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Abstract

The I, performance of Linear Time-Invariant (LTT) systems has been one of the corner stones of the robust control
theory for over the past 30 years. The [, performance has been studied mostly for LTI systems and the scarcity of
the results for other types of systems is prominent in this area. This dissertation aims to depart from LTT systems
and investigate the [, performance for other classes of systems. In particular, the [, performance of Linear Switched
Systems (LSS) and of linear systems with cone constraints is studied in the first and second part of this dissertation,
respectively.

Part I: In Part I, we first consider the worst-case I, induced norm computation of LSS. That is, sup, |G|/,
where G, is a LSS, o is the switching sequence, and the norm, ||.||, is the I, induced norm. This problem can be
linked to robustness of systems when the switching is arbitrary. We provide lower and upper bounds of this quantity.
These bounds are hard to compute and in general conservative. Hence, we narrow our attention to special classes of
LSS by defining the classes of input, output, and input-output LSS and show that for these classes, exact expressions
for the worst-case [, induced norm can be found. Moreover, we introduce the class of generalized input-output
LSS and show how their [, gains can be computed exactly via Linear Programming (LP). The class of generalized
input-output LSS proves to be a sufficiently rich class as it is dense in the set of all stable LSS. We further derive
new stability and stabilizability conditions and control synthesis in terms of LP utilizing generalized input-output
LSS.

The other extreme from the worst-case norm is the minimal norm, i.e., inf, [|G,||. The interest in this type of
problem is motivated by situations where there may be limited sensor and/or actuator resources for filtering and
control. We show that for Finite Impulse Response (FIR) switching systems the minimizing switching sequence can
be chosen to be periodic. For input-only or output-only switching systems an exact characterization of the minimal
ls gain is provided, and it is shown that the minimizing switching sequence is constant, which, as also shown, is not
true for input-output switching.

Moreover, we study Markov Linear Switched Systems (MLSS). These are LSS whose switching sequence is a
Markov process. We introduce the notion of the stochastic [, gain and provide exact expression to compute it.
However, this computation is challenging, as we show, and hence we resort to a more relaxed but tractable notion
of [, mean performance. We provide tractable computation and control synthesis method with respect to the I

mean performance.
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Part II: Part IT of this dissertation deals with the [, gain of linear systems with positivity type of constraints.
The study of such systems is well justified as there are many physical problems in which some variables are restricted
be non-negative (or non-positive); examples can be found in biology, economics, and many other areas. We consider
the case when the output is forced to be in the positive o, cone when the input is in this cone. This reflects as,
so-called, an external positivity constraint on the system. As we point out, if such a constraint is imposed on the
closed loop map, finding an optimal controller is LP and hence a tractable problem. If, on the other hand, the
constraint known as internal positivity is sought, we show that a dynamic controller offers no advantage over a static
one. These results can be used to obtain an optimal (static) state feedback controller. However, designing an optimal
output feedback controller (which is static) is a harder problem and in general leads to a bilinear program. We show
that this bilinear program can be reduced to LP, if the null space of the measurement matrix is invariant under
multiplication by diagonal matrices.

Besides the positive systems mentioned above, we consider the case where only the input is restricted to be in

the positive cone of I, denoted by IX, and seek to characterize the induced norm from [% to lo.. We stress here

o
that no positivity constraint is imposed on the system itself. As an example, consider a positive nonlinear system
with positive input that is linearized about a point other than origin. The linearized model is no longer a positive
system as it is not linearized about the origin. Its inputs, however, remain positive and hence fit into this class of

problems. We obtain an exact characterization of this norm (the induced norm from [} to l,) which can be used

to synthesis a controller minimizing the induced norm from I} to l, via LP.

iii



To my parents, MohammadReza and Mehri...

iv



Acknowledgments

This is the last piece of this dissertation that I am writing. This is the end of the journey that took place over
the past few years, 2010-2015. There is a number of people whom I would like to thank as they have been most
influential during this period and this dissertation would not have been possible without their help.

First and foremost, I would like to express my deepest gratitude to my adviser, Professor Petros Voulgaris. I
consider myself privileged working under his supervision. I have the utmost respect for his mentorship, support,
intelligence, and patience. I also admire his sense of humor and specially his sarcastic comments. Our countless
number of meetings were truly enlightening and helpful. On the contrary to what some may believe or experience,
my PhD life at the university of Illinois was not stressful at all, yet intellectually challenging. To a great extent, I
owe this to the support and guidance of my adviser. His patience with me provided a great environment for me to
conduct my research with a peace of mind. I would also like to thank Professor Geir Dullerud whom supported me
for a period of time. Our collaboration, although short, was very fruitful.

I would like to thank my committee members, Professors Naira Hovakimyan and Tamer Basar. Thank you for
taking time to review this dissertation and providing me with useful comments. Also, special thanks to Naira for
accommodating me in her lab for one year when I first started at the University of Illinois.

I believe that anyone with a graduate school experience would agree with me on the very fact that the academic
life of a graduate student is intertwined with his/her personal life. With that, I want to thank my family and the circle
of friends. Special thanks to my wife, Negin, for her love and support. Also, during my stay in Champaign-Urbana, I
was fortunate for making great friends from all around the world who made my time here quite memorable. I learned
a lot from them and want to thank them all! I am especially thankful to my ”coffee-shop working” companions
including Negin. A great deal of my research and this dissertation is the fruit of the days and nights we all worked
together and motivated each other. Without them and the joy of our game breaks, my graduate life would not be as
fulfilling as it turned out.

I would like to extend my gratitude to my Volleyball friends. Academic life gets challenging at times. You never
know if your research will land where you like, if the journal reviewers will eventually accept your revisions, if you
can present at your favorite conference, or if, after all of these, you can do something with your Ph.D. that makes
you happy for the rest of your life. Like all of my graduate student fellows, I was facing these ambiguities and

concerns everyday. Our volleyball games always helped me to de-stress, regather my energy, and get back on track.



This would not be possible without my great team-mates who all generously brought their energy, positivity, and
enthusiasm to our games every week.

And last but not the least, I would like to thank all the professors with whom I took great courses and from whom
I learned a lot. T also like to thank the staff of the mechanical engineering department and Coordinated Science

Laboratory for kindly helping me with all the nuances the administrative procedures during my Ph.D.

vi



Table of Contents

Chapter 1 Introduction . . . . . . . . . @ @ @ i i i i i it i it ettt et e e e e i
1.1 On Iy Performance: a Historical Overview . . . . . . . . . . . . . . . . . . it
1.2 Linear Switched Systems . . . . . . . . . . L
1.3 Systems with Cone Constraints . . . . . . . . . . . .
1.4 Contribution of the Dissertation . . . . . . . . . . . . . . e
1.5 Some Generic Notation . . . . . . . . . . 0 e e e e e e e

I Linear Switched Systems

Chapter 2 Deterministic Linear Switched Systems . . . . . . ... ... ... ... ...,
2.1 Background . . . . ..
2.1.1 Preliminaries and Notation . . . . . . . .. . . . .. ...
2.2 Worst-Case I Induced Norm . . . . . . . . . . . e
2.2.1 Output Switching Systems . . . . . . . .. . L
2.2.2  Input Switching Systems . . . . . . . . . . L
2.2.3 Input-Output Switching Systems . . . . . . . . . . . . . . e
2.2.4  Approximation of LSS by Input-Output Switching Systems . . . . . . . ... ... ... ....
2.2.5 Stability of LSS and LTV Systems . . . . . . . . . . . . e
2.2.6  Gain Computation for general LSS . . . . . . . . ... o o
2.2.7 Stabilizability . . . . . ..o
2.2.8 Control Synthesis . . . . . . . . . e
2.3 Minimal [, Induced Norm . . . . . . . . . . . e e
2.4 Miscellaneous Problems . . . . . . . . ..
2.4.1 Composition of Output and Input Switching Systems . . . . . . . .. . ... ... .. ....
2.4.2 Slowly Switching Systems . . . . . . . . .. L
2.4.3 Sensitivity Minimization . . . . . . . . . Lo
2.4.4 Model Matching Problems . . . . . . . . . . . e
2.5 SUMINATY . . o v v v v et e et e e e e e e e e e e
Chapter 3 Markov Linear Switched Systems . . . . ... .. ... i,
3.1 Introduction and Background . . . . . . . . .. oL e
3.2 Stochastic I, Gain Calculation for MLSS . . . . . . . . . . . . . .
3.2.1 Input-Output Markov Linear Switched Systems . . . . . . . .. ... ... ... ... .. ..
3.3 Mean Performance . . . . . . . ..
3.3.1 Control Synthesis . . . . . . . . . . . e
3.4 SUMINATY . .« o v v et e s e e e e e
II Systems with Cone Constraints
Chapter 4 Systems with PositiveInputs . . . . . . .. ... o o o o i i oo e e
4.1 Introduction . . . . . . . . L e
4.2 Background and Notation . . . . . . . . . L Lo
4.3 The Plus Norm Computation . . . . . . . . . . . . e
4.4 Model Matching Problems . . . . . . . . . L

vii

12
13
15
17
18
22
25
28
31
32
34
40
40
44
45
47
50

52
52
54
o6
o7
99
63



4.4.1 On Exact Solutions . . . . . . . . . . . e 72

4.4.2 Linear vs. Nonlinear . . . . . . . . . . . . . . e e 75

4.5 Mixed Signals . . . . . . L e 76
4.6 Asymmetric Signals . . . ... e 79
4.7 SUMMATY . . .« o o o e e e 80
Chapter 5 DPositive Systems . . . . . . . . o 0 o i i i e e e e e e e e e e e e 81
5.1 Imtroduction . . . . . . . . . . L 81

