisfies the convergence condition.

Proof: Our goal is to prove that, given any ε > 0, there exists τ such that

U [t]− µ[t] ≤ ε ∀t ≥ τ (4.17)

Consider s-th iteration, for some s ≥ 0. If U [s] − µ[s] = 0, then the algorithm has already converged,

and the proof is complete, with τ = s (recall that we have already proved that the algorithm satisfies the

validity condition).

Now consider the case when U [s]− µ[s] > 0. Partition V − F into two subsets, A and B, such that, for

each node i ∈ A, vi[s] ∈
[
µ[s], U [s]+µ[s]

2

)
, and for each node j ∈ B, vj [s] ∈

[
U [s]+µ[s]

2 , U [s]
]
. By definition of

µ[s] and U [s], there exist fault-free nodes i and j such that vi[s] = µ[s] and vj [s] = U [s]. Thus, sets A and

B are both non-empty. By Lemma 27, one of the following two conditions must be true:

• Set A propagates to set B. Then, define L = B and R = A. The states of all the nodes in R = A are

confined within an interval of length < U [s]+µ[s]
2 − µ[s] ≤ U [s]−µ[s]

2 .

• Set B propagates to set A. Then, define L = A and R = B. In this case, states of all the nodes in

R = B are confined within an interval of length ≤ U [s]− U [s]+µ[s]
2 ≤ U [s]−µ[s]

2 .

82

In both cases above, we have found non-empty sets L and R such that (i) L,R is a partition of V − F , (ii)

R propagates to L, and (iii) the states in R are confined to an interval of length ≤ U [s]−µ[s]
2 . Suppose that

R propagates to L in l(s) steps, where l(s) ≥ 1. Then by Lemma 29,

U [s+ l(s)]− µ[s+ l(s)] ≤
(

1− αl(s)

2

)
(U [s]− µ[s]) (4.18)

In Algorithm 1, observe that ai > 0 for all i. Therefore, α defined in (4.3) in Algorithm 1 is > 0. Then,

n− f − 1 ≥ l(s) ≥ 1 and 0 < α ≤ 1; hence, 0 ≤
(

1− αl(s)

2

)
< 1.

Let us define the following sequence of iteration indices:

• τ0 = 0,

• for i > 0, τi = τi−1 + l(τi−1), where l(s) for any given s was defined above.

If for some i, U [τi]−µ[τi] = 0, then since the algorithm is already proved to satisfy the validity condition,

we will have U [t]− µ[t] = 0 for all t ≥ τi, and the proof of convergence is complete.

Now suppose that U [τi]− µ[τi] 6= 0 for the values of i in the analysis below. By repeated application of

the argument leading to (4.18), we can prove that, for i ≥ 0,

U [τi]− µ[τi] ≤
(

Πi
j=1

(
1− ατj−τj−1

2

))
(U [0]− µ[0]) (4.19)

For a given ε, by choosing a large enough i, we can obtain

(
Πi
j=1

(
1− ατj−τj−1

2

))
(U [0]− µ[0]) ≤ ε

and, therefore,

U [τi]− µ[τi] ≤ ε (4.20)

For t ≥ τi, by validity of Algorithm 1, it follows that

U [t]− µ[t] ≤ U [τi]− µ[τi] ≤ ε

This concludes the proof of Theorem 10. 2

It should be easy to see that other correct IABC algorithms can be obtained by choosing “weights”

83

differently than the ones in Algorithm 1, and with other appropriate ways of eliminating values in the

Update step. This observation inspire us to design IABC algorithms that tolerate other kind of fault models

as discussed in later Chapters.

4.6 Asynchronous Systems

Dolev et al. [29] proposed an iterative algorithm for asynchronous systems. We extend their approach to

arbitrary point-to-point networks. In particular, we consider the Asynchronous IABC Algorithm structure

below, which is similar to the algorithm in [29]. This algorithm structure differs from the structure presented

in Chapter 4.2 in two important ways: (i) the messages containing states are now tagged by the iteration

index to which the states correspond, and (ii) each node i waits to receive only |N−i |−f messages containing

states from iteration t − 1 before computing the new state in its t-th iteration. Due to the asynchronous

nature of the system, different nodes may potentially perform their t-th iteration at very different real times.

Asynchronous IABC Algorithm

Steps that should be performed by each node i ∈ V in its t-th iteration are as follows.

1. Transmit step: Transmit current state vi[t− 1] on all outgoing edges. The message is tagged by index

t− 1.

2. Receive step: Wait until |N−i | − f messages tagged by index t− 1 are received on the incoming edges.

Values received in these messages form vector ri[t] of size |N−i | − f . Note that by assumption, up to

f nodes may be faulty. Thus, node i can receive |N−i | − f messages with index t− 1.

3. Update step: Node i updates its state using a transition function Zi.

vi[t] = Zi (ri[t] , vi[t− 1]) (4.21)

We now introduce relation
a⇒ that is analogous to relation ⇒ defined previously.

Definition 14 For non-empty disjoint sets of nodes A and B, A
a⇒ B iff there exists a node v ∈ B that has

at least 2f + 1 incoming edges from nodes in A, i.e., |N−v ∩A| ≥ 2f + 1.

Theorem 11 states a necessary condition for asynchronous iterative algorithms with the above structure.

84

Theorem 11 If an Asynchronous IABC Algorithm satisfies validity and convergence conditions in graph

G(V, E), then for any partition F,L,C,R of V, such that L and R are both non-empty and |F | ≤ f , then

either C ∪R a⇒ L, or L ∪ C a⇒ R.

The proof is similar to the proof of Theorem 6. We present the details in Appendix A. The following corollary

can be obtained from Theorem 11 as shown in Appendix A.

Corollary 5 If an Asynchronous IABC Algorithm satisfies validity and convergence conditions in graph

G(V, E), then n > 5f , and when f > 0, |N−i | ≥ 3f + 1 for all i ∈ V.

It can be shown that the necessary condition in Theorem 11 is also sufficient. In particular, an Asyn-

chronous IABC Algorithm with the structure above that performs the Update step shown below can be

proved to satisfy the convergence and validity conditions. Note that the Update step below, to be performed

by each node i ∈ V, is similar to that in Algorithm 1 for the synchronous system.

• Update step: Sort the values in vector ri[t] in an increasing order, and eliminate the smallest f and

the largest f values (breaking ties arbitrarily). Recall that ri[t] contains |N−i | − f values. Let N∗i [t]

denote the set of nodes from whom the remaining |N−i | − 3f values were received, and let wj denote

the value received from node j ∈ N∗i [t]. Define wi = vi[t− 1], and

vi[t] =
∑

j∈{i}∪N∗i [t]

ai wj (4.22)

where

ai =
1

|N−i |+ 1− 3f
.

4.7 Summary

This Chapter presents the joint work with Nitin H. Vaidya and Guanfeng Liang – a tight necessary and

sufficient condition for the existence of a class of synchronous iterative approximate Byzantine consensus

algorithms (IABC) that can tolerate up to f Byzantine fault (f -total model) in arbitrary directed graphs.

These results are also extended to a class of iterative algorithms for asynchronous systems.

85

Chapter 5

Iterative Approximate Byzantine
Consensus Under Generalized Faults

5.1 Introduction

Chapter 4 discusses the results related to IABC algorithms under f -total fault model in both synchronous

and asynchronous systems. This Chapter generalizes the results to a more general fault model in synchronous

systems. The fault model assumed in much of the work on Byzantine consensus allows up to f Byzantine

faulty nodes in the network (f -total fault model) [94, 49, 46, 29, 52]. In prior work, other fault models have

been explored as well. For instance, in the f -local fault model, up to f incoming neighbors of each fault-free

node in the network may be faulty [10, 42, 94, 49], and in the‘f -fraction model [94, 49], up to f fraction

of incoming neighbors of each fault-free node may be faulty. In this Chapter, we consider a generalized

fault model (to be formally described in Chapter 5.2), which is similar to the fault model presented in [39],

[43]. The generalized fault model specifies a “fault domain”, which is a collection of feasible fault sets. For

example, in a system consisting of four nodes, namely, nodes 1, 2, 3 and 4, the fault domain could be specified

as F = { {1}, {2, 3, 4} }. Thus, in this case, either node 1 may be faulty, or any subset of nodes in {2, 3, 4}

may be faulty. However, node 1 may not be faulty together with another node in the same execution. This

fault model is general in the sense that the other fault models, such as f -total, f -local and f -fraction models,

are special cases of the generalized fault model.

In this Chapter, we consider iterative algorithms for achieving approximate Byzantine consensus in syn-

chronous point-to-point networks that are modeled as an arbitrary directed graphs. The iterative approxi-

mate Byzantine consensus (IABC) algorithms of interest is discussed in Chapter 4.2 and have the following

properties:

• Initial state of each node is equal to a real-valued input provided to that node.

• Validity condition: After each iteration of an IABC algorithm, the state of each fault-free node must

remain in the convex hull of the states of the fault-free nodes at the end of the previous iteration.

• Convergence condition: For any ε > 0, after a sufficiently large number of iterations, the states of the

86

fault-free nodes are guaranteed to be within ε of each other.

This Chapter is a generalization of Chapter 4 and has two contributions:

• We identify a tight necessary condition (Chapter 5.3) on the communication graph for the existence of

a correct IABC algorithm under the generalized fault model. Moreover, we show that the necessary

condition is also sufficient by introducing a new IABC algorithm for the generalized fault model

(Chapter 5.4) that uses only “local” information.

• We present a transition matrix representation of the new IABC algorithm (Chapter 5.5). This repre-

sentation is then used to prove the correctness of the proposed algorithm (Chapter 5.5.4). Transition

matrices have been used previously to prove correctness of non-fault-tolerant consensus [38]. However,

this Chapter is the first to develop transition matrix representation for Byzantine fault-tolerant con-

sensus. We make the following observation: for a given evolution of the state vector corresponding to

the state of the fault-free nodes, many alternate state transition matrices may potentially be chosen to

emulate that evolution correctly. However, for any given state evolution, we can suitably “design” the

transition matrices so that the classical results on matrix products can be applied to prove convergence

of our algorithm in all networks that satisfy the necessary condition.

The results presented in this Chapter are published in [84].

5.2 Generalized Byzantine Fault Model

The system and fault models under consideration are stated in Chapter 1.2. We also consider the iterative

approximate Byzantine consensus (IABC) Algorithms in this Chapter. The IABC algorithm is described in

Chapter 4.2.

The generalized fault model we consider is similar to fault models presented in [39, 43]. The generalized

fault model is characterized using fault domain F ⊆ 2V as follows: Nodes in set F may fail during an

execution of the algorithm only if there exists set F ∗ ∈ F such that F ⊆ F ∗. Set F is then said to be a

feasible fault set.

Definition 15 Set F ⊆ V is said to be a feasible fault set, if there exists F ∗ ∈ F such that F ⊆ F ∗.

Thus, each set in F specifies nodes that may all potentially fail during a single execution of the algorithm.

This feature can be used to capture the notion of correlated failures. For example, consider a system

87

consisting of four nodes, namely, nodes 1, 2, 3, and 4. Suppose that

F = { {1}, {2}, {3, 4} }

This definition of F implies that during an execution either (i) node 1 may fail, or (ii) node 2 may fail, or

(iii) any subset of {3, 4} may fail, and no other combination of nodes may fail (e.g., nodes 1 and 3 cannot

both fail in a single execution). In this case, the reason that the set {3, 4} is in the fault domain may be

that the failures of nodes 3 and 4 are correlated.

The generalized fault model is also useful to capture variations in node reliability [39, 43]. For instance,

in the above example, nodes 1 and 2 may be more reliable than nodes 3 and 4. Therefore, while nodes 3

and 4 may fail in the same execution, nodes 1 and 2 are less likely to fail together in the same execution.

Therefore, {1, 2} 6∈ F .

Local knowledge of F : To implement our IABC Algorithm presented in Chapter 5.4, it is sufficient for each

node i to know N−i ∩ F , for each feasible fault set F . In other words, each node only needs to know the set

of its incoming neighbors that may fail in the same execution of the algorithm. Thus, the iterative algorithm

can be implemented using only “local” information regarding F .

5.3 Necessary Condition

In this section, we develop a necessary condition for the existence of a correct IABC algorithm under

generalized fault model. The necessary condition will be proved to be also sufficient in Chapter 5.5. To

facilitate the statement, we introduce the notion of “reduced graph”, which is based on the notion of graph

decomposition and source component introduced in Chapter 3.6.4. The following definition is a generalization

of Definition 11 in Chapter 4. For brevity, we use the same terminology.

Definition 16 (Reduced Graph) For a given graph G(V, E) and a feasible fault set F , a reduced graph

GF (VF , EF) is obtained as follows:

• Node set is obtained as VF = V − F .

• For each node i ∈ VF , a feasible fault set Fx(i) is chosen, and then the edge set EF is obtained as

follows:

– remove from E all the links incident on the nodes in F , i.e., all the incoming and outgoing links

of nodes in F , and

88

– for each j ∈ Fx(i) ∩ VF ∩N−i , remove link (j, i) from E.

Feasible fault sets Fx(i) and Fx(j) chosen for i 6= j may or may not be identical.

Note that for a given G(V, E) and a given F , multiple reduced graphs GF may exist, depending on the

choice of Fx sets above. The above definition of a “reduced graph” is a generalization of Definition 11 in

Chapter 4. Definition 11 only requires to remove enough number of edges while constructing reduced graph.

However, in the generalized fault model, we can only delete those edges between node i and some nodes

belonging to feasible fault sets (Fx(i) ∩ VF) to form a “reduced graph”. Intuitively, this represents the gain

from the extra information, since node i now knows which information are more reliable.

For a correct IABC algorithm to exist, the network graph G(V, E) must satisfy the necessary condition

stated in Theorem 12 below. The proof is similar to the necessity proof in Chapter 4.3.

Theorem 12 Suppose that a correct IABC algorithm exists for G(V, E). Then, any reduced graph GF ,

corresponding to any feasible fault set F , must contain exactly one source component.

Proof: Now, we present the proof for Theorem 12. The proof is by contradiction. Let us assume that a

correct IABC algorithm exists, and for some feasible fault set F , and feasible sets Fx(i) for each i ∈ V − F ,

the resulting reduced graph contains two source components.

Let L and R denote the nodes in the two source components, respectively. Thus, L and R are disjoint

and non-empty. Let C = (V −F −L−R) be the remaining nodes in the reduced graph. C may or may not

be non-empty. Let us now assume that the nodes in F (if non-empty) are all faulty, and all the nodes in L,

R, and C (if non-empty) are fault-free.

Consider the case when (i) each node in L has initial input m , (ii) each node in R has initial input M ,

such that M > m, and (iii) each node in C (if non-empty) has an input in the interval [m,M].

In the Transmit step of iteration 1 of the IABC algorithm, suppose that the faulty nodes in F (if non-

empty) send m− < m on outgoing links to nodes in L, send M+ > M on outgoing links to nodes in R, and

send some arbitrary value in interval [m,M] on outgoing links to nodes in C (if non-empty). This behavior

is possible since nodes in F are Byzantine faulty. Note that m− < m < M < M+. Each fault-free node

k ∈ V − F sends to nodes in N+
k value vk[0] in iteration 1.

Consider any node i ∈ L. Since L is a source component in the reduced graph, it must be true that

N−i ∩ (C ∪R) ⊆ N−i ∩ Fx(i) ∩ VF .1

1Explanation: In the reduced graph, there are no incoming links at i from nodes in N−i ∩ (C ∪ R). Thus, any incoming

links in E from the nodes in N−i ∩ (C ∪R) must have been removed when constructing EF for the reduced graph. Recall that

when constructing EF , incoming links from nodes in N−i ∩ Fx(i) ∩ VF are removed. It should be noted that the algorithm is
performed using the links in E, not the reduced graph. Thus, in the Transmit step, all links in E are used.

89

Figure 5.1: Illustration of the behavior of faulty nodes in F and the value received at node i.

Now, node i receives m− from the nodes in N−i ∩F , and values in [m,M] from the nodes in N−i ∩(C∪R),

and m from the nodes in {i} ∪ (N−i ∩ L). Figure 5.1 illustrates the behavior of faulty nodes in F and the

value received by node i.

Consider the following two cases:

• N−i ∩ F and N−i ∩ (C ∪R) are both non-empty: In this case, (N−i ∩ F) ⊆ F and N−i ∩ (C ∪R) =

N−i ∩Fx(i)∩VF ⊆ Fx(i). From node i’s perspective, consider two possible scenarios: (a) nodes inN−i ∩F

are all faulty, and the other nodes are fault-free, and (b) nodes in N−i ∩(C∪R) = N−i ∩Fx(i)∩VF are all

faulty, and the other nodes are fault-free. Note that, since Fx(i) is a feasible fault set, N−i ∩Fx(i)∩VF

is also a feasible fault set. Similarly, since F is a feasible fault set, N−i ∩ F is also a feasible fault set.

In scenario (a), from node i’s perspective, the fault-free nodes have sent values in interval [m,M],

whereas the faulty incoming neighbors, i.e., nodes in N−i ∩ F , have sent value m−. According to the

validity condition, vi[1] ≥ m. On the other hand, in scenario (b), the fault-free incoming neighbors

have sent values m− and m, where m− < m; so vi[1] ≤ m, according to the validity condition. Since

node i does not know whether the correct scenario is (a) or (b), it must update its state to satisfy the

validity condition in both cases. Thus, it follows that vi[1] = m.

• At most one of N−i ∩F and N−i ∩ (C ∪R) is non-empty: Recall that N−i ∩F and N−i ∩ (C ∪R) =

N−i ∩Fx(i)∩VF are both feasible fault sets. Since at least one of these two sets is empty, their union,

i.e., (N−i ∩ F) ∪ (N−i ∩ (C ∪R)), is also a feasible fault set.

90

Then, from node i’s perspective, it is possible that all the nodes in (N−i ∩ F) ∪ (N−i ∩ (C ∪ R)) are

faulty, and the rest of the nodes are fault-free. In this situation, the values sent to node i by the

fault-free nodes (which are all in {i} ∪ (N−i ∩ L)) are all m, and therefore, vi[1] must be set to m as

per the validity condition.

Hence, vi[1] = m for each node i ∈ L. Similarly, we can show that vj [1] = M for each node j ∈ R.

Now consider the nodes in set C (if non-empty). All the values received by the nodes in C are in [m,M],

therefore, their new state must also remain in [m,M], as per the validity condition.

The above discussion implies that, at the end of iteration 1, the following conditions hold true: (i) state

of each node in L is m , (ii) state of each node in R is M , and (iii) state of each node in C (if non-empty) is

in the interval [m,M]. These conditions are identical to the initial conditions listed previously. Then, by a

repeated application of the above argument (proof by induction), it follows that for any t ≥ 0, vi[t] = m for

all nodes i ∈ L, vj [t] = M for all nodes j ∈ R and vk[t] ∈ [m,M] for all nodes k ∈ C.

Since L and R both contain fault-free nodes, and m 6= M , the convergence requirement is not satisfied.

This is a contradiction to the assumption that a correct iterative algorithm exists in G(V, E). 2

5.4 Algorithm 2

We will prove that there exists an IABC algorithm – particularly Algorithm 2 below – that satisfies the

validity and convergence conditions provided that the graph G(V, E) satisfies the necessary condition in

Theorem 12. This implies that the necessary condition in Theorem 12 is also sufficient. Algorithm 2 has

the three-step structure described in Chapter 4.2. This algorithm is a generalization – to accommodate the

generalized fault model – of iterative algorithms that were analyzed in prior work [29, 52, 41, 50, 49] and

Chapter 4. The key difference from previous algorithms is in the Update step below.

Algorithm 2

1. Transmit step: Transmit current state vi[t− 1] on all outgoing edges and self-loop.

2. Receive step: Receive values on all incoming edges and self-loop. These values form vector ri[t] of size

|N−i |+ 1 (including the value from node i itself). When a fault-free node expects to receive a message

from an incoming neighbor but does not receive the message, the message value is assumed to be equal

to some default value.

3. Update step: Sort the values in ri[t] in an increasing order (breaking ties arbitrarily). Let D be a

vector of nodes arranged in an order “consistent” with ri[t]: specifically, D(1) is the node that sent

91

the smallest value in ri[t], D(2) is the node that sent the second smallest value in ri[t], and so on. The

size of vector D is also |N−i |+ 1.

From vector ri[t], eliminate the smallest f1 values, and the largest f2 values, where f1 and f2 are

defined as follows:

• f1 is the largest number such that there exists a feasible fault set F ′ ⊆ N−i containing nodes

D(1), D(2), ..., D(f1). Recall that i 6∈ N−i .

• f2 is the largest number such that there exists a feasible fault set F ′′ ⊆ N−i containing nodes

D(|N−i | − f2 + 2), D(|N−i | − f2 + 3), ..., D(|N−i |+ 1).

F ′ and F ′′ above may or may not be identical.

Let N∗i [t] denote the set of nodes from whom the remaining |N−i | + 1 − f1 − f2 values in ri[t] were

received, and let wj denote the value received from node j ∈ N∗i [t]. Note that i ∈ N∗i [t]. Hence, for

convenience, define wi = vi[t− 1] to be the value node i receives from itself. Observe that if j ∈ N∗i [t]

is fault-free, then wj = vj [t− 1].

Define

vi[t] = Zi(ri[t]) =
∑

j∈N∗i [t]

ai wj (5.1)

where

ai =
1

|N∗i [t]|
=

1

|N−i |+ 1− f1 − f2

The “weight” of each term on the right-hand side of (5.1) is ai, and these weights add to 1. Also,

0 < ai ≤ 1. Although f1, f2 and ai may be different for each iteration t, for simplicity, we do not

explicitly represent this dependence on t in the notations.

Observe f1 + f2 nodes whose values are eliminated in the Update step above are all in N−i . Thus,

the above algorithm can be implemented by node i if it knows which of its incoming neighbors may fail

simultaneously; node i does not need to know the entire fault domain F as such.

The main difference between the above algorithm and IABC algorithms in prior work, including Algorithm

1 in Chapter 4.4, is in the choice of the values eliminated from vector ri[t] in the Update step. The manner in

which the values are eliminated ensures that the values received from nodes D(f1 + 1) and D(|N−i |− f2 + 1)

(i.e., the smallest and largest values that survive in ri[t]) are within the convex hull of the state of fault-free

92

nodes, even if nodes D(f1 +1) and D(|N−i |−f2 +1) may not be fault-free. This property is useful in proving

algorithm correctness (as discussed below).

5.5 Sufficiency (Correctness of Algorithm 2)

We will show that Algorithm 2 satisfies validity and convergence conditions, provided that G(V, E) satisfies

the condition below, which matches the necessary condition stated in Theorem 12.

Sufficient condition: Any reduced graph GF corresponding to any feasible fault set F contains exactly one

source component.

In the rest of this section, we assume that G(V,F) satisfies the above condition. We first introduce some

standard matrix tools to facilitate our proof. Then, we develop a transition matrix representation of the

Update step in Algorithm 2, and show how to use these tools to prove the correctness of Algorithm 2 in

G(V,F).

When presenting matrix products, for convenience of presentation, we adopt the “backward” product

convention below, where a ≤ b,

Πb
i=aA[i] = A[b]A[b− 1] · · ·A[a] (5.2)

5.5.1 Matrix Preliminaries

In the discussion below, we use boldface upper case letters to denote matrices, rows of matrices, and their

elements. For instance, A denotes a matrix, Ai denotes the i-th row of matrix A, and Aij denotes the

element at the intersection of the i-th row and the j-th column of matrix A.

Definition 17 A vector is said to be stochastic if all the elements of the vector are non-negative, and the

elements add up to 1. A matrix is said to be row stochastic if each row of the matrix is a stochastic vector.

For a row stochastic matrix A, coefficients of ergodicity δ(A) and λ(A) are defined as follows [93]:

δ(A) = max
j

max
i1,i2

|Ai1 j −Ai2 j |

λ(A) = 1−min
i1,i2

∑
j

min(Ai1 j ,Ai2 j)

93

It is easy to show that 0 ≤ δ(A) ≤ 1 and 0 ≤ λ(A) ≤ 1, and that the rows of A are all identical if and only

if δ(A) = 0. Also, λ(A) = 0 if and only if δ(A) = 0.

The next result from [34] establishes a relation between the coefficient of ergodicity δ(·) of a product of

row stochastic matrices, and the coefficients of ergodicity λ(·) of the individual matrices defining the product.

Lemma 32 For any p square row stochastic matrices A(1),A(2), . . .A(p),

δ(A(p)A(p− 1) · · ·A(1)) ≤ Πp
i=1 λ(A(i)).

Lemma 32 is proved in [34]. It implies that if, for all i, λ(A(i)) ≤ 1 − γ for some γ, where 0 < γ ≤ 1,

then δ(A(p)A(p − 1) · · ·A(1)) will approach zero as p approaches ∞. We now define a scrambling matrix

[34, 93].

Definition 18 A row stochastic matrix A is said to be a scrambling matrix if

λ(A) < 1

The following lemma follows easily from the above definition of λ(·).

Lemma 33 If any column of a row stochastic matrix A contains only non-zero elements that are all lower

bounded by some constant γ, where 0 < γ ≤ 1, then A is a scrambling matrix, and λ(A) ≤ 1− γ.

5.5.2 Transition Matrix Representation

In our discussion below, M[t] is a square matrix, Mi[t] is the i-th row of the matrix, and Mij [t] is the

element at the intersection of the i-th row and j-th column of M[t].

For a given execution of Algorithm 2, let F denote the actual set of faulty nodes in that execution. Let

|F | = ψ. Without loss of generality, suppose that nodes 1 through (n−ψ) are fault-free, and if ψ > 0, nodes

(n− ψ + 1) through n are faulty. Denote by v[0] the column vector consisting of the initial states of all the

fault-free nodes. Denote by v[t], where t ≥ 1, the column vector consisting of the states of all the fault-free

nodes at the end of the t-th iteration. The i-th element of vector v[t] is state vi[t]. The size of vector v[t] is

(n− ψ).

We will show that the iterative update of the state of a fault-free node i (1 ≤ i ≤ n − ψ) performed in

(5.1) in Algorithm 2 can be expressed using the matrix form below.

vi[t] = Mi[t] v[t− 1] (5.3)

94

where Mi[t] is a stochastic row vector of size n − ψ. That is, Mij [t] ≥ 0, for 1 ≤ j ≤ n − ψ, and∑
1≤j≤n−ψ Mij [t] = 1.2 By “stacking” (5.3) for different i, 1 ≤ i ≤ n−ψ, we will represent the Update step

of Algorithm 2 at all the fault-free nodes together using (5.4) below.

v[t] = M[t] v[t− 1] (5.4)

where M[t] is a (n−ψ)× (n−ψ) row stochastic matrix, with its i-th row being equal to Mi[t] in (5.3). M[t]

is said to be a transition matrix.

By repeated application of (5.4), we can represent the Update step of Algorithm 2 at the t-th iterations

(t ≥ 1) as:

v[t] =
(

Πt
k=1M[k]

)
v[0] (5.5)

Recall that we adopt the “backward” product convention as presented in (5.2).

In the rest of this section, we will first “construct” transition matrices M[k] (1 ≤ k ≤ t) that satisfy

certain desirable properties. Then, we will identify a connection between these transition matrices and the

sufficiency condition stated above, and use this connection to establish convergence property for Algorithm

2. The validity property also follows from the transition matrix representation.

5.5.3 Construction of Transition Matrix

We will construct a transition matrix with the property described in Lemma 34 below.

Lemma 34 The Update step of Algorithm 2 at the fault-free nodes can be expressed using row stochastic

transition matrix M[t], such that there exists a feasible fault set Fx(i) for each i ∈ V − F such that, for all

j ∈ {i} ∪ ((VF − Fx(i)) ∩N−i),

Mij [t] ≥ β

where β is a constant (to be defined later), and 0 < β ≤ 1.

Proof: We prove the correctness of Lemma 34 by constructing Mi[t] for 1 ≤ i ≤ n − ψ that satisfies the

conditions in Lemma 34. Recall that F is the set of faulty nodes, and |F | = ψ. As stated before, without

loss of generality, nodes 1 through n− ψ are assumed to be fault-free, and the remaining ψ nodes faulty.

2In addition to t, the row vector Mi[t] may depend on the state vector v[t − 1] as well as the behavior of the faulty nodes
in F . For simplicity, the notation Mi[t] does not explicitly represent this dependence.

95

Consider a fault-free node i performing the Update step in Algorithm 2. In the Update step, recall that

the smallest f1 and the largest f2 values are eliminated from ri[t], where the choice of f1 and f2 is described

in Algorithm 2. Let us denote by S and L, respectively, the set of nodes3 from whom the smallest f1 and the

largest f2 values were received by node i in iteration t. Define sets Sg and Lg to be subsets of S and L that

contain all the fault-free nodes in S and L, respectively. That is, Sg = S ∩ (V − F) and Lg = L ∩ (V − F).

Construction of Mi[t] differs somewhat depending on whether sets Sg,Lg and N∗i [t] ∩ F are empty or

non-empty. We divide the possibilities into 6 separate cases:

• Case I: Sg 6= Φ,Lg 6= Φ, and N∗i [t] ∩ F 6= Φ.

• Case II: Sg 6= Φ,Lg 6= Φ, and N∗i [t] ∩ F = Φ.

• Case III: Sg = Φ,Lg 6= Φ, and N∗i [t] ∩ F 6= Φ.

• Case IV: Sg 6= Φ,Lg = Φ, and N∗i [t] ∩ F 6= Φ.

• Case V: Sg = Φ,Lg = Φ, and N∗i [t] ∩ F 6= Φ.

• Case VI: at most one of Sg and Lg is non-empty, and N∗i [t] ∩ F = Φ.

Case I In Case I, Sg 6= Φ,Lg 6= Φ, and N∗i [t]∩F 6= Φ. Let mS and mL be defined as shown below. Recall

that the nodes in Sg and Lg are all fault-free, and therefore, for any node j ∈ Sg ∪Lg, wj = vj [t− 1] (in the

notation of Algorithm 2).

mS =

∑
j∈Sg vj [t− 1]

|Sg|
and mL =

∑
j∈Lg vj [t− 1]

|Lg|

Now, consider any node k ∈ N∗i [t]. By the definition of sets Sg and Lg, mS ≤ wk ≤ mL. Therefore, we can

find weights Sk ≥ 0 and Lk ≥ 0 such that Sk + Lk = 1, and

wk = Sk mS + Lk mL (5.6)

=
Sk
|Sg|

∑
j∈Sg

vj [t− 1] +
Lk
|Lg|

∑
j∈Lg

vj [t− 1] (5.7)

Clearly, at least one of Sk and Lk must be ≥ 1/2. We now define elements Mij [t] of row Mi[t]:

3Although S and L may be different for each t, for simplicity, we do not explicitly represent this dependence on t in the
notations S and L.

96

• For j ∈ N∗i [t] ∩ (V − F) : In this case, j is either a fault-free incoming neighbor of i, or i itself. For

each such j, define Mij [t] = ai. This is obtained by observing in (5.1) that the contribution of such a

node j to the new state vi[t] is ai wj = ai vj [t− 1].