5.2 External Positivity . . . . . . ..o 81
5.3 Internal Positivity . . . . . . . . e e 83
5.4 SUMIMATY . . . o v v vttt e e e e e e 89
Chapter 6 Summary and Future Work . . . . . . . . . . . 0 0 0 i i i it ittt ittt e e 90
Chapter 7 AppendixX . . . . . o i i i i i it i i e e e e e e e e e e e e e e e e e e e e e e e 98
7.1 Nonlinear vs. Linear in the Presence of Positivity Constraints . . . . . . . . . .. .. ... ... .... 98
7.2 More on the Filtering Problem of Example 67 . . . . . . . .. .. ... . 99
Chapter 8 References . . . . . . . o @ i i i i i i i i i e i e e e e e e e e e e e e e e e e e e e e 100

viii



Chapter 1

Introduction

1.1 On [ Performance: a Historical Overview

The I, performance of Linear Time-Invariant (LTT) systems has been an important complement to Iy performance and
a significant aspect in the development of robust control theory over the past 30 years. While several developments
in control with quadratic type of criteria have been extended to other types of systems such as Linear Switched
Systems (LSS) and positive systems, it is not the case for [, criteria. This is what this dissertation aims to achieve.
In particular, the first part of this work is devoted to the [, performance of LSS, and in the second part, we provide
new results on systems with positive cone constraints.

Figure 1.1 depicts the general setup of a control system. Therein, G is the nominal generalized plant, K is the
controller, A is the uncertainty block, w is the exogenous input, and z is the regulated output. Most of the control
problems can be reduced to this form where the objective is to design a controller K such that it robustly stabilizes
the plant for all admissible A’s while minimizing the effects, measured in a certain metric, of the exogenous input
on the regulated output. The [; control theory developed to deal with persistent but bounded disturbances. The
rejection of o, disturbances was first formulated in [1]. Back then, approaches were only available to deal with two
types of exogenous inputs. Either the exogenous input was somehow known, e.g. sinusoid or step, or it was assumed
to be square-integrable, i.e. l5 signal. In either case, the objective was to minimize the maximum (weighted) energy

of the output. [1] was a genuine paper as it gave birth to the theory of I; robust control but did not provide a
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Figure 1.1: General setup of a control system



complete solution. The I; control problem was first fully solved in [2] for SISO systems. It was shown that the
optimal controller can be retrieved from a solution to a finite dimensional Linear Program (LP). Furthermore, the
MIMO case was considered and solved in [3]. Later, in [4] and [5], the I; control theory proved to be a cornerstone of
the robust control together with the H, theory. The I; theory gained popularity not only because it allows one to
cope with persistent disturbances but also finding the optimal solution is computationally efficient as it reduces to
LP. Another appealing feature of the [ (or I ) framework is that the time-domain constraints, such as saturation,
can be handled directly whereas this is not the case in the Iy setting.

The common approach in finding an [; optimal controller is to formulate the problem as a Model-Matching
Problem (MMP). This can be done through the Youla-Kucera parameterization [6]; that is parameterizing the set of
all stabilizing controllers by a stable parameter () which is referred to as the Youla parameter. Then, the set of all

closed-loop maps can be written as affine maps in the Youla parameter and consequently the problem reduces to
inf 111 - UQV. (1.1)

where H, U, and V are stable systems defined in terms of the plant parameters and ||.| is the l-induced (I;) norm.
A few years after this problem solved in [3], it was also shown that a time-varying or a smooth nonlinear control
offers no advantage over LTI one [7], [8]. Also, it was shown that even in the case of full state feedback, unlike the
Ho optimal control, the I; optimal control can be dynamic of arbitrarily high order [9]. However, invoking viability
theory, it is proved [10] that there exists an optimal static (possibly non-smooth) nonlinear controller for the full
state feedback. Moreover, the author presents a constructive algorithm for such a controller in [11]. On the subject
of I filters, one can refer to [12] where the author addresses the problem of minimizing the worst-case magnitude
of the estimation error over unknown but [, input signals. The problem is essentially formulated as a MMP and
solved via LP.

Aside for the LTI systems, the I3 control theory for other classes of systems is not studied very much. Of the
few extensions departing from LTI, one can refer to [13] and [14]. In the former, it was shown that the performance
of slowly time-varying systems cannot be drastically different from that of the time-invariant frozen-time systems.
In [14], the multirate and periodic systems are studied. The authors use lifting techniques to reduce the problem to
time-invariant with additional constraints imposed on the controller to ensure causality. It was shown that control

synthesis for periodic systems is not much different than the standard Iy control problem.

1.2 Linear Switched Systems

Linear Switched Systems (LSS) are a special class of hybrid systems and have been the subject of many studies
over the last twenty years or so. Researchers have focused on many aspects of such systems. We refer to [15], [16],

[17], and references therein for some of the works done in this area. LSS can be used to model various practically



important situations and hence deserve a thorough study. They can be used to model systems with sudden parameter
variations, sudden change of system structure due to various reasons such as failures, lossy communications, etc.

In the literature, stability analysis and stabilizability of such systems have been given a major attention. One
can refer to [18], [19], [20], [21], and [22] regarding the stability analysis and stabilizability conditions for switched
linear systems. Unfortunately, these conditions are all combinatorial and computationally hard to check. Indeed, the
stability of a switched linear system is, in general, an undecidable problem [23]. As a trade-off, one can consider the
tractable but sufficient conditions such as quadratic stabilizability, or the existence of a common Lyapunov function.

Similar to LTT systems, input-output properties of LSS are important. A relevant question is what the different
gains of a LSS are and how they are possibly related to the gains of the LTI modes of this system. There are works
such as [24], [25], [26], [27], [28], and [29] that deal with finding the quadratic type of performance for such systems.
In [26], the worst-case Lo induced gain of a LSS is studied when the switching is slow and the time between two
consecutive switches approaches infinity. In the case of slow switching (when the dwell time approaches infinity),
on the contrary to what one might expect, the gain of the switched system can be, in general, arbitrarily larger
than that of its LTI modes. It is argued that the worst-case switching scenario suffices to have one switch when the
dwell time approaches infinity. In [29], the £5 induced norm of periodic LSS is studied in the case of fast switching
(when the rate of switching approaches infinity). It was shown that the Lo induced norm of a fast switching LSS is
in general different than that of the average system. The authors defined the term input-output energy gain of the
system and showed for a fixed Lo input signal, if only the state coefficient matrix switches, the input-output energy
gain of a LSS approaches the L5 gain of the average system as the rate of switching grows to infinity. In [28], an Ho
type of cost is studied and upper and lower bounds are provided for continuous as well as discrete-time systems.

In stochastic frameworks, Markov Linear Switched Systems (MLSS) have been studied in a large body of literature,
e.g., [30], [31], [32], and [33]. A MLSS is a LSS whose switching law is a Markov process. As an example, the packet
delivery of a network can be modeled as a Markov process and combined with the LTI plant results in a MLSS. Most
of the literature on the input-output properties of LSS and MLSS are analyzed in quadratic setting. In the context

of I or I, induced gains, very little has been done. This is what we address in the first part of this dissertation.

1.3 Systems with Cone Constraints

There are many dynamical systems in which some variables are restricted to be non-negative (or non-positive);
examples can be found in biology, economics, and many other areas [34], [35], [36]. Motivated by such problems, the
theory of positive systems has been the focus of many researchers. Notions such as stability, stabilizability, positive
realization, and (distributed) control synthesis of such systems have been the subject of research, see e.g. [37], [38],
[39], [40].

For linear systems, the notion of internal positivity refers to the case when the states of the system remain



nonnegative if the inputs and the initial conditions are nonnegative. Many aspects of positive linear systems have
been investigated extensively, see for example [41]. The controllability of linear positive systems is studied in [42].
The problem of positive realization is considered in [43] and [44]. The input-output properties, and in particular
the gains of such systems, have also been given major attention in [45], [46], [47], and references therein. In [45],
copositive linear Lyapunov functions and linear supply rates are used, in the context of dissipativity theory, to
investigate robust stability and performance. Further, the problem of synthesizing an optimal [.-induced static
state-feedback controller with given sparsity or boundedness constraints is considered and solved. Synthesizing an
optimal /;-induced static state-feedback controller is studied in [46] and [48]. In the latter, the problem is reduced
to a bilinear program and an iterative algorithm is utilized to solve it. The output feedback, however, is a more
challenging problem. This problem, in general, can be cast as a bilinear program and in certain cases, it can be
reduced to a linear program. In [49], a linear program is provided to find a rank one static output-feedback gain
such that the closed loop system is stable and internally positive. For I3 type of performance, one can refer to [50],
[51], and [47].

Aside from positive systems whose states and outputs are positive, there are types of systems with cone constraints.
For example, one can think of a not necessarily positive system whose input is restricted to be positive. As an
example, consider a positive nonlinear system with positive input that is linearized about a point other than origin.
The linearized model is no longer a positive system as it is not linearized about the origin. Its inputs, however,
remain positive and hence fit into this class of problems. To the best of our knowledge, the input-output properties
of this type of systems are not considered before although they deserve theoretical investigation. In the second part
of this dissertation, we develop novel results on positive systems as well as the on the less studied systems with

positive input.

1.4 Contribution of the Dissertation

As mentioned above, the [; theory is mainly limited to LTI systems and the extensions address slowly time-varying
and periodic systems. We extend this theory to the classes of LSS, MLSS, and general LTV systems, in the first part
of this dissertation.

In Chapter 2, Section 2.2, we consider the worst-case [, -induced norm computation of LSS. This is a highly
complex problem. In fact, a prerequisite to compute the gain of LSS is stability, which is an undecidable problem
[23]. Therefore, for the sake of well-definedness, we assume that the LSS is stable when computing the norm.
We find bounds on the worst-case l,-induced norm and discuss how finding those bounds is a complicated task.
This, indeed, is not surprising due to the complexity of the class of LSS. Therefore, we restrict our study to the
subsets of LSS whose gain computation can be done more efficiently. To this end, we introduce the classes of output

switching systems, input switching systems, input-output switching systems, and generalized input-output switching
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systems. For these classes of LSS, we provide exact expressions to compute the worst-case gain via LP. The interest
in these classes of LSS is not only because their gain can be computed efficiently but also they can be used to model
interesting practical situations, for example switching between actuator/sensors. Furthermore, as we show, the class
of generalized input-output switching systems is dense in the space of all stable LSS. We use this fact to derive new
stability condition for LSS in terms of MMP which can be cast as LP. Furthermore, utilizing generalized input-output
switching systems, we compute the gain of a general LSS and can synthesize optimal controllers.

Next, in Section 2.3, we consider the problem of computing the minimal gain. That is, we try to answer the
question of what switching law results in the smallest [,.-induced norm. We show that an optimal switching is
periodic. This relates to the sensor scheduling problems. Furthermore, for a periodic switching, one can employ
lifting techniques and design a filter/controller for the invariant representation of the system similarly to [14].

In Chapter 3, we study the Markov Linear Switched (MLSS) systems. These are LSS where the switching sequence
is a Markov process. To study these systems, we define the notion of the stochastic l,, gain and show how it can
be computed. Moreover, we study the mean performance of MLSS and present an optimal controller synthesis to
minimize the [, gain of the mean representation.

In the second part of this dissertation, we study the [, performance and control design of the LTT systems subject
to positivity constraints. More precisely, we study two types of systems, the LTI systems whose inputs are restricted
to the positive cone of [, and positive LTI systems.

In Chapter 4, the (not necessarily positive) systems with positive inputs are studied. We introduce the notion of
plus norm to characterize the input-output gain of such systems. The plus norm is defined to be the induced norm
of the system from the positive cone of [, to lo,. We provide exact computation of the plus norm in terms of the [
and the DC gain of the system which can be performed via LP. This can be used to synthesize optimal plus norm
controllers. Using duality theory, we further show that the optimal plus norm controller exhibits certain features
similar to those of the standard [; optimal controller. More precisely, for one-block problems, both controllers can
be found through finite dimensional LP in the dual space and both result in FIR closed-loop. Moreover, we show
that a smooth time-varying nonlinear controller cannot outperform a LTI controller, in the plus norm sense.

In Chapter 5, two notions of positive systems are considered, external and internal. Externally positive systems
are the systems whose outputs remain nonnegative as long as the inputs are nonnegative. A system is said to be
internally positive if, in addition to the outputs, the states remain nonnegative when the initial condition and inputs
are nonnegative. Examples of such systems arise naturally in economics, biology, etc. We show how synthesizing a
controller enforcing closed-loop external positivity can be cast as LP. Furthermore, if the internal positivity of the
closed-loop is desirable, we argue that a dynamic controller offers no advantage over a static one. Finding the static
controller turns out to be a bilinear program, in general. However, in certain cases, the problem reduces to LP. As
shown, these are the cases of full or partial state feedback, or if the measurement matrix (C-matrix) is invariant

under multiplication by diagonal matrices.



To summarize, the contributions of this work are the following:

e Worst-case [, gain computation for certain classes of LSS; these are input, output, input-output, and gener-

alized input-output switching systems.

e Worst-case [, gain computation for general LSS through approximation with generalized input-output switch-

ing systems.

Minimal /., gain computations.

The extension of the [; optimal control theory to LTV and LSS in both deterministic and stochastic frameworks.

lo analysis and control synthesis for externally and internally positive systems:

I~ analysis and control synthesis for systems with positive inputs.

1.5 Some Generic Notation

In this section we define the notation used throughout this dissertation. By R and Z we mean the sets of real
numbers and integers, respectively. We further use Z to denote the set of non-negative integers. The set of n-tuples
x={x (k)}z;é where x (k)s are real numbers is denoted by R™. For any x € R", its lo and /; norm are defined as

a k
o e lz (k)|

e, = 3k
k=0

Let g = {g (k)};—, be a sequence where g (k) € R"™. Then, the [ and l; norm of this sequence are defined as

19l = sup [lg (k)] »
keZy

lgll, = > llg ),
k=0

whenever they are finite. The set of sequences whose lo, norm (I3 norm) is finite is denoted by I (I7). We
may use lo (1) instead of I (I7') when the dimension n is clear from context or not important. For a sequence

g={9(k)}reo € loo, its A-transform is defined as

GOy =g ()N,
k

=0



for the values of A that the summation converges. Given a linear operator (or matrix) T : loc = loo ( T : R™ — R™),

its o, induced norm, ||T||, is defined as

[aal
|T|| := sup =5
520 1l

It can be easily verified that for a finite dimensional matrix X : R® — R™,
n
X = sup Y |51,
7 J=1

where x;; is the entry at row ¢ and column j of X. The standard truncation and delay operators are denoted by II

and A, respectively. More precisely, for any k € Z and any sequence g = {g(0),g(1),...},

Afg = 0,..,0,9(0),g(1),... ¢,
N——
k zeros

"¢ = {g(0),9(1),...,9(k—1),0,0,..},

and A= %g ={g(k),g(k+1),..}.
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Linear Switched Systems



Chapter 2

Deterministic Linear Switched Systems

2.1 Background

In general, a LSS is composed of finite number of LTI subsystems and a rule that orchestrates switching between

subsystems. In state-space, a LSS H, can be realized as

a, .4 “ETD=A0r @O+ Bogul) (2.1)
Yy (t) = Ccr(t)ifj (t) + Da(t)u (t)

whereo : Zy — Zy : ={1,2,..., N} isreferred to as the switching sequence and the 4-tuples (Ag(k), Bo k), Co (i) Dg(k))
assumes values in the set

{(AiaBi7Ci7Di) = ZN},

for k € Z. Sometimes, o is restricted to be in the set of admissible switching sequences. We denote this set by =

which is a subset of all N valued sequences. Each LTI subsystem is referred to as the LTI mode of the LSS.