The elements of Mi[t] defined here add up to

|N∗i [t] ∩ (V − F)| ai

• For j ∈ Sg ∪ Lg : In this case, j is a fault-free node in S or L.

For each j ∈ Sg,

Mij [t] = ai
∑

k∈N∗i [t]∩F

Sk
|Sg|

and for each node j ∈ Lg,

Mij [t] = ai
∑

k∈N∗i [t]∩F

Lk
|Lg|

To obtain these two expressions, we represent value wk sent by each faulty node k in N∗i [t], i.e.,

k ∈ N∗i [t]∩F , using (5.7). Recall that this node k contributes aiwk to (5.1). The above two expressions

are then obtained by summing (5.7) over all the faulty nodes in N∗i [t] ∩ F , and replacing this sum by

equivalent contributions by nodes in Sg and Lg.

The elements of Mi[t] defined here add up to

ai
∑

k∈N∗i [t]∩F

(Sk + Lk) = |N∗i [t] ∩ F | ai.

• For j ∈ (V − F)− (N∗i [t] ∪ Sg ∪ Lg) : These fault-free nodes have not yet been considered above. For

each such node j, define Mij [t] = 0.

With the above definition of Mi[t], it should be easy to see that Mi[t] v[t − 1] is, in fact, identical to vi[t]

obtained using (5.1). Thus, the above construction of Mi[t] results in the contribution of the faulty nodes

in N∗i [t] to (5.1) being replaced by an equivalent contribution from fault-free nodes in Lg and Sg.

Properties of Mi[t]:

First, we show that M[t] is row stochastic. Observe that all the elements of Mi[t] are non-negative. Also,

all the elements of Mi[t] above add up to

|N∗i [t] ∩ (V − F)| ai + |N∗i [t] ∩ F | ai = |N∗i [t]| ai = 1

97

because ai = 1/|N∗i [t]| as defined in Algorithm 2. Thus, Mi[t] is a stochastic row vector.

Recall that from the above discussion, for k ∈ N∗i [t], one of Sk and Lk must be ≥ 1/2. Without

loss of generality, assume that Ss ≥ 1/2 for some s ∈ N∗i [t] ∩ F . Consequently, for each node j ∈ Sg,

Mij [t] ≥ ai
|Sg|Ss ≥

ai
2|Sg| . Also, for each fault-free node j in N∗i [t], Mij [t] = ai. Thus, if β is chosen such that

0 < β ≤ ai
2|Sg|

(5.8)

and Fx(i) is defined to be equal to L, then the condition in the lemma holds for node i. That is, Mij [t] ≥ β

for j ∈ {i} ∪ ((VF − Fx(i)) ∩N−i).

Case II Now, we consider the case when Sg 6= Φ,Lg 6= Φ, and N∗i [t] ∩ F = Φ. That is, when each of S

and L contains at least one fault-free node, and N∗i [t] contains only fault-free node(s). In fact, the analysis

for Case II is very similar to the one for Case I when N∗i [t] does contain a faulty node. We now discuss how

the analysis of Case I can be applied to Case II. Rewrite (5.1) as follows:

vi[t] =
ai
2
vi[t− 1] +

ai
2
vi[t− 1] +

∑
j∈N∗i [t]−{i}

aiwj (5.9)

= aiwz + aiwi +
∑

j∈N∗i [t]−{i}

aiwj (5.10)

In the above equation, z is to be viewed as a “virtual” incoming neighbor of node i, which has sent value

wz = vi[t−1]
2 to node i in iteration t. With the above rewriting of state update, the value received by node

i from itself should be viewed as wi = vi[t−1]
2 instead of vi[t − 1]. With this transformation, Case II now

becomes identical to Case I, with virtual node z being treated as an incoming neighbor of node i.

In essence, a part of node i’s contribution (half, to be precise) is now replaced by equivalent contribution

by nodes in Lg and Sg. We now define elements Mij [t] of row Mi[t]:

• For j = i: Mij [t] = ai
2 . This is obtained by observing in (5.1) that node i’s contribution to the new

state vi[t] is ai
vi[t−1]

2 .

• For j ∈ N∗i [t] − {i} : In this case, j is a fault-free incoming neighbor of i. For each such j, define

Mij [t] = ai. This is obtained by observing in (5.1) that the contribution of node j to the new state

vi[t] is aiwj = aivj [t− 1].

• For j ∈ Sg ∪ Lg : In this case, j is a fault-free node in S or L.

98

For each j ∈ Sg,

Mij [t] =
ai
2

Sz
|Sg|

and for each node j ∈ Lg,

Mij [t] =
ai
2

Lz
|Lg|

where Sz and Lz are chosen such that Sz +Lz = 1 and wz = vi[t−1]
2 = Sz

2 mS + Lz
2 mL. Note that such

Sz and Lz exist because by definition of Sg and Lg, vi[t−1] ≥ wj , ∀j ∈ Sg and vi[t−1] ≤ wj , ∀j ∈ Lg.

Then the two expressions above are obtained by replacing the contribution of the virtual node z by an

equivalent contribution by the nodes in Sg and Lg, respectively.

• For j ∈ (V − F)− (N∗i [t] ∪ Sg ∪ Lg) : These fault-free nodes have not yet been considered above. For

each such node j, define Mij [t] = 0.

Properties of Mi[t]:

By argument similar to the one in Case I, M[t] is row stochastic. Without loss of generality, suppose that

Sz ≥ 1/2. Then for each node j ∈ Sg, Mij [t] = ai
2|Sg|Sz ≥

ai
4|Sg| . Also, for fault-free node j in N∗i [t] − {i},

Mij [t] = ai, and Mii[t] = ai
2 . Recall that by definition, |Sg| ≥ 1. Hence, if β is chosen such that

0 < β ≤ ai
4|Sg|

(5.11)

and Fx(i) is defined to be equal to L, then the condition in the Lemma 34 holds for node i. That is,

Mij [t] ≥ β for j ∈ {i} ∪ (VF − Fx(i)) ∩N−i .

Cases III and IV Now, we describe the construction of Case III. The construction for Case IV is very

similar, and thus, is omitted here.

In Case III, Sg = Φ,Lg 6= Φ, and N∗i [t] ∩ F 6= Φ. Thus, S does not contain any fault-free nodes (hence

Sg is empty). This may be due to one of the following two reasons: (i) the set S is non-empty, but all the

nodes in S are faulty, or (ii) set S is empty.

Assume that l ∈ L is a fault-free node, and that all the nodes in S are faulty (i.e., Sg = Φ) or that S is

empty (i.e., f1 = 0). In this case, observe that node D(f1 + 1) must be fault-free (otherwise, f1 cannot be

the largest value as defined in Algorithm 2). Now, consider any node k ∈ N∗i [t]. Similar to the argument in

99

Case I, we can find weights Sk ≥ 0 and Lk ≥ 0 such that

Sk + Lk = 1

and

wk = Sk vD(f1+1)[t− 1] + Lk vl[t− 1] (5.12)

We now define Mij [t] for all fault-free j.

• For j ∈ (N∗i [t]− {D(f1 + 1)}) ∩ (V − F). That is, j is a fault-free node in N∗i [t] with the exception of

D(f1 + 1).

For each such j, define Mij [t] = ai. This is obtained by observing in (5.1) that the contribution of

node j to the new state vi[t] is aiwj = ai vj [t− 1].

The elements of Mi[t] defined here (including the case of j = i) add up to

(|N∗i [t] ∩ (V − F)| − 1) ai.

• For nodes D(f1 + 1) and l: Define

MiD(f1+1)[t] = ai +
∑

k∈N∗i [t]∩F

ai Sk

and

Mil[t] =
∑

k∈N∗i [t]∩F

ai Lk

Similar to Case I, these two expressions are obtained by summing up the contribution over the faulty

nodes in N∗i [t], and replacing the sum by an equivalent contribution by the nodes D(f1 + 1) and l,

respectively, according to (5.12).

The above elements of Mi[t] add up to

ai

1 +
∑

k∈N∗i [t]∩F

(Sk + Lk)

 = (1 + |N∗i [t] ∩ F |) ai.

• For j ∈ (V − F)− (N∗i [t] ∪ {l}): These fault-free nodes have not yet been considered above. For each

100

such j, define Mij [t] = 0.

Similar to Case I, in Case III as well, it should be easy to see that

Mi[t] v[t− 1]

is identical to vi[t] obtained using (5.1).

Properties of Mi[t]: All the elements of Mi[t] are non-negative. The elements of Mi[t] defined in Case II

add up to

(|N∗i [t] ∩ (V − F)| − 1) ai + (1 + |N∗i [t] ∩ F |) ai = |N∗i [t]| ai = 1

Thus, Mi[t] is a stochastic row vector.

In Case III, recall that for any fault-free node j in N∗i [t] (including j = D(f1 +1) and j = i), Mij [t] ≥ ai.

Thus, if β is chosen such that

0 < β ≤ ai (5.13)

and Fx(i) is defined to be equal to L, then the condition in the Lemma 34 holds for node i.

Case V Consider Case V, where N∗i [t] ∩ F 6= Φ, and Sg = Lg = Φ. In this case, it should be easy to

see that N∗i [t] contains at least 3 nodes. In particular, Df1+1 must be fault-free (otherwise, f1 cannot be

maximum possible), D|N−i |−f2+1 must be fault-free (otherwise, f2 cannot be maximum possible), and there

is a faulty node in N∗i [t].

Now this case can be handled similar to Case III analyzed above. In particular, entries in Mi[t] are

defined similarly with l being defined equal to DN−i −f2+1. Also, define Fx(i) = Φ.

Hence, it is easy to see that the properties of Mi[t] are identical to Case III presented above.

Case VI Here, we consider the case when at most one of S and L contains a fault-free node and N∗i [t]∩F =

Φ. Without loss of generality, suppose that S contains only faulty nodes, and L may contain a fault-free

node.

In this case, define Mij [t] = ai for j ∈ N∗i [t]; define Mij = 0 for all other fault-free nodes j. Also, define

Fx(i) = L.

The properties of Mi[t] thus defined are identical to Case III above.

101

All Cases Together Now, let us consider Cases I-VI together. From the definition of ai in Algorithm 2,

observe that ai ≥ 1
|N−i |+1

(because f1, f2 ≥ 0). Let us define

α = min
i∈V

1

|N−i |+ 1

Moreover, observe that |Sg| ≤ n and |Lg| ≤ n. Then define β as

β =
α

4n
(5.14)

This definition satisfies constraints on β in Cases I through VI (conditions (5.8), (5.11) and (5.13)). Thus,

Lemma 34 holds for all six cases with this choice of β. 2

5.5.4 Validity and Convergence of Algorithm 2

Now, we are ready to prove that Algorithm 2 is correct. We first discuss the properties of M[t], and use the

properties in the correctness proof.

Correspondence between M[t] and a Reduced Graph Let RF denote the set of all the reduced

graphs of G(V, E) corresponding to a feasible fault set F . Let τ = |RF |. τ depends on F and the underlying

network, and is finite.

In this discussion, let us denote a reduced graph by an italic upper case letter, and the corresponding

“connectivity matrix” (defined below) using the same letter in boldface upper case. Thus, H denotes the

connectivity matrix for graph H ∈ RF .

Non-zero elements of connectivity matrix H are defined as follows: (i) for 1 ≤ i, j ≤ n − ψ, Hij = 1 if

and only if (j, i) ∈ H, and (ii) Hii = 1 for 1 ≤ i ≤ n− ψ. That is, non-zero elements of row Hi correspond

to the incoming links at node i, and the self-loop at node i. Thus, the connectivity matrix for any reduced

graph in RF has a non-zero diagonal.

Based on the sufficient condition stated at the start of Chapter 5.5 and Lemma 34, we can show the

following key lemmas.

Lemma 35 For any H ∈ RF ,Hn−ψ has at least one non-zero column.

Proof: G(V, E) satisfies the sufficient condition stated at the start of Chapter 5.5. Therefore, there exists at

least one non-faulty node k in the reduced graph H that has directed paths to all the nodes in H (consisting

102

of the edges in H). Since the length of the path from k to any other node in H is at most n−ψ− 1, the k-th

column of matrix Hn−ψ will be non-zero.4 2

Definition 19 For matrices A and B of identical size, and a scalar γ, γB ≤ A provided that γBij ≤ Aij

for all i, j.

Lemma 36 For any t ≥ 1, there exists a graph H ∈ RF such that βH ≤M[t].

Proof: Observe that the i-th row of the transition matrix M[t] corresponds to the state update (in Algorithm

2) performed at fault-free node i. Recall from Lemma 34 that Mij [t] ≥ β for j ∈ {i} ∪ ((VF −Fx(i))∩N−i),

where Fx(i) is a feasible fault set.

Let us obtain a reduced graph H by choosing Fx(i) for each i as defined in Lemma 34. Then from the

definition of connectivity matrix H, Lemma 36 then follows. 2

Correctness of Algorithm 2 The rest of the proof below is inspired by related work on non-fault-tolerant

consensus [38].

Let H[t] denote the matrix H corresponding to M[t] as defined in Lemma 36.

Lemma 37 For any z ≥ 1, in the product below of H[t] matrices for consecutive τ(n − ψ) iterations, at

least one column is non-zero.

Π
z+τ(n−ψ)−1
t=z H[t]

Proof: Since the above product consists of τ(n−ψ) connectivity matrices corresponding to graphs in RF ,

at least one of the connectivity matrices corresponding to the τ distinct graphs in RF , say matrix H∗ , will

appear in the above product at least n− ψ times.

Now observe that: (i) By Lemma 35, Hn−ψ
∗ contains a non-zero column, say the k-th column is non-zero,

and (ii) all the H[t] matrices in the product contain a non-zero diagonal. These two observations together

imply that the k-th column in the above product is non-zero. 2

Let us now define a sequence of matrices Q(i), i ≥ 1, such that each of these matrices is a product of

τ(n− ψ) of the M[t] matrices. Specifically,

Q(i) = Π
iτ(n−ψ)
t=(i−1)τ(n−ψ)+1 M[t] (5.15)

4That is, all the elements of the column will be non-zero. Also, such a non-zero column will exist in Hn−ψ−1, too. We use
the loose bound of n− ψ to simplify the presentation.

103

From (5.5) and (5.15) observe that

v[kτ(n− ψ)] =
(

Πk
i=1 Q(i)

)
v[0] (5.16)

Lemma 38 For i ≥ 1, Q(i) is a scrambling row stochastic matrix, and

λ(Q(i)) ≤ 1− βτ(n−ψ).

Proof:

Q(i) is a product of row stochastic matrices (M[t]); therefore, Q(i) is row stochastic. From Lemma 36,

for each t ≥ 1,

βH[t] ≤ M[t]

Therefore,

βτ(n−ψ) Π
iτ(n−ψ)
t=(i−1)τ(n−ψ)+1 H[t] ≤ Π

iτ(n−ψ)
t=(i−1)τ(n−ψ)+1 M[t] = Q(i)

By using z = (i − 1)(n − ψ) + 1 in Lemma 37, we conclude that the matrix product on the left side of

the above inequality contains a non-zero column. Therefore, Q(i) on the right side of the inequality also

contains a non-zero column.

Observe that τ(n − ψ) is finite, and hence, βτ(n−ψ) is non-zero. Since the non-zero terms in H[t]

matrices are all 1, the non-zero elements in Π
iτ(n−ψ)
t=(i−1)τ(n−ψ)+1H[t] must each be ≥ 1. Therefore, there exists

a non-zero column in Q(i) with all the elements in the column being ≥ βτ(n−ψ). Therefore, by Lemma 33,

λ(Q(i)) ≤ 1− βτ(n−ψ), and Q(i) is a scrambling matrix. 2

Theorem 13 Suppose that G(V, E) satisfies the sufficient condition stated above. Algorithm 2 satisfies both

the validity and convergence conditions.

Proof:

Since v[t] = M[t] v[t − 1], and M[t] is a row stochastic matrix, it follows that Algorithm 2 satisfies the

validity condition.

Using Lemma 32 and the definition of Q(i), and using the inequalities λ(M[t]) ≤ 1 and λ(Q(i)) ≤

104

(1− βτ(n−ψ)) < 1, we get

lim
t→∞

δ(Πt
i=1M[i]) = lim

t→∞
δ

((
Πt
i=(b t

τ(n−ψ)
c)τ(n−ψ)+1M[i]

)(
Π
b t
τ(n−ψ)

c
i=1 Q(i)

))
≤ lim

t→∞
Π
b t
τ(n−ψ)

c
i=1 λ(Q(i)) = 0

Thus, the rows of Πt
i=1M[i] become identical in the limit. This observation, and the fact that v[t] =

(Πt
i=1M[i])v[0] together imply that the states of the fault-free nodes satisfy the convergence condition. 2

5.6 Summary

This Chapter considers a generalized fault model [39, 43], which can be used to specify more complex

failure patterns, such as correlated failures or non-uniform node reliabilities. Under this fault model, we

prove a tight necessary condition for the existence of synchronous iterative approximate Byzantine consensus

algorithms in arbitrary directed graphs. Then, we show the condition is also sufficient by providing a new

IABC algorithm.

We present a transition matrix-based proof to show the correctness of the proposed algorithm. While

transition matrices have been used to prove correctness of non-fault tolerant consensus [38], this Chapter

is the first to extend the technique to Byzantine consensus. We also extend this technique to solve other

consensus problems in next two Chapters.

105

Chapter 6

Iterative Approximate Byzantine
Consensus Under Link Faults

6.1 Introduction

Previous Chapters consider consensus problems when nodes may be faulty and all links are reliable. This

Chapter explores the problem in synchronous systems in which all nodes are fault-free and the links may be

Byzantine faulty. This type of fault model has been addressed in prior work [14, 64, 65, 67]. Particularly, we

adopt the transient Byzantine link failure model [64, 65], in which different sets of link failures may occur

at different times (formal definition in Chapter 6.2). We consider the problem in arbitrary directed graphs

using iterative algorithms that maintain only a small amount of memory across iterations. The iterative

approximate Byzantine consensus (IABC) algorithms of interest were discussed in Chapter 4.2 and have the

following properties:

• Initial state of each node is equal to a real-valued input provided to that node.

• Termination: The algorithm terminates in finite number of iterations.

• Validity: After each iteration of the algorithm, the state of each node must stay in the convex hull of

the states of all the nodes at the end of the previous iteration.

• ε-agreement: For any ε > 0, when the algorithm terminates, the difference between the outputs at any

pair of nodes is guaranteed to be within ε.

Note that in Chapters 4 and 5, we stated the last property a bit differently, namely, convergence property.

Effectively, ε-agreement provides a precise termination condition so that the convergence property is satisfied.

This Chapter extends our work on approximate consensus under node failures presented in Chapter 4

and 5. We identify a tight necessary and sufficient condition for the graphs to be able to reach approximate

consensus under transient Byzantine link failure models [64, 65] using restricted iterative algorithms; our

proof of correctness follows the same proof structure presented in Chapter 5 and [87, 86]. The use of matrix

analysis is inspired by the prior work on non-fault-tolerant consensus (e.g., [38, 9, 34]). The results presented

in this Chapter are published in [81].

106

6.2 Transient Byzantine Link Fault Model

Fault Model The system is assumed to be synchronous. And we consider the transient Byzantine link

failure model [64, 65] for iterative algorithms in directed network. All nodes are assumed to be fault-free,

and only send a single message on each outgoing edge in each iteration. A link (i, j) is said to be faulty in

a certain iteration if the message sent by node i is different from the message received by node j in that

iteration, i.e., the message from i to j is corrupted. Note that in our model, it is possible that link (i, j) is

faulty while link (j, i) is fault-free.1 In every iteration, up to f links may be faulty, i.e., at most f links may

deliver corrupted messages or drop messages. Note that different sets of link failures may occur in different

iterations.

A faulty link may tamper or drop messages. Also, the faulty links may be controlled by a single omniscient

adversary. The adversary is assumed to have a complete knowledge of the execution of the algorithm,

including the states of all the nodes, contents of the messages exchanged, the algorithm specification, and

the network topology.

6.3 Necessary Condition

For a correct iterative approximate consensus algorithm to exist under transient Byzantine link failures, the

graph G = (V, E) must satisfy the necessary condition proved in this section. Recall that in Chapter 4.3, we

have introduced relations⇒ and 6⇒ in Definition 10. This Chapter will use these relations to define the tight

condition. The condition is similar to prior conditions – except that instead of isolating a set of f nodes, we

remove a set of f links to accommodate potential misbehaviors by faulty links.

Condition P : Consider graph G = (V, E). Denote by F a subset of E such that |F | ≤ f . Let sets L,C,R

form a partition of V, such that both L and R are non-empty. Then, in G′ = (V, E − F), at least one of the

two conditions below must be true: (i) C ∪R⇒ L or (ii) L ∪ C ⇒ R.

The necessity proof below bears some similarity in the necessity proof of Theorem 6. One difference is

the way modeling link failures instead of node failures. We present the proof here for completeness.

Theorem 14 Suppose that a correct IABC algorithm exists for G = (V, E). Then G satisfies Condition P.

Proof:

1For example, the described case is possible in wireless network, if node i’s transmitter is broken while node i’s receiver and
node j’s transmitter and receiver all function correctly.

107

The proof is by contradiction. Let us assume that a correct IABC algorithm exists in G = (V, E), and

for some node partition L,C,R of V and a subset F ⊆ E such that |F | ≤ f , C ∪R 6⇒ L and L ∪ C 6⇒ R in

G′ = (V, E ′), where E ′ = E − F . Thus, for any i ∈ L, |{(k, i) | k ∈ C ∪ R, (k, i) ∈ E − F}| ≤ f . Similarly,

for any j ∈ R, |{(k, j) | k ∈ L ∪ C, (k, j) ∈ E − F}| ≤ f .

Also assume that all the links in F (if F is non-empty) are faulty, and the rest of the links are fault-free

in every iteration. Note that the nodes are not aware of the identity of the faulty links.

Consider the case when (i) each node in L has initial input m, (ii) each node in R has initial input M ,

such that M > m+ε, and (iii) each node in C, if C is non-empty, has an input in the interval [m,M]. Define

m− and M+ such that m− < m and M < M+.

In the Transmit Step of iteration 1 in the IABC algorithm, each node k, sends to nodes in N+
k value vk[0];

however, some values sent via faulty links may be tampered. Suppose that the messages sent via the faulty

links in F (if non-empty) are tampered in the following way: (i) if the link is an incoming link to a node in

L, then m− < m is delivered to that node; (ii) if the link is an incoming link to a node in R, then M+ > M

is delivered to that node; and (iii) if the link is an incoming link to a node in C, then some arbitrary value

in interval [m,M] is delivered to that node. This behavior is possible since links in F are Byzantine faulty

by assumption.

Consider any node i ∈ L. Recall that E−i is the set of all the incoming links at node i. Let E′i be the

subset of links in E−i from the nodes in C ∪R, i.e.,

E′i = {(j, i) | j ∈ C ∪R, (j, i) ∈ E}.

Since |F | ≤ f , |E−i ∩ F | ≤ f . Moreover, by assumption C ∪ R 6⇒ L; thus, |E′i| ≤ f , and we have

|E′i − F | ≤ |E′i| ≤ f . Node i will then receive m− via the links in E−i ∩ F (if non-empty) and values in

[m,M] via the links in E′i − F , and m via the rest of the links, i.e., links in E−i − E′i − F .

Consider the following two cases:

• Both E−i ∩ F and E′i − F are non-empty:

In this case, recall that |E−i ∩ F | ≤ f and |E′i − F | ≤ f . From node i’s perspective, consider two

possible scenarios: (a) links in E−i ∩ F are faulty, and the other links are fault-free, and (b) links in

E′i − F are faulty, and the other links are fault-free.

In scenario (a), from node i’s perspective, all the nodes may have sent values in interval [m,M], but

the faulty links have tampered the message so that m− is delivered to node i. According to the validity

property, vi[1] ≥ m. On the other hand, in scenario (b), all the nodes may have sent values m− or m,

108

where m− < m; so vi[1] ≤ m, according to the validity property. Since node i does not know whether

the correct scenario is (a) or (b), it must update its state to satisfy the validity property in both cases.

Thus, it follows that vi[1] = m.

• At most one of E−i ∩ F and E′i − F is non-empty:

Recall that by assumption, |E−i ∩F | ≤ f and |E′i−F | ≤ f . Since at most one of the set is non-empty,

|(E−i ∩F)∪(E′i−F)| ≤ f . From node i’s perspective, it is possible that the links in (E−i ∩F)∪(E′i−F)

are all faulty, and the rest of the links are fault-free. In this situation, all the nodes have sent m to

node i, and therefore, vi[1] must be set to m as per the validity property.

Thus, vi[1] = m for each node i ∈ L. Similarly, we can show that vj [1] = M for each node j ∈ R.

Now consider the nodes in set C, if C is non-empty. All the values received by the nodes in C are in

[m,M]; therefore, their new state must also remain in [m,M], as per the validity property.

The above discussion implies that, at the end of iteration 1, the following conditions hold true: (i)

state of each node in L is m, (ii) state of each node in R is M , and (iii) state of each node in C is in

the interval [m,M]. These conditions are identical to the initial conditions listed previously. Then, by a

repeated application of the above argument (proof by induction), it follows that for any t ≥ 0, (i) vi[t] = m

for all i ∈ L; (ii) vj [t] = M for all j ∈ R; and (iii) vk[t] ∈ [m,M] for all k ∈ C.

Since both L and R are non-empty, the ε-agreement property is not satisfied. A contradiction. 2

Theorem 14 shows that Condition P is necessary. However, Condition P is not intuitive. Below, we state

an equivalent condition Condition S that is easier to interpret. To facilitate the statement, we introduce the

notion of “link-reduced graph”. It is different from “reduced graphs” introduced in previous Chapters in the

sense that link-reduced graph is constructed by removing links rather than removing nodes.

Definition 20 (Link-Reduced Graph) For a given graph G = (V, E) and F ⊂ E, a graph GF = (V, EF)

is said to be a link-reduced graph, if EF is obtained by first removing from E all the links in F , and then at

each node, removing up to f other incoming links in E − F .

Note that for a given G = (V, E) and a given F , multiple link-reduced graphs GF may exist. Now, we state

Condition S based on the concept of link-reduce graphs and the notion of source component introduced in

Chapter 3.6.4:

Condition S: Consider graph G = (V, E). For any F ⊆ E such that |F | ≤ f , every link-reduced graph GF

obtained as per Definition 20 must contain exactly one source component.

109

Now, we present a key lemma below.

Lemma 39 Condition P is equivalent to Condition S.

Proof: We first prove that Condition P implies Condition S.

By assumption, G contains at least two node, and so does GF ; therefore, at least one source component

must exist in GF . We now prove that GF cannot contain more than one source component. The proof

is by contradiction. Suppose that there exists a subset F ⊂ E with |F | ≤ f , and the link-reduced graph

GF (V, EF) corresponding to F such that the decomposition of GF includes at least two source components.

Let the sets of nodes in two such source components of GF be denoted L and R, respectively. Let

C = V − L−R. Observe that L,C,R form a partition of the nodes in V. Since L is a source component in

GF , it follows that there are no directed links in EF from any node in C ∪ R to the nodes in L. Similarly,

since R is a source component in GF , it follows that there are no directed links in EF from any node in

L ∪ C to the nodes in R. These observations, together with the manner in which EF is defined, imply that

(i) there are at most f links in E − F from the nodes in C ∪R to each node in L, and (ii) there are at most

f links in E −F from the nodes in L∪C to each node in R. Therefore, in graph G′ = (V, E −F), C ∪R 6⇒ L

and L∪C 6⇒ R. Thus, G = (V, E) does not satisfies Condition P, since F ⊆ E and |F | ≤ f , a contradiction.

Now, we prove that Condition S implies Condition P.

The proof is by contradiction. Suppose that Condition P does not hold for graph G = (V, E). Thus,

there exist a subset F ⊂ E , where |F | ≤ f , and a node partition L,C,R, where L and R are both non-empty,

such that C ∪R 6⇒ L and L ∪ C 6⇒ R in G′ = (V, E − F).

We now constructed a link-reduced graph GF (V, EF) corresponding to set F . First, remove all links in

F from E . Then since C ∪R 6⇒ L, the number of links at each node in L from nodes in C ∪R is at most f ;

remove all these links. Similarly, for every node j ∈ R, remove all links from nodes in L∪C to j (recall that

by assumption, there are at most f such links). The remaining links form the set EF . It should be obvious

that GF (V, EF) satisfies Definition 8; hence, GF is a valid link-reduced graph.

Now, observe that by construction, in the link-reduced graph GF (V, EF) , there are no incoming links to

nodes in R from nodes in L ∪ C; similarly, in GF , there are no incoming links to nodes in L from nodes in

C ∪ R. It follows that for each i ∈ L, there is no path using links in EF from i to nodes in R; similarly, for

each j ∈ R, there is no path using links in EF from j to nodes in L. Thus, GF must contain at least two

source components. Therefore, the existence of GF implies that G violates Condition S, a contradiction. 2

110

An alternate interpretation of Condition S is that in every link-reduced graph GF , non-fault-tolerant

iterative consensus must be possible. We will use this intuition to prove that Condition S is sufficient in

Chapter 6.5. Then, by Lemma 39, Condition P is also sufficient.

Useful Properties Suppose G = (V, E) satisfies Condition P and Condition S. We provide two lemmas

below to state some properties of G = (V, E) that are useful for analyzing the iterative algorithm presented

later.

Lemma 40 Suppose that graph G = (V, E) satisfies Condition S. Then, in any link-reduced graph GF =

(V, EF), there exists a node that has a directed path to all the other nodes in V.

Proof: Recall that Condition S states that any link-reduced graphGF (V, EF) has a single source component.

By the definition of source component, any node in the source component (say node s) has directed paths

using edges in EF to all the other nodes in the source component, since the source component is a strongly

connected component. Also, by the uniqueness of the source component, all other strongly connected

components in GF (if any exist) are not source components, and hence reachable from the source component

using the edges in EF . Therefore, node s also has directed paths to all the nodes in V that are not in the

source component as well. Therefore, node s has directed paths to all the other nodes in V. This proves the

lemma. 2

Lemma 41 For f > 0, if graph G = (V, E) satisfies Condition P, then each node in V has in-degree at least

2f + 1, i.e., for each i ∈ V, |N−i | ≥ 2f + 1.

Proof: The proof is by contradiction. By assumption in the lemma, f > 0, and graph G = (V, E) satisfies

Condition P.

Suppose that there exists a node i ∈ V such that |N−i | ≤ 2f . Define L = {i}, C = ∅, and R = V − {i}.

Note that sets L,C,R form a partition of V. Now, define an edge set F such that F ⊆ E , |F | ≤ f , and F

contains min(f, |N−i |) incoming links from nodes in R to node i.

Observe that f > 0, and |L ∪C| = 1. Thus, there can be at most 1 link from L ∪C to any node in R in

G′ = (V, E − F). Therefore, L ∪ C 6⇒ R in G′ = (V, E − F). Then, recall that E−i is the set of all the node

i’s incoming links. Since L = {i} and C = ∅, E−i = {(j, i) | j ∈ R}. Also, since |E−i | = |N
−
i | ≤ 2f , and F

contains min(f, |N−i |) links in E−i , |E−i − F | ≤ 2f − f = f . Therefore, C ∪ R 6⇒ L in G(V, E − F). Thus,

G = (V, E) does not satisfy Condition P, a contradiction. 2

111

6.4 Algorithm 3

We will prove that there exists a correct IABC algorithm – particularly Algorithm 3 below – that satisfies

the termination, validity and ε-agreement properties provided that the graph G = (V, E) satisfies Condition

S. This implies that Condition P and Condition S ares also sufficient. Algorithm 3 has the iterative structure

described in Chapter 4.2, and it is similar to algorithms that were analyzed in previous Chapters, namely

Algorithm 1 and 2 (although correctness of the algorithm under the necessary condition – Conditions P and

S – has not been proved previously).

Algorithm 3

1. Transmit step: Transmit current state vi[t− 1] on all outgoing edges.

2. Receive step: Receive values on all incoming edges. These values form vector ri[t] of size |N−i |. If a

faulty incoming edge drops the message, then the message value is assumed to be equal to the state

at node i, i.e., vi[t− 1].

3. Update step: Sort the values in ri[t] in an increasing order (breaking ties arbitrarily), and eliminate the

smallest and largest f values. Let N∗i [t] denote the set of nodes from whom the remaining |N−i | − 2f

values in ri[t] were received. Note that as proved in Lemma 41, each node has at least 2f + 1 incoming

neighbors if f > 0. Thus, when f > 0, |N∗i [t]| ≥ 1. Let wj denote the value received from node

j ∈ N∗i [t], and for convenience, define wi = vi[t − 1]. Observe that if the link from j ∈ N∗i [t] is

fault-free, then wj = vj [t− 1].

Define

vi[t] = Ti(ri[t], vi[t− 1]) =
∑

j∈{i}∪N∗i [t]

ai wj (6.1)

where

ai =
1

|N∗i [t]|+ 1
=

1

|N−i |+ 1− 2f

The “weight” of each term on the right-hand side of (6.1) is ai. Note that |N∗i [t]| = |N−i | − 2f , and

i 6∈ N∗i [t] because (i, i) 6∈ E . Thus, the weights on the right-hand side add to 1. Also, 0 < ai ≤ 1.

Termination: Each node terminates after completing iteration tend, where tend is a constant defined later

in Equation (6.15). The value of tend depends on graph G = (V, E), constants U and µ defined earlier in

Chapter 4.2 and parameter ε in ε-agreement property.

112

6.5 Sufficiency (Correctness of Algorithm 3)

We will prove that given a graph G = (V, E) satisfying Condition S, Algorithm 3 is correct, i.e., Algorithm

3 satisfies termination, validity, ε-agreement properties. Therefore, Condition S and Condition P are proved

to be sufficient. We borrow the matrix analysis from the work on non-fault-tolerant consensus [38, 9, 34].

The proof below follows the same structure in our prior work on node failures in Chapter 5 and [87, 86];

however, such analysis has not been applied in the case of link failures.

In the rest of the discussion, we assume that G = (V,F) satisfies Condition S and Condition P. We

use transition matrix to represent the Update step in Algorithm 3, and show how to use the matrix tools

discussed in Chapter 5.5.1 to prove the correctness of Algorithm 3 in G = (V,F).

In the discussion below, we use boldface upper case letters to denote matrices, rows of matrices, and

their elements. For instance, A denotes a matrix, Ai denotes the i-th row of matrix A, and Aij denotes the

element at the intersection of the i-th row and the j-th column of matrix A.

Denote by v[0] the column vector consisting of the initial states at all nodes. The i-th element of v[0],

vi[0], is the initial state of node i. Denote by v[t], for t ≥ 1, the column vector consisting of the states of all

nodes at the end of the t-th iteration. The i-th element of vector v[t] is state vi[t].

For t ≥ 1, define F [t] to be the set of all faulty links in iteration t. Recall that link (j, i) is said to be

faulty in iteration t if the value received by node i is different from what node j sent in iteration t. Then,

define NF
i as the set of all nodes whose outgoing links to node i are faulty in iteration t, i.e.,

NF
i = {j | j ∈ N−i , (j, i) ∈ F [t]}.2

Now we state the key lemma. In particular, Lemma 42 allows us to use results for non-homogeneous

Markov chains to prove the correctness of Algorithm 3. The proof is similar to the proof of Lemma 34

discussed in Chapter 5.5.3.

Lemma 42 The Update step in iteration t (t ≥ 1) of Algorithm 3 at the nodes can be expressed as

v[t] = M[t]v[t− 1] (6.2)

where M[t] is an n×n row stochastic transition matrix with the following property: there exist Nr
i , a subset

of incoming neighbors at node i of size at most f ,3 and a constant β (0 < β ≤ 1) that depends only on graph

2NF
i may be different for each iteration t. For simplicity, the notation does not explicitly represent this dependence.

3Intuitively, Nr
i corresponds to the links removed in some link-reduced graph. Thus, the superscript r in the notation stands

113

G = (V, E) such that for each i ∈ V, and for all j ∈ {i} ∪ (N−i −NF
i −Nr

i),

Mij [t] ≥ β.

Proof: We prove the correctness of Lemma 42 by constructing Mi[t] for 1 ≤ i ≤ n that satisfies the

conditions in Lemma 42. Recall that F [t] denotes the set of faulty links in the t-th iteration.

Consider a node i in iteration t (t ≥ 1). In the Update step of Algorithm 1, recall that the smallest and

the largest f values are removed from ri[t] by node i. Denote by S and L, respectively, the set of nodes4

from whom the smallest and the largest f values were received by node i in iteration t. Define sets Sg and

Lg to be subsets of S and L that contain all the nodes from whom node i receives the correct value in S

and L, respectively. That is, Sg = {j | j ∈ S, (j, i) ∈ E − F [t]} and Lg = {j | j ∈ L, (j, i) ∈ E − F [t]}.

Construction of Mi[t] differs somewhat depending on whether sets Sg,Lg and NF
i are empty or not. We

divide the possibilities into 3 separate cases:

• Case I: Sg 6= ∅,Lg 6= ∅, and NF
i 6= ∅.

• Case II: Sg 6= ∅,Lg 6= ∅, and NF
i = ∅.

• Case III: at most one of Sg and Lg, and NF
i = ∅.

Observe that if Sg (Lg) is empty, then NF
i = ∅ and L = Lg (S = Sg), since there are at most f faulty links

and |S| = |L| = f . Therefore, the 3 cases above cover all the possible scenarios.

Case I

In Case I, Sg 6= ∅,Lg 6= ∅, and NF
i 6= ∅. Let mS and mL be defined as shown below. Recall that

the incoming links from the nodes in Sg and Lg to node i are all fault-free, and therefore, for any node

j ∈ Sg ∪Lg, wj = vj [t− 1] (in the notation of Algorithm 1). That is, the value received by node i from node

j is exactly the state at node j in iteration t− 1.

mS =

∑
j∈Sg vj [t− 1]

|Sg|
and mL =

∑
j∈Lg vj [t− 1]

|Lg|

Now, consider any node k ∈ NF
i . By the definition of sets Sg and Lg, mS ≤ wk ≤ mL. Therefore, we can

find weights Sk ≥ 0 and Lk ≥ 0 such that Sk + Lk = 1, and

for “removed.” Also, Nr
i may be different for each t. For simplicity, the notation does not explicitly represent this dependence.

4Although S and L may be different for each iteration t, for simplicity, we do not explicitly represent this dependence on t
in the notations S and L.

114

wk = Sk mS + Lk mL (6.3)

=
Sk
|Sg|

∑
j∈Sg

vj [t− 1] +
Lk
|Lg|

∑
j∈Lg

vj [t− 1] (6.4)

Clearly, at least one of Sk and Lk must be ≥ 1/2.

We now define elements Mij [t] of row Mi[t]:

• For j ∈ N∗i [t]−NF
i : In this case, either the edge (j, i) is fault-free, or j = i. For each such j, define

Mij [t] = ai. This is obtained by observing in (6.1) that the contribution of such a node j to the new

state vi[t] is ai wj = ai vj [t− 1].

The elements of Mi[t] defined here add up to

|N∗i [t]−NF
i | ai

• For j ∈ Sg ∪ Lg : In this case, the edge (j, i) is a fault-free.

For each j ∈ Sg,

Mij [t] = ai
∑
k∈NFi

Sk
|Sg|

and for each node j ∈ Lg,

Mij [t] = ai
∑
k∈NFi

Lk
|Lg|

To obtain these two expressions, we represent value wk sent via faulty link (k, i) for each k ∈ NF
i using

(6.4). Recall that this node k contributes aiwk to (6.1). The above two expressions are then obtained

by summing (6.4) over all the nodes in NF
i , and replacing this sum by equivalent contributions by

nodes in Sg and Lg.

The elements of Mi[t] defined here add up to ai
∑
k∈NFi

(Sk + Lk) = |NF
i | ai

• For j ∈ V − ((N∗i −NF
i) ∪ Sg ∪ Lg) : These nodes have not yet been considered above. For each such

node j, define Mij [t] = 0.

With the above definition of Mi[t], it should be easy to see that Mi[t] v[t − 1] is, in fact, identical to vi[t]

obtained using (6.1). Thus, the above construction of Mi[t] results in the values sent via faulty links to (6.1)

being replaced by an equivalent contribution from the nodes in Lg and Sg.

115

Properties of Mi[t]:

First, we show that M[t] is row stochastic. Observe that all the elements of Mi[t] are non-negative. Also,

all the elements of Mi[t] above add up to

|N∗i [t]−NF
i | ai + |NF

i | ai = |N∗i [t]| ai = 1

because ai = 1/|N∗i [t]| as defined in Algorithm 1. Thus, Mi[t] is a stochastic row vector.

Recall that from the above discussion, for k ∈ NF
i , one of Sk and Lk must be ≥ 1/2. Without loss

of generality, assume that Ss ≥ 1/2 for all nodes s ∈ NF
i . Consequently, for each node j ∈ Sg, Mij [t] ≥

ai
|Sg|Ss ≥

ai
2|Sg| . Also, for each node j in N∗i [t]−NF

i , Mij [t] = ai. Thus, if β is chosen such that

0 < β ≤ ai
2|Sg|

(6.5)

and Nr
i is defined to be Lg, then the condition in the lemma holds for node i. That is, for all j ∈ {i} ∪

(N−i −NF
i −Nr

i),

Mij [t] ≥ β

Case II

Now, we consider the case when Sg 6= ∅,Lg 6= ∅, and NF
i = ∅. That is, when each of S and L contains

at least one node from which the node i receives correct value, and node i receives correct value(s) from all

the node(s) in N∗i [t]. In fact, the analysis of Case II is very similar to the analysis presented above in Case

I. We now discuss how the analysis of Case I can be applied to Case II. Rewrite (6.1) as follows:

vi[t] =
ai
2
vi[t− 1] +

ai
2
vi[t− 1] +

∑
j∈N∗i [t]−{i}

aiwj (6.6)

= aiwz + aiwi +
∑

j∈N∗i [t]−{i}

aiwj (6.7)

In the above equation, z is to be viewed as a “virtual” incoming neighbor of node i, which has sent value

wz = vi[t−1]
2 to node i in iteration t. With the above rewriting of state update, the value received by node

116

i from itself should be viewed as wi = vi[t−1]
2 instead of vi[t − 1]. With this transformation, Case II now

becomes identical to Case I, with virtual node z being treated as an incoming neighbor of node i.

In essence, a part of node i’s contribution (half, to be precise) is now replaced by equivalent contribution

by nodes in Lg and Sg. We now define elements Mij [t] of row Mi[t]:

• For j = i: Mij [t] = ai
2 . This is obtained by observing in (6.1) that node i’s contribution to the new

state vi[t] is ai
vi[t−1]

2 .

• For j ∈ N∗i [t]− {i} : In this case, j is a node from which node i receives correct value. For each such

j, define Mij [t] = ai. This is obtained by observing in (6.1) that the contribution of node j to the new

state vi[t] is aiwj = aivj [t− 1].

• For j ∈ Sg ∪ Lg : In this case, j is a node in S or L from which node i receives correct value.

For each j ∈ Sg,

Mij [t] =
ai
2

Sz
|Sg|

and for each node j ∈ Lg,

Mij [t] =
ai
2

Lz
|Lg|

where Sz and Lz are chosen such that Sz +Lz = 1 and wz = vi[t−1]
2 = Sz

2 mS + Lz
2 mL. Note that such

Sz and Lz exist because by definition of Sg and Lg, vi[t−1] ≥ wj , ∀j ∈ Sg and vi[t−1] ≤ wj , ∀j ∈ Lg.

Then the two expressions above are obtained by replacing the contribution of the virtual node z by an

equivalent contribution by the nodes in Sg and Lg, respectively.

• For j ∈ V − (N∗i [t] ∪ Sg ∪ Lg) : These nodes have not yet been considered above. For each such node

j, define Mij [t] = 0.

Properties of Mi[t]:

By argument similar to that in Case I, Mi[t] is row stochastic. Without loss of generality, suppose that

Sz ≥ 1/2. Then for each node j ∈ Sg, Mij [t] = ai
2|Sg|Sz ≥

ai
4|Sg| . Also, for node j in N∗i [t]−{i}, Mij [t] = ai,

and Mii[t] = ai
2 . Recall that by definition, |Sg| ≥ 1. Hence, if β is chosen such that

0 < β ≤ ai
4|Sg|

(6.8)

and Nr
i is defined to be equal to Lg, then the condition in the Lemma 42 holds for node i. That is, Mij [t] ≥ β

for j ∈ {i} ∪ (N−i −NF
i −Nr

i).

117

Case III

Here, we consider the case when at most one of Sg and Lg is empty, and NF
i = ∅. Without loss of

generality, suppose that S contains only nodes whose outgoing links to node i is faulty in iteration t, i.e.,

S = {j | (j, i) ∈ F [t]}. Since there are at most f faulty links and |S| = f , L = Lg. That is, the value

received from each node in L by node i is correct.

In this case, define Mij [t] = ai for j ∈ N∗i [t]; define Mij = 0 for all other nodes j.

Properties of Mi[t]:

All the elements of Mi[t] are non-negative. The elements of Mi[t] defined above add up to

|N∗i [t]| ai = 1

Thus, Mi[t] is a stochastic row vector.

In Case III, recall that for any node j in N∗i [t], Mij [t] = ai. Thus, if β is chosen such that

0 < β ≤ ai (6.9)

and Nr
i is defined to be equal to L, then the condition in the Lemma 42 holds for node i.

Putting All Cases Together

Now, let us consider Cases I-III together. From the definition of ai in Algorithm 1, observe that ai ≥
1

|N−i |+1
(because f ≥ 0). Let us define

α = min
i∈V

1

|N−i |+ 1

Moreover, observe that |Sg| ≤ n and |Lg| ≤ n. Then define β as

β =
α

4n
(6.10)

This definition satisfies constraints on β in Cases I through III (conditions (6.5), (6.8) and (6.9)). Thus,

Lemma 42 holds for all three cases with this choice in (6.10). 2

Matrix M[t] is said to be a transition matrix for iteration t. As the lemma states above, M[t] is a row

118

stochastic matrix. The proof of Lemma 42 shows how to construct a suitable row stochastic matrix M[t] for

each iteration t. M[t] depends not only on t but also on the behavior of the faulty links in iteration t.

Theorem 15 Algorithm 3 satisfies the Termination, Validity, and ε-agreement properties.

Proof: Chapters 6.5.1, 6.5.2 and 6.5.3 provide the proof that Algorithm 3 satisfies the three properties,

respectively, in the presence of Byzantine links. This proof follows a structure used to prove correctness

of other consensus algorithms in our prior work presented in Chapter 5 and [87, 86]. However, there is

a difference between proving ε-agreement property under link failures, and proving convergence property

under node failures. We include the proof here for completeness. 2

6.5.1 Validity Property

Observe that M[t + 1](M[t]v[t − 1]) = (M[t + 1]M[t])v[t − 1]. Therefore, by repeated application of (6.2),

we obtain for t ≥ 1,

v[t] = (Πt
u=1M[u])v[0] (6.11)

Since each M[u] is row stochastic as shown in Lemma 42, the matrix product Πt
u=1M[u] is also a row

stochastic matrix. Thus, (6.11) implies that the state of each node i at the end of iteration t can be expressed

as a convex combination of the initial states at all the nodes. Therefore, the validity property is satisfied.

6.5.2 Termination Property

Algorithm 3 terminates after tend iterations, where tend is a finite constant depending only onG = (V, E), U, µ,

and ε. Recall that U and µ are defined as upper and lower bounds of the initial inputs at all nodes, respec-

tively. Therefore, trivially, the algorithm satisfies the termination property. Later, using (6.15), we define a

suitable value for tend.

6.5.3 ε-agreement Property

Denote by RF the set of all the link-reduced graph of G = (V, E) corresponding to some faulty link set F .

Let

r =
∑

F⊂E, |F |≤f

|RF |

119

Note that r only depends on G = (V, E) and f , and is a finite integer.

Consider iteration t (t ≥ 1). Recall that F [t] denotes the set of faulty links in iteration t. Then for each

link-reduced graph H[t] ∈ RF [t], define connectivity matrix H[t] as follows, where 1 ≤ i, j ≤ n:

• Hij [t] = 1, if either j = i, or edge (j, i) exists in link-reduced graph H;

• Hij [t] = 0, otherwise.

Thus, the non-zero elements of row Hi[t] correspond to the incoming links at node i in the link-reduced

graph H[t], or the self-loop at i. Observe that H[t] has a non-zero diagonal.

Based on Condition S and Lemmas 40, 42, we can show the following key lemmas.

Lemma 43 For any H[t] ∈ RF [t], and k ≥ n, Hk[t] has at least one non-zero column, i.e., a column with

all elements non-zero.

Proof: G(V, E) satisfies the Condition S. Therefore, by Lemma 40, there exists at least one node p in the

link-reduced graph H[t] that has directed paths to all the nodes in H[t] (consisting of the edges in H[t]).

Hk
jp[t] of product Hk[t] is 1 if and only if node p has a directed path to node j consisting of at most k edges

in H[t]. Since the length of the path from p to any other node in H[t] is at most n, and p has directed paths

to all the nodes, for k ≥ n the p-th column of matrix Hk[t] will be non-zero.5 2

Then, Lemma 43 can be used to prove the following lemma.

Lemma 44 For any z ≥ 1, at least one column in the matrix product Πu+rn−1
t=u H[t] is non-zero.

Proof: Since Πu+rn−1
t=u H[t] consists of rn connectivity matrices corresponding to link-reduced graphs, and

the number of all link-reduced graphs for F (|F | ≤ f) is r, connectivity matrices corresponding to at least

one link-reduced graph, say matrix H∗ , will appear in the above product at least n times.

Now observe that: (i) By Lemma 43, Hn
∗ contains a non-zero column, say the k-th column is non-zero, and

(ii) by definition, all the H[t] matrices in the product contain a non-zero diagonal. These two observations

together imply that the k-th column in the above product is non-zero.6 2

For matrices A and B of identical dimension, we say that A ≤ B iff Aij ≤ Bij for all i, j. Lemma below

relates the transition matrices with the connectivity matrices. Constant β used in the lemma below was

introduced in Lemma 42.

5That is, all the elements of the column will be non-zero. Also, such a non-zero column will exist in Hn−1[t], too. We use
the loose bound of n to simplify the presentation.

6The product Πu+rn−1
t=u H[t] can be viewed as the product of n instances of H∗ “interspersed” with matrices with non-zero

diagonals.

120

Lemma 45 For any t ≥ 1, there exists a link-reduced graph H[t] ∈ RF [t] such that βH[t] ≤M[t], where H[t]

is the connectivity matrix for H[t].

Proof: First, let us construct a link-reduced graph H[t] by first removing F [t] from G(V, E). Recall that

F [t] is the set of faulty links in iteration t. Then for each i, remove a set of at most f node i’s incoming links

as defined in Lemma 42 (Nr
i). As a result, we have obtained a link-reduced graph H[t] such that Mij [t] ≥ β,

if j = i or edge (j, i) is in the link-reduced graph H[t].

Denote by H[t] the connectivity matrix for the link-reduced graph H[t]. Then, Hij [t] denotes the element

in i-th row and j-th column of H[t]. By definition of the connectivity matrix, we know that Hij [t] = 1, if

j = i or edge (j, i) is in the link-reduced graph; otherwise, Hij [t] = 0.

The statement in the lemma then follows from the above two observations. 2

Let us now define a sequence of matrices Q(i), i ≥ 1, such that each of these matrices is a product of rn

of the M[t] matrices. Specifically,

Q(i) = Πirn
t=(i−1)rn+1 M[t] (6.12)

From (6.11) and (6.12) observe that

v[krn] =
(

Πk
i=1 Q(i)

)
v[0] (6.13)

Based on (6.13), Lemmas 42, 44, and 45, we can show the following lemma.

Lemma 46 For i ≥ 1, Q(i) is a row stochastic matrix, and

λ(Q(i)) ≤ 1− βrn.

Proof:

Q(i) is a product of row stochastic matrices (M[t]); therefore, Q(i) is row stochastic. From Lemma 45,

for each t ≥ 1,

βH[t] ≤ M[t]

Therefore,

βrn Πirn
t=(i−1)rn+1 H[t] ≤ Πirn

t=(i−1)rn+1 M[t] = Q(i)

By using u = (i− 1)n+ 1 in Lemma 44, we conclude that the matrix product on the left side of the above

121

inequality contains a non-zero column. Therefore, since β > 0, Q(i) on the right side of the inequality also

contains a non-zero column.

Observe that rn is finite, and hence, βrn is non-zero. Since the non-zero terms in H[t] matrices are all

1, the non-zero elements in Πirn
t=(i−1)rn+1H[t] must each be ≥ 1. Therefore, there exists a non-zero column

in Q(i) with all the elements in the column being ≥ βrn. Therefore, by Lemma 33, λ(Q(i)) ≤ 1− βrn, and

Q(i) is a scrambling matrix. 2

Let us now continue with the proof of ε-agreement. Consider the coefficient of ergodicity δ(Πt
u=1M[u]).

δ(Πt
u=1M[u]) = δ

((
Πt
u=(b trn c)rn+1M[u]

)(
Π
b trn c
u=1 Q(u)

))
by definition of Q(u)

≤ λ
(

Πt
u=(b trn c)rn+1M[u]

)(
Π
b trn c
u=1 λ (Q(u))

)
by Lemma 32

≤ Π
b trn c
u=1 λ (Q(u)) because λ(·) ≤ 1

≤ (1− βrn)
b trn c by Lemma 46 (6.14)

Observe that the upper bound on right side of (6.14) depends only on graph G = (V, E) and t, and is

independent of the input states, and the behavior of the faulty links. Moreover, the upper bound on the

right side of (6.14) is a non-increasing function of t. Define tend as the smallest positive integer such that

the right hand side of (6.14) is smaller than ε
nmax(|U |,|µ|) . Recall that U and µ are defined as the upper and

lower bound of the inputs at all nodes. Thus,

δ(Πtend
u=1M[u]) ≤ (1− βrn)

b tendrn c <
ε

nmax(|U |, |µ|)
(6.15)

Recall that β and r depend only on G = (V, E). Thus, tend depends only on graph G = (V, E), and

constants U, µ and ε.

By construction, Πt
u=1M[u] is an n×n row stochastic matrix. Let M∗ = Πt

u=1M[u]. We omit time index

[t] from the notation M∗ for simplicity. From (6.11), we have vj [t] = M∗
jv[0]. That is, the state of any node

j can be obtained as the product of the j-th row of M∗ and v[0]. Now, consider any two nodes j, k, we have

122

|vj [t]− vk[t]| = |M∗
jv[0]−M∗

kv[0]|

= |Σni=1M
∗
jivi[0]− Σni=1M

∗
kivi[0]|

= |Σni=1

(
M∗

ji −M∗
ki

)
vi[0]|

≤ Σni=1|M
∗
ji −M∗

ki||vi[0]|

≤ Σni=1δ(M
∗)|vi[0]|

≤ nδ(M∗) max(|U |, |µ|)

≤ nδ(Πt
u=1M[u]) max(|U |, |µ|) (6.16)

Therefore, by (6.15) and (6.16), we have

|vj [tend]− vk[tend]| < ε (6.17)

Since the output of the nodes equal its state at termination (after tend iterations). Thus, (6.17) implies

that Algorithm 3 satisfies the ε-agreement property.

6.6 Summary

This Chapter explores approximate consensus problem under transient Byzantine link failure model [64, 65].

We address a particular class of iterative algorithms in arbitrary directed graphs, and prove the tight necessary

and sufficient condition for the graphs to be able to solve the approximate consensus problem in the presence

of Byzantine links iteratively.

123

Chapter 7

Iterative Approximate Crash-tolerant
Consensus in Asynchronous Systems

7.1 Introduction

Most of the previous Chapters considers fault-tolerant consensus in synchronous systems (with the exception

of Chapters 3.5 and 4.6). This Chapter explores iterative approximate consensus in asynchronous systems

in which up to f nodes may suffer crash failures (f -total fault model). Recall that while exact consensus is

not solvable in asynchronous systems [33], approximate fault-tolerant consensus can be solved using iterative

algorithms. Thus, we only consider approximate consensus here. This Chapter differs from previous relevant

Chapters as follows:

• Chapter 3.5 considers crash-tolerant consensus in asynchronous systems, using general algorithms. In

this Chapter, we are interested in a restricted class of iterative algorithms that maintain only a small

amount of memory across iterations, e.g., the algorithms do not require the nodes to have a knowledge

of the entire network topology.

• Chapter 4.6 considers iterative algorithms tolerating Byzantine faults; whereas, in this Chapter, we

focus on crash failures.

• Chapter 6 considers link faults; whereas, in this Chapter, all the links are assumed to be fault-free,

except that message transmission between any pair of nodes may be delayed indefinitely due to asyn-

chronous message delay in this Chapter, i.e., asynchronous systems.

We have already discussed the properties of the iterative algorithms in Chapter 4.2. We include them

below for readers’ ease. Note that due to the assumption of crash faults, the validity property is slightly

different form the one for Byzantine fault.

• Initial state of each node is equal to a real-valued input provided to that node.

• Termination: The algorithm terminates in finite number of iterations.

124

• Validity: After each iteration of the algorithm, the state of each node must stay in the convex hull of

the states of all the nodes at the end of the previous iteration.

• ε-agreement: For any ε > 0, when the algorithm terminates, the difference between the outputs at any

pair of nodes is guaranteed to be within ε.

This Chapter considers iterative crash-tolerant consensus in asynchronous systems in arbitrary directed

networks. The algorithms presented bear some similarity to the asynchronous iterative Byzantine consensus

algorithm discussed in Chapter 4.6; however, the analysis is different due to the nature of different faulty

behavior. Also, as we will see later, to tolerate Byzantine faults, communication graph requires richer

network.

For simplicity, we assume that the input at each node is some real number in the range [0,K]. Note that

if K < ε, then the problem is trivial, so K is assumed to be ≥ ε.

IAC Algorithms We are interested in the IAC (Iterative Approximate Consensus) algorithms. Note

that IAC’s three-step structure is the same as the ones of IABC (described in Chapter 4.2). However, the

correctness definition is different due to the nature of crash faults. To accommodate asynchronous systems,

we adopt the same approach in [29], which has two main differences from iterative consensus algorithms

in synchronous systems (described in Chapters 4, 5, and 6): (i) the messages containing states are now

tagged by the round index to which the states correspond, and (ii) each node i waits to receive only |N−i |−f

messages containing states from round t−1 before computing the new state in round t. Due to the asynchrony

assumption, different nodes may potentially perform their t-th round at very different real times. Thus, the

main difference between iteration and round is as following:

• Iteration is defined as a duration of fixed amount of real-time units. Hence, every node will be in the

same iteration at any given real time.

• Round is defined as the time that each node updates its value1. Hence, every node may be in totally

different rounds at any given real time in asynchronous systems.

Each node i maintains state vi, with vi[t] denoting the state of node i at the end of the t-th round of the

algorithm (t ≥ 0). Initial state of node i, vi[0], is equal to the initial input provided to node i. At the start

of the t-th round (t > 0), the state of node i is vi[t − 1]. We assume that the input at each node is lower

bounded by a constant µ and upper bounded by a constant U . The iterative algorithm may terminate after

a number of rounds that is a function of µ and U . µ and U are assumed to be known a priori.

1With a slight abuse of terminology, we will use “value” and “state” interchangeably in this dissertation.

125

The IAC (Iterative Approximate Consensus) algorithms of interest will require each node i to perform

the following three steps in round t, where t > 0.

1. Transmit step: Transmit current state, namely vi[t− 1], on all outgoing edges (to nodes in N+
i). The

message is tagged by index t− 1.

2. Receive step: Wait until the first |N−i |−f messages tagged by index t−1 are received on the incoming

edges (breaking ties arbitrarily). Values received in these messages form vector ri[t] of size |N−i | − f .

3. Update step: Node i updates its state using a transition function Zi as follows. Zi is a part of the

specification of the algorithm, and takes as input the vector ri[t] and state vi[t− 1].

vi[t] = Zi (ri[t] , vi[t− 1]) (7.1)

Finally, the output is set to the state at termination. Note that the IAC algorithms are non-blocking, since

at the Receive step, each fault-free node i can eventually receive |N−i | − f messages, since by assumption,

up to f nodes may crash.

Denote by F [t] the set of crashed node in the end of round t. Note that each node i ∈ V−F [t] have corrected

computed value vi[t] by assumption. The following properties must be satisfied by a correct IAC algorithm

in the presence of up to f crash failures:

• Termination: the algorithm terminates in finite number of rounds.

• Validity:2 ∀t > 0, and ∀i ∈ V − F [t],

min
j∈V−F [t−1]

vj [t− 1] ≤ vi[t] ≤ max
j∈V−F [t−1]

vj [t− 1]

• ε-agreement: If the algorithm terminates after tend rounds, then ∀i, j ∈ V − F [tend],

|vi[tend]− vj [tend]| < ε.

For a given communication graph G(V, E), the objective in this Chapter is to identify the necessary and

sufficient conditions in graph G for the existence of a correct IAC algorithm (i.e., an algorithm satisfying the

above properties).

2For brevity of presentation, assume that F [0] = ∅, i.e., no node has crashed before the start of the algorithm; however, this
simplification does not affect the results of this Chapter, and the analysis can be extended to a more general case.

126

7.2 Necessary Condition

For a correct IAC algorithm to exist in asynchronous systems with crash faults, the graph G(V, E) must

satisfy the necessary condition proved in this section. Recall that in Chapter 4.3, we have introduced relations

⇒ and 6⇒ in Definition 10. This Chapter will use these relations to define the tight condition.

Condition ICCA : Consider graph G(V, E). Let sets L,C,R form a partition of V, such that both L and

R are non-empty. Then, at least one of the two conditions below must be true: (i) C ∪ R ⇒ L or (ii)

L ∪ C ⇒ R.