Example 1 (Switching between sensors)

Consider N LTI systems P; = i = 1,2,..., N. Suppose, due to certain restrictions on the

communication channel, only output of one of these systems is measured and transmitted at each time step. In block

— G
o 7/
: y
—1 Gx

Figure 2.1: Output Switching System



diagram this system can be shown as in Figure 2.1. This system can be represented as

P z(t+1)= Az (t) + Bu(t)
") vy =Copr () + Dyu(t)

By

_ _ By
where o : Zy — Ly, A =diag (A1, Ag, ..., AN), and B =

By

Cl-) Vin L C R

Figure 2.2: Buck-boost DC-DC converter

Example 2 The buck-boost converter in Figure 2.2 can be mathematically written as

@ (t) = Agyx (t) + Bonyu (t)

where

0o -1 0 0

A = Bola= ,
11 0 —-1
| © RC RC
0 Vin

By = ,B1 = v
0 0

The input-output properties of LSS is mostly studied in Iy framework. In the context of [; or [, induced gains,
very little has been done. This is what we are concerned with in this part. In particular, we are concerned first with

the worst-case I, induced norm computation of LSS (Section 2.2). We consider a general LSS under the assumption

10



H, |[«—

Figure 2.3: Interconnection of two switching systems

that the LSS is stable under arbitrary switching and study the following problem
sup ||Go|| (2.2)

where G, is a LSS, o is the switching sequence, and the norm, ||.||, is the I, induced norm. This problem can be
linked to robustness of systems when the switching is arbitrary. For example, invoking the small-gain theorem, the
interconnection of two stable LSS G, and H, in Figure 2.3 is stable if sup, |G, H,|| < 1. We provide lower and
upper bounds of the worst-case gain (2.2). These bounds are hard to compute and in general conservative. Hence,
we narrow our attention to special classes of LSS by defining the classes of input, output, input-output, and the
generalized input-output LSS and show that for these classes, exact and tractable expressions for the worst-case [
induced norm can be found. The class of generalized input-output LSS proves important since any stable LSS can
be approximated by one in this class with arbitrary accuracy. Moreover, we present a new necessary and sufficient
condition equivalent to the stability of LSS in terms of a model matching problem that involves generalized input-
output switching systems. Also, utilizing the generalized input-output switching systems we provide conditions to
checking the gain of a LSS and also synthesize controllers for LSS via LP.

Moreover, in Section 2.3, we study the other extreme of (2.2) which is the minimal-gain problem. That is,
inf |G, - (2.3)

The interest in this type of problem is motivated by situations where there may be limited sensor and/or actuator
resources for filtering and control. For example, there might be restrictions on how often a particular sensor or
actuator is used. In these cases, the switching sequence may become an important decision variable to explore in
minimizing estimation or tracking errors. More specifically, if the corresponding map of interest G, depends on a
switching controller or filter @), to be designed based on switching among a collection of LTI systems @); that depend
on the availability of a sensor/actuator 4, then a relevant performance optimization should involve both the selection
of o and @Q);. As one can see, studying the problem of minimizing the norm of a map of interest over the switching
sequence o is very relevant in order to tackle the bigger problem of optimizing jointly over the sequence ¢ and
the controller/filter systems @;. This is so since, in principle, one can alternate between two disjoint optimizations

over o and @;s to get a better solution at each time. In Section 2.3, we show that for FIR switching systems the
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minimizing switching sequence can be chosen to be periodic. For input-only or output-only switching systems an
exact characterization of the minimal [, gain is provided, and it is shown that the minimizing switching sequence is

constant, which, as also shown, is not true for input-output switching.

2.1.1 Preliminaries and Notation

Here, we define the notation used in this part of the dissertation. First, notice that any linear causal map T : u €

loo = Y € lso can be thought of as an infinite dimensional lower triangular matrix,

Too O 0
Tiw Tio O

T = (2.4)
Too T Tno

By R [T, we mean the causal part of the n'" block row in the matrix representation of T, i.e.

R [T]n = Tnn Tn,nfl e TnO

In terms of this representation

IT|| = sup R [T],,]| -

We say a linear causal map T : loc — ls, with matrix representation (2.4), is Finite Impulse Response (FIR) of some

order M € Z, if for any integer n > M,

R[], =0 -+ 0 Tom-1 - Tno

A LTV system
z(t+1)=A@)x(t)+ B({)u(t)
y(t)=C@)x(t)+D(t)u(t)

, with 2 (0) = z( given,

where u (t) € R™, z (t) € R™, y (t) € RP, and 2y € R™ are input, state, output, and the initial condition of the system
and A (t),B(t),C(t), and D (t) are bounded matrices with appropriate dimensions for all ¢ € Z, can be rewritten

as

A~z = Az + Bu
G: . X , (2.5)
y=Cx+ Du

12



where z = {z (£)},°, y = {y (t) }1og, w = {u(t)},=,, A is the delay operator,

and E, 6’7 and D are defined analogously. We assume that /1, B, C', and D are bounded maps. It can be easily
shown that (2.5) can also be written
A-1 -1
v=(I-AA) ABu+(I-AA)
G: A R , (2.6)
y=Czx+ Du
where Zg = {x0,0,0,...}. In (2.6), the effects of the initial condition on the state variables are made explicit through
-1
the mapping (I — AA) .
o €T
Definition 3 We say the LTV system G in (2.6) is stable if it is a bounded operator from to
u Y
We note that stability in the sense of the above definition is equivalent to the boundedness of the mapping
-1
(I - AA) in (2.6). By a LSS we mean a system in the form (2.1). Notice that given ¢ € =, (2.1) defines a LTV
system. Hence, one can define bounded linear operators flg, B,, C,, and D, that depend on the switching sequence

o and rewrite (2.1) as

H, : , (2.7)

where A, = diag (Asy, Avys Ay, -..) and BJ, C’U, and ﬁg are defined analogously. Let S denote the class of LSS that

A, | B
are internally stable for any switching sequence. We use the compact notation of H, = i i to denote

CO' DO'

(2.1) and by the i** mode of H,, we mean the LTI system . We emphasize here that elements of S can

be seen as maps from u to y that are l,-bounded uniformly with respect to the switching sequence [16]. That is, for

H, € S, sup, |Hy|| is well defined.

2.2 Worst-Case [, Induced Norm

In this section, we present our results regarding the computation of /o, induced norm of linear switched systems.

More precisely, assuming that the LSS is internally stable for any switching sequence, we are interested in finding

13



the the worst-case [, norm of the system without imposing any constraint on the switching sequence. That is,
sup [|Go || - (2.8)
o

This proves to be an important problem since it links to the robustness with respect to switching. In general, the

exact calculation of (2.8) is a highly complex problem. However, we can find bounds for (2.8). Towards this end, let

o= A; = B;
a max [|4;]], 5 := max | B,

o= c:i,0 = D;
v Jr,rel%féll 5l jr,rel%ill il

and let ||G;|| be the norm of the LTI system associated with the state space matrices of index j, ie., G; =

. Furthermore, since we assume that G, is stable for any switching sequence, it is known that [16] for

any matrix norm ||.||, there exists some integer ¢ such that

p= Aiy, EI{I}EJL')}SJ'GZN ||A21AZ2 to Aiq || <L (29)

The following proposition can be easily proved.

Proposition 4 If a < 1 then

max |G| < sup [Goll < 22 4.
J o 1 —
If a > 1 then
[0}
max |G| < sup | Goll < 222 10,
J - 1—p

where @ :=14+a+ a2+ 4 al.

Proof. The lower bound follows trivially as the specific G correspond to a constant o(t) = j for all t > 0. For the

case a < 1 the result follows immediately as

Iyl =

t—1
Coty Z Ag(ty -+ Ac(t—r—1)Bo(r)u(T) + Do(ryu (1)
7=0

t—1
|;)/Z atfrflﬁ +0

7=0

oo

IN

0o *

mas u(r)|

The case a > 1 follows in a similar pattern by bounding any product A, ... Ay—r—1) in chunks of size ¢ as
Ao - - Aot—r—)|| < pH/dat=m=1=lalif |t/q] <t —1. m
The above bounds can be in general conservative and, in the case where o > 1, finding the integer ¢ and hence p

is a combinatorial problem, so these general bounds may not be very practical. This problem will be revisited later in
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Subsection 2.2.4 where the general LSS are approximated by the generalized input-output switching systems. Also, it
is obvious that if we define an average system G := + Zjvzl G then HG’H < max; ||G,|| for any system norm. In the
sequel we elaborate on specific classes of switched systems where exact expressions for sup,, |G| can be obtained.
These are systems with non-switching state dynamics, that is they have a constant A-matrix. We begin with the

output switching systems.

2.2.1 Output Switching Systems

The set of output switching systems, denoted by S}, is a subset of S whose elements, G, can be realized as

G : x(t+1)= Az (t) + Bu(¢) |

y () = Coyx (t) + Do(ryu (t)

where matrices A and B are constant and A is Schur stable. This class of systems can be thought of as the composition

of a time-varying operator with a time-invariant one. More precisely, for
f1(0) fi(1) f1(2)
f= : ; : ; : .| €1l

I (0) I (1) In (2)

define the switching operator S, : IYP — [2_ as

(Sof) (t) = fa(t) (t) , fort e Ly (210)

Using this operator any G, € Sp can be written as

Go=S,| : |, (2.11)

where

S ,CT[, fori € Zy.

Output switching systems have an obvious interpretation. As shown in Figure 2.4, they can be seen as N LTI
systems driven by the same input and at each time step the output of only one of them is sampled. This, for example,
can be the case when, due to some restrictions, only a subset of all sensors can provide measurements at each time
step.