Condition ICCA is the abbreviation of Iterative Crash-tolerant Consensus in Asynchronous systems. The

proof below is similar to the necessity proof of Condition CCA presented in Chapter 3.5 (the tight condition

of the graph for achieving approximate consensus using general algorithms in asynchronous systems). The

differ is the set of links that we choose to be slow links.

Theorem 16 Suppose that a correct IABC algorithm exists for G(V, E). Then G satisfies Condition ICCA.

Proof: The proof is by contradiction. Suppose that there exists a correct IAC algorithm in G(V, E), but

G(V, E) does not satisfy Condition ICCA. That is, there exists a node partition L,C,R such that L and R

are non-empty, and L ∪ C 6⇒ R and C ∪ R 6⇒ L. By Definition 10, all the nodes in L ∪ R have at most

f incoming neighbors. For any pair of nodes i, j such that i ∈ L and j ∈ R, let O(i) denote the set of

nodes in C ∪R that have outgoing links to node i, i.e., O(i) = {k | k ∈ C ∪R, k ∈ N−i }. Similarly, define

O(j) = {k | k ∈ L ∪ C, k ∈ N−j }. Since L ∪ C 6⇒ R and C ∪R 6⇒ L, we have |O(i)| ≤ f and |O(j)| ≤ f .

Consider the scenario where (i) each node in L has input 0; (ii) each node in R has input ε; (iii) nodes

in C (if non-empty) have arbitrary inputs in [0, ε]; (iv) no node crashes; and (v) the message delay for

communications channels from O(i) to i and from O(j) to j is arbitrarily large compared to all the other

channels. Recall that such a scenario is possible, since we have assumed that the input range is [0,K], where

K ≥ ε.

Consider node i. Since messages from the set O(i) take arbitrarily long to arrive at node i, and |O(i)| ≤ f ,

from the perspective of node i, the nodes in O(i) appear to have crashed. Thus, node i must decide on

their output without waiting to hear from the nodes in O(i). Consequently, to satisfy the validity property,

the output at node i has to be 0, since 0 is the input of all the nodes in L (from which node i may have

received some messages in the execution). Similarly, node j must decide their output without hearing from

the nodes in O(j); they must choose output as ε, because the input at all the nodes in R is ε (from which

127

node j may have received some messages). Thus, the ε-agreement property is violated, since the difference

between outputs at fault-free nodes i and j is not < ε. This is a contradiction. 2

Theorem 16 shows that Condition ICCA is necessary. Below, we state an equivalent condition Condition

ICCA2 that captures the notion of propagating values. To facilitate the statement, we introduce the notion

of “reduced graph”, which is based on the notion of graph decomposition and source component introduced

in Chapter 3.6.4. It is also similar to the reduced graph introduced in Chapter 4.3. However, the following

graph removes exactly f incoming links for each node i; whereas, in Definition 11, we also need to remove

up to f nodes before removing links at each remaining nodes.

Definition 21 (Reduced Graph) For a given graph G(V, E), a graph Gf = (V, Ef) is said to be a reduced

graph, if Ef is obtained as follows: at each node, removing f incoming links in E.

Note that for a given G(V, E), multiple reduced graphs Gf may exist. Now, we state Condition ICCA2

based on the concept of reduce graphs:

Condition ICCA2: Consider graph G(V, E). Every reduced graph Gf obtained as per Definition 21 must

contain exactly one source component.

Now, we present a key lemma below. The proof is similar to the ones presented in Chapters 5 and 6,

and is presented in Appendix B.1.

Lemma 47 Condition ICCA is equivalent to Condition ICCA2.

Useful Properties Suppose G(V, E) satisfies Condition ICCA and thus Condition ICCA2 due to Lemma

47. We provide two lemmas below to state some properties of G(V, E) that are useful for analyzing the

iterative algorithm presented later.

Lemma 48 Suppose that graph G(V, E) satisfies Condition ICCA2. Then, in any reduced graph Gf =

(V, Ef), there exists a node that has a directed path to all the other nodes in V.

Proof: Recall that Condition ICCA2 states that any reduced graph Gf (V, Ef) has a single source compo-

nent. By the definition of source component, any node in the source component (say node s) has directed

paths using edges in Ef to all the other nodes in the source component, since the source component is a

strongly connected component. Also, by the uniqueness of the source component, all other strongly con-

nected components in Gf (if any exist) are not source components, and hence reachable from the source

128

component using the edges in Ef . Therefore, node s also has directed paths to all the nodes in V that are

not in the source component as well. Therefore, node s has directed paths to all the other nodes in V in Gf .

This proves the lemma. 2

Lemma 49 For f > 0, if graph G(V, E) satisfies Condition ICCA, then each node in V has in-degree at

least f + 1, i.e., for each i ∈ V, |N−i | ≥ f + 1.

Proof: The proof is by contradiction. By assumption in the lemma, f > 0, and graph G(V, E) satisfies

Condition ICCA.

Suppose that there exists a node i ∈ V such that |N−i | ≤ f . Define L = {i}, C = ∅, and R = V − {i}.

Note that sets L,C,R form a partition of V.

Observe that f > 0, and |L ∪C| = 1. Thus, there can be at most 1 link from L ∪C to any node in R in

Gf = (V, Ef). Therefore, L ∪ C 6⇒ R in Gf . Since L = {i}, C = ∅, and |N−i | ≤ f , C ∪ R 6⇒ L in G. Thus,

G does not satisfy Condition ICCA, a contradiction. 2

7.3 Algorithm 4

We will prove that there exists a correct IAC algorithm – particularly Algorithm 4 below – that satisfies the

termination, validity and ε-agreement properties provided that the graph G(V, E) satisfies Condition ICCA2.

This implies that Condition ICCA and Condition ICCA2 ares also sufficient. Algorithm 4 has the iterative

structure described in Chapter 4.2. Note that it is different from iterative algorithms that were analyzed in

previous Chapters, namely Algorithm 1, 2, and 3 due to the nature of asynchronous message delivery and

crash faults.

Algorithm 4

1. Transmit step: Transmit current state, namely vi[t− 1], on all outgoing edges (to nodes in N+
i). The

message is tagged by index t− 1.

2. Receive step: Wait until the first |N−i |−f messages tagged by index (t−1) are received on the incoming

edges (breaking ties arbitrarily). Values received in these messages form vector ri[t] of size |N−i | − f .

3. Update step: Let N∗i [t] denote the set of nodes from whom the (t− 1)-indexed messages were received

by node i. Note that as proved in Lemma 49, each node has at least f +1 incoming neighbors if f > 0.

Thus, when f > 0, |N∗i [t]| ≥ 1.

129

Define

vi[t] = Zi(ri[t], vi[t− 1]) =
∑

j∈{i}∪N∗i [t]

ai vj [t− 1] (7.2)

where

ai =
1

|N∗i [t]|+ 1
=

1

|N−i |+ 1− f

The “weight” of each term on the right-hand side of (7.2) is ai. Note that |N∗i [t]| = |N−i | − f , and

i 6∈ N∗i [t] because (i, i) 6∈ E . Thus, the weights on the right-hand side add to 1. Also, 0 < ai ≤ 1.

Termination: Each node terminates after completing iteration tend, where tend is a constant defined later

in Equation (B.4) in Appendix B.2. The value of tend depends on graph G(V, E), constants U and µ defined

earlier in Chapter 7.1 and parameter ε in ε-agreement property.

7.4 Sufficiency (Correctness of Algorithm 4)

We will prove that given a graph G(V, E) satisfying Condition ICCA2, Algorithm 4 is correct. Therefore,

Condition ICCA2 and Condition ICCA are proved to be sufficient. We borrow the matrix analysis from the

work on non-fault-tolerant consensus [38, 9, 34]. The proof below follows the same structure in our prior

work on node failures in Chapters 5 and 6, and [87, 86]; however, due to asynchronous message delivery, the

analysis has some difference as pointed out later.

In the rest of the section, we assume that G(V,F) satisfies Condition ICCA2. We use transition matrix

to represent the Update step in Algorithm 4, and show how to use the matrix tools discussed in Chapter

5.5.1 to prove the correctness of Algorithm 4 in G(V,F).

In the discussion below, we use boldface upper case letters to denote matrices, rows of matrices, and

their elements. For instance, A denotes a matrix, Ai denotes the i-th row of matrix A, and Aij denotes the

element at the intersection of the i-th row and the j-th column of matrix A.

We now introduce more notations:

• For a given execution of the proposed algorithm, let F denote the actual set of faulty nodes in that

execution. Nodes in F may potentially crash.

• For round r ≥ 0, let F [r] denote the set of faulty nodes that have crashed before sending any round

r messages. Since the algorithm terminates after round tend, we define for t > tend, F [t] = F [tend].

Note that F [r] ⊆ F [r + 1] ⊆ F .

130

Transition Matrix Representation of Algorithm 4 We describe how to represent Algorithm 4 using

a matrix form, namely transition matrix. Let v[t] (tend ≥ t ≥ 0), denote a column vector of length n. In

the remaining discussion, we will refer to v[t] as the state of the system at the end of round t. In particular,

vi[t] for i ∈ V is viewed as the state of node i at the end of round t. We define v[0] as the column vector

consisting of the initial states at all nodes. That is, the i-th element of v[0], vi[0], is the initial state of node

i.

We will show that the state evolution of Algorithm 4 can be expressed using matrix form as in (7.3)

below, where M[t] is an n × n matrix with certain desirable properties. The state vk[t] of node k ∈ F [t] is

not meaningful, since node k has crashed before sending any round t messages. However, (7.3) assigns it a

value for convenience of analysis. M[t] is said to be the transition matrix for round t.

v[t] = M[t] v[t− 1], tend ≥ t ≥ 1 (7.3)

In particular, given an execution of the algorithm, we construct the transition matrix M[t] for round

t ≥ 1 of that execution using the two rules below (Rule 1 and Rule 2). Elements of row Mi[t] will determine

the state vi[t] at node i, i.e., vi[t] = Mi[t]v[t− 1]. Note that Rule 1 applies to nodes in V − F [t+ 1]. Each

node i ∈ V −F [t+ 1] survives at least until the start of round t+ 1, and sends at least one message in round

t+ 1. Therefore, its state vi[t] at the end of round t is of consequence. On the other hand, nodes in F [t+ 1]

have crashed sometime before sending any messages in round t + 1 (possibly crashing in previous rounds).

Thus, their states at the end of round t are not relevant to the fault-free nodes anymore, and hence Rule 2

defines the entries of the corresponding rows of M[t] somewhat arbitrarily.

Construction of Transition Matrix M[t] for tend ≥ t ≥ 1:

• Rule 1: For each node i ∈ V − F [t + 1], and each k ∈ V : Recall that N∗i [t] denotes the set of nodes

from whom the round t messages were received by node i. By construction, |N∗i [t]| = |N−i | − f .

if k ∈ N∗i [t], then

Mik[t] :=
1

|N∗i [t]|+ |
=

1

|N−i | − f + 1
(7.4)

Otherwise,

Mik[t] := 0 (7.5)

131

• Rule 2: For each node j ∈ F [t+ 1], and each k ∈ V ,

Mjk[t] :=
1

n
(7.6)

Observe that by design, M[t] is a row stochastic matrix.

Theorem 17 For t ≥ 1, define v[t] = M[t]v[t − 1], with M[t] as specified above. Then, for τ ≥ 0, and for

all i ∈ V −F [τ + 1], vi[τ] equals the state at node i in round τ of Algorithm 4.

Proof: The proof is by induction on τ . Recall that we defined vi[0] to be equal to input at node i for all

i ∈ V −F [1]. Thus, the theorem trivially holds for τ = 0.

Now, for some τ ≥ 0, and for all i ∈ V − F [τ + 1], suppose that vi[τ] is the state at node i in round τ

of Algorithm 4. Recall that nodes in V − F [τ + 2] surely survive at least till the end of round τ + 1 (by

definition of F [τ + 2]). Therefore, in round τ + 1 ≥ 1, each node i ∈ V − F [τ + 2] computes its new state

vi[τ + 1] using equation (7.2) as specified in Algorithm 4. Also, if j ∈ N∗i [τ + 1], then node j must have sent

round τ + 1 message to node i. Also, since j did send a round τ + 1 message, j ∈ V − F [τ + 1]. Thus, by

induction hypothesis, vj [τ] is the state at node j in round τ of Algorithm 4.

Now observe that, by construction ai = 1/|N∗i [τ + 1] + 1|. Thus, the definition of the matrix elements

in (7.4) and (7.5) ensures that Mi[τ + 1]v[τ] equals
∑
j∈{i}∪N∗i [τ+1] ai vj [τ]. Thus, vi[τ + 1] defined as

Mi[τ+1]v[τ] also equals the state at node i in round τ+1 of Algorithm 4. This holds for all i ∈ V −F [τ+2],

completing the induction. 2

The above theorem states that, for tend ≥ t ≥ 1, equation (7.3), that is, v[t] = M[t]v[t − 1], correctly

characterizes the state of the nodes that have not crashed before the end of round t of Algorithm 4. For nodes

that have crashed, their states are not relevant, and could be assigned any arbitrary value for analytical

purposes (this is what Rule 2 above effectively does). By repeated application of the state evolution equation

(7.3), we obtain

v[t] =
(

Πt
τ=1M[τ]

)
v[0], t ≥ 1 (7.7)

Recall that we adopt the “backward” matrix product convention. Then, (7.7) follows from the observation

that M[τ](M[τ − 1]v[τ − 2]) = (M[τ]M[τ − 1])v[τ − 2].

Now we state the key lemma. In particular, Lemma 50 allows us to use results for non-homogeneous

Markov chains to prove the correctness of Algorithm 4.

132

Lemma 50 For t ≥ 1, transition matrix M[t] constructed using the procedure above satisfies the following

conditions:

• M[t] is a row stochastic matrix.

• There exist Nr
i , a subset of incoming neighbors at node i of size f ,3 and a constant β (0 < β ≤ 1) that

depends only on graph G(V, E) such that for each i ∈ V, and for all j ∈ {i} ∪ (N−i −Nr
i),

Mij [t] ≥ β.

Proof:

• Observe that, by construction, for each i ∈ V , the row vector Mi[t] contains only non-negative elements,

which add up to 1. Thus, each row Mi[t] is a stochastic vector, and hence the matrix M[t] is row

stochastic.

• Observe that for round t by choosing Nr
i = N−i − N∗i [t], |Nr

i | = f due to Step 2 of Algorithm 4.

Moreover, by the construction of transition matrix above, Mij [t] ≥ 1/n for all j ∈ {i} ∪ N∗i . The

second claim in the lemma follows by choosing β = 1/n.

2

Theorem 18 Algorithm 4 satisfies the Termination, Validity, and ε-agreement properties.

Given Lemma 50, the proof of Theorem 18 is similar to the proof of Theorem 15 provided in Chapter 6.

For completeness, we include the proof in Appendix B.2.

7.5 Summary

This Chapter considers iterative approximate consensus problem in asynchronous systems with crash faults.

In particular, we consider the problem in directed graphs. We prove the tight necessary and sufficient

condition for the communication graphs to have such IAC algorithms.

3Intuitively, for j ∈ Nr
i , edge (j, i) corresponds to the links removed in some reduced graph as per Definition 21. Thus, the

superscript r in the notation stands for “removed.” Also, Nr
i may be different for each round t. For simplicity, the notation

does not explicitly represent this dependence.

133

Chapter 8

Broadcast Using Certified
Propagation Algorithm Under f-local
Faults

8.1 Introduction

Previous Chapters studied the consensus problem under f -total fault model, generalized fault model and

transient Byzantine link fault model. In this Chapter, we explore a closely related problem – fault-tolerant

broadcast problem. The fault model under consideration is f -local model, in which at most f Byzantine

faults occur in the neighborhood of every fault-free node [42], and all the links are assumed to be reliable.

We identify the necessary and sufficient condition on the underlying communication network topology for

the correctness of the Certified Propagation Algorithm (CPA) – the CPA algorithm has been analyzed in

prior work [42, 11, 61, 37, 57]. We first study the problem in synchronous systems, and later extend it to

asynchronous systems. The results presented in this Chapter are published in [75].

Problem Formulation Consider an arbitrary directed network of n nodes, modeled as a directed graph.

One node in the network, called the source (s), is given an initial input, which the source node needs to

transmit to all the other nodes. The source s is assumed to be fault-free. We say that CPA is correct, if it

satisfies the following properties, where xs denotes the input at source node s:

• Termination: every fault-free node i eventually decides on an output value yi.

• Validity: for every fault-free node i, its output value yi equals the source’s input, i.e., yi = xs.

We study the condition on the network topology for the correctness of CPA. In addition to the related

work discussed in Chapter 2, similar condition under other contexts are also discovered by other researchers

[70, 30]. [70] proved a similar condition to be sufficient (but not tight) to solve Shamir’s (n, k) threshold

secret sharing problem, where the source wants to transmit shares of secret to all the other nodes, and

all nodes are assumed to be honest-but-curious. In the context of cascading behavior in the network, [30]

showed that a similar condition is necessary and sufficient to achieve a complete cascade, i.e., all nodes have

learned the value transmitted by a cluster of sources with same input values using only local information.

134

In their model, all nodes are assumed to be fault-free. Due to our assumption of existence of Byzantine

failures, the proofs in this Chapter are different from the ones in [70, 30].

System and Fault Model We consider the synchronous system model and the point-to-point communi-

cation network as described in Chapter 1.2 (with the exception of Chapter 8.4.2). We consider the f -local

fault model, with at most f incoming neighbors of any fault-free node becoming faulty. As discussed in

Chapter 2, [42, 11, 61, 37, 57] also explored this fault model. Yet, to the best of our knowledge, the tight

necessary and sufficient conditions for the correctness of CPA in directed networks under f -local fault model

have not been developed previously.

8.2 Feasibility of CPA under f-local fault model

Certified Propagation Algorithm (CPA) We first describe the Certified Propagation Algorithm (CPA)

from [42] formally. Note that the faulty nodes may deviate from this specification arbitrarily. Possible

misbehavior includes sending incorrect and mismatching messages to different outgoing neighbors.

Source node s commits to its input xs at the start of the algorithm, i.e., sets its output equal to xs.

The source node is said to have committed to xs in round 0. The algorithm for each round r (r > 0), is as

follows:

1. Each node that commits in round r − 1 to some value x, transmits message x to all its outgoing

neighbors, and then terminates.

2. If any node receives message x directly from source s, it commits to output x.

3. Through round r, if a node has received messages containing value x from at least f + 1 distinct

incoming neighbors, then it commits to output x.

The Necessary Condition For CPA to be correct, the network graph G(V, E) must satisfy the necessary

condition proved in this section. Recall that in Chapter 4.3, we have introduced relations ⇒ and 6⇒ in

Definition 10. This Chapter will use these relations to define the tight condition.

Definition 22 Set F ⊆ V is said to be a feasible f -local fault set, if for each node v 6∈ F , F contains at

most f incoming neighbors of node v. That is, for every v ∈ V − F, |N−v ∩ F | ≤ f .

We now derive the necessary condition on the network topology.

135

Theorem 19 Suppose that CPA is correct in graph G(V, E) under the f -local fault model. Let sets F,L,R

form a partition of V, such that (i) source s ∈ L, (ii) R is non-empty, and (iii) F is a feasible f -local fault

set. Then

• L⇒ R, or

• R contains an outgoing neighbor of s, i.e., N+
s ∩R 6= ∅.

Proof: The proof is by contradiction. Consider any partition F,L,R such that s ∈ L, R is non-empty, and

F is a feasible f -local fault set. Suppose that the input at s is xs. Consider any single execution of the CPA

algorithm such that the nodes in F behave as if they have crashed.

By assumption, CPA is correct in the given network under such a behavior by the faulty nodes. Thus,

all the fault-free nodes eventually commit their output to xs. Let round r (r > 0), be the earliest round in

which at least one of the nodes in R commits to xs. Let v be one of the node in R that commits in round r.

Such a node v must exist since R is non-empty, and it does not contain source node s. For node v to be able

to commit, as per specification of the CPA algorithm, either node v should receive the message xs directly

from the source s, or node v must have f + 1 distinct incoming neighbors that have already committed to

xs. By definition of node v, nodes that have committed to xs prior to v must be outside R; since nodes in

F behave as crashed, these f + 1 nodes must be in L. Thus, either (s, v) ∈ E , or node v has at least f + 1

distinct incoming neighbors in set L. 2

Sufficiency We now show that the condition in Theorem 19 is also sufficient.

Theorem 20 If G(V, E) satisfies the condition in Theorem 19, then CPA is correct in G(V, E) under the

f -local fault model.

Proof:

Suppose that G(V, E) satisfies the condition in Theorem 19. Let F ′ be the set of faulty nodes. By

assumption, F ′ is a feasible local fault set. Let xs be the input at source node s. We will show that,

(i) fault-free nodes do not commit to any value other than xs (Validity), and, (ii) until all the fault-free

nodes have committed, in each round of CPA, at least one additional fault-free node commits to value xs

(Termination). The proof is by induction.

Induction basis: Source node s commits in round 0 to output equal to its input xs. No other fault-free nodes

commit in round 0.

Induction: Suppose that L is the set of fault-free nodes that have committed to xs through round r, r ≥ 0.

Thus, s ∈ L. Define R = V − L− F ′. If R = ∅, then the proof is complete. Let us now assume that R 6= ∅.

136

Now consider round r + 1.

• Validity:

Consider any fault-free node u that has not committed prior to round r + 1 (i.e., u ∈ R). All the

nodes in L have committed to xs by the end of round r. Thus, in round r + 1 or earlier, node u may

receive messages containing values different from xs only from nodes in F ′. Since there are at most f

incoming neighbors of u in F ′, node u cannot commit to any value different from xs in round r + 1.

• Termination:

By the condition in Theorem 19, there exists a node w in R such that (i) node w has an incoming

link from s, or (ii) node w has incoming links from f + 1 nodes in L. In case (i), node w will commit

to xs on receiving xs from node s in round r + 1 (in fact, r + 1 in this case must be 1). In case (ii),

first observe that all the nodes in L from whom node w has incoming links have committed to xs (by

definition of L). Then, node w will be able to commit to xs after receiving messages from at least

f + 1 incoming neighbors in L, since all nodes in L have committed to xs by the end of round r by

the definition of L.1 Thus, node w will commit to xs in round r + 1.

This completes the proof. 2

8.3 CPA without prior knowledge of f

We now present a parameter-independent algorithm CPA-P that does not require prior knowledge of f , and

each node only needs to know n, the number of nodes in the system. That is, given a graph G that can

tolerate f -local faults (where f is unknown), the algorithm CPA-P presented below solves the broadcast

problem in G without usage of f .

The core idea of CPA-P is for each node to exhaustively test all possible parameters by running n + 1

instances of CPA algorithm in parallel. Each instance of CPA algorithm corresponds to a tested parameter

ranging from 0 to n. That is, each instance assumes that the tested parameter is the real bound (f) on

the local faults at each node.2 The correctness of CPA-P is based on the following observation: For each

fault-free node, when the tested parameter is larger than or equal to the real parameter f , then there are

only two outcomes: (i) it cannot commit, since it did not receive enough identical messages (violating Step

1Since node w did not commit prior to round r+ 1, it follows that at least one node in L must have committed in round r.
2For simplicity of presentation, we assume that every node keeps track of n + 1 instances (of the CPA algorithm) at the

same time, even if the node already knows that some instances cannot terminate, since it may never receive enough identical

messages if the tested parameter is too large. In a real implementation, each node i only needs to keep track of d di
2
e − 1

instances of CPA algorithm, where di is the number of incoming neighbors at node i.

137

3 in CPA as specified in 8.2), or (ii) it commits to a correct value, i.e., the input value of the source. Thus,

in the end of the CPA-P,3 each node can simply commit to the non-null value corresponding to the largest

tested parameter. Now, we describe CPA-P formally.

Throughout the execution, each node i (excluding s and outgoing neighbors of s) maintains an (n+ 1)-

entry vector vi, where vi[t] (0 ≤ t ≤ n) is the estimate of output corresponding to the tested parameter

t. In the beginning of the algorithm, every entry of vector vi is initialized to be a null value ⊥, where ⊥ is

distinguished from all possible values of xs.

Source node s commits to its input xs at the start of the algorithm (round 0), and transmits message xs

to all its outgoing neighbors in round 1. For the other nodes, the algorithm is as follows.

• For outgoing neighbor of the source s:

1. In round 1, it receives message x directly from source s, and commits to output x.

2. In round 2, it transmits messages < x, 0 >,< x, 1 >, ..., < x, n > to all its outgoing neighbors,

and terminates.

• For node that is not an outgoing neighbor of s, in each round r (r > 0):

1. For 0 ≤ t ≤ n, each node i that sets vi[t] in round r − 1 to some value x, transmits message

< x, t > to all its outgoing neighbors.

2. For 0 ≤ t ≤ n, through round r, if a node i has received messages containing value < x, t > from

at least t+ 1 distinct incoming neighbors, then it sets vi[t] = x.

3. In round n, each node i commits to value vi[t
′], where t′ is the largest value in range [0, n] such

that vi[t
′] 6=⊥.

Note that the algorithm performs n rounds.

Now, we show that CPA-P is correct.

Theorem 21 Given a graph G that can tolerate f -local faults, CPA-P achieves both validity and termination.

Proof: Denote by CPA-P-t (0 ≤ t ≤ n) the instance of CPA-P corresponding to the tested parameter t.

Then by assumption of G, CPA-P-f is correct. Thus, for each fault-free node i, vi[f] = xs, the input value

at source s. Now, we prove the following claim:

3Note that CPA is guaranteed to terminate in n steps, and so is CPA-P.

138

Claim 7 For t > f , in CPA-P-t, fault-free nodes never decide on an invalid value, i.e., for each fault-free

node i, either vi[t] = xs or vi[t] =⊥.

Proof: The proof is by induction.

Induction basis: Source node s and its outgoing neighbors commit to output equal to the source’s input xs

in round 0 and 1, respectively. No other fault-free nodes commit in round 0 and 1.

Induction: Suppose that L is the set of fault-free nodes that have committed to xs through round r (r > 0).

Thus, s ∈ L. Let F ′ be the set of faulty nodes, and |F ′| = f . Define R = V − L − F ′. If R = ∅, then the

proof is complete. Let us now assume that R 6= ∅.

Now consider round r + 1.

Consider any fault-free node u that has not committed prior to round r+1 (i.e., u ∈ R). All the nodes in

L have committed to xs by the end of round r. Thus, in round r+ 1 or earlier, node u may receive messages

containing values different from xs only from nodes in F ′. Therefore, node u cannot commit to any value

different from xs in round r + 1, since by assumption |N−u ∩ F ′| ≤ f < t.

Unlike the proof in Theorem 20, node u may never gather enough (i.e., at least t+ 1) identical messages

from its incoming neighbors, since t > f . Thus, for CPA-P-t, node u may never terminate. In this case,

vu[t] =⊥. 2

The source node s and fault-free outgoing neighbors of s commit to xs in round 0 and 1, respectively. By

Claim 7 and the fact that CPA-P-f satisfies both validity and termination, each fault-free node i (excluding

s and outgoing neighbors of s) commits to xs. Thus, CPA-P is correct.

2

8.4 Discussion

This section discusses some extensions on the result presented above.

8.4.1 Broadcast Channel

We have so far assumed that the underlying network is a point-to-point network. The results, however, can

be easily extended to the broadcast or radio model [42, 11] as well. In the broadcast model, when a node

transmits a value, all of its outgoing neighbors receive this value identically. Thus, no node can transmit

mismatching values to different outgoing neighbors. Then, it is easy to see that the same condition as the

point-to-point network can be shown to be necessary and sufficient for of CPA under the broadcast model

as well.

139

Now consider the following variation of the CPA algorithm: if the outgoing neighbors of source s do

not receive a message from s in round 1, the message value is assumed to be some default value. With

this modification, the condition in Theorem 19 can also be shown to be necessary and sufficient to perform

Byzantine Broadcast [46] under the broadcast model, while satisfying the following three conditions (allowing

s to be faulty):

• Termination: every fault-free node i eventually decides on an output value yi.

• Agreement: the output values of all the fault-free nodes are equal, i.e., there exists y such that, for

every fault-free node i, yi = y.

• Validity: if the source node is fault-free, then for every fault-free node i, the output value equals the

source’s input, i.e., y = xs.

The proof follows from the proof of Theorem 19 and the observation that if s transmits a value, then all the

outgoing neighbors of s receive identical value from s, which equals its input xs when s is fault-free.

8.4.2 Asynchronous Systems

In our analysis so far, we have assumed that the system is synchronous. For a point-to-point network with

fault-free source s, it should be easy to see that the condition in Theorem 19 is also necessary and sufficient

to achieve agreement using a CPA-like algorithm under the asynchronous systems as well. In this case, the

algorithm may not proceed in rounds, but a node still commits to value x either on receiving the value

directly from s, or from f + 1 nodes. This claim may seem to contradict the FLP result [33]. However, our

claim assumes that the source node is fault-free, unlike [33].

8.4.3 Complexity

[57] proved that it is NP-hard to examine whether CPA is correct in a given undirected graph with specific f .

The condition in [57] is indeed equivalent to our condition (condition in Theorem 19) in undirected graphs.

Therefore, it is NP-hard to examine whether a given graph satisfies our condition or not.

8.5 Summary

In this Chapter, we consider reliable broadcast problem in arbitrary network using the CPA algorithm in

f -local Byzantine fault model. In particular, we provide a tight necessary and sufficient condition on the

underlying network for the correctness of CPA.

140

Chapter 9

Convex Hull Consensus under Crash
Faults with Incorrect Inputs

9.1 Introduction

The traditional consensus problem formulation assumes that each node has a scalar input, e.g., [5, 52, 60, 29]

and the work presented in previous Chapters. As a generalization of this problem, recent work [54, 88, 87]

has addressed vector consensus (also called multidimensional consensus) in the presence of Byzantine faults,

wherein each node has a d-dimensional vector of reals as input, and the nodes reach consensus on a d-

dimensional vector within the convex hull of the inputs at fault-free nodes (d ≥ 1). In the discussion below,

it will be more convenient to view a d-dimensional vector as a point in the d-dimensional Euclidean space.

This Chapter defines the problem of convex hull consensus. Similar to vector consensus, the input at each

node is a point in the d-dimensional Euclidean space. However, for convex hull consensus, the output at each

node is a convex polytope contained within the convex hull of the inputs at the fault-free nodes. Intuitively,

the goal is to reach consensus on the “largest possible” polytope within the convex hull of the inputs at

fault-free nodes, allowing the nodes to estimate the domain of inputs at the fault-free nodes. In some cases,

the output convex polytope may consist of just a single point, but in general, it may contain an infinite

number of points in the d-dimensional space. In asynchronous systems, we present an approximate convex

hull consensus algorithm with optimal fault tolerance that reaches consensus on optimal output polytope

under crash fault model with incorrect inputs (to be defined later). The results presented in this Chapter

are published in [79].

Convex hull consensus may be used to solve other related problems. For instance, a solution for convex

hull consensus trivially yields a solution for vector consensus [54, 88]. More importantly, convex hull con-

sensus can potentially be used to solve other more interesting problems, such as function optimization with

the convex hull of the inputs at fault-free nodes as the domain. We will discuss the application of convex

hull consensus to function optimization in Chapter 9.8.

We first describe our fault and system models, and then formally define the convex hull consensus

problem.

141

9.1.1 Models

Fault Model The fault model of interest is different from crash or Byzantine fault models in previous

Chapters. This Chapter assumes the crash faults with incorrect inputs fault model [20, 5]. In this model,

each faulty node have an incorrect input, and may crash. A faulty node performs the algorithm faithfully,

using an incorrect input, until it (possibly) crashes. The implication of an incorrect input will be clearer

when we formally define convex hull consensus below. Roughly speaking, the fault model sits between

crash and Byzantine fault models. The faulty node have arbitrary behavior only in the beginning of the

algorithm (choosing arbitrarily incorrect inputs); once the algorithm starts, the faulty behavior is the same

as in crash fault model studied in previous Chapters. Such faulty behavior is motivated by the existence of

malfunctioned sensors.

We assume that at most f nodes may be faulty (f -total fault model), and all fault-free nodes have correct

inputs. Since this model assumes incorrect inputs at faulty nodes, the simulation techniques in [20, 5] can

be used to transform an algorithm designed for this fault model to an algorithm for tolerating Byzantine

faults. The transformation requires n ≥ 3f + 1, which is also a lower bound to solve convex hull consensus

under the fault model. (A different Byzantine convex hull consensus algorithm is also briefly discussed in

Chapter 9.7 and presented in our technical report [77].) Our results extend naturally to the more commonly

used crash fault model wherein faulty nodes also have correct inputs (we will refer to the latter model as

crash faults with correct inputs). The extension is presented in Chapter 9.6.

System Model The system under consideration is asynchronous, and consists of n nodes. Let the set

of nodes be denoted as V = {1, 2, · · · , n}. Unlike previous Chapters, this Chapter assumes that all nodes

can communicate with each other. Thus, the underlying communication network is modeled as a complete

graph. Similar to prior work (e.g., [29, 20, 88]), we assume that communication channels are reliable and

FIFO (first-in first-out). Each message is delivered exactly once on each channel. The input at node i,

denoted as xi, is a point in the d-dimensional Euclidean space (equivalently, a d-dimensional vector of real

numbers).

9.1.2 Convex Hull Consensus

The FLP impossibility of reaching exact consensus in asynchronous systems with crash faults [33] extends

to the problem of convex hull consensus as well. Therefore, we consider approximate convex hull consensus.

An approximate convex hull consensus algorithm must satisfy the following properties:

• Validity: The output (or decision) at each fault-free node must be a convex polytope in the convex

142

hull of correct inputs. Note that under the crash fault with incorrect inputs model, the input at any

faulty node is incorrect.

• ε-Agreement: For a given constant ε > 0, the Hausdorff distance (defined below) between the output

polytopes at any two fault-free nodes must be at most ε.

• Termination: Each fault-free node must terminate within a finite amount of time.

Moreover, the goal of the algorithm is to maximize the size of the output convex polytope at each fault-free

node.

Distance Metrics

• dE(p, q) denotes the Euclidean distance between points p and q. All points and polytopes in our

discussion belong to a d-dimensional Euclidean space, for some d ≥ 1, even if this is not always stated

explicitly.

• For two convex polytopes h1, h2, the Hausdorff distance dH(h1, h2) is defined as follows [36].

dH(h1, h2) = max { max
p1∈h1

min
p2∈h2

dE(p1, p2),

max
p2∈h2

min
p1∈h1

dE(p1, p2)} (9.1)

Optimality of Approximate Convex Hull Consensus The algorithm proposed in this paper is optimal

in two ways. It requires an optimal number of nodes to tolerate f faults, and it decides on a convex polytope

that is optimal in a “worst-case sense”, as elaborated below:

• Prior work on approximate vector consensus mentioned earlier [54, 88] showed that n ≥ (d + 2)f + 1

is necessary to solve that problem in an asynchronous system consisting of n nodes with at most f

Byzantine faults. Although these prior papers dealt with Byzantine faults, it turns out that their

proof of lower bound on n (i.e., lower bound of (d+ 2)f + 1) is also directly applicable to approximate

vector consensus under the crash fault with incorrect inputs model used in our present work. Thus,

n ≥ (d + 2)f + 1 is a necessary condition for vector consensus under this fault model. Secondly, it

is easy to show that an algorithm for approximate convex hull consensus can be transformed into an

algorithm for approximate vector consensus. Therefore, n ≥ (d + 2)f + 1 is a necessary condition for

143

approximate convex hull consensus as well. Thus, our subsequent discussion under the crash faults

with incorrect inputs model assumes that

n ≥ (d+ 2)f + 1 (9.2)

Our algorithm is correct under this condition, and thus achieves optimal fault resilience. For crash

faults with correct inputs, a smaller n suffices, as discussed later in Chapter 9.6.

• In this Chapter, we only consider deterministic algorithms. A convex hull consensus algorithm A is

said to be optimal if the following condition is true:

Let F denote a set of up to f faulty nodes. For a given execution of algorithm A with F being

the set of faulty nodes, let yi(A) denote the output polytope at node i at the end of the given

execution. For any other convex hull consensus algorithm B, there exists an execution with F

being the set of faulty nodes, such that yi(B) is the output at fault-free node i, and yj(B) ⊆ yj(A)

for each fault-free node j.

The goal here is to decide on an output polytope that includes as much of the convex hull of all

correct inputs as possible. However, since any node may be potentially faulty (with incorrect input),

the output polytope can be smaller than the convex hull of all correct inputs. Intuitively speaking,

the optimality condition says that an optimal algorithm should decide on a convex region that is no

smaller than that decided in a worst-case execution of algorithm B. In Chapter 9.5, we will show that

our proposed algorithm is optimal in the above sense.

This Chapter uses similar proof structures in previous Chapters on iterative algorithms. With regards

to the proof technique, we show how the above proof structure can be extended to the case when the node

state consists of convex polytopes in this Chapter.

9.2 Preliminaries

Here, we introduce functions H, L, and a communication primitive used in our algorithm.

Definition 23 For a multiset of points X, H(X) is the convex hull of the points in X.

A multiset contain the same element more than once.

144

Definition 24 Function L: Suppose that ν non-empty convex polytopes h1, h2, · · · , hν , and ν weights c1, c2, · · · , cν

are given such that 0 ≤ ci ≤ 1 and
∑ν
i=1 ci = 1. Linear combination of these convex polytopes

L([h1, h2, · · · , hν] ; [c1, c2, · · · , cν])

is defined as follows:

p ∈ L([h1, h2, · · · , hν]; [c1, c2, · · · , cν]) if and only if for 1 ≤ i ≤ ν, there exists

pi ∈ hi, such that p =
∑

1≤i≤ν

cipi (9.3)

Because hi’s above are all convex and non-empty, L([h1, h2, · · · , hν] ; [c1, c2, · · · , cν]) is also a convex non-

empty polytope. (The proof is straightforward.) The parameters for L consist of two vectors, with the

elements of the first vector being polytopes, and the elements of the second vector being the corresponding

weights in the linear combination. With a slight abuse of notation, we will also specify the vector of polytopes

as a multiset – in such cases, we will always assign an identical weight to all the polytopes in the multiset,

and hence their ordering is not important.

Stable vector communication primitive As seen later, our algorithm proceeds in asynchronous rounds.

In round 0 of the algorithm, the nodes use a communication primitive called stable vector [4, 35], to try

to learn each other’s inputs. Stable vector was originally developed in the context of crash faults [4] and

was later applied to solve Byzantine Barycentric agreement [35]. To achieve its desirable properties (listed

below), stable vector requires at least 2f + 1 nodes when each node either follows the algorithm faithfully

or crashes. Since in our crash fault with incorrect inputs model, each node follows the algorithm unless it

crashes, the properties of stable vector listed below will hold in our context, provided that n ≥ 2f + 1. As

noted earlier in Chapter 9.1, n ≥ (d+2)f +1 is a necessary condition for approximate convex hull consensus

in the presence of crash faults with incorrect inputs. Then, with d ≥ 1, we have n ≥ 3f + 1, and the

properties of stable vector below will hold.

In round 0 of our algorithm, each node i first broadcasts a message consisting of the tuple (xi, i, 0),

where xi is node i’s input. In this tuple, 0 indicates the (asynchronous) round index. Node i then waits for

the stable vector primitive to return a set Ri containing round 0 messages. We will rely on the following

properties of the stable vector primitive, which are implied by results proved in prior work [4, 35].

• Liveness: At each node i that does not crash before the end of round 0, stable vector returns a set

145

Ri containing at least n− f distinct tuples of the form (x, k, 0).

• Containment: For nodes i, j that do not crash before the end of round 0, let Ri, Rj be the set of

messages returned to nodes i, j by stable vector in round 0, respectively. Then, either Ri ⊆ Rj or

Rj ⊆ Ri. (Also, by the previous property, |Ri| ≥ n− f and |Rj | ≥ n− f .)

Please refer to [4, 35] for the implementation of the stable vector primitive.

9.3 Algorithm CC

The proposed algorithm, named Algorithm CC, proceeds in asynchronous rounds. The input at each node i

is named xi. The initial round of the algorithm is called round 0. Subsequent rounds are named round 1, 2,

3, etc. In each round t ≥ 0, each node i computes a state variable hi, which represents a convex polytope in

the d-dimensional Euclidean space. We will refer to the value of hi at the end of the t-th round performed

by node i as hi[t], t ≥ 0. Thus, for t ≥ 1, hi[t− 1] is the value of hi at the start of the t-th round at node i.

The algorithm terminates after tend rounds, where tend is a constant defined later in equation (9.31). The

state hi[tend] of each fault-free node i at the end of tend rounds is its output (or decision) for the consensus

algorithm.

Xi and Yi[t] defined on lines 4 and 13 of the algorithm below are both multisets. A given value may occur

multiple times in a multiset. Also, the intersection in line 5 is over the convex hulls of the subsets of multiset

Xi of size |Xi| − f (note that each of these subsets is also a multiset). Elements of Xi are points in the

d-dimensional Euclidean space, whereas elements of Yi[t] are convex polytopes. In line 14, Yi[t] specifies the

multiset of polytopes whose linear combination is obtained using L; all the weights specified as parameters

to L here are equal to 1/|Yi[t]|

Algorithm CC: Steps performed at node i shown below.

Initialization: All sets used below are initialized to ∅.

Round 0 at node i:

• On entering round 0: 1

Send (xi, i, 0) to all the nodes 2

• When stable vector returns a set Ri: 3

Multiset Xi := {x | (x, k, 0) ∈ Ri} 4

146

hi[0] := ∩C⊆Xi, |C|=|Xi|−f H(C) 5

Proceed to Round 1 6

Round t ≥ 1 at node i:

• On entering round t ≥ 1: 7

MSGi[t] := MSGi[t] ∪ (hi[t− 1], i, t) 8

Send (hi[t− 1], i, t) to all other nodes 9

• When message (h, j, t) is received from j 6= i 10

MSGi[t] := MSGi[t] ∪ {(h, j, t)} 11

• When |MSGi[t]| ≥ n− f for the first time: 12

Multiset Yi[t] := {h | (h, j, t) ∈ MSGi[t]} 13

hi[t] := L(Yi[t] ; [1
|Yi[t]| , · · · ,

1
|Yi[t]|]) 14

If t < tend, then proceed to Round t+ 1 15

Note that stable vector is only used in Round 0. As will be seen later in Chapter 9.5, to achieve optimality

of the size of the output polytope, it is important for the intersection of multiset Xi (at line 4) at each fault-

free node i to be as large as possible. This property is ensured by receiving messages using stable vector.

In later rounds, the goal is to achieve convergence, and in this case, exchanging messages over the reliable

channels is enough.

9.4 Correctness of Algorithm CC

We prove that Algorithm CC satisfies Validity, ε-Agreement, and Termination properties. The use of matrix

representation in our correctness proof below is inspired by the prior work on non-fault-tolerant consensus

(e.g., [38, 9]). We have also used such a proof structure in Chapters 5, 6, and 7, and our prior work on

Byzantine consensus [87, 86]. The main differences in this proof are: (i) the state at each node is now a

convex polytope (instead of a point), and (ii) the multiplication operation on a vector of convex polytopes

and a vector of scalar is now defined using function L (introduced in Chapter 9.2).

We now introduce more notations and two lemmas:

• For a given execution of the proposed algorithm, let F denote the actual set of faulty nodes in that

execution. Nodes in F have incorrect inputs, and they may potentially crash.

147

• For round r ≥ 0, let F [r] denote the set of faulty nodes that have crashed before sending any round

r messages. Since the algorithm terminates after round tend, we define for t > tend, F [t] = F [tend].

Note that F [r] ⊆ F [r + 1] ⊆ F .

Lemma 51 Algorithm CC ensures progress: (i) all the fault-free nodes will eventually progress to round 1;

and, (ii) if all the fault-free nodes progress to the start of round t (tend ≥ t ≥ 1), then all the fault-free nodes

will eventually progress to the start of round t+ 1.

Proof:

Part (i): By assumption, all fault-free nodes begin the round 0 eventually, and perform a broadcast of

their input (line 1). There at least 3f + 1 nodes as argued in Chapter 9.2, and at most f may crash. The

Liveness property of stable vector ensures that it will eventually return (on line 3). Therefore, each node

that does not crash in round 0 will eventually proceed to round 1 (line 6).

Part (ii): The proof is by induction. Suppose that the fault-free nodes begin round t ≥ 1. (We already

proved that the fault-free nodes begin round 1.) Thus, each fault-free node i will perform a broadcast of

(hi[t − 1], i, t) on line 9. By the assumption of reliable channels, node i will eventually receive message

(hj [t− 1], j, t) from each fault-free node j. Thus, it will receive messages from at least n− f − 1 other nodes,

and include these received messages in MSGi[t] (line 10-11). Also, it includes (on line 8) its own message into

MSGi[t]. Thus, MSGi[t] is sure to reach size n− f eventually, and node i will be able to progress to round t+ 1

(line 12-15). 2

Lemma 52 For each node i ∈ V −F [1], the polytope hi[0] is non-empty and convex.

The proof of Lemma 52 uses the following theorem by Tverberg [62]:

Theorem 22 (Tverberg’s Theorem [62]) For any integer f ≥ 0, for every multiset T containing at least

(d+ 1)f + 1 points in a d-dimensional space, there exists a partition T1, .., Tf+1 of T into f + 1 non-empty

multisets such that ∩f+1
l=1 H(Tl) 6= ∅.

Proof of Lemma 52 Below, we use Theorem 22 to prove Lemma 52.

Proof: Consider any i ∈ V − F [1]. Consider the computation of polytope hi[0] on line 5 of the algorithm

as

hi[0] := ∩C⊆Xi, |C|=|Xi|−f H(C), (9.4)

148

where Xi := {x | (x, k, 0) ∈ Ri} (lines 4-5). Convexity of hi[0] follows directly from (9.4), because hi[0] is an

intersection of convex hulls.

Recall that, due to the lower bound on n discussed in Chapter 9.1, we assume that n ≥ (d + 2)f + 1.

Thus, |Xi| ≥ n − f ≥ (d + 1)f + 1. By Theorem 22 above, there exists a partition T1, T2, · · · , Tf+1 of Xi

into multisets (Tj ’s) such that ∩f+1
j=1H(Tj) 6= ∅. Let us define

J = ∩f+1
j=1H(Tj) (9.5)

Thus, by Tverberg’s theorem above, J is non-empty. Now, each multiset C used in (9.4) to compute hi[0]

excludes only f elements of Xi, whereas there are f+1 multisets in the partition T1, T2, · · · , Tf+1 of multiset

Xi. Hence, each multiset C will fully contain at least one multiset from the partition. It follows that H(C)

will contain J defined above. Since this property holds true for each multiset C used to compute hi[0], J is

contained in the convex polytope hi[0] computed as per (9.4). Since J is non-empty, hi[0] is non-empty. 2

9.4.1 Matrix Preliminaries

We now introduce some matrix notation and terminology to be used in our proof. Boldface upper case

letters are used below to denote matrices, rows of matrices, and their elements. For instance, A denotes a

matrix, Ai denotes the i-th row of matrix A, and Aij denotes the element at the intersection of the i-th

row and the j-th column of matrix A. A vector is said to be stochastic if all its elements are non-negative,

and the elements add up to 1. A matrix is said to be row stochastic if each row of the matrix is a stochastic

vector [38]. For matrix products, we adopt the “backward” product convention below, where a ≤ b,

Πb
τ=aA[τ] = A[b]A[b− 1] · · ·A[a] (9.6)

Let v be a column vector of size n whose elements are convex polytopes. The i-th element of v is vi. Let A

be a n× n row stochastic square matrix. We define the product of Ai (the i-th row of A) and v as follows

using function L defined in Chapter 9.2.

Aiv = L(vT ; Ai) (9.7)

149

where T denotes the transpose operation. The above product is a polytope in the d-dimensional Euclidean

space. Product of matrix A and v is then defined as follows:

Av = [A1v A2v · · · Anv]T (9.8)

Due to the transpose operation above, the product Av is a column vector consisting of n polytopes. Now,

we present a useful lemma.

Lemma 53 For two n-by-n matrices A and B, and an n-element column vector of d-dimensional polytopes

v, we have A(Bv) = (AB)v.

Proof: Let l = A(Bv) and r = (AB)v. To prove the lemma, we show that for 1 ≤ k ≤ n, lk = rk.

We first show the following claim for an n-element column vector of d-dimensional points p.

Claim 8 Ak(Bp) = (AB)kp

Proof:

Ak(Bp) =

n∑
i=1

Aki

 n∑
j=1

Bijpj


=

n∑
j=1

(
n∑
i=1

AkiBij

)
pj

= (AB)kp

2

Claim 9 For any integer k such that 1 ≤ k ≤ n, a point p ∈ rk, then p ∈ lk.

Proof: By the definition of p, there exists a vector of d-dimensional points q such that (i) (AB)kq = p;

and (ii) for 1 ≤ j ≤ n, qj ∈ vj . Observe that p = (AB)kq = Ak(Bq) due to Claim 8. This implies that

p ∈ lk due to our definition of matrix operation over polytopes. 2

Claim 9 implies that

rk ⊆ lk (9.9)

Next, we prove the following claim.

Claim 10 For any integer k such that 1 ≤ k ≤ n, if a point p ∈ lk, then p ∈ rk.

150

Proof: By the definition of p, there exists a vector of d-dimensional points p′ such that

• Akp
′ = p, i.e., p =

∑n
j=1 Akjp

′
j ;

• For 1 ≤ j ≤ n, there exists a vector of d-dimensional points pj such that (i) p′j = Bjp
j ; and (ii) pji ∈ vi

for each 1 ≤ i ≤ n. Note that condition (i) implies that p′j =
∑n
i=1 Bjip

j
i .

To prove the claim, we need to find a vector of d-dimensional points q such that (AB)kq = p and qi ∈ vi

for each 1 ≤ i ≤ n. Define qi as follows:

qi =

∑n
j=1 (AkjBji) p

j
i∑n

j=1 AkjBji
(9.10)

Since by assumption, each pji ∈ vi, qi ∈ vi as well. Now, we show that (AB)kq = p.

(AB)kq =

n∑
i=1

 n∑
j=1

AkjBji

 qi

=

n∑
i=1

 n∑
j=1

AkjBji

∑n
j=1 (AkjBji) p

j
i∑n

j=1 AkjBji

=

n∑
i=1

n∑
j=1

(AkjBji) p
j
i

=

n∑
j=1

Akj

(
n∑
i=1

Bji p
j
i

)

=

n∑
j=1

Akjp
′
j

= p

Hence, p ∈ rk. 2

Claim 10 implies that

lk ⊆ rk (9.11)

Equations (9.9) and (9.11) together imply that for each k,

lk = rk

Therefore, l = r. This completes the proof of Lemma 53. 2

151

9.4.2 Algorithm CC in Matrix Form

We describe how to represent Algorithm CC using a matrix form. Let v[t] (tend ≥ t ≥ 0), denote a column

vector of length n. In the remaining discussion, we will refer to v[t] as the state of the system at the end of

round t. In particular, vi[t] for i ∈ V is viewed as the state of node i at the end of round t. We define v[0]

as follows as initialization of the state vector:

(I1) For each node i ∈ V − F [1], vi[0] := hi[0]. Recall that hi[0] is the convex hull computed at node i at

line 5 in Algorithm CC.

(I2) For each node k ∈ F [1], first pick any one fault-free node m ∈ V − F ⊆ V − F [1], and then vk[0] is

arbitrarily defined to be equal to hm[0]. Such an arbitrary choice suffices because the state vk[0] for

k ∈ F [1] does not impact future state of any other node (by definition, nodes in F [1] do not send any

messages in round 1 and beyond).

We will show that the state evolution of Algorithm CC can be expressed using matrix form as in (9.12)

below, where M[t] is an n× n matrix with certain desirable properties. The state vk[t] of node k ∈ F [t] is

not meaningful, since node k has crashed before sending any round t messages. However, (9.12) assigns it a

value for convenience of analysis. M[t] is said to be the transition matrix for round t.

v[t] = M[t] v[t− 1], tend ≥ t ≥ 1 (9.12)

In particular, given an execution of the algorithm, we construct the transition matrix M[t] for round

t ≥ 1 of that execution using the two rules below (Rule 1 and Rule 2). Elements of row Mi[t] will determine

the state vi[t] of node i (specifically, vi[t] = Mi[t]v[t−1]). Note that Rule 1 applies to nodes in V −F [t+1].

Each node i ∈ V −F [t+ 1] survives at least until the start of round t+ 1, and sends at least one message in

round t+ 1. Therefore, its state vi[t] at the end of round t is of consequence. On the other hand, nodes in

F [t+ 1] crash sometime before sending any messages in round t+ 1 (possibly crashing in previous rounds).

Thus, their states at the end of round t are not relevant to the fault-free nodes anymore, and hence Rule

2 defines the entries of the corresponding rows of M[t] somewhat arbitrarily. Note that the construction is

similar to the one presented in Chapter 7.

Construction of Transition Matrix M[t] for tend ≥ t ≥ 1:

In the matrix specification below, MSGi[t] is the message set at the point where Yi[t] is defined on line 13

of the algorithm. Thus, Yi[t] := {h | (h, j, t) ∈ MSGi[t]}, and |MSGi[t]| = |Yi[t]|.

• Rule 1: For each node i ∈ V −F [t+ 1], and each k ∈ V :

152

If a round t message from node k (of the form (∗, k, t)) is in MSGi[t], then

Mik[t] :=
1

|MSGi[t]|
(9.13)

Otherwise,

Mik[t] := 0 (9.14)

• Rule 2: For each node j ∈ F [t+ 1], and each k ∈ V ,

Mjk[t] :=
1

n
(9.15)

Observe that by design, M[t] is a row stochastic matrix.

Theorem 23 For t ≥ 1, define v[t] = M[t]v[t− 1], with M[t] as specified above. Then, for τ ≥ 0, and for

all i ∈ V −F [τ + 1], vi[τ] equals hi[τ].

The proof is similar to proof of Theorem 17 in Chapter 7 and is presented below for completeness.

Proof: The proof of the above theorem is by induction on τ . Recall that we defined vi[0] to be equal to

hi[0] for all i ∈ V −F [1] in the initialization step (I1) in Chapter 9.4. Thus, the theorem trivially holds for

τ = 0.

Now, for some τ ≥ 0, and for all i ∈ V − F [τ + 1], suppose that vi[τ] = hi[τ]. Recall that nodes in

V −F [τ +2] surely survive at least till the end of round τ +1 (by definition of F [τ +2]). Therefore, in round

τ + 1 ≥ 1, each node in i ∈ V −F [τ + 2] computes its new state hi[τ + 1] at line 14 of Algorithm CC, using

function L(Yi[τ + 1] ; [1
|Yi[τ+1]| , · · · ,

1
|Yi[τ+1]|]), where Yi[τ + 1] := {h | (h, j, τ + 1) ∈ MSGi[τ + 1]}. Also, if

(h, j, τ + 1) ∈ MSGi[τ + 1], then node j must have sent round τ + 1 message (hj [τ], j, τ + 1) to node i – in

other words, h above (in (h, j, τ + 1) ∈ MSGi[τ + 1]) must be equal to hj [τ]. Also, since j did send a round

τ + 1 message, j ∈ V −F [τ + 1]. Thus, by induction hypothesis, vj [τ] = hj [τ].

Now observe that, by definition of Yi[τ + 1] at line 13 of the algorithm, |Yi[τ + 1]| = |MSGi[τ + 1]|.

Thus, the definition of the matrix elements in (9.13) and (9.14) ensures that Mi[τ + 1]v[τ] equals L(Yi[τ +

1] ; [1
|Yi[τ+1]| , · · · ,

1
|Yi[τ+1]|]), i.e., hi[τ + 1]. Thus, vi[τ + 1] defined as Mi[τ + 1]v[τ] also equals hi[τ + 1].

This holds for all i ∈ V −F [τ + 2], completing the induction. 2

9.4.3 Property of Transition Matrix

To prove Lemma 9.4.3, we first prove the following lemma.

153

Lemma 54 For t ≥ 1, transition matrix M[t] constructed using the procedure described in Chapter 9.4

satisfies the following conditions:

• M[t] is a row stochastic matrix.

• For i, j ∈ V −F [t+1], there exists a fault-free node g(i, j) such that Mig(i,j)[t] ≥ 1
n and Mjg(i,j)[t] ≥ 1

n

Proof:

• Observe that, by construction, for each i ∈ V , the row vector Mi[t] contains only non-negative elements,

which add up to 1. Thus, each row Mi[t] is a stochastic vector, and hence the matrix M[t] is row

stochastic.

• To prove the second claim in the lemma, consider any pair of nodes i, j ∈ V − F [t + 1]. Recall

that the set MSGi[t] used in the construction of M[t] is such that |MSGi[t]| = |Yi[t]| (i.e., MSGi[t] is

the message set at the point where Yi[t] is created). Thus, |MSGi[t]| ≥ n − f and |MSGj [t]| ≥ n − f ,

and there must be at least n − 2f messages in MSGi[t] ∩ MSGj [t]. By assumption, n ≥ (d + 2)f + 1.

Hence, n − 2f ≥ df + 1 ≥ f + 1, since d ≥ 1. Therefore, there exists a fault-free node g(i, j)

such that (hg(i,j)[t − 1], g(i, j), t) ∈ MSGi[t] ∩ MSGj [t]. By (9.13) in the procedure to construct M[t],

Mig(i,j)[t] = 1
|MSGi[t]| ≥

1
n and Mjg(i,j)[t] = 1

|MSGj [t]| ≥
1
n .

2

The above theorem states that, for tend ≥ t ≥ 1, equation (9.12), that is, v[t] = M[t]v[t − 1], correctly

characterizes the state of the nodes that have not crashed before the end of round t. For nodes that have

crashed, their states are not relevant, and could be assigned any arbitrary value for analytical purposes (this

is what Rule 2 above effectively does). Given the matrix product definition in (9.8), and by Lemma 53 and

repeated application of the state evolution equation (9.12), we obtain

v[t] =
(

Πt
τ=1M[τ]

)
v[0], t ≥ 1 (9.16)

Recall that we adopt the “backward” matrix product convention presented in (9.6). Then, (9.16) follows

from the observation that M[τ](M[τ − 1]v[τ − 2]) = (M[τ]M[τ − 1])v[τ − 2].

9.4.4 Correctness Proof

Definition 25 A polytope is valid if it is contained in the convex hull of the inputs of fault-free nodes.

154

Now, we present three lemmas that are used in the correctness proof below. The following lemma specifies

the properties of the multiplication of a series of transition matrices M[τ] constructed using the procedure

above.

Lemma 55 For t ≥ 1, let P[t] = Πt
τ=1 M[τ]. Then,

• P[t] is a row stochastic matrix.

• For i, j ∈ V − F , and k ∈ V ,

‖Pik[t]−Pjk[t] ‖ ≤
(

1− 1

n

)t
(9.17)

where ‖a‖ denotes absolute value of real number a.

The proof is similar to the ones in Chapters 5, 6 or 7 and is presented here fore completeness. Note that

proof below uses matrix tools described in Chapter 5.5.1.

Proof: By the first claim of Lemma 54, M[τ] for 1 ≤ τ ≤ t is row stochastic. Thus, P[t] is a product of

row stochastic matrices, and hence, it is itself also row stochastic.

Now, observe that by the second claim in Lemma 54 and Claim 33, λ(M[t]) ≤ 1− 1
n < 1. Then by Claim

32,

δ(P[t]) = δ(Πt
τ=1M[τ]) ≤ Πt

τ=1λ(M[τ]) ≤
(

1− 1

n

)t
(9.18)

Consider any two fault-free nodes i, j ∈ V −F . By (9.18), δ(P[t]) ≤
(
1− 1

n

)t
. Therefore, by the definition

of δ(·), for 1 ≤ k ≤ n, we have

‖Pik[t]−Pjk[t]‖ ≤
(

1− 1

n

)t
(9.19)

2

Lemma 56 hi[0] for each node i ∈ V −F [1] is valid.

Proof: Recall that hi[0] is obtained on line 5 of Algorithm CC as

hi[0] := ∩C⊆Xi, |C|=|Xi|−f H(C),

where Xi = {x | (x, k, 0) ∈ Ri}. Under the crash faults with incorrect inputs model, except for up to f values

in Xi (which may correspond to inputs at faulty nodes), all the other values in Xi must correspond to inputs

at fault-free nodes (and hence they are correct). Therefore, at least one set C used in the computation of

155

hi[0] must contain only the inputs at fault-free nodes. Therefore, hi[0] is in the convex hull of the inputs at

fault-free nodes. That is, hi[0] is valid. 2

Lemma 57 Suppose non-empty convex polytopes h1, · · · , hν are all valid. Consider ν constants c1, c2, · · · , cν

such that 0 ≤ ci ≤ 1 and
∑ν
i=1 ci = 1. Then the linear combination of these convex polytopes,

L([h1, h2, · · · , hν] ; [c1, c2, · · · , cν]), is convex, non-empty, and valid.

Proof: Polytopes h1, · · · , hν are given as non-empty, convex, and valid. Let

L := L([h1, h2, · · · , hν] ; [c1, c2, · · · , cν]) (9.20)

We will show that L is convex, non-empty, and valid.