Given a switching sequence 0 = {0 (0),0(1),...}, G, defines a linear time varying operator whose infinite
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Figure 2.4: Output Switching System
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Figure 2.5: Input Switching System

dimensional lower triangular representation is as follows:

gU(O) (0)

o 1 g 0
G| (1) go) (0) ’ (2.12)

9o2) (2)  9o2) (1) go(2) (0)

where {g; (k)},— is the impulse response of LTI system G;. Clearly, the " row of (2.12), and consequently y (),
depends only on the value of switching sequence at time ¢. In other words, the output of this system, y, at each
time instant, ¢, is y (f) = y, () (t) where y; = Giu, for i € Zy. From the definition of /o norm, one can write
1yl < maxiezy ||yill - Hence, based on the Proposition 4, it follows that sup,, |G || = max;ecz, ||Gi||. Therefore,

the following proposition is immediate.

Proposition 5 For an output switching system of the form (2.11), we have

Gy
sup [|Go || = SE

Gn
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2.2.2 Input Switching Systems

Dual, in a sense, to the previous case is the input switching. The set of such systems is denoted by S; and is a subset

of S whose elements of the form
z(t+1)= Az (t) + Bypyu(t)

y () = Cx(t) + Do(yu(t)

In this case, the matrices A and C' are constant, A is Schur stable, and the input matrices B and D switch. Such

systems can be decomposed into an LTI system and a time varying operator. That is,

Go=| G, Gy -+ Gy |55

where

c ,CT], for i e ZN,

and S} is defined as

(Sgu) (k) = |u (k) o (k)™ position -

In block diagram, such systems are depicted in Figure 2.5. The norm computation of input switching systems is
more involved than that of output switching ones. Hence, for the sake of clarity, we assume that there are only two
modes, N = 2, and each mode is a single input single output system. We will relax these assumptions in Theorem 7.

We note that the infinite lower triangular representation of G, in this case is made of columns that belong to

either G; or to G5 depending on what o(t) is. It can be easily verified that the form of G, is as

9o(0) (O)
9o(0) (1) 9o (1) (O)
9o(0) (2) 9o (1) (1) 9o (2) (0)

where {g; (k)};—, is the impulse response of G;, for i € {1,2}. In this case, the norm of 7" row of matrix

representation of G, is given by

T
IR (Golrll =D g (k)]

k=0
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Figure 2.6: Input-Output Switching System

Clearly, the worst-case norm of the T row is obtained by

T
max [|R [Goly || = > max {[g1 (k)] g2 (K)I},
k=0

where the use of max, is justified as the T*" row only has finitely many non-zero elements. Therefore, we have

sup [|Go | = sup sup [|R [Golpl| = sup max|[R [Gio] |

M

max {|g1 (k)| |g2 (F)} -

~
Il

0

Thus, the following is immediate:

Proposition 6 Let G, = [ G, Gy ] Sk be a SISO input switching system. Then, ilts worst-case lo induced norm
is given by

sup |Gl = lgll, = Y la(t)], (2.13)

t=0

where g :={g(t)}720 := {max{|g1(t)[, |92(£)[} }70-

Notice that for any € > 0, since G; and G5 are (exponentially) stable systems, one can apriori choose an integer
n such that II"g is in any € > 0 neighborhood of g in /; sense. Furthermore, generating g can be easily done as
each term of § can be determined independently of the other terms by comparing only two numbers. Therefore,

computing ||g||; to an apriori accuracy is a simple task.
2.2.3 Input-Output Switching Systems

Having defined input and output switching systems, it is intuitive to consider input-output switching systems. These
are systems whose state matrix, A, remains constant and is Schur stable but the other matrices in their state space

realization may switch among finitely many possibilities. The set of such systems is denoted by S;o where each
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element G, can be realized as

G, . ) TOFD=Ac )+ Booyu(t) (2.14)

y(t) = Coyx (t) + Dopyu (1)

Similar to input or output switching systems, these systems can be written as the composition of the switching

operator with an LTI system as follows:

Gu -+ Gin
GO':SO' S*

o)

(2.15)

Gni -+ GnN

€ Lry, for 4,5 € Zy. Figure 2.6 is the block diagram of an input-output switching

system. It is clear that this class of systems covers input only or output only switching systems. Here, we give
an exact expression for computing the [, induced norm of these (not necessarily SISO) systems. First, we state
the results for Multi-Input Single-Output (MISO) systems and then argue how they can be generalized to the more
general MIMO case.

Theorem 7 For a MISO input-output switching system G, as in (2.15), the worst-case lo, induced norm can be

calculated as

sgpllGaH = Inax gl »

where for each j € Zy the sequence g; := {g; (n)},—, is defined as

_ llg55 (O)] forn=0
95 (n) = :
maxpezy |9k (n)||  forn >1

and {gi; (k)}p—, is the impulse response of Gij.

Proof. It is easy to verify that the lower triangular infinite dimensional matrix representation of G, is given by

Go(0)o(0) (0)
9o1)o0) (1) go(1)o(1) (0)
9o2)0(0) (2)  Go@)01) (1) o@)e(2) (0)

The worst-case lo induced norm, sup, |G|, for this operator is given by

sup sup | [9o)o©) &) oo (t=1) . Gowow (0)]]]-
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Notice that the value of o (t) € Zy has finite number of possibilities and does not affect the value of o (k) for k < t.

Thus, we can write

sup I [90t)00) (1) oyo) E—1) - oo (0)]]]

= max swp|[gjo) () go) (t=1) - g3 ()]
(oM}

= max sup <ZH9]U’T) t_TH>
=0

Z
TEEN {o(k)} izt

where we used the fact that G, is MISO. Therefore,

bup IGo|l = sup maX sup <Z Hgﬂ, () (t H)

N {o(k)}Zo \r=0
= max lim sup Hg () H = maX 19115 -
JEEN 1290 1o (k)i (;) e o

and thus the proof is complete. m

It is emphasized that, similar to the input switching case, determining g; and the computation of its {; norm is
tractable as each term in g; can be determined independently of the other terms in g;. Furthermore, notice that the
gain of an input-output switching system can be arbitrarily larger than that of its LTI modes. It can be done by
having ||g;x (n)||, for k # j and n > 1, larger than |/g;; (n)|| in the above theorem.

Now, suppose G, is a MIMO input-output switching system with m inputs and p outputs. That is, y = G,u,
where u = (u1,u2, ..., um) € 1% and y = (y1,Y2,....Yp) € (&,. Define a MISO map H] to be the mapping from u to

yr, for r =1,2,...;p. That is, G, can be partitioned as

where for any r € {1,2,...,p}, HZ is also an input-output switching system that can be written as

Hi, -+ Hiy
Hy=s,| i 5t
Hy,y Hyn
4 | 5
with HJ;, for i,j € Zy, can be realized as H;; = . So, to compute the worst-case [, norm of
R[Ci], | R[Dil,
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Figure 2.7: Switching Controller

G, we have:

G H!
sup |G, || = sup [Goullog = supmax% = maxsup ||H}|| ,
o o lullg o €Ly |ull  rezr o

where sup,, ||H7|| can be calculated exactly based on Theorem 7 as HY is MISO.

Remark 8 The input-output switching systems are particularly important when, for a given LTI plant P, a finite set

of stabilizing controllers, {Ki}?;p is given and one wants to realize them in a way that switching causes no instability.

X Y M Y yx-' X!
Let ~ R = I be a doubly-coprime factorization of P. Also, define J :=
-N M N X X' —XIN

Then, appealing to Youla-Kucera parameterization, each K; can be written as the following lower linear frac-
tional transformation K; = F;(J,Q;), see Figure 2.7. Clearly, switching between stabilizing controllers amounts
to switching between Q;s. Furthermore, arbitrary switching between K;s results in a closed loop switching system

which is stable if arbitrary switching between Q;s is stable. Therefore, consider an input-output switching system
@1

Qs == S, Sk, Obviously, Q, is stable for arbitrary switching sequence and hence yields to a

Qn

stabilizing switching controller K, = F; (J,Q,). Notice that K, has a more complicated structure than input-output

switching system and it coincides with K; for fized switching sequence o = i. Similar ideas have been exploited in

[52] and [21].