L is convex: Given any two points x, y in L, by Definition 24, we have

x =
∑

1≤i≤ν

cip(i,x) for some p(i,x) ∈ hi, 1 ≤ i ≤ ν (9.21)

and

y =
∑

1≤i≤ν

cip(i,y) for some p(i,y) ∈ hi, 1 ≤ i ≤ ν (9.22)

Now, we show that any convex combination of x and y is also in L defined in (9.20). Consider a point z

such that

z = θx+ (1− θ)y where 0 ≤ θ ≤ 1 (9.23)

Substituting (9.21) and (9.22) into (9.23), we have

z = θ
∑

1≤i≤ν

cip(i,x) + (1− θ)
∑

1≤i≤ν

cip(i,y)

=
∑

1≤i≤ν

ci
(
θp(i,x) + (1− θ)p(i,y)

)
(9.24)

Define p(i,z) = θp(i,x) + (1− θ)p(i,y) for 1 ≤ i ≤ ν. Since hi is convex, and p(i,z) is a convex combination

of p(i,x) and p(i,y), p(i,z) is also in hi. Substituting the definition of p(i,z) in (9.24), we have

156

z =
∑

1≤i≤ν

ci p(i,z) where p(i,z) ∈ hi, 1 ≤ i ≤ ν

Hence, by Definition 24, z is also in L. Therefore, L is convex.

L is non-empty: The proof that L is non-empty is trivial. Since each of the hi’s is non-empty, there

exists at least one point zi ∈ hi for 1 ≤ i ≤ ν. Then
∑

1≤i≤ν cizi is in L, and hence L is non-empty.

L is valid: The proof that L is valid is also straightforward. Since each of the hi’s is valid, each point

in each hi is a convex combination of the inputs at the fault-free nodes. Since each point in L is a convex

combination of points in hi’s, it then follows that each point in L is in the convex hull of the inputs at

fault-free nodes. 2

Theorem 24 Algorithm CC satisfies the validity, ε-agreement and termination properties.

Proof: We prove that Algorithm CC satisfies the validity, ε-agreement and termination properties after a

large enough number of asynchronous rounds.

Repeated applications of Lemma 51 ensures that the fault-free nodes will progress from round 0 through

round r, for any r ≥ 0, allowing us to use (9.16). Consider round t ≥ 1. Let

P[t] = Πt
τ=1M[τ] (9.25)

Validity:

We prove validity using the series of observations below:

• Observation 1: By Lemma 52 and Lemma 56, hi[0] for each i ∈ V −F [1] is non-empty and valid. Also,

each such hi[0] is convex by construction (line 5 of Algorithm CC).

• Observation 2: As per the initialization step (I1) in Chapter 9.4, for each i ∈ V −F [1], vi[0] := hi[0];

thus, by Observation 1 above, for each such node i, vi[0] is convex, valid and non-empty. Also, in

initialization step (I2), for each node k ∈ F [1], we set vk[0] := hm[0], where m is a fault-free node;

thus, by Observation 1, for each such node k, vk[0] is convex, valid and non-empty. Therefore, each

element of v[0] is a non-empty, convex and valid polytope.

157

• Observation 3: By Lemma 55, P[t] is a row stochastic matrix. Thus, elements of each row of P[t] are

non-negative and add up to 1. Therefore, by Observation 2 above, and Lemma 57, Pi[t]v[0] for each

i ∈ V − F is valid, convex and non-empty. Also, by Theorem 23, and equation (9.16), hi[t] = P[t]v[0]

for i ∈ V − F . Thus, hi[t] is valid, convex and non-empty for t ≥ 1.

Therefore, Algorithm CC satisfies the validity property.

ε-Agreement and Termination:

Nodes in F [1] do not send any messages to any other node in round 1 and beyond. Thus, by the

construction of M[t], for each a ∈ V − F [1] and b ∈ F [1], Mab[t] = 0 for all t ≥ 1; it then follows that

Pab[t] = 0 as well.1

Consider fault-free nodes i, j ∈ V − F . The previous paragraph implies that, for any point qi in hi[t] =

vi[t] = Pi[t]v[0], there must exist, for all k ∈ V −F [1], pk ∈ hk[0], such that

qi =
∑

k∈V−F [1]

Pik[t]pk (9.26)

Using points pk in the above equation, now choose point qj in hj [t] defined as follows.

qj =
∑

k∈V−F [1]

Pjk[t]pk (9.27)

For points pk, denote by pk(l) the value of pk’s l-th coordinate. Then, (9.26) and (9.27) imply the

following equalities for d ≥ l ≥ 1, respectively:

qi(l) =
∑

k∈V−F [1]

Pik[t]pk(l) (9.28)

and

qj(l) =
∑

k∈V−F [1]

Pjk[t]pk(l) (9.29)

Recall that the Euclidean distance between qi and qj is dE(qi, qj). From Lemma 55, (9.28) and (9.29),

we have the following:

1Claim 11 in Chapter 9.5 relates to this observation.

158

dE(qi, qj) =

√√√√ d∑
l=1

(qi(l)− qj(l))2

=

√√√√√ d∑
l=1

 ∑
k∈V−F [1]

Pik[t]pk(l)−
∑

k∈V−F [1]

Pjkpk(l)

2

=

√√√√√ d∑
l=1

 ∑
k∈V−F [1]

(Pik[t]−Pjk[t])pk(l)

2

≤

√√√√√√ d∑
l=1

(1− 1

n

)2t
 ∑
k∈V−F [1]

‖pk(l)‖

2


=

(
1− 1

n

)t√√√√√ d∑
l=1

 ∑
k∈V−F [1]

‖pk(l)‖

2

The second equality above is due to (9.28) and (9.29), and the fourth inequality is due to Lemma 55.

Define

Ω = max
pk∈hk[0],k∈V−F [1]

√√√√ d∑
l=1

(
∑

k∈V−F [1]

‖pk(l)‖)2

Therefore, dE(qi, qj) is upper bounded by

(
1− 1

n

)t√√√√√ d∑
l=1

 ∑
k∈V−F [1]

‖pk(l)‖

2

≤ (1− 1

n
)t Ω (9.30)

Because the hk[0]’s in the definition of Ω are all valid (by Lemma 56), Ω can itself be upper bounded by a

function of the input vectors at the fault-free nodes. In particular, under the assumption that each element

of fault-free nodes’ input vectors is upper bounded by U and lower bounded by µ, Ω is upper bounded by√
dn2 max(U2, µ2). Observe that the upper bound on the right-hand-side of (9.30) monotonically decreases

with t, because 1− 1
n < 1. Define tend as the smallest positive integer t for which

(
1− 1

n

)t√
dn2 max(U2, µ2) < ε (9.31)

Recall that the algorithm terminates after tend rounds. Since tend is finite, the algorithms satisfies the

termination condition.

159

(9.30) and (9.31) together imply that, for fault-free nodes i, j and for each point qi ∈ hi[tend], there exists

a point qj [t] ∈ hj [tend], such that dE(qi, qj) < ε (and, similarly, vice-versa). Thus, by Definition of Hausdorff

distance, dH(hi[tend], hj [tend]) < ε. Since this holds true for any pair of fault-free nodes i, j, the ε-agreement

property is satisfied at termination. 2

Even though we only show that validity and ε-agreement properties hold for fault-free nodes, these two

properties hold for all nodes that do not crash before completing the algorithm.

9.5 Optimality of Algorithm CC

Due to the Containment property of stable vector mentioned in Chapter 9.2, the set Z defined below contains

at least n− f messages. Recall that set Ri is defined on line 3 of Algorithm CC.

Z := ∩i∈V−F Ri (9.32)

Define multiset XZ := {x | (x, k, 0) ∈ Z}. Then, define a convex polytope IZ as follows.

IZ := ∩D⊂XZ ,|D|=|XZ |−f H(D) (9.33)

Now we establish a “lower bound” on output at the fault-free nodes.

Lemma 58 For all i ∈ V −F [t+ 1] and t ≥ 0, IZ ⊆ hi[t].

Proof:

We first present a claim that will be used in the proof of Lemma 58.

Claim 11 For t ≥ 1, let P[t] = Πt
τ=1M[τ]. Then, for all nodes j ∈ V −F [t+ 1], and k ∈ F [1], Pjk[t] = 0.

Proof: The claim is intuitively straightforward. For completeness, we present a formal proof here. The

proof is by induction on t.

Induction Basis: Consider the case when t = 1, j ∈ V − F [2], and k ∈ F [1]. Then by definition of F [1],

(∗, k, 0) 6∈ MSGj [1]. Then, due to (9.14), Mjk[1] = 0, and hence Pjk[1] = Mjk[1] = 0.

Induction: Consider t ≥ 2. Assume that the claim holds true through round t− 1. Then, Pjk[t− 1] = 0

for all j ∈ V −F [t] and k ∈ F [1]. Recall that P[t− 1] = Πt−1
τ=1M[τ].

Now, we will prove that the claim holds true for round t. Consider j ∈ V −F [t+ 1] and k ∈ F [1]. Note

that P[t] = Πt
τ=1M[τ] = M[t]Πt−1

τ=1M[τ] = M[t]P[t− 1]. Thus, Pjk[t] can be non-zero only if there exists a

q ∈ V such that Mjq[t] and Pqk[t− 1] are both non-zero.

160

For any q ∈ F [t − 1], (∗, q, t − 1) 6∈ MSGj [t]. Then, due to (9.14), Mjq[t] = 0 for all q ∈ F [t − 1], and

hence all q ∈ F [1] (note that F [r − 1] ⊆ F [r] for r ≥ 2). Additionally, by the induction hypothesis, for all

q ∈ V −F [t] and k ∈ F [1], Pqk[t− 1] = 0. Thus, these two observations together imply that there does not

exist any q ∈ V such that Mjq[t] and Pqk[t− 1] are both non-zero. Hence, Pjk[t] = 0. 2

Proof of Lemma 58 Recall that Z and IZ are defined in (9.32) and (9.33), respectively. We first prove

that for all j ∈ V −F [1], IZ ⊆ hj [0]. We make the following observations for each node i ∈ V −F [1]:

• Observation 1: By the definition of multiset Xi at line 4 of round 0 at node i, and the definition of

XZ in Chapter 9.5, we have XZ ⊆ Xi.

• Observation 2: Let A and B be sets of points in the d-dimensional space, where |A| ≥ n−f , |B| ≥ n−f

and A ⊆ B. Define hA := ∩CA⊆A,|CA|=|A|−f H(CA) and hB := ∩CB⊆B,|CB |=|B|−f H(CB). Then

hA ⊆ hB . This observation follows directly from the fact that every multiset CA in the computation

of hA is contained in some multiset CB used in the computation of hB , and the property of function

H.

Now, consider the computation of hi[0] at line 5. By Observations 1 and 2, and the definitions of hi[0]

and IZ , we have that IZ ⊆ hi[0] = vi[0], where i ∈ V − F [1]. Also, by initialization step (I2) (in Chapter

9.4), for k ∈ F [1], vk[0] = hm[0], for some fault-free node m. Thus, all the elements of v[0] contain IZ .

Then, due to row stochasticity of Πt
τ=1M[τ], it follows that each element of v[t] = (Πt

τ=1M[τ) v[0] also

contain IZ . Recall that hi[t] = vi[t] for each fault-free node. Thus, Lemma 58 is proved. 2

The following theorem follows from Lemma 58.

Theorem 25 Algorithm CC is optimal under the notion of optimality in Chapter 9.1.

Proof: Consider multiset XZ defined in Chapter 9.5. Recall that |XZ | = |Z|, and that Z contains at least

n−f tuples. Thus, XZ contains at least n−f points, and of these, at least n−2f points must be the inputs

at fault-free nodes. Let VZ denote the set of fault-free nodes whose inputs appear in XZ .

Now consider the following execution of any algorithm ALGO that correctly solves approximate convex

hull consensus. Suppose that the faulty nodes in F do not crash, and have incorrect inputs. Consider the

case when nodes in V −XZ are so slow that the other fault-free nodes must terminate before receiving any

messages from the nodes in V −XZ . This is possible, since we assume that faulty nodes do not crash, and

|V − XZ | ≤ f (due to |XZ | ≥ n − f). The fault-free nodes in VZ cannot determine whether the nodes in

V −XZ are just slow, or they have crashed.

161

Nodes in VZ must be able to terminate without receiving any messages from the nodes in V −XZ . Thus,

their output must be in the convex hull of inputs at the fault-free nodes whose inputs are included in XZ .

However, any f of the nodes whose inputs are in XZ may potentially be faulty and have incorrect inputs.

Therefore, the output obtained by ALGO must be contained in IZ as defined in Chapter 9.5. On the other

hand, by Lemma 58, the output obtained using Algorithm CC contains IZ . This proves the theorem. 2

Degenerate Cases In some cases, the output polytope at fault-free nodes may be a single point, making

the output equivalent to that obtained from vector consensus [54, 88]. As a trivial example, this occurs

when all the fault-free nodes have identical input. It is possible to identify scenarios when the number of

nodes is exactly equal to the lower bound, i.e., n = (d + 2)f + 1 nodes, when the output polytope consists

of just a single point. However, in general, particularly when n is larger than the lower bound, the output

polytopes will contain infinite number of points. In any event, as shown in Theorem 25, our algorithm

achieves optimality in all cases. Thus, any other algorithm can also produce such degenerate outputs for the

same inputs.

9.6 Convex Hull Consensus under Crash Faults with Correct

Inputs

With some simple changes, our algorithm and results can be extended to achieve convex hull consensus under

the crash faults with correct inputs model. Under this model, we still need to satisfy the ε-agreement and

termination properties stated in Chapter 9.1. The validity property remains unchanged as well; however,

in this model, inputs at all the nodes are always correct. Thus, validity implies that the output will be

contained in the convex hull of the inputs at all the nodes.

To obtain the algorithm for convex hull consensus under the crash faults with correct inputs model,

two key changes required. First, the lower bound on the number of nodes becomes n ≥ 2f + 1, which

is independent of the dimension d. Second, instead of the computation in line 5 of Algorithm CC, the

computation of hi[0] needs to be modified as hi[0] := H(Xi), where Xi := {x | (x, k, 0) ∈ Ri}. With these

changes, the modified algorithm achieves convex hull consensus under the crash faults with correct inputs

model, with the rest of the proof being similar to the proof for the crash faults with incorrect inputs model.

The modified algorithm exhibits optimal resilience as well.

162

9.7 Convex Hull Consensus under Byzantine Faults

As discussed in Chapter 9.1.1, the simulation techniques presented in [20, 5] can be used to transform our

algorithm to an algorithm that tolerates Byzantine faults. This is because that our model assumes incorrect

inputs at faulty nodes. In our technical report [77], we proposed an alternative algorithm, Optimal Verified

Averaging, which uses reliable broadcast primitive [2] and stable vector primitive [4, 55], and also achieves

optimal output polytope in the presence of Byzantine faults.

Optimal Verified Averaging proceeds in asynchronous rounds. In the initial round, we use stable vector

primitive to exchange inputs. This ensures that enough fault-free nodes have observed the same (sub)set of

the inputs – this is critical for proving optimality of the output polytope. In the subsequent rounds, we use a

technique named verification to ensures that if a faulty node deviates from the algorithm specification (except

possibly choosing an invalid input vector), then its incorrect messages will be ignored by the fault-free nodes.

The verification mechanism is motivated by prior work by other researchers [20, 5]. With verification, aside

from choosing a bad input, a faulty node cannot cause any other damage to the execution. The structure

and the proof are similar to the ones of Algorithm CC and are thus presented in [77].

9.8 Convex Hull Function Optimization

The goal of convex hull function optimization is to minimize a cost function, say function c, over a domain

consisting of the convex hull of the correct inputs. Formally, the following four properties must be satisfied

by the function optimization algorithm:

• Validity: output yi at fault-free node i is a point in the convex hull of the correct inputs.

• ε-Agreement: for any constant ε > 0, for any fault-free nodes i, j, dE(yi, yj) < ε.

• Weak β-Optimality: (i) for any constant β > 0, for any fault-free nodes i, j, ‖c(yi)−c(yj)‖ < β, and

(ii) if at least 2f + 1 nodes (faulty or fault-free) have an identical input, say x, then for any fault-free

node i, c(yi) ≤ c(x).

• Termination: each fault-free node must terminate within a finite amount of time.

The intuition behind part (ii) of the weak optimality condition above is as follows. When 2f + 1 nodes have

an identical input, say x∗, even if f of them are slow (or crash), each fault-free node must be able to learn

that f + 1 nodes have input x∗, and at least one of these f + 1 nodes must be fault-free. Therefore, each

163

fault-free node would know that the minimum value of the cost function over the convex hull of the correct

inputs is at most c(x∗).

It turns out that it is not feasible to simultaneously reach (approximate) consensus on a point, and to

ensure that the cost function at that point is “small enough” for any arbitrary cost function.2 The theorem

below states this observation more formally.

Theorem 26 The four properties of convex hull function optimization cannot be satisfied simultaneously in

an asynchronous system in the presence of crash faults with incorrect inputs for n ≥ 4f + 1 and d ≥ 1.

Proof: We will prove the result for d = 1. It should be obvious that impossibility with d = 1 implies

impossibility for larger d (since we can always choose inputs that have 0 coordinates in all dimensions except

one).

The proof is by contradiction. Suppose that there exists an algorithm, say Algorithm A, that achieves

the above four properties for n ≥ 4f + 1 and d = 1.

Let the cost function be given by c(x) = 4− (2x− 1)2 for x ∈ [0, 1] and c(x) = 3 for x 6∈ [0, 1]. For future

reference, note that within the interval [0, 1], function c(x) has the smallest value at x = 0, 1 both.

Now, suppose that all the inputs (correct and incorrect) are restricted to be binary, and must be 0 or 1.

We will prove impossibility under this restriction on the inputs at faulty and fault-free nodes both, which

suffices to prove that the four properties cannot always be satisfied. Suppose that the output of Algorithm

A at fault-free node i is yi. Due to the validity property, and because the inputs are restricted to be 0 or 1,

we know that yi ∈ [0, 1].

Since dn2 e ≥ d
4f+1

2 e = 2f + 1, at least 2f + 1 nodes will have either input 0, or input 1. Without loss of

generality, suppose that at least 2f + 1 nodes have input 0.

Consider a fault-free node i. By weak β-Optimality, c(yi) ≤ c(0), that is, c(yi) ≤ 3. However, the

minimum value of the cost function is 3 over all possible inputs. Thus, c(yi) = 3. Similarly, for any other

fault-free node j as well, c(yj) must equal 3. Now, due to validity, yj ∈ [0, 1], and the cost function is 3

in interval [0, 1] only at x = 0, 1. Therefore, we must have yi equal to 0 or 1, and yj also equal to 0 or 1.

However, because algorithm A satisfies the ε-agreement condition, dE(yi, yj) = ‖yi − yj‖ < ε (recall that

dimension d = 1). If ε < 1, then yi and yj must be identical (because we already know that they are either

0 or 1). Since this condition holds for any pair of fault-free nodes, it implies exact consensus. Also, yi and

yj will be equal to the input at a fault-free node due to the validity property above, and because the inputs

are restricted to be 0 or 1. In other words, Algorithm A can be used to solve exact consensus in the presence

2Impossibility result can be easily extended to the case when condition (ii) is relaxed as follows: c(yi) ≤ c(x) + β′ for some
β′ > 0. For brevity, we consider only the case when c(yi) ≤ c(x) in this work.

164

of crash faults with incorrect inputs when n ≥ 4f + 1 in an asynchronous system. This contradicts the

well-known impossibility result by Fischer, Lynch, and Paterson [32]. 2

We know that even without the weak β-optimality, we need n ≥ (d + 2)f + 1. Thus, the impossibility

result is complete for d ≥ 2. Whether the impossibility extends to 3f + 1 ≤ n ≤ 4f and d = 1 is presently

unknown.

The natural question then is “What function optimization problem can we solve?” Suppose that the cost

function satisfies b-Lipschitz continuity. That is, for any points x, y, ‖c(x) − c(y)‖ ≤ bdE(x, y). Below, we

present an algorithm that achieves validity, weak β-optimality and termination, but not ε-agreement. The

proposed algorithm has two simple steps:

• Step 1: First solve convex hull consensus with parameter ε. Let hi be the output polytope of convex

hull consensus at node i.

• Step 2: The output of function optimization is the tuple (yi, c(yi)), where yi = arg minx∈hi c(x). When

there are multiple points in hi minimizing c(x), break tie arbitrarily.

The ε-agreement property of the convex hull consensus together with the assumption of b-Lipschitz continuity

imply that for fault-free nodes i, j, ‖c(yi)− c(yj)‖ < εb. Thus, the fault-free nodes find approximately equal

minimum value for the function. Therefore, for any β > 0, we can achieve ‖c(yi) − c(yj)‖ < β by choosing

ε = β/b for convex hull consensus in Step 1. Validity and termination follow directly form the properties of

the convex hull consensus algorithm. Note that since in Step 2, nodes break tie arbitrarily, we are not able

to guarantee that dE(yi, yj) is small. That is, ε-agreement may not hold.

Notion of Optimality Observe that in the 2-step algorithm above, c(yi) at node i may not be minimum

over the entire convex hull of the inputs of fault-free nodes. For instance, even when all the nodes are fault-

free, each subset of f nodes is viewed as possibly faulty with incorrect inputs. We can extend the notion of

optimality from Chapter 9.1 to function optimization as follows. An algorithm A for function optimization

is said to be optimal if the following condition is true.

Let F denote a set of up to f faulty nodes. For a given execution of algorithm A with F being the

set of faulty nodes, let yi(A) denote the output at node i at the end of the given execution. For any

other algorithm B, there exists an execution with F being the set of faulty nodes, such that yi(B) is

the output at fault-free node i, and c(yj(A)) ≤ c(yj(B)) for each fault-free node j.

The intuition behind the above formulation is as follows. A goal of function optimization here is to allow the

nodes to “learn” the smallest value of the cost function over the convex hull of the inputs at the fault-free

165

nodes. The above condition implies that an optimal algorithm will learn a function value that is no larger

than that learned in a worst-case execution of any other algorithm.

The 2-step function optimization algorithm above is optimal in the above sense. This is a direct conse-

quence of Theorem 25.

9.9 Summary

In this Chapter, we introduce the convex hull consensus problem under crash faults with incorrect inputs

model, and present an asynchronous approximate convex hull consensus algorithm with optimal fault tol-

erance that reaches consensus on an optimal output polytope. We also consider the use of convex hull

consensus algorithm to solve the problem of optimizing a function over the convex hull of the inputs at

fault-free nodes. An impossibility result for asynchronous function optimization for arbitrary cost functions

is also presented.

166

Chapter 10

Conclusions

This Chapter summarizes the dissertation and proposes future research directions.

10.1 Dissertation Summary

In this dissertation, we prove tight necessary and sufficient condition of the underlying communication

networks for solving various kinds of consensus problems. We also discuss a new consensus problem –

convex hull consensus. More specifically, in Chapter 3, we explore using general algorithms to achieve exact

and approximate consensus in synchronous and asynchronous systems, respectively, and we consider f -total

fault model with both crash-prone and Byzantine nodes. Then, we study using iterative algorithms to

achieve approximate consensus in both synchronous and asynchronous systems. In particular, we explore

the consensus problem under the following types of fault models:

• f -total fault model with Byzantine nodes in synchronous and asynchronous systems (Chapter 4)

• Generalized fault model with Byzantine nodes in synchronous systems (Chapter 5)

• Transient Byzantine link fault model in synchronous systems (Chapter 6)

• f -total fault model with crash-prone nodes in asynchronous systems (Chapter 7)

For this part of the work, we develope a proof technique based on famous matrix tools [38, 93, 9, 34] to

prove the correctness of fault-tolerant iterative algorithms. The proof technique may be applied to relevant

topics.

In Chapter 8, we consider using certified propagation algorithm to achieve reliable broadcast, in which a

single fault-free source needs to transmit an input to all fault-free peers. For reliable broadcast, we assume

f -local Byzantine fault model.

Finally, we present a new consensus problem – convex hull consensus – in which each node has a d-

dimensional vector of reals as input (d ≥ 1). Recall that the initial convex hull is defined as the convex hull

167

of the inputs at fault-free nodes. Convex hull consensus requires that the output at each node is a convex

polytope contained within the initial convex hull. Intuitively, the goal is to reach consensus on the “largest

possible” polytope, allowing the node to estimate the domain of inputs at the fault-free nodes. In Chapter

9, we study the convex hull consensus problem under crash faults with incorrect inputs model in complete

graphs. Particularly, we present an asynchronous approximate convex hull consensus algorithm with optimal

fault tolerance that reaches consensus on largest possible output polytope.

10.2 Future Work

There are many open problems and potential research questions:

• As identified in Table 1.1, tight conditions of directed graphs for solving problems below are still open:

– Using iterative algorithms to solve exact Byzantine consensus in synchronous systems.

– Using general algorithms to solve approximate Byzantine consensus in asynchronous systems.

• As discussed in Chapter 3.6, tight condition for the following multi-valued exact Byzantine consensus is

open: Using general algorithms to solve multi-valued exact Byzantine consensus with stronger version

of validity property in synchronous systems. Here, the stronger version of validity is the same as the

one for binary exact consensus – output of every fault-free node equals the input of a fault-free node.

• Given the fault-tolerance parameter f , how to identify whether it is possible to achieve fault-tolerant

consensus in a graph under different fault models ?

• Tight conditions for achieving k-set consensus, vector consensus, convex hull consensus in directed

graphs are still open.

• How to extend the results in Chapters 5 and 6 (consensus in generalized fault model and transient link

fault model, respectively) to asynchronous systems?

• How to extend the results on directed graphs under f -total fault models (Chapters 3, 4, and 7) to

dynamic networks?

• The Byzantine consensus algorithm presented in Chapter 3 (Algorithm BC) has exponential time

complexity. How to improve the efficiency?

• Are there other suitable optimality conditions and applications of convex hull consensus?

168

Appendix A

Asynchronous Iterative Approximate
Byzantine Consensus

In this Appendix, we present the complete analysis of IABC algorithms in asynchronous systems.

A.1 Algorithm Structure

By the definition of asynchronous systems, each node may proceed at different rate. Thus, Dolev et al.

developed an algorithm based on “rounds” such that nodes update once in each round [29]. In particular,

we consider the structure of Async-IABC Algorithm below, which has the same structure as the algorithm in

[29]. This algorithm structure differs from the one for synchronous systems in Chapter 4 in two important

ways: (i) the messages containing states are now tagged by the round index to which the states correspond,

and (ii) each node i waits to receive only |N−i | − f messages containing states from round t − 1 before

computing the new state in round t.

Due to the asynchronous nature of the system, different nodes may potentially perform their t-th round

at very different real times. Thus, the main difference between iteration and round is as following:

• Iteration is defined as fixed amount of real-time units. Hence, every node will be in the same iteration

at any given real time.

• Round is defined as the time that each node updates its value1. Hence, every node may be in totally

different rounds at any given real time in asynchronous systems.

In Async-IABC algorithm, each node i maintains state vi, with vi[t] denoting the state of node i at the

end of its t-th round. Initial state of node i, vi[0], is equal to the initial input provided to node i. At the

start of the t-th round (t > 0), the state of node i is vi[t − 1]. Now, we describe the steps that should be

performed by each node i ∈ V in its t-th round.

1With a slight abuse of terminology, we will use “value” and “state” interchangeably in this report.

169

Async-IABC Algorithm

1. Transmit step: Transmit current state vi[t− 1] on all outgoing edges. The message is tagged by index

t− 1.

2. Receive step: Wait until the first |N−i |−f messages tagged by index t−1 are received on the incoming

edges (breaking ties arbitrarily). Values received in these messages form vector ri[t] of size |N−i | − f .

3. Update step: Node i updates its state using a transition function Zi, where Zi is a part of the specifi-

cation of the algorithm, and takes as input the vector ri[t] and state vi[t− 1].

vi[t] = Zi (ri[t] , vi[t− 1]) (A.1)

We now define U [t] and µ[t], assuming that F is the set of Byzantine faulty nodes, with the nodes in

V − F being fault-free.2

• U [t] = maxi∈V−F vi[t]. U [t] is the largest state among the fault-free nodes at the end of the t-th round.

Since the initial state of each node is equal to its input, U [0] is equal to the maximum value of the

initial input at the fault-free nodes.

• µ[t] = mini∈V−F vi[t]. µ[t] is the smallest state among the fault-free nodes at the end of the t-th round.

µ[0] is equal to the minimum value of the initial input at the fault-free nodes.

The following conditions must be satisfied by an Async-IABC algorithm in the presence of up to f

Byzantine faulty nodes:

• Validity: ∀t > 0, µ[t] ≥ µ[t− 1] and U [t] ≤ U [t− 1]

• Convergence: lim t→∞ U [t]− µ[t] = 0

The objective in this Appendix is to identify the necessary and sufficient conditions for the existence of

a correct Async-IABC algorithm (i.e., satisfying the above validity and convergence conditions) for a given

G(V, E) in any asynchronous system.

A.2 Notations

There are many notations used and will be introduced later in this Appendix. Here is a quick reference:

2For setsX and Y , X−Y contains elements that are inX but not in Y . That is, X−Y = {i | i ∈ X, i 6∈ Y }.

170

• N+
i , N

−
i : set of outgoing neighbors and incoming neighbors of some node i, respectively.

• U [t], µ[t]: maximum value and minimum value of all the fault-free nodes at the end of round t, respec-

tively.

• Zi: a function specifying how node i updates its new value (algorithm specification).

• N@
i [t]: set of incoming neighbors from whom node i actually received values at round t ≥ 1.

• ri[t]: set of values sent by N@
i [t].

• N∗i [t]: set of incoming neighbors from whom node i actually used the values to update at round t ≥ 1.

Note that by definition of Async-IABC algorithms, we have the following relationships: N∗i [t] ⊂ N@
i [t] ⊂

N−i . Moreover, N∗i [t] and N@
i [t] may change over the rounds, and N−i is a constant. Lastly, |N@

i [t]| =

|N−i | − 2f and |N∗i [t]| = |N@
i [t]| − f for any round t ≥ 1.

A.3 Necessary Condition

In asynchronous systems, for an Async-IABC algorithm satisfying the the validity and convergence conditions

to exist, the underlying graph G(V, E) must satisfy a necessary condition proved in this section. Recall that

we have defined relations
a⇒ and 6 a⇒ defined in Definition 14 in Chapter 4.6. We will use them to define the

tight condition:

Condition Async: Consider graph G(V, E). Let sets F,L,C,R form a partition of V, such that L and R

are both non-empty and |F | ≤ f , then either C ∪R a⇒ L, or L ∪ C a⇒ R.

Now, we prove that Condition Async is necessary.

Theorem 27 If an Async-IABC Algorithm satisfies validity and convergence conditions in graph G(V, E),

then G(V, E) satisfies Condition Async.

Proof: The proof is by contradiction. Let us assume that a correct Async-IABC consensus algorithm

exists, and C ∪ R 6 a⇒ L and L ∪ C 6 a⇒ R. Thus, for any i ∈ L, |N−i ∩ (C ∪ R)| < 2f + 1, and for any j ∈ R,

|N−j ∩ (L ∪ C)| < 2f + 1,

Also assume that the nodes in F (if F is non-empty) are all faulty, and the remaining nodes, in sets

L,R,C, are fault-free. Note that the fault-free nodes are not necessarily aware of the identity of the faulty

nodes.

171

Consider the case when (i) each node in L has input m, (ii) each node in R has input M , such that

M > m, and (iii) each node in C, if C is non-empty, has an input in the range [m,M].

At the start of round 1, suppose that the faulty nodes in F (if non-empty) send m− < m to outgoing

neighbors in L, send M+ > M to outgoing neighbors in R, and send some arbitrary value in [m,M] to

outgoing neighbors in C (if C is non-empty). This behavior is possible since nodes in F are faulty. Note

that m− < m < M < M+. Each fault-free node k ∈ V − F , sends to nodes in N+
k value vk[0] in round 1.

Consider any node i ∈ L. Denote N ′i = N−i ∩ (C ∪ R). Since C ∪ R 6 a⇒ L, |N ′i | ≤ 2f . Consider the

situation where the delay between certain w = min(f, |N ′i |) nodes in N ′i and node i is arbitrarily large

compared to all the other traffic (including messages from incoming neighbors in F). Consequently, ri[1]

includes |N ′i | − w ≤ f values from N ′i , since w messages from N ′i are delayed and thus ignored by node i.

Recall that N@
i [1] is the set of nodes whose round 1 values are received by node i in time (i.e., before i

finishes step 2 in Async-IABC). By the argument above, N@
i [1] ∩N ′i ≤ f .

Node i receives m− from the nodes in F ∩N@
i [1], values in [m,M] from the nodes in N ′i ∩N@

i [1], and m

from the nodes in {i} ∪ (L ∩N@
i [1]).

Consider four cases:

• F ∩N@
i [1] and N ′i ∩N@

i [1] are both empty: In this case, all the values that i receives are from nodes

in {i}∪ (L∩N@
i [1]), and are identical to m. By validity condition, node i must set its new state, vi[1],

to be m as well.

• F ∩ N@
i [1] is empty and N ′i ∩ N@

i [1] is non-empty: In this case, since |N ′i ∩ N@
i [1]| ≤ f , from i’s

perspective, it is possible that all the nodes in N@
i [1] ∩ N ′i are faulty, and the rest of the nodes

are fault-free. In this situation, the values sent to node i by the fault-free nodes (which are all in

{i} ∪ (L ∩N@
i [1])) are all m, and therefore, vi[1] must be set to m as per the validity condition.

• F ∩ N@
i [1] is non-empty and N ′i ∩ N@

i [1] is empty: In this case, since |F ∩ N@
i [1]| ≤ f , it is possible

that all the nodes in F ∩ N@
i [1] are faulty, and the rest of the nodes are fault-free. In this situation,

the values sent to node i by the fault-free nodes (which are all in {i} ∪ (L ∩ N@
i [1])) are all m, and

therefore, vi[1] must be set to m as per the validity condition.

• Both F ∩ N@
i [1] and N ′i ∩ N@

i [1] are non-empty: From node i’s perspective, consider two possible

scenarios: (a) nodes in F ∩ N@
i [1] are faulty, and the other nodes are fault-free, and (b) nodes in

N ′i ∩N@
i [1] are faulty, and the other nodes are fault-free.

In scenario (a), from node i’s perspective, the fault-free nodes have values in [m,M] whereas the faulty

nodes have value m−. According to the validity condition, vi[1] ≥ m. On the other hand, in scenario

172

(b), the fault-free nodes have values m− and m, where m− < m; so vi[1] ≤ m, according to the validity

condition. Since node i does not know whether the correct scenario is (a) or (b), it must update its

state to satisfy the validity condition in both cases. Thus, it follows that vi[1] = m.

Observe that in each case above vi[1] = m for each node i ∈ L. Similarly, we can show that vj [1] = M for

each node j ∈ R.

Now consider the nodes in set C, if C is non-empty. All the values received by the nodes in C are in

[m,M], therefore, their new state must also remain in [m,M], as per the validity condition.

The above discussion implies that, at the end of the first round, the following conditions hold true: (i)

state of each node in L is m, (ii) state of each node in R is M , and (iii) state of each node in C is in

[m,M]. These conditions are identical to the initial conditions listed previously. Then, by induction, it

follows that for any t ≥ 0, vi[t] = m,∀i ∈ L, and vj [t] = M,∀j ∈ R. Since L and R contain fault-free

nodes, the convergence requirement is not satisfied. This is a contradiction to the assumption that a correct

Async-IABC algorithm exists. 2

Corollary 6 Let F,L,R be a partition of V, such that 0 ≤ |F | ≤ f , and L and R are non-empty. Then,

either L
a⇒ R or R

a⇒ L.

Proof: The proof follows by setting C = ∅ in Theorem 27. 2

Corollary 7 The number of nodes n must exceed 5f for the existence of a correct Async-IABC algorithm

that tolerates f Byzantine fault.

Proof: The proof is by contradiction. Suppose that 2 ≤ n ≤ 5f , and consider the following two cases:

• 2 ≤ n ≤ 4f : Suppose that L,R, F is a partition of V such that |L| = dn/2e ≤ 2f , |R| = bn/2c ≤ 2f

and F = ∅. Note that L and R are non-empty, and |L|+ |R| = n.

• 4f < n ≤ 5f :

Suppose that L,R, F is a partition of V, such that |L| = |R| = 2f and |F | = n − 4f . Note that

0 < |F | ≤ f .

In both cases above, Corollary 6 is applicable. Thus, either L
a⇒ R or R

a⇒ L. For L
a⇒ R to be true, L

must contain at least 2f + 1 nodes. Similarly, for R
a⇒ L to be true, R must contain at least 2f + 1 nodes.

Therefore, at least one of the sets L and R must contain more than 2f nodes. This contradicts our choice

of L and R above (in both cases, size of L and R is ≤ 2f). Therefore, n must be larger than 5f . 2

173

Corollary 8 For the existence of a correct Async-IABC algorithm, then for each node i ∈ V, |N−i | ≥ 3f+1,

i.e., each node i has at least 3f + 1 incoming links, when f > 0.

Proof: The proof is by contradiction. Consider the following two cases for some node i:

• |N−i | ≤ 2f : Define set F = ∅, L = {i} and R = V − F − L = V − {i}. Thus, N−i ∩ R = N−i , and

|N−i ∩R| ≤ 2f by assumption.

• 2f < |N−i | ≤ 3f : Define set L = {i}. Partition N−i into two sets F and H such that |F | = f and

|H| = |N−i | − f ≤ 2f . Define R = V − F −L = V − F − {i}. Thus, N−i ∩R = H, and |N−i ∩R| ≤ 2f

by construction.

In both cases above, L and R are non-empty, so Corollary 6 is applicable. However, in each case, L = {i}

and |L| = 1 < 2f + 1; hence, L 6 a⇒ R. Also, since L = {i} and |N−i ∩ R| ≤ 2f , and hence R 6 a⇒ L by

the definition of
a⇒. This leads to a contradiction. Hence, every node must have at least 3f + 1 incoming

neighbors. 2

A.4 Useful Lemmas

In this section, we introduce two lemmas that are used in our proof of convergence. Note that the proofs

are similar to corresponding lemmas in Chapter 4 except for the adoption of
a⇒ and “rounds” instead of ⇒

and “iterations.”

Definition 26 For disjoint sets A,B, in(A
a⇒ B) denotes the set of all the nodes in B that each have at

least 2f + 1 incoming links from nodes in A. More formally,

in(A
a⇒ B) = { v |v ∈ B and 2f + 1 ≤ |N−v ∩A| }

With a slight abuse of notation, when A 6 a⇒ B, define in(A
a⇒ B) = ∅.

For brevity, we use the same name to define the “propagating sequences”. The following definition should

not be confused with the one defined in Definition 13.

Definition 27 For non-empty disjoint sets A and B, set A is said to propagate to set B in l rounds, where

l > 0, if there exist sequences of sets A0, A1, A2, · · · , Al and B0, B1, B2, · · · , Bl (propagating sequences) such

that

174

• A0 = A, B0 = B, Bl = ∅, and, for τ < l, Bτ 6= ∅.

• for 0 ≤ τ ≤ l − 1,

* Aτ
a⇒ Bτ ,

* Aτ+1 = Aτ ∪ in(Aτ
a⇒ Bτ), and

* Bτ+1 = Bτ − in(Aτ
a⇒ Bτ)

Observe that Aτ and Bτ form a partition of A ∪ B, and for τ < l, in(Aτ
a⇒ Bτ) 6= ∅. Also, when set A

propagates to set B, length l above is necessarily finite. In particular, l is upper bounded by n − 2f − 1,

since set A must be of size at least 2f + 1 for it to propagate to B.

Note that in the proof of the following useful lemmas, there is no notion of iteration involves. In other

words, the message delay does not affect the correctness of the proof. As long as message can be delivered

in order and in finite amount of time, the proof follows. Thus, using the definitions, we have the following

two lemmas for asynchronous algorithm.

There is one subtle concept worthy of some discussion. The propagating sequence is a global view of the

system3. In synchronous system in Chapter 4, there is not much confusion, since global time is consistent

with local time at each node. In asynchronous system, the propagating sequence is still a global view, but it

is a view with respect to the notion of “round” instead of real time (measured by some external clock). For

example, τ here means all the node values in round τ , and should not be confused with some real time τ .

Lemma 59 Assume that G(V, E) satisfies Condition Async. Consider a partition A,B, F of V such that A

and B are non-empty, and |F | ≤ f . If B 6 a⇒ A, then set A propagates to set B.

Proof: Since A,B are non-empty, and B 6 a⇒ A, by Corollary 6, we have A
a⇒ B.

The proof is by induction. Define A0 = A and B0 = B. Thus A0
a⇒ B0 and B0 6

a⇒ A0. Note that A0 and

B0 are non-empty.

Induction basis: For some τ ≥ 0,

• for 0 ≤ k < τ , Ak
a⇒ Bk, and Bk 6= ∅,

• either Bτ = ∅ or Aτ
a⇒ Bτ ,

• for 0 ≤ k < τ , Ak+1 = Ak ∪ in(Ak
a⇒ Bk), and Bk+1 = Bk − in(Ak

a⇒ Bk)

Since A0
a⇒ B0, the induction basis holds true for τ = 0.

3Such concept is just for the analysis, and each node does not need to know the global view.

175

Induction: If Bτ = ∅, then the proof is complete, since all the conditions specified in Definition 27 are

satisfied by the sequences of sets A0, A1, · · · , Aτ and B0, B1, · · · , Bτ .

Now consider the case when Bτ 6= ∅. By assumption, Ak
a⇒ Bk, for 0 ≤ k ≤ τ . Define Aτ+1 =

Aτ ∪ in(Aτ
a⇒ Bτ) and Bτ+1 = Bτ − in(Aτ

a⇒ Bτ). Our goal is to prove that either Bτ+1 = ∅ or

Aτ+1
a⇒ Bτ+1. If Bτ+1 = ∅, then the induction is complete. Therefore, now let us assume that Bτ+1 6= ∅

and prove that Aτ+1
a⇒ Bτ+1. We will prove this by contradiction.

Suppose that Aτ+1 6
a⇒ Bτ+1. Define subsets L,C,R as follows: L = A0, C = Aτ+1 −A0 and R = Bτ+1.

Due to the manner in which Ak’s and Bk’s are defined, we also have C = B0−Bτ+1. Observe that L,C,R, F

form a partition of V, where L,R are non-empty, and the following relationships hold:

• C ∪R = B0, and

• L ∪ C = Aτ+1

Rewriting B0 6
a⇒ A0 and Aτ+1 6

a⇒ Bτ+1, using the above relationships, we have, respectively,

C ∪R 6 a⇒ L,

and

L ∪ C 6 a⇒ R

This violates Condition Async. This is a contradiction, completing the induction.

Thus, we have proved that, either (i) Bτ+1 = ∅, or (ii) Aτ+1
a⇒ Bτ+1. Eventually, for large enough t,

Bt will become ∅, resulting in the propagating sequences A0, A1, · · · , At and B0, B1, · · · , Bt, satisfying the

conditions in Definition 27. Therefore, A propagates to B. 2

Lemma 60 Assume that G(V, E) satisfies Condition Async. For any partition A,B, F of V, where A,B

are both non-empty, and |F | ≤ f , at least one of the following conditions must be true:

• A propagates to B, or

• B propagates to A

Proof: Consider two cases:

• A 6 a⇒ B: Then by Lemma 59, B propagates to A, completing the proof.

• A a⇒ B: In this case, consider two sub-cases:

176

– A propagates to B: The proof in this case is complete.

– A does not propagate to B: Thus, propagating sequences defined in Definition 27 do not exist in

this case. More precisely, there must exist k > 0, and sets A0, A1, · · · , Ak and B0, B1, · · · , Bk,

such that:

∗ A0 = A and B0 = B, and

∗ for 0 ≤ i ≤ k − 1,

o Ai
a⇒ Bi,

o Ai+1 = Ai ∪ in(Ai
a⇒ Bi), and

o Bi+1 = Bi − in(Ai
a⇒ Bi).

∗ Bk 6= ∅ and Ak 6
a⇒ Bk.

The last condition above violates the requirements for A to propagate to B.

Now Ak 6= ∅, Bk 6= ∅, and Ak, Bk, F form a partition of V. Since Ak 6
a⇒ Bk, by Lemma 59, Bk

propagates to Ak.

Since Bk ⊆ B0 = B, A ⊆ Ak, and Bk propagates to Ak, it should be easy to see that B propagates

to A.

2

A.5 Sufficient Condition

A.5.1 Algorithm 5

We will prove that there exists an Async-IABC algorithm – particularly Algorithm 5 below – that satisfies

the validity and convergence conditions provided that the graph G(V, E) satisfies Condition Async. This

implies that Condition Async is also sufficient.

Algorithm 5

1. Transmit step: Transmit current state vi[t− 1] on all outgoing edges.

2. Receive step: Wait until receiving values on all but f incoming edges. These values form vector ri[t]

of size |N−i | − f .4

3. Update step: Sort the values in ri[t] in an increasing order, and eliminate the smallest f values, and

the largest f values (breaking ties arbitrarily). Let N∗i [t] denote the identifiers of nodes from whom

4If more than |N−i | − f values arrive at the same time, break ties arbitrarily.

177

the remaining N−i − 3f values were received, and let wj denote the value received from node j ∈ N∗i .

For convenience, define wi = vi[t − 1] to be the value node i “receives” from itself. Observe that if

j ∈ {i} ∪N∗i [t] is fault-free, then wj = vj [t− 1].

Define

vi[t] = Zi(ri[t], vi[t− 1]) =
∑

j∈{i}∪N∗i [t]

ai wj (A.2)

where

ai =
1

|N−i |+ 1− 3f

Note that |N∗i [t]| = |N−i | − 3f , and i 6∈ N∗i [t] because (i, i) 6∈ E . The “weight” of each term on the

right-hand side of (A.2) is ai, and these weights add to 1. Also, 0 < ai ≤ 1. For future reference, let

us define α as:

α = min
i∈V

ai (A.3)

A.5.2 Sufficiency

In Theorems 28 and 29 in this section, we prove that Algorithm 5 satisfies validity and convergence conditions,

respectively, provided that G(V, E) satisfies Condition Async.

Note that the proofs below are similar to the ones presented in Chapter 4.5. The main differences are

the following:

• We need to consider only values in N@
i [t] not in N−i . This is due to different step 2 between Algorithm

1 (Chapter 4.4) and Algorithm 5.

• We interpret t as round index, rather than iteration index.

Theorem 28 Suppose that G(V, E) satisfies Condition Async. Then Algorithm 5 satisfies the validity con-

dition.

Proof: Consider the t-th round, and any fault-free node i ∈ V − F . Consider two cases:

178

• f = 0: In (A.2), note that vi[t] is computed using states from the previous round at node i and other

nodes. By definition of µ[t − 1] and U [t − 1], vj [t − 1] ∈ [µ[t − 1], U [t − 1]] for all fault-free nodes

j ∈ V −F . Thus, in this case, all the values used in computing vi[t] are in the range [µ[t− 1], U [t− 1]].

Since vi[t] is computed as a weighted average of these values, vi[t] is also within [µ[t− 1], U [t− 1]].

• f > 0: By Corollary 8, |N−i | ≥ 3f + 1. Thus, |N@
i | ≥ 2f + 1, and |ri[t]| ≥ 2f + 1. When computing set

N∗i [t], the largest f and smallest f values from ri[t] are eliminated. Since at most f nodes are faulty,

it follows that, either (i) the values received from the faulty nodes are all eliminated, or (ii) the values

from the faulty nodes that still remain are between values received from two fault-free nodes. Thus,

the remaining values in ri[t] are all in the range [µ[t−1], U [t−1]]. Also, vi[t−1] is in [µ[t−1], U [t−1]],

as per the definition of µ[t− 1] and U [t− 1]. Thus vi[t] is computed as a weighted average of values in

[µ[t− 1], U [t− 1]], and, therefore, it will also be in [µ[t− 1], U [t− 1]].

Since ∀i ∈ V − F , vi[t] ∈ [µ[t− 1], U [t− 1]], the validity condition is satisfied. 2

Before proving the convergence of Algorithm 5, we first present three lemmas. In the discussion below,

we assume that G(V, E) satisfies the sufficient condition.

Lemma 61 Consider node i ∈ V − F . Let ψ ≤ µ[t− 1]. Then, for j ∈ {i} ∪N∗i [t],

vi[t]− ψ ≥ ai (wj − ψ)

Specifically, for fault-free j ∈ {i} ∪N∗i [t],

vi[t]− ψ ≥ ai (vj [t− 1]− ψ)

Proof: In (A.2), for each j ∈ N∗i [t], consider two cases:

• Either j = i or j ∈ N∗i [t] ∩ (V − F): Thus, j is fault-free. In this case, wj = vj [t − 1]. Therefore,

µ[t− 1] ≤ wj ≤ U [t− 1].

• j is faulty: In this case, f must be non-zero (otherwise, all nodes are fault-free). From Corollary 8,

|N−i | ≥ 3f + 1. Thus, |N@
i | ≥ 2f + 1, and |ri[t]| ≥ 2f + 1. Then it follows that the smallest f values

in ri[t] that are eliminated in step 2 of Algorithm 5 contain the state of at least one fault-free node,

say k. This implies that vk[t− 1] ≤ wj . This, in turn, implies that µ[t− 1] ≤ wj .

Thus, for all j ∈ {i} ∪N∗i [t], we have µ[t− 1] ≤ wj . Therefore,

wj − ψ ≥ 0 for all j ∈ {i} ∪N∗i [t] (A.4)

179

Since weights in Equation (A.2) add to 1, we can re-write that equation as,

vi[t]− ψ =
∑

j∈{i}∪N∗i [t]

ai (wj − ψ) (A.5)

≥ ai (wj − ψ), ∀j ∈ {i} ∪N∗i [t] from (A.4)

For fault-free j ∈ {i} ∪N∗i [t], wj = vj [t− 1], therefore,

vi[t]− ψ ≥ ai (vj [t− 1]− ψ) (A.6)

2

Similar to the above result, we can also show the following lemma:

Lemma 62 Consider node i ∈ V − F . Let Ψ ≥ U [t− 1]. Then, for j ∈ {i} ∪N∗i [t],

Ψ− vi[t] ≥ ai (Ψ− wj)

Specifically, for fault-free j ∈ {i} ∪N∗i [t],

Ψ− vi[t] ≥ ai (Ψ− vj [t− 1])

Then we present the main lemma used in proof of convergence. Note that below, we use parameter α

defined in (A.3). Recall that in (A.2) in Algorithm 5, ai > 0 for all i, and thus, α > 0.

Lemma 63 At the end of the s-th round, suppose that the fault-free nodes in V −F can be partitioned into

non-empty sets R and L such that (i) R propagates to L in l rounds, and (ii) the states of nodes in R are

confined to an interval of length ≤ U [s]−µ[s]
2 . Then,

U [s+ l]− µ[s+ l] ≤
(

1− αl

2

)
(U [s]− µ[s]) (A.7)

Proof: Since R propagates to L, as per Definition 27, there exist sequences of sets R0, R1, · · · , Rl and

L0, L1, · · · , Ll, where

• R0 = R, L0 = L, Ll = ∅, for 0 ≤ τ < l, Lτ 6= ∅, and

180

• for 0 ≤ τ ≤ l − 1,

* Rτ
a⇒ Lτ ,

* Rτ+1 = Rτ ∪ in(Rτ
a⇒ Lτ), and

* Lτ+1 = Lτ − in(Rτ
a⇒ Lτ)

Let us define the following bounds on the states of the nodes in R at the end of the s-th round:

M = maxj∈R vj [s] (A.8)

m = minj∈R vj [s] (A.9)

By the assumption in the statement of Lemma 63,

M −m ≤ U [s]− µ[s]

2
(A.10)

Also, M ≤ U [s] and m ≥ µ[s]. Therefore, U [s]−M ≥ 0 and m− µ[s] ≥ 0.

The remaining proof of Lemma 63 relies on derivation of the three intermediate claims below.

Claim 12 For 0 ≤ τ ≤ l, for each node i ∈ Rτ ,

vi[s+ τ]− µ[s] ≥ ατ (m− µ[s]) (A.11)

Proof of Claim 12: The proof is by induction.

Induction basis: For some τ , 0 ≤ τ < l, for each node i ∈ Rτ , (A.11) holds. By definition of m, the

induction basis holds true for τ = 0.

Induction: Assume that the induction basis holds true for some τ , 0 ≤ τ < l. Consider Rτ+1. Observe that

Rτ and Rτ+1 −Rτ form a partition of Rτ+1; let us consider each of these sets separately.

• Set Rτ : By assumption, for each i ∈ Rτ , (A.11) holds true. By validity of Algorithm 5 (Theorem 28),

µ[s] ≤ µ[s+ τ]. Therefore, setting ψ = µ[s] in Lemma 61, we get,

vi[s+ τ + 1]− µ[s] ≥ ai (vi[s+ τ]− µ[s])

≥ ai α
τ (m− µ[s]) due to (A.11)

≥ ατ+1(m− µ[s]) due to (A.3)

181

• Set Rτ+1−Rτ : Consider a node i ∈ Rτ+1−Rτ . By definition of Rτ+1, we have that i ∈ in(Rτ
a⇒ Lτ).

Thus,

|N−i ∩Rτ | ≥ 2f + 1

It follows that

|N@
i [s+ τ] ∩Rτ | ≥ f + 1

In Algorithm 5, 2f values (f smallest and f largest) received by node i are eliminated before vi[s+τ+1]

is computed at the end of (s+ τ + 1)-th round. Consider two possibilities:

– Value received from one of the nodes in N@
i [s + τ] ∩ Rτ is not eliminated. Suppose that this

value is received from fault-free node p ∈ N@
i [s + τ] ∩ Rτ . Then, by an argument similar to the

previous case, we can set ψ = µ[s] in Lemma 61, to obtain,

vi[s+ τ + 1]− µ[s] ≥ ai (vp[s+ τ]− µ[s])

≥ ai α
τ (m− µ[s]) due to (A.11)

≥ ατ+1(m− µ[s]) due to (A.3)

– Values received from all (there are at least f + 1) nodes in N@
i [s+ τ] ∩Rτ are eliminated. Note

that in this case f must be non-zero (for f = 0, no value is eliminated, as already considered in

the previous case). By Corollary 8, we know that each node must have at least 3f + 1 incoming

edges. Thus, N@
i [t + τ] ≥ 2f + 1. Since at least f + 1 values from nodes in N@

i [t + τ] ∩ Rτ are

eliminated, and there are at least 2f + 1 values to choose from, it follows that the values that are

not eliminated are within the interval to which the values from N@
i [s + τ] ∩ Rτ belong. Thus,

there exists a node k (possibly faulty) from whom node i receives some value wk – which is not

eliminated – and a fault-free node p ∈ N@
i [t+ τ] ∩Rτ such that

vp[s+ τ] ≤ wk (A.12)

182

Then by setting ψ = µ[s] in Lemma 61 we have

vi[s+ τ + 1]− µ[s] ≥ ai (wk − µ[s])

≥ ai (vp[s+ τ]− µ[s]) due to (A.12)

≥ ai α
τ (m− µ[s]) due to (A.11)

≥ ατ+1(m− µ[s]) due to (A.3)

Thus, we have shown that for all nodes in Rτ+1,

vi[s+ τ + 1]− µ[s] ≥ ατ+1(m− µ[s])

This completes the proof of Claim 12.

Claim 13 For each node i ∈ V − F ,

vi[s+ l]− µ[s] ≥ αl(m− µ[s]) (A.13)

Proof of Claim 12:

Note that by definition, Rl = V − F . Then the proof follows by setting τ = l in the above Claim 12.

By a procedure similar to the derivation of Claim 13 above, we can also prove the claim below.

Claim 14 For each node i ∈ V − F ,

U [s]− vi[s+ l] ≥ αl(U [s]−M) (A.14)

Now let us resume the proof of the Lemma 63. Note that Rl = V − F . Thus,

U [s+ l] = max
i∈V−F

vi[s+ l]

≤ U [s]− αl(U [s]−M) by (A.14) (A.15)

183

and

µ[s+ l] = min
i∈V−F

vi[s+ l]

≥ µ[s] + αl(m− µ[s]) by (A.13) (A.16)

Subtracting (A.16) from (A.15),

U [s+ l]− µ[s+ l] ≤ U [s]− αl(U [s]−M)− µ[s]− αl(m− µ[s])

= (1− αl)(U [s]− µ[s]) + αl(M −m) (A.17)

≤ (1− αl)(U [s]− µ[s]) + αl
U [s]− µ[s]

2
by (A.10) (A.18)

≤ (1− αl

2
)(U [s]− µ[s]) (A.19)

This concludes the proof of Lemma 63.

2

Now, we are able to prove the convergence of Algorithm 5. Note that this proof is essentially identical

to the synchronous case presented in Chapter 4. We include it here for completeness.

Theorem 29 Suppose that G(V, E) satisfies Condition Async. Then Algorithm 5 satisfies the convergence

condition.

Proof:

Our goal is to prove that, given any ε > 0, there exists τ such that

U [t]− µ[t] ≤ ε ∀t ≥ τ (A.20)

Consider the s-th round, for some s ≥ 0. If U [s] − µ[s] = 0, then the algorithm has already converged,

and the proof is complete, with τ = s.

Now consider the case when U [s]− µ[s] > 0. Partition V − F into two subsets, A and B, such that, for

each node i ∈ A, vi[s] ∈
[
µ[s], U [s]+µ[s]

2

)
, and for each node j ∈ B, vj [s] ∈

[
U [s]+µ[s]

2 , U [s]
]
. By definition of

µ[s] and U [s], there exist fault-free nodes i and j such that vi[s] = µ[s] and vj [s] = U [s]. Thus, sets A and

B are both non-empty. By Lemma 60, one of the following two conditions must be true:

• Set A propagates to set B. Then, define L = B and R = A. The states of all the nodes in R = A are

confined within an interval of length < U [s]+µ[s]
2 − µ[s] ≤ U [s]−µ[s]

2 .

184

• Set B propagates to set A. Then, define L = A and R = B. In this case, states of all the nodes in

R = B are confined within an interval of length ≤ U [s]− U [s]+µ[s]
2 ≤ U [s]−µ[s]

2 .

In both cases above, we have found non-empty sets L and R such that (i) L,R is a partition of V − F , (ii)

R propagates to L, and (iii) the states in R are confined to an interval of length ≤ U [s]−µ[s]
2 . Suppose that

R propagates to L in l(s) steps, where l(s) ≥ 1. By Lemma 63,

U [s+ l(s)]− µ[s+ l(s)] ≤
(

1− αl(s)

2

)
(U [s]− µ[s]) (A.21)

Since n− f − 1 ≥ l(s) ≥ 1 and 0 < α ≤ 1, 0 ≤
(

1− αl(s)

2

)
< 1.

Let us define the following sequence of round indices5:

• τ0 = 0,

• for i > 0, τi = τi−1 + l(τi−1), where l(s) for any given s was defined above.

By repeated application of the argument leading to (A.21), we can prove that, for i ≥ 0,

U [τi]− µ[τi] ≤
(

Πi
j=1

(
1− ατj−τj−1

2

))
(U [0]− µ[0]) (A.22)

For a given ε, by choosing a large enough i, we can obtain

(
Πi
j=1

(
1− ατj−τj−1

2

))
(U [0]− µ[0]) ≤ ε

and, therefore,

U [τi]− µ[τi] ≤ ε (A.23)

For t ≥ τi, by validity of Algorithm 5, it follows that

U [t]− µ[t] ≤ U [τi]− µ[τi] ≤ ε

This concludes the proof. 2

5Without loss of generality, we assume that U [τi]− µ[τi] > 0. Otherwise, the statement is trivially true due to the validity
shown in Theorem 28.

185

Appendix B

Asynchronous Iterative Approximate
Crash-tolerant Consensus

B.1 Proof of Lemma 47

Proof: We first prove that Condition ICCA implies Condition ICCA2.

By assumption, G contains at least two node, and so does Gf ; therefore, at least one source component

must exist in Gf . We now prove that Gf cannot contain more than one source component. The proof is

by contradiction. Suppose that there exists a reduced graph Gf (V, Ef) such that the decomposition of Gf

includes at least two source components.

Let the sets of nodes in two such source components of Gf be denoted L and R, respectively. Let

C = V − L−R. Observe that L,C,R form a partition of the nodes in V. Since L is a source component in

Gf , it follows that there are no directed links in Ef from any node in C ∪ R to the nodes in L. Similarly,

since R is a source component in Gf , it follows that there are no directed links in Ef from any node in L∪C

to the nodes in R. These observations, together with the manner in which Ef is defined, imply that (i) there

are at most f links in E from the nodes in C ∪R to each node in L, and (ii) there are at most f links in E

from the nodes in L ∪ C to each node in R. Therefore, in graph G′ = (V, Ef), C ∪R 6⇒ L and L ∪ C 6⇒ R.

Thus, G = (V, E) does not satisfies Condition ICCA, a contradiction.

Now, we prove that Condition ICCA2 implies Condition ICCA.

The proof is by contradiction. Suppose that Condition ICCA does not hold for graph G = (V, E). Thus,

there exist a node partition L,C,R, where L and R are both non-empty, such that C∪R 6⇒ L and L∪C 6⇒ R.

We now constructed a reduced graph GF (V, Ef). Observe that since C ∪R 6⇒ L, the number of links at

each node in L from nodes in C ∪ R is at most f ; remove all these links. Similarly, for every node j ∈ R,

remove all links from nodes in L ∪ C to j (recall that by assumption, there are at most f such links). The

remaining links form the set Ef . It should be obvious that GF (V, Ef) satisfies Definition 21; hence, Gf is a

valid reduced graph.

Now, observe that by construction, in the reduced graph Gf (V, Ef) , there are no incoming links to nodes

186

in R from nodes in L ∪ C; similarly, in Gf , there are no incoming links to nodes in L from nodes in C ∪R.

It follows that for each i ∈ L, there is no path using links in Ef from i to nodes in R; similarly, for each

j ∈ R, there is no path using links in Ef from j to nodes in L. Thus, Gf must contain at least two source

components. Therefore, the existence of Gf implies that G violates Condition ICCA2, a contradiction. 2

B.2 Correctness of Algorithm 4 (Theorem 18)

We prove that Algorithm 4 is correct and thus, show that Conditions IAAC and IAAC2 are sufficient.