Remark 9 For the sake of gain computation, we mainly consider the initial condition of zero. However, there are
problems for which one needs to guarantee robustness (in some sense) with respect to the bounded initial conditions as
well as bounded inputs. In this case, consider (2.14) and without loss of generality suppose that the initial conditions

and input satisfy ||zol| . <1, ||ull, < 1. We are interested to find

sup sup 19l -
o lzoll. <1Jlufl L <1
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To
Define @ := € loo and consider the mapping G, : @ — y. Clearly, sup, sup gz <1 [yl = sup, [|Go|l, where

u

Gy has the following matriz representation,

Co0)  9o(0)o(0) (0)

ComyA  Go(1)o(0) (1) go(1)o(1) (0
G = ) o© (1) go()oq) (0) ’ (2.16)
Co)A?  Go2)0(0) (2)  Go@)01) (1) Io(2)0(2) (0)

with {gi; (n)},~_, being the impulse response of Gij = . Following the same line of argument as in

Theorem 7, one can show the following:

Theorem 10 For a MISO input-output switching system with bounded non-zero initial condition (2.14),

_M
Sup su = max su ,
1p sup Iyllo = rax Mp||gj [

where for each M € Zy and j € Zn, gj” = {QJM (n)}iﬁ(_)l is defined by

1955 O forn=0
g§\4 (n) =q maxpezy |lgjx (k)| forn € Zn
HCjAM_lﬂ form=M +1

This result can be extended to the MIMO case following the arguments proceeding Theorem 7. Furthermore, similar

to the previous cases the computations to obtain the worst-case norm with arbitrary accuracy is tractable.

Next, we introduce the class of generalized input-output switching systems which can be used to approximate

the worst-case gain of the general LSS (with A-matrix switching).

2.2.4 Approximation of LSS by Input-Output Switching Systems

Equation (2.1) represents a LSS in its generic form. Previously, we defined input-output switching systems and
provided exact expression to compute their [, gain. One can also extend the notion of input-output switching

systems as follows:

Definition 11 Let M be a positive integer. We say a LSS P, is an input-output LSS of degree M if it is stable and

admits the realization

. @ (t+1) = Az (t) + By(yu (1) . (2.17)

Y (t) = C{U(k)};ﬁc:t—zw-#lx (t) + D{U(k)}?c:t—]\/l-#lu (t)
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The class of such systems is denoted by St and Sro = U SM.
M=1
We are also interested in a subclass of input-output LSS defined below:

Definition 12 Let M be a positive integer. We say a LSS P, is an output-only LSS of degree M if it is stable and

admits the realization

P, . z(t+1) = Az (t) + Bopyu(t)

¥ () = Clomyis, wr® () + Doy u(t)

t
k=t—M+1
oo
The class of such systems is denoted by S} and So = U Sg.
M=1
The classes of generalized input-output and output-only LSS are of particular interest for two reasons. First, any
stable LSS can be approximated by elements of Sp and S;o with arbitrary accuracy (see the next theorem). Second,

we provide exact and tractable expressions to calculate the [, induced norm of these systems.

Theorem 13 Let G, be a stable LSS and € > 0. Then, there exist an integer M, G, € SI%, and Gy € Sg such

that

G -Gl < e

HGU—C:'U < &,

for any switching sequence o. Moreover, G, and G, can be made FIR.

AU’ BO’
Proof. Let G, = be a stable system. Suppose, A, € R"*" B, € R"*™ C, € RP*" D, € RP*™,

CG' DO'
Since, G, is stable, there exists and integer ¢ such that for any integer M > ¢, maxa, e(a;};es, [[4is Ay - - Aiy || <6

Let i := g + 2 and define G, € Si, with state-space matrices

0 In
A= 0 c R(i_l)mx(i—l)m7
Im
0
_ ] . T ‘
Ba‘(t) = |: 0 0 e Bo'(f,) :| c R(l—l)me’
t—1 t—1
Ciomyt_, = Cor) T4 ] 4 - 1],
k=l+1 k=1+2

Doty = Doy,

where [ = max {t — i+ 1,0}. It is easy to see for ¢t > i —1, following the same argument as in the proof of Proposition
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_ )
sup |Gy — G| < max [|Cif| max || Bi | 1—-

Since one can choose 0 such that max; ||C;|| max; || B;|| %_5 < g, the proof is complete. m

In the light of this theorem, to find the input-output gain of a generic LSS (with A-matrix switching), it suffices
to find the worst-case gain of a generalized input-output switching system that is sufficiently close it. In the rest of
this subsection, we show how to compute the [, induced norm of a generalized input-output LSS P, of degree M.
It is obvious from (2.17) that the C and D-matrices of P, can assume N values at each time instant ¢; each value
associates with the segment {0 (¢),0(t —1),...,0 (¢t — M + 1)} of the switching sequence. Let Zp; be the set of all
Nvalued sequences of size M, i.e. Ty = {z = {zk},iw:?)l L0 € ZN}. We notice that each P, € SIJ% can be associated

with NM+1 LTI systems denoted by P; ;, where i € Iy, j € Zn and

z(t+1) = Az (t) + Bju(t)
y(t) = Cix (t) + Diu (t)

Pi,j .

Then, the [, gain of P, can be computed in terms of the impulse responses of the LTI systems F; ; denoted by

{P,; (k)}zozo, fori € Ty and j = Zy.

Lemma 14 Let P, be an input-output LSS of order M. Further, assume Py is multi-input and single-output (MISO).
Then

M-—1 %)
sup || P || = sup S P B+ > m?XHPi,j (k)| (2.18)
7 k=M

i={ir} oo €IM k=0
Remark 15 Although, Lemma 14 addresses MISO systems, it can be easily extended to MIMO systems. In fact,

Y1
suppose Py 1 u — is a MIMO input-output LSS and let P* to be the MISO mapping from the input to the

Yp
k'™ output, i.e. P¥:u — yy. Then, it can be verified that sup, || Py | = max; sup, || P¥| and Lemma 14 can be used

to compute sup,, HPjH as P¥ is MISO.

Remark 16 The I, gain computation (2.18) can be written as a LP. For simplicity, suppose P, is SISO and it is

FIR of order T > M for all switching sequences. Then,

sup || P,|| = min~y,
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such that for any i = {ik}fy:gl €Ty, ke{0,1,.. . M—-1}, K e{M,M+1,..,.T—1}, and j € Zn

|Pia, (B)| < 7vi(k),
[P (K] < ~i(K),
T—1

Yol < o7

s=0

2.2.5 Stability of LSS and LTV Systems

Our perspective in this subsection is greatly influenced by the fact that LSS reduce to LTV systems for a fixed
switching sequence. Hence, we take the approach of first establishing the results for LTV systems and then tailoring
them to LSS. More precisely, we study the stability and stabilizability of LTV systems and reduce them to convex
optimization problems. Then, we extend the results to LSS and argue how the stability/stabilizability problem can
be converted to a partially nested sequence of LP.

Notice that the LTV system G in (2.6) is stable if and only if the mapping (I — AA) B is stable. In other words,
G is stable if and only if A stabilizes A. Invoking the Youla-Kucera parameterization, A stabilizes A if and only if

there exists a stable LTV system @ 4 such that

A=Qa(I+AQa)" =T +QaN) "' Qua,

or equivalently,

A(I+AQa)—Qa = 0, (2.19)

I
e

(I+QaN)A—Qa (2.20)

Finding Q4 satisfying (2.19) or (2.20) and making them exact equalities is a computationally challenging task.
However, as stability is a robust property, one can think of relaxing the above conditions while preserving the

necessity and sufficiency of the results as follows:

Theorem 17 Consider the LTV system G in (2.6). Then G is a stable if and only if there exists an LTV system Q

such that one of the following equivalent conditions hold

HA(I+AQ) —QH < 1, (2.21)

H(I+QA)A—QH < 1 (2.22)

Proof. First, suppose G is stable. Based on the argument preceding the theorem, A stabilizes A and hence there

exists Q4 satisfying (2.19) and (2.20). Obviously, @ 4 satisfies (2.21) and (2.22) as well.
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Conversely, suppose (2.21) and (2.22) hold for some Q. Then the state equation of G can be written as

r—7y = AAz+ ABu

AQU+AQ) " w+A A= QI +AQ) |z + ABu,

where we added and subtracted AQ (I + AQ)f1 x to the right hand side. Now, after moving this term to the left
hand side, we obtain

[I—AQ(HAQ)*}x:A[A—Q(HAQ)*}HABmo.

Thus,

x= [I—AQ(I#—AQ)_lTl{A [A-Q(HAQ)—I}HABMO}
:(1+AQ)A[A_Q(HAQ)*}x+(1+AQ)ABu+(I+AQ):zO

— A [(1 +QA)A - Q] @+ (I+AQ)ABu+ (I + AQ) Zo. (2.23)

Using a small-gain like argument, one can show that x in (2.23) remains bounded for bounded w and zq if (2.22)

holds. To prove (2.21), define n = [A -QU+ AQ)_l} z. Then,
=T +AQ)An+ (I + AQ)ABu+ (I +AQ) Zo.

Clearly, « remains bounded if  does. We will show that the evolution of 7 is stable if (2.21) holds. It is easy to

verify that
n= [A(I+AQ)—Q]A17+[A(I+AQ)—Q (I +AQ)ABu+ |A(I+AQ) - Q| o,

which is stable if (2.21) holds. m
The above proof holds as long as the norms in (2.21) and (2.22) are induced norms from any vector space to the
same vector space. Furthermore, (2.21) and (2.22) are convex. And indeed, for the /., induced norm, we will show

how (2.21) can be cast as a linear program. To this end, suppose @ is FIR of order T with the following matrix

representation ) )
q0 (0)
q (1) 1 (0)
0= q2 (2) g2 (1) q2 (0)
0 a(T-1) q(T-2) -+ qr(0)
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Then

R[A(IJrAQ)—Q}T

:AT|:qT_1(T1) - qr-1(0) I}_{O qgr(T'=1) -+ qr(0) |-

and (2.21) can be written as

it 301 ] =spl i+ 201 -]

T-1
= sup {|€§ (45 = a5 ()] + D [e [Ajgj—1 (s = 1) — a5 ()] + |e] [Ajaq-1 (T — 1)]|} <1 (2.24)

5] s=1

where the absolute value |.| is taken component wise and e; is a vector of all zeros and one for the I*" entry. It is
obvious, from (2.24), that finding @ is a linear program.

A LSS reduces to a LTV system for a given switching sequence o. Hence, its stability can be checked via Theorem
17 for that particular switching sequence. Clearly, if we want to check the stability of an LSS for every switching

sequence, we have the check the stability of every induced LTV system as stated below:

Corollary 18 Consider the LSS P, as in (2.7). Let Z be a set of switching sequences containing the sequences of

interest. Then, P, is stable for any o € Z if and only if there exists a stable switching system Q. such that

sup || Ay (I +AQy) — Qo|| < 1, (2.25)
ogE=
sup ||(I + QoA) Ag — Qo | < 1. (226)
SIS

We note that conditions (2.25) and (2.26) are in the so-called model matching form. In what follows, we discuss
how (2.25) can be cast as a linear program if the norm is the I, induced. Notice that given Q, satisfying (2.25), it
can be approximated arbitrarily closely by an FIR input-output or output-only LSS. Therefore, the following holds

true:

Theorem 19 Consider the LSS P, as in (2.7). Let E be a set of switching sequences containing the sequences of
interest. Then, P, is stable for any o € = if and only if there exists an integer M such that one of the following

holds:

inf  sup ’Ac, (I+AQ,) Q.| < 1, (2.27)
QGESINIO A=)

inf sup ’Ag (I+AQy) —Qs|| < 1. (2.28)
Qo‘es(]g[ oEE

It is easy to see that for Q, € S, or Q, € S}, the mapping A, (I +AQ,) — Q. is indeed an input-output LSS

of degree M + 1. Therefore, Lemma 14 can be used to reduce (2.27) or (2.28) to LPs.
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The following example illustrates the utility of our approach.

Example 20 Consider a LSS with two modes,

0.63 -1 -0.31 0.33
Al = ’A2 =
-0.08 0.51 —-0.68 0.38

It is interesting to note that there exists no common quadratic Lyapunov function for this system. However, the

stability of this system is guaranteed by the above corollary since, using linear programming, it can be computed that

inf  sup
Qo ES}O o

‘A,,A n (AUA . 1) QUAH —0.7694 < 1.

2.2.6 Gain Computation for general LSS

i) x
In the previous section, we looked at the LTV systems (or LSS) as operators mapping to and derived

u Y
conditions for their boundedness (stability). For a bounded operator, we will proceed to quantifying its bound, a.k.a.

its gain. Conventionally, in the context of finding the gain of linear system, the initial condition is set to zero and
further, without loss of generality, only the effect of u on y is studied. We emphasize that our computations can be

cast as a LP. First, we state the results for LTV systems:

Theorem 21 Consider the LTV system G in (2.6). Then G is stable and ||G|| < 1 if and only if there exist a stable
LTV Q and § > 0 such that the following holds

[AI+AQ)-Q] d[A(I+AQ)-QAB

) R K < 1. (2.29)
1C(I+AQ) C(I+AQ)AB+ D

Proof. First, suppose G is stable and |G| < 1. That is,

~ N T . A
C (I — AA) AB + DH < 1 and A stabilizes A. Then,
. N —1
forQ=A <I - AA) , (2.29) reads
0 0
<1,

%C’(I—AA) C(I+AQ)AB+D

which holds for sufficiently large 9.
Conversely, suppose (2.29) holds true. We want to show that G is stable and ||G|| < 1. The stability is guaranteed
according to Theorem 17 as (2.29) implies ||A (I + AQ) — Q|| < 1. To prove |G|| < 1, we use a small-gain theorem
xo x

like argument. It is proved in [53] that if the interconnection of G : — and A : y — u is stable
u Y
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for all A, possibly nonlinear and time-varying, with ||A|| < 1, then ||G|| < 1. Therefore, it suffices to show that the
condition in (2.29) guarantees the stability of the interconnection of G and A. Now, consider the expression of G as

in (2.23). Define, n = [A —Q(I+AQ)""| . Then, from (2.23), we have
z=I+AQ)An+ (I+AQ)ABu+ (I +AQ)Zo.

From this, it is clear that the boundedness of n guarantees the boundedness of x and consequently the boundedness

of y. Furthermore, one can write the evolution of n as

n o= [A-QU+AQ) s
= [AI+AQ)—Q|An+[A(I+AQ) — Q]ABu+ [A(I + AQ) — Q] Zo.

i) xT
Now, instead of checking the stability of the interconnection of G : — and A : y — u, we check the

o
- . . U n n .
stability of the interconnection of H : n — and Hy : — given by

u

n=[AI+AQ) - Q| An+[A(I+AQ)— Q| ABu+[A(I + AQ) — Q] Zo
y=CI+AQ)An+ |C(I+AQ)AB+ D|u+C(I+AQ)Zo

The interconnection of H; and Hs is stable if

pt | AUHAQ) =Q] A +AQ) — QIAB )
1C(I+AQ)  LCUI+AQAB+D
I 0
for some D. In particular, for D = we have
0 oI

[AT+AQ)—Q] d[A(T+AQ)—-Q]AB

(
< 1.
1C(I+AQ) C(I+AQ)AB+D
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We note that (2.29) is not convex in both § and Q. It is, however, convex given §. Condition (2.29) can be further

simplified for the [, case as follows:

Corollary 22 The LTV system G is stable and |G| < v for some v > 0 if and only if there exist a stable LTV Q
and 6 > 0 such that the following hold

Ar+2Q) - Q|+ A0 +aQ) B - QuB| <1, (2.30)

e a@)+|eu+aas | < (2:31)

We note that if G is stable, (2.21) holds true and hence for sufficiently small value of J, (2.30) and (2.31) admit a
solution (@, ). Therefore, in principle, one can start from small values ¢ and gradually increase ¢ until either (2.30)
becomes infeasible or the desired performance level v is met. In fact, if ||G|| < v, then (2.30) and (2.31) admit a

solution for large enough § that is quantified in the next proposition.

Proposition 23 Suppose ||G|| < 7. Then, the set of § for which there exists a Q satisfying (2.30) and (2.51)

contains the semi-infinite interval (8o, +00), where

Hé (1- AA)_1

7= G

5o =

Proof. Notice that since ||G|| < 7, there exists Q4 such that (2.21) holds. For this Q4, (2.30) is always satisfied

and (2.31) reduces to

1
5

¢ (1- AA>_1H 1G] < 7.

which clearly holds for all § > §p. =
This proposition is particularly useful since it guarantees that if one keeps increasing ¢ and checking the feasibility
of (2.30) and (2.31) for the given §, the procedure eventually stops once § is greater that dy. Theorem 21 can be

extended for LSS as below:

Corollary 24 Let LSS P, be given as in (2.7). Then P, is stable and |P,|| < v for any o € Z if and only if there

exist 0,7; > 0, fori € {1,2,3,4,}, a positive integer M, and Q, € SN such that

7+ 672 < 1a

1
5’72 +v3 < 7,
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and

sup Ay (I +AQu) — Qo < 1, (2.32)
sup Ay (I +AQo)AB, — QuAB,|| < 72, (2.33)
sup Cy (I4AQy)| <3 (2.34)
sgg C, (I+AQ,) AB, + D, || < V4. (2.35)

Using Lemma 14 and Remark 16, one can cast (2.32)-(2.35) as LPs.