Validity Property Consider equation (7.7). Since each M[u] is row stochastic as shown in Lemma 50,

the matrix product Πt
u=1M[u] is also a row stochastic matrix. Thus, (7.7) implies that the state of each

node i at the end of iteration t can be expressed as a convex combination of the initial states at all the

nodes. Therefore, the validity property is satisfied.

Termination Property Algorithm 4 terminates after tend iterations, where tend is a finite constant de-

pending only on G = (V, E), U, µ, and ε. Recall that U and µ are defined as upper and lower bounds of the

initial inputs at all nodes, respectively. Therefore, trivially, the algorithm satisfies the termination property.

Later, using (B.4), we define a suitable value for tend.

ε-agreement Property Denote by Rf the set of all the reduced graph of G(V, E) corresponding to the

bound on the number of faulty nodes f as per Definition 21. Let

r = |Rf |

Note that r only depends on G(V, E) and f , and is a finite integer.

Consider iteration t (t ≥ 1). Then for each reduced graph H[t] ∈ Rf , define connectivity matrix H[t] as

follows, where 1 ≤ i, j ≤ n:

• Hij [t] = 1, if either j = i, or edge (j, i) exists in reduced graph H;

• Hij [t] = 0, otherwise.

Thus, the non-zero elements of row Hi[t] correspond to the incoming links at node i in the reduced graph

H[t], or the self-loop at i. Observe that H[t] has a non-zero diagonal.

Based on Condition ICCA2 and Lemmas 48, 50, we can show the following key lemmas.

187

Lemma 64 For any H[t] ∈ Rf , and k ≥ n, Hk[t] has at least one non-zero column, i.e., a column with all

elements non-zero.

Proof: G(V, E) satisfies the Condition ICCA2. Therefore, by Lemma 48, there exists at least one node p

in the reduced graph H[t] that has directed paths to all the nodes in H[t] (consisting of the edges in H[t]).

Hk
jp[t] of product Hk[t] is 1 if and only if node p has a directed path to node j consisting of at most k edges

in H[t]. Since the length of the path from p to any other node in H[t] is at most n, and p has directed paths

to all the nodes, for k ≥ n the p-th column of matrix Hk[t] will be non-zero.1 2

Then, Lemma 64 can be used to prove the following lemma.

Lemma 65 For any z ≥ 1, at least one column in the matrix product Πu+rn−1
t=u H[t] is non-zero.

Proof: Since Πu+rn−1
t=u H[t] consists of rn connectivity matrices corresponding to reduced graphs, and the

number of all reduced graphs is r, connectivity matrices corresponding to at least one reduced graph, say

matrix H∗ , will appear in the above product at least n times.

Now observe that: (i) By Lemma 64, Hn
∗ contains a non-zero column, say the k-th column is non-zero, and

(ii) by definition, all the H[t] matrices in the product contain a non-zero diagonal. These two observations

together imply that the k-th column in the above product is non-zero.2 2

For matrices A and B of identical dimension, we say that A ≤ B iff Aij ≤ Bij for all i, j. Lemma below

relates the transition matrices with the connectivity matrices. Constant β used in the lemma below was

introduced in Lemma 50.

Lemma 66 For any t ≥ 1, there exists a reduced graph H[t] ∈ Rf such that βH[t] ≤M[t], where H[t] is

the connectivity matrix for H[t].

Proof: First, let us construct a reduced graph H[t]: for each node i, removing a set of f node i’s incoming

links as defined in Lemma 50 (Nr
i). As a result, we have obtained a reduced graph H[t] such that Mij [t] ≥ β,

if j = i or edge (j, i) is in the reduced graph H[t].

Denote by H[t] the connectivity matrix for the reduced graph H[t]. Then, Hij [t] denotes the element in

i-th row and j-th column of H[t]. By definition of the connectivity matrix, we know that Hij [t] = 1, if j = i

or edge (j, i) is in the reduced graph; otherwise, Hij [t] = 0.

The statement in the lemma then follows from the above two observations. 2

1That is, all the elements of the column will be non-zero. Also, such a non-zero column will exist in Hn−1[t], too. We use
the loose bound of n to simplify the presentation.

2The product Πu+rn−1
t=u H[t] can be viewed as the product of n instances of H∗ “interspersed” with matrices with non-zero

diagonals.

188

Let us now define a sequence of matrices Q(i), i ≥ 1, such that each of these matrices is a product of rn

of the M[t] matrices. Specifically,

Q(i) = Πirn
t=(i−1)rn+1 M[t] (B.1)

From (7.7) and (B.1) observe that

v[krn] =
(

Πk
i=1 Q(i)

)
v[0] (B.2)

Based on (B.2), Lemmas 50, 65, and 66, we can show the following lemma.

Lemma 67 For i ≥ 1, Q(i) is a row stochastic matrix, and

λ(Q(i)) ≤ 1− βrn.

Proof:

Q(i) is a product of row stochastic matrices (M[t]); therefore, Q(i) is row stochastic. From Lemma 66,

for each t ≥ 1,

βH[t] ≤ M[t]

Therefore,

βrn Πirn
t=(i−1)rn+1 H[t] ≤ Πirn

t=(i−1)rn+1 M[t] = Q(i)

By using u = (i− 1)n+ 1 in Lemma 65, we conclude that the matrix product on the left side of the above

inequality contains a non-zero column. Therefore, since β > 0, Q(i) on the right side of the inequality also

contains a non-zero column.

Observe that rn is finite, and hence, βrn is non-zero. Since the non-zero terms in H[t] matrices are all

1, the non-zero elements in Πirn
t=(i−1)rn+1H[t] must each be ≥ 1. Therefore, there exists a non-zero column

in Q(i) with all the elements in the column being ≥ βrn. Therefore, by Lemma 33, λ(Q(i)) ≤ 1− βrn, and

Q(i) is a scrambling matrix. 2

Let us now continue with the proof of ε-agreement. Consider the coefficient of ergodicity δ(Πt
u=1M[u]).

189

δ(Πt
u=1M[u]) = δ

((
Πt
u=(b trn c)rn+1M[u]

)(
Π
b trn c
u=1 Q(u)

))
by definition of Q(u)

≤ λ
(

Πt
u=(b trn c)rn+1M[u]

)(
Π
b trn c
u=1 λ (Q(u))

)
by Lemma 32

≤ Π
b trn c
u=1 λ (Q(u)) because λ(·) ≤ 1

≤ (1− βrn)
b trn c by Lemma 46 (B.3)

Observe that the upper bound on right side of (B.3) depends only on graph G(V, E) and t, and is

independent of the input states, and the behavior of the faulty links. Moreover, the upper bound on the

right side of (B.3) is a non-increasing function of t. Define tend as the smallest positive integer such that

the right hand side of (B.3) is smaller than ε
nmax(|U |,|µ|) . Recall that U and µ are defined as the upper and

lower bound of the inputs at all nodes. Thus,

δ(Πtend
u=1M[u]) ≤ (1− βrn)

b tendrn c <
ε

nmax(|U |, |µ|)
(B.4)

Recall that β and r depend only on G(V, E). Thus, tend depends only on graph G(V, E), and constants

U, µ and ε.

By construction, Πt
u=1M[u] is an n × n row stochastic matrix. Let M∗ = Πt

u=1M[u]. We omit time

index [t] from the notation M∗ for simplicity. From (7.3), we have vj [t] = M∗
jv[0]. That is, the state of any

node j can be obtained as the product of the j-th row of M∗ and v[0]. Now, consider any two nodes j, k,

we have

|vj [t]− vk[t]| = |M∗
jv[0]−M∗

kv[0]|

= |Σni=1M
∗
jivi[0]− Σni=1M

∗
kivi[0]|

= |Σni=1

(
M∗

ji −M∗
ki

)
vi[0]|

≤ Σni=1|M
∗
ji −M∗

ki||vi[0]|

≤ Σni=1δ(M
∗)|vi[0]|

≤ nδ(M∗) max(|U |, |µ|)

≤ nδ(Πt
u=1M[u]) max(|U |, |µ|) (B.5)

190

Therefore, by (B.4) and (B.5), we have

|vj [tend]− vk[tend]| < ε (B.6)

Since the output of the nodes equal its state at termination (after tend iterations). Thus, (B.6) implies

that Algorithm 4 satisfies the ε-agreement property.

191

References

[1] Cassandra. http://cassandra.apache.org/.

[2] I. Abraham, Y. Amit, and D. Dolev. Optimal resilience asynchronous approximate agreement. In
OPODIS, pages 229–239, 2004.

[3] E. Alchieri, A. Bessani, J. Silva Fraga, and F. Greve. Byzantine consensus with unknown participants.
In T. Baker, A. Bui, and S. Tixeuil, editors, Principles of Distributed Systems, volume 5401 of Lecture
Notes in Computer Science, pages 22–40. Springer Berlin Heidelberg, 2008.

[4] H. Attiya, A. Bar-Noy, D. Dolev, D. Peleg, and R. Reischuk. Renaming in an asynchronous environment.
Journal of the ACM, July 1990.

[5] H. Attiya and J. Welch. Distributed Computing: Fundamentals, Simulations, and Advanced Topics.
Wiley Series on Parallel and Distributed Computing, 2004.

[6] A. Azadmanesh and H. Bajwa. Global convergence in partially fully connected networks (pfcn) with
limited relays. In Industrial Electronics Society, 2001. IECON ’01. The 27th Annual Conference of the
IEEE, volume 3, pages 2022 –2025 vol.3, 2001.

[7] M. H. Azadmanesh and R. Kieckhafer. Asynchronous approximate agreement in partially connected
networks. International Journal of Parallel and Distributed Systems and Networks, 5(1):26–34, 2002.

[8] P. Bansal, P. Gopal, A. Gupta, K. Srinathan, and P. K. Vasishta. Byzantine agreement using partial
authentication. In Proceedings of the 25th international conference on Distributed computing, DISC’11,
pages 389–403, Berlin, Heidelberg, 2011. Springer-Verlag.

[9] D. P. Bertsekas and J. N. Tsitsiklis. Parallel and Distributed Computation: Numerical Methods. Opti-
mization and Neural Computation Series. Athena Scientific, 1997.

[10] V. Bhandari and N. H. Vaidya. On reliable broadcast in a radio network. In Proceedings of the twenty-
fourth annual ACM symposium on Principles of distributed computing, PODC ’05, pages 138–147, New
York, NY, USA, 2005. ACM.

[11] V. Bhandari and N. H. Vaidya. On reliable broadcast in a radio network: A simplified characterization.
Technical report, University of Illinois at Urbana-Champaign, 2005.

[12] M. Biely, P. Robinson, and U. Schmid. Agreement in directed dynamic networks. In Structural In-
formation and Communication Complexity, volume 7355 of Lecture Notes in Computer Science, pages
73–84. Springer Berlin Heidelberg, 2012.

[13] M. Biely, P. Robinson, U. Schmid, M. Schwarz, and K. Winkler. Gracefully degrading consensus and
k-set agreement in directed dynamic networks. CoRR, abs/1408.0620, 2014.

[14] M. Biely, U. Schmid, and B. Weiss. Synchronous consensus under hybrid process and link failures.
Theor. Comput. Sci., 412(40):5602–5630, Sept. 2011.

192

http://cassandra.apache.org/

[15] M. Burrows. The chubby lock service for loosely-coupled distributed systems. In Proceedings of the 7th
Symposium on Operating Systems Design and Implementation, OSDI ’06, pages 335–350, Berkeley, CA,
USA, 2006. USENIX Association.

[16] B. Calder, J. Wang, A. Ogus, N. Nilakantan, A. Skjolsvold, S. McKelvie, Y. Xu, S. Srivastav, J. Wu,
H. Simitci, J. Haridas, C. Uddaraju, H. Khatri, A. Edwards, V. Bedekar, S. Mainali, R. Abbasi,
A. Agarwal, M. F. u. Haq, M. I. u. Haq, D. Bhardwaj, S. Dayanand, A. Adusumilli, M. McNett,
S. Sankaran, K. Manivannan, and L. Rigas. Windows azure storage: A highly available cloud storage
service with strong consistency. In Proceedings of the Twenty-Third ACM Symposium on Operating
Systems Principles, SOSP ’11, pages 143–157, New York, NY, USA, 2011. ACM.

[17] B. Charron-Bost, M. Függer, and T. Nowak. Approximate consensus in highly dynamic networks.
CoRR, abs/1408.0620, 2014.

[18] B. Charron-Bost, M. Függer, and T. Nowak. Approximate consensus in highly dynamic networks:
The role of averaging algorithms. In Automata, Languages, and Programming - 42nd International
Colloquium, ICALP 2015, Kyoto, Japan, July 6-10, 2015, Proceedings, Part II, pages 528–539, 2015.

[19] B. Charron-Bost and A. Schiper. The heard-of model: computing in distributed systems with benign
faults. Distributed Computing, 22(1):49–71, 2009.

[20] B. A. Coan. A compiler that increases the fault tolerance of asynchronous protocols. IEEE Trans.
Comput., 37(12):1541–1553, Dec. 1988.

[21] B. F. Cooper, R. Ramakrishnan, U. Srivastava, A. Silberstein, P. Bohannon, H.-A. Jacobsen, N. Puz,
D. Weaver, and R. Yerneni. Pnuts: Yahoo!’s hosted data serving platform. PVLDB, 1(2):1277–1288,
2008.

[22] J. C. Corbett et al. Spanner: Google’s globally-distributed database. In Proc. USENIX Conference on
Operating Systems Design and Implementation (OSDI), pages 251–264, 2012.

[23] M. Correia, D. G. Ferro, F. P. Junqueira, and M. Serafini. Practical hardening of crash-tolerant systems.
In Proceedings of the 2012 USENIX Conference on Annual Technical Conference, USENIX ATC’12,
pages 41–41, Berkeley, CA, USA, 2012. USENIX Association.

[24] S. Dasgupta, C. Papadimitriou, and U. Vazirani. Algorithms. McGraw-Hill Higher Education, 2006.

[25] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman, A. Pilchin, S. Sivasubramanian,
P. Vosshall, and W. Vogels. Dynamo: Amazon’s highly available key-value store. In Proc. ACM SIGOPS
Symposium on Operating Systems Principles (SOSP), pages 205–220, 2007.

[26] Y. Desmedt and Y. Wang. Perfectly secure message transmission revisited. In L. Knudsen, editor,
Advances in Cryptology – EUROCRYPT 2002, volume 2332 of Lecture Notes in Computer Science,
pages 502–517. Springer Berlin Heidelberg, 2002.

[27] D. Dolev. The Byzantine generals strike again. Journal of Algorithms, 3(1), March 1982.

[28] D. Dolev, C. Dwork, O. Waarts, and M. Yung. Perfectly secure message transmission. Journal of the
Association for Computing Machinery (JACM), 40(1):17–14, 1993.

[29] D. Dolev, N. A. Lynch, S. S. Pinter, E. W. Stark, and W. E. Weihl. Reaching approximate agreement
in the presence of faults. J. ACM, 33:499–516, May 1986.

[30] D. Easley and J. Kleinberg. Networks, Crowds, and Markets: Reasoning about a Highly Connected
World. Cambridge, 2010.

[31] A. D. Fekete. Asymptotically optimal algorithms for approximate agreement. In Proceedings of the fifth
annual ACM symposium on Principles of distributed computing, PODC ’86, pages 73–87, New York,
NY, USA, 1986. ACM.

193

[32] M. J. Fischer, N. A. Lynch, and M. Merritt. Easy impossibility proofs for distributed consensus prob-
lems. In Proceedings of the fourth annual ACM symposium on Principles of distributed computing,
PODC ’85, pages 59–70, New York, NY, USA, 1985. ACM.

[33] M. J. Fischer, N. A. Lynch, and M. S. Paterson. Impossibility of distributed consensus with one faulty
process. J. ACM, 32:374–382, April 1985.

[34] J. Hajnal. Weak ergodicity in non-homogeneous Markov chains. In Proceedings of the Cambridge
Philosophical Society, volume 54, pages 233–246, 1958.

[35] M. Herlihy, D. Kozlov, and S. Rajsbaum. Distributed Computing Through Combinatorial Topology.
Elsevier Science, 2013.

[36] D. Huttenlocher, G. Klanderman, and W. Rucklidge. Comparing images using the Hausdorff distance.
Pattern Analysis and Machine Intelligence, IEEE Transactions on, 15(9):850–863, 1993.

[37] A. Ichimura and M. Shigeno. A new parameter for a broadcast algorithm with locally bounded Byzantine
faults. Inf. Process. Lett., June 2010.

[38] A. Jadbabaie, J. Lin, and A. Morse. Coordination of groups of mobile autonomous agents using nearest
neighbor rules. Automatic Control, IEEE Transactions on, 48(6):988 – 1001, june 2003.

[39] F. Junqueira and K. Marzullo. Synchronous consensus for dependent process failures. In Distributed
Computing Systems, 2003. Proceedings. 23rd International Conference on, pages 274–283, May 2003.

[40] D. Kempe, A. Dobra, and J. Gehrke. Gossip-based computation of aggregate information. pages
482–491. IEEE Computer Society, 2003.

[41] R. M. Kieckhafer and M. H. Azadmanesh. Low cost approximate agreement in partially connected
networks. Journal of Computing and Information, 3(1):53–85, 1993.

[42] C.-Y. Koo. Broadcast in radio networks tolerating Byzantine adversarial behavior. In Proceedings of the
twenty-third annual ACM symposium on Principles of distributed computing, PODC ’04, pages 275–282,
New York, NY, USA, 2004. ACM.

[43] P. Kuznetsov. Understanding non-uniform failure models. Bulletin of the European Association for
Theoretical Computer Science (BEATCS), 106:53–77, 2012.

[44] A. Lakshman and P. Malik. Cassandra: a decentralized structured storage system. ACM SIGOPS
Operating Systems Review, 44(2):35–40, 2010.

[45] L. Lamport. The part-time parliament. ACM Trans. Comput. Syst., 16(2):133–169, May 1998.

[46] L. Lamport, R. Shostak, and M. Pease. The Byzantine generals problem. ACM Trans. on Programming
Languages and Systems, 1982.

[47] H. LeBlanc and X. Koutsoukos. Consensus in networked multi-agent systems with adversaries. 14th
International conference on Hybrid Systems: Computation and Control (HSCC), 2011.

[48] H. LeBlanc and X. Koutsoukos. Low complexity resilient consensus in networked multi-agent systems
with adversaries. 15th International conference on Hybrid Systems: Computation and Control (HSCC),
2012.

[49] H. LeBlanc, H. Zhang, X. Koutsoukos, and S. Sundaram. Resilient asymptotic consensus in robust net-
works. IEEE Journal on Selected Areas in Communications: Special Issue on In-Network Computation,
31:766–781, April 2013.

[50] H. LeBlanc, H. Zhang, S. Sundaram, and X. Koutsoukos. Consensus of multi-agent networks in the
presence of adversaries using only local information. HiCoNs, 2012.

194

[51] D. S. Lun, M. MéDard, R. Koetter, and M. Effros. Full length article: On coding for reliable commu-
nication over packet networks. Phys. Commun., 1(1):3–20, Mar. 2008.

[52] N. A. Lynch. Distributed Algorithms. Morgan Kaufmann, 1996.

[53] A. Maurer, S. Tixeuil, and X. Défago. Reliable communication in a dynamic network in the presence
of Byzantine faults. CoRR, abs/1402.0121, 2014.

[54] H. Mendes and M. Herlihy. Multidimensional approximate agreement in Byzantine asynchronous sys-
tems. In STOC ’13, 2013.

[55] H. Mendes, C. Tasson, and M. Herlihy. Brief announcement: The topology of asynchronous byzantine
colorless tasks. In The 27th International Symposium on Distributed Computing (DISC), 2013.

[56] R. Olfati-Saber, J. Fax, and R. Murray. Consensus and cooperation in networked multi-agent systems.
Proceedings of the IEEE, 95(1):215–233, Jan 2007.

[57] A. Pagourtzis, G. Panagiotakos, and D. Sakavalas. Reliable broadcast with respect to topology knowl-
edge. In Proceedings of the 28th international conference on Distributed computing (DISC), 2014.

[58] M. Pajic, S. Sundaram, J. Le Ny, G. J. Pappas, and R. Mangharam. Closing the loop: A simple dis-
tributed method for control over wireless networks. In Proceedings of the 11th International Conference
on Information Processing in Sensor Networks, IPSN ’12, pages 25–36, New York, NY, USA, 2012.
ACM.

[59] L. Parker. Current state of the art in distributed autonomous mobile robotics. In L. Parker, G. Bekey,
and J. Barhen, editors, Distributed Autonomous Robotic Systems 4, pages 3–12. Springer Japan, 2000.

[60] M. Pease, R. Shostak, and L. Lamport. Reaching agreement in the presence of faults. J. ACM,
27(2):228–234, Apr. 1980.

[61] A. Pelc and D. Peleg. Broadcasting with locally bounded Byzantine faults. Inf. Process. Lett., 2005.

[62] M. A. Perles and M. Sigorn. A generalization of Tverberg’s theorem. CoRR, abs/0710.4668, 2007.

[63] M. Rubenstein, C. Ahler, N. Hoff, A. Cabrera, and R. Nagpal. Kilobot: A low cost robot with scalable
operations designed for collective behaviors. Robotics and Autonomous Systems, 62(7):966–975, 2014.

[64] N. Santoro and P. Widmayer. Time is not a healer. In Proceedings of the 6th Annual Symposium on
Theoretical Aspects of Computer Science on STACS 89, pages 304–313, New York, NY, USA, 1989.
Springer-Verlag New York, Inc.

[65] N. Santoro and P. Widmayer. Agreement in synchronous networks with ubiquitous faults. Theor.
Comput. Sci., 384(2-3):232–249, Oct. 2007.

[66] I. Schizas, A. Ribeiro, and G. Giannakis. Consensus in ad hoc WSNs with noisy links – Part I:
Distributed estimation of deterministic signals. Signal Processing, IEEE Transactions on, 56(1):350–
364, Jan 2008.

[67] U. Schmid, B. Weiss, and I. Keidar. Impossibility results and lower bounds for consensus under link
failures. SIAM J. Comput., 38(5):1912–1951, Jan. 2009.

[68] F. B. Schneider. Implementing fault-tolerant services using the state machine approach: A tutorial.
ACM Comput. Surv., 22(4):299–319, Dec. 1990.

[69] M. Schwarz, K. Winkler, U. Schmid, M. Biely, and P. Robinson. Brief announcement: Gracefully
degrading consensus and k-set agreement under dynamic link failures. In Proceedings of the 2014 ACM
Symposium on Principles of Distributed Computing, PODC ’14, pages 341–343, New York, NY, USA,
2014. ACM.

195

[70] N. B. Shah, K. V. Rashmi, and K. Ramchandran. Secret share dissemination across a network. CoRR,
abs/1207.0120, 2012.

[71] B. Shankar, P. Gopal, K. Srinathan, and C. P. Rangan. Unconditionally reliable message transmission
in directed networks. In Proceedings of the nineteenth annual ACM-SIAM symposium on Discrete algo-
rithms, SODA ’08, pages 1048–1055, Philadelphia, PA, USA, 2008. Society for Industrial and Applied
Mathematics.

[72] L. Su and N. Vaidya. Reaching approximate Byzantine consensus with multi-hop communication. In
A. Pelc and A. A. Schwarzmann, editors, Stabilization, Safety, and Security of Distributed Systems,
volume 9212 of Lecture Notes in Computer Science, pages 21–35. Springer International Publishing,
2015.

[73] S. Sundaram and C. Hadjicostis. Distributed function calculation and consensus using linear iterative
strategies. Selected Areas in Communications, IEEE Journal on, 26(4):650–660, May 2008.

[74] S. Sundaram, S. Revzen, and G. Pappas. A control-theoretic approach to disseminating values and
overcoming malicious links in wireless networks. Automatica, 48(11):2894–2901, Nov. 2012.

[75] L. Tseng, N. Vaidya, and V. Bhandari. Broadcast using certified propagation algorithm in presence of
Byzantine faults. Information Processing Letters, 115(4):512 – 514, 2015.

[76] L. Tseng and N. H. Vaidya. Exact Byzantine consensus in directed graphs. CoRR, abs/1208.5075, 2012.

[77] L. Tseng and N. H. Vaidya. Byzantine convex consensus: An optimal algorithm. CoRR, abs/1307.1332,
2013.

[78] L. Tseng and N. H. Vaidya. Asynchronous convex consensus in the presence of crash faults. CoRR,
abs/1403.3455, 2014.

[79] L. Tseng and N. H. Vaidya. Asynchronous convex hull consensus in the presence of crash faults. In
Proceedings of the 2014 ACM Symposium on Principles of Distributed Computing, PODC ’14, pages
396–405, New York, NY, USA, 2014. ACM.

[80] L. Tseng and N. H. Vaidya. Crash-tolerant consensus in directed graphs. CoRR, abs/1412.8532, 2014.

[81] L. Tseng and N. H. Vaidya. Iterative approximate consensus in the presence of Byzantine link failures.
In Networked Systems - Second International Conference, NETYS 2014, Marrakech, Morocco, May
15-17, 2014. Revised Selected Papers, pages 84–98, 2014.

[82] L. Tseng and N. H. Vaidya. Iterative approximate consensus in the presence of Byzantine link failures.
CoRR, Jan. 2014.

[83] L. Tseng and N. H. Vaidya. Fault-tolerant consensus in directed graphs. In Proceedings of the 2015
ACM Symposium on Principles of Distributed Computing, PODC ’15, pages 451–460, New York, NY,
USA, 2015. ACM.

[84] L. Tseng and N. H. Vaidya. Iterative approximate Byzantine consensus under a generalized fault model.
In In International Conference on Distributed Computing and Networking (ICDCN), January 2013.

[85] L. Tseng, N. H. Vaidya, and V. Bhandari. Broadcast using certified propagation algorithm in presence
of Byzantine faults. CoRR, abs/1209.4620, 2012.

[86] N. H. Vaidya. Matrix representation of iterative approximate Byzantine consensus in directed graphs.
CoRR, Mar. 2012.

[87] N. H. Vaidya. Iterative Byzantine vector consensus in incomplete graphs. In In International Conference
on Distributed Computing and Networking (ICDCN), January 2014.

196

[88] N. H. Vaidya and V. K. Garg. Byzantine vector consensus in complete graphs. In Proceedings of the
2013 ACM Symposium on Principles of Distributed Computing, PODC ’13, pages 65–73, New York,
NY, USA, 2013. ACM.

[89] N. H. Vaidya, L. Tseng, and G. Liang. Iterative approximate Byzantine consensus in arbitrary directed
graphs. In Proceedings of the thirty-first annual ACM symposium on Principles of distributed computing,
PODC ’12. ACM, 2012.

[90] N. H. Vaidya, L. Tseng, and G. Liang. Iterative approximate Byzantine consensus in arbitrary directed
graphs. CoRR, abs/1201.4183, 2012.

[91] N. H. Vaidya, L. Tseng, and G. Liang. Iterative approximate Byzantine consensus in arbitrary directed
graphs - part ii: Synchronous and asynchronous systems. CoRR, abs/1202.6094, 2012.

[92] D. B. West. Introduction To Graph Theory. Prentice Hall, 2001.

[93] J. Wolfowitz. Products of indecomposable, aperiodic, stochastic matrices. In Proceedings of the Amer-
ican Mathematical Society, volume 14, pages 733–737, 1963.

[94] H. Zhang and S. Sundaram. Robustness of complex networks with implications for consensus and
contagion. In Proceedings of CDC 2012, the 51st IEEE Conference on Decision and Control, 2012.

197

	Chapter 1 Introduction
	Main Contributions
	Fault-tolerant Consensus in Arbitrary Directed Graphs
	New Consensus Problem: Convex Hull Consensus

	Models
	System Model
	Fault Model

	Dissertation Outline

	Chapter 2 Related Work
	Consensus with Different Assumptions on Graphs
	Iterative Approximate Consensus in Incomplete Graphs
	Consensus in the Presence of Link Faults
	Reliable Communication and Broadcast
	Consensus with High-Dimensional Input/Output

	Chapter 3 Fault-tolerant Consensus Under f-total Faults
	Introduction
	Terminology
	Main Results of Chapter 3
	Exact Crash-tolerant Consensus in Synchronous Systems
	Necessity of Condition CCS
	Sufficiency of Condition CCS

	Approximate Crash-tolerant Consensus in Asynchronous Systems
	Necessity of Condition CCA
	Sufficiency of Condition CCA

	Exact Byzantine Consensus in Synchronous Systems
	Terminology and Notations
	Necessity of Condition BCS
	Equivalent Condition
	Useful Definitions
	Sufficiency of Condition BCS
	Application to Multi-Valued Consensus

	Discussion
	Comparison of Condition CCS, CCA, and BCS
	Comparison of Conditions in Undirected and Directed Graphs

	Summary

	Chapter 4 Iterative Approximate Byzantine Consensus Under f-total Faults
	Introduction
	IABC Algorithms
	Necessary Condition
	Algorithm 1
	Sufficiency (Correctness of Algorithm 1)
	Asynchronous Systems
	Summary

	Chapter 5 Iterative Approximate Byzantine Consensus Under Generalized Faults
	Introduction
	Generalized Byzantine Fault Model
	Necessary Condition
	Algorithm 2
	Sufficiency (Correctness of Algorithm 2)
	Matrix Preliminaries
	Transition Matrix Representation
	Construction of Transition Matrix
	Validity and Convergence of Algorithm 2

	Summary

	Chapter 6 Iterative Approximate Byzantine Consensus Under Link Faults
	Introduction
	Transient Byzantine Link Fault Model
	Necessary Condition
	Algorithm 3
	Sufficiency (Correctness of Algorithm 3)
	Validity Property
	Termination Property
	-agreement Property

	Summary

	Chapter 7 Iterative Approximate Crash-tolerant Consensus in Asynchronous Systems
	Introduction
	Necessary Condition
	Algorithm 4
	Sufficiency (Correctness of Algorithm 4)
	Summary

	Chapter 8 Broadcast Using Certified Propagation Algorithm Under f-local Faults
	Introduction
	Feasibility of CPA under f-local fault model
	CPA without prior knowledge of f
	Discussion
	Broadcast Channel
	Asynchronous Systems
	Complexity

	Summary

	Chapter 9 Convex Hull Consensus under Crash Faults with Incorrect Inputs
	Introduction
	Models
	Convex Hull Consensus

	Preliminaries
	Algorithm CC
	Correctness of Algorithm CC
	Matrix Preliminaries
	Algorithm CC in Matrix Form
	Property of Transition Matrix
	Correctness Proof

	Optimality of Algorithm CC
	Convex Hull Consensus under Crash Faults with Correct Inputs
	Convex Hull Consensus under Byzantine Faults
	Convex Hull Function Optimization
	Summary

	Chapter 10 Conclusions
	Dissertation Summary
	Future Work

	Appendix A Asynchronous Iterative Approximate Byzantine Consensus
	Algorithm Structure
	Notations
	Necessary Condition
	Useful Lemmas
	Sufficient Condition
	Algorithm 5
	Sufficiency

	Appendix B Asynchronous Iterative Approximate Crash-tolerant Consensus
	Proof of Lemma 47
	Correctness of Algorithm 4 (Theorem 18)

	References