2.2.7 Stabilizability
Consider a LTV system H with the exogenous input w, control input u, measured output y, and regulated output z

A1z = Az + B¥w + B*u
H: 2= C?z + D™w + D¥y . (2.36)

y = CYx + D¥w

It can be easily shown that a state-feedback controller K : x — u stabilizes the closed-loop if and only if A+ BK
. -1
stabilizes A. According to Theorem 17, {I —A (A + BK )} is stable if and only if there exist two stable LTV
systems @ and Z such that

HA(I+AQ)+BUZ—QH <1, (2.37)
where Z = K (I + AQ). Clearly, (2.37) is convex in @ and Z and can be seen as a state-feedback stabilizability check
for (2.36). We further develop an output-feedback stabilizability test as follows:

Theorem 25 There exists a stabilizing output-feedback controller if and only if there exist stable LTV systems @,
Z¥  and Z* such that

HA (I+AQ)+ B Z" - QH < 1,

H(1+QA)A+ZLéy—QH < 1L (2.38)
In this case the controller is given by

X X:A<A+B“F+Léy)x—ALy

)

u=Fy

where F = ZF (I + AQ)™" and L = (I + QA)™ ' ZL.
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Proof. We notice that the controller K given above is analogous to the an observer-based controller for linear time

invariant systems. In fact, the proof follows similarly to proving observer-based controllers stabilize LTI systems.

x
This is done by defining new variable £ = x — x and showing that the evolution of is stable. In fact, the

IS

x .. . .
stability of is guaranteed as (2.38) implies A + B*F and A + LCY stabilize A.

T

It is obvious at this point that this theorem can be immediately extended to LSS by letting @ € S} and
VAR ANS Sg“. In this case, the mappings in (2.38) become input-output LSS of degree M + 1 and (2.38) can be

converted to a LP in the case of [.

2.2.8 Control Synthesis

Based on our previous developments, one can synthesize controllers that guarantee certain performance level. Here,
we discuss the state-feedback control synthesis.

Consider a LSS plant given by

A lyp = A,z + B’f;”w + B’gu
P, . . . ;
z =CZx + DZ"w + D"y

and a switching state-feedback controller K, : * — u. The closed-loop, ®,, is given by
D, Ale = A% + Bw, 2z = C% + D,
where

A(CTI AU+B;LK7B§Z:B;)7

¢¢ = C*+D™K,DI =Dz

From Corollary 24 and letting Z, = K, (I + AQ,), we have that ®, is stable and ||®,|| < 7 if and only if there exist

8,7 >0, for i € {1,2,3,4,}, a positive integer M, Q, € SA, and Z, € Sg“rl (or Z, € S%H) such that

M+ < 1 (2.39)

1
5’72 +v3 <
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Achievable [, gain

0 T=2|T=3|T=5
1 1771 | 15.02 | 11.72
5 4.71 4.42 3.97

10 3.11 2.80 2.63
50 2.01 1.72 1.49
100 2.01 1.68 1.41
1000 | 2.00 1.67 1.41
10000 | 2.00 1.67 1.41
T : FIR order of Q,

Table 2.1: Closed-loop gain

and

516112 Ay (I +AQu) + BYZy — Qul| <1, (2.40)
sup Ay (I +AQ,)ABY + B Z,ABY — Q,ABY|| < s, (2.41)
sup CZ (I +AQ,) + D*Z, H < (2.42)
sup | C2 (I + AQ,) ABY + D™ Z,ABY + D3" ’ < (2.43)

We emphasize again that the mappings in (2.40)-(2.43) are input-output LSS and their [, induced norm can be

computed via LP.

Example 26 Consider the barbell of length 1 illustrated in Figure 2.8. There is mass of size m = lkg that jumps
from one end of the barbell to the other end. The actuator torque (control input) and the disturbance torque are
labeled as u and T, respectively. After letting | equal to the gravitational constant and discretizing the model at 2Hz

we obtain x (t + 1) = Ayryx (t) + B ) 7Ta (t) + By u (t) where

g g

1.001 0.050 0.999  0.050
A1 = ,AQ = ’
0.050 1.001 —0.050 0.999
0.001
B = B}j=B'=BY=
0.050

We want to design a state-feedback controller, K : x — w, that stabilizes the closed-loop and study the lo gain of

T
the closed-loop from the disturbance torque T4 to the states and control input, i.e. . To this end, one can use
u

(2.39) - (2.43). For this example, we let Q, € S be FIR of some order T and Z, € S2. Then we minimize (Q,,")
subject to (2.39) - (2.43) for different values of § as tabulated in Table 2.1.
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Figure 2.8: a barbell with switching mass at the end

-1 P
“\0o o/ 1 u
Q1] Q2 \ /
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B

Figure 2.9: Filtering Problem

2.3 Minimal [, Induced Norm

In the previous section, the problem of computing the worst-case [, induced norm of switching systems over the
switching sequence was considered. In this section, we consider the minimal gain problem inf, ||G,|. We show
that an optimal switching sequence is constant, i.e. no need to switch, in case of output only or MISO input only
switching GG, and periodic in case of general switching FIR G,. As mentioned earlier, in some applications, the
switching sequence may be used as a control variable. For example, one can consider a filtering problem depicted
in Figure 2.9, where the interest is to estimate the input u by designing a filter @ = (Q1,Q2) and a switching
law to switch between different measurements. Having such a motivation, the following theorem may be used in

characterizing minimizing switching sequences:

Theorem 27 Let G, be a linear switched system as in (2.1). Suppose G, is FIR of order M for any o. Then
inf ||Gs|| (2.44)

is achieved by a periodic switching sequence with the period of at most NM, where N is the number of switching

modes of the system.

Proof. Suppose G, is FIR of order M. First, we will show that an optimal switching sequence exists. Let R [G,],
denote the ¢ block row of infinite dimensional lower triangular representation of G. It is straight forward to verify
that R [G,],, for t > M, is uniquely determined by a segment of switching sequence of size M. More precisely,
R [Go], is fully determined by the M-tuple {o (n)};:t_]\/pr17 ift >M and by {0 (0),0(1),....,0®)},ift<M-1. Tt
is hence immediate that the entire set of switching sequences can generate at most N™ distinct rows in the matrix

representation of the system. This makes (2.44) a finite dimensional optimization and thus an optimal switching
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sequence exists. Now let * be an optimal switching sequence. We will show that one can create an optimal periodic
switching sequence from ¢*. To this end define the set Q,+ as Qo+ = {(O'* (k))f:;jyfl it > M} That is Q-+ is
the set of M-tuples one can extract from the tail sequence {o* (t)};=,,. As discussed above, Q.+ can have at most
NM distinct elements. Thus, there should be at least one M-tuple that keeps showing up in {o* (t)};2 ,, infinitely
ti+M—1 ti+M—1

often. That is there exists a sequence of time instants {t;},-, such that {o* (t) tetr = {o* (t)}t’:t;f for

i,j € {1,2,...} . Pick i and j such that t; —¢; > M. Define

o (tFr+M+1t) if t<t;+M-1
Oper (t) =
Oper (t—M) if t>M

Notice that, the rows generated by the switching sequence ope,, ie. R [G[,per] , for t€ Z, is a subset of those

generated by o*. Therefore,

le

Oper

| = sup IR [Go,..] || < sup||R [Go-], || = (|G-

This implies, ||G = |Gy || = inf, |G|l . Furthermore, it is clear that the period is at most N™. m

Oper

The validity of the arguments in the proof of Theorem 27 strongly depends on the type of the norm. The fact that,
in the /o, induced norm, one considers the rows of the matrix representation of the system is central. In particular,
certain arguments in this proof fail if one tries to extend the results to the case of I3 induced norm and considers the
sub-matrices as opposed to the rows.

As mentioned earlier, if a switching system is stable for any switching sequence, for any matrix norm, there
exists an integer ¢ such that (2.9) holds. Hence, in general, any stable switching system in the form (2.1) can be

approximated by an FIR system. Consequently, as a corollary of Theorem 27 we have:

Corollary 28 For any € > 0, there exists a periodic switching sequence o* such that

inf |Gy || — € < [|Go-|| < inf |G, | +&.

Furthermore, there exists an FIR approximation of G-, denote it by Gy« , such that

inf |Gy — & < [|Go-

< inf |Gy

Proof. As G, is stable for any switching sequence o, it can be uniformly approximated by FIR systems. That is,

for £ > 0, there exists an FIR approximation G, of some order M > 0 such that

||G<7H —e< ||GU|} < ”GJ“a
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for any switching sequence o. Therefore,
inf |Go|| — e < inf ||G,|| < inf||G,| . (2.45)

By Theorem 27, there exists a periodic sequence ¢* such that

inf ||Go || = [|Go- |- (2.46)
As, G~ is the FIR approximation of Gy« we have
|Gor|l — € < ||Go|| < [|Goe (2.47)
From (2.45),(2.46), and (2.47) we have
inf |Gy | — & < |G- | < inf |G| + <.
|
In the light of Theorem 27, one can consider a typical model matching problem
I 1Hy = Ur Qo Vil (2.48)

where H,, U,, V,, and Q, are FIR (and bounded) switching systems as in (2.1). Then, as an optimal switching o
exists that is periodic, finding an optimal @, amounts to finding an optimal periodic solution to the above model

matching problem.

Remark 29 Notice that, one can consider the problem of (2.44) with added constraints on the switching sequence
o. Some of these constraints can be handled in the proof of Theorem 27 analogously. For example, if one requires
that o assumes all the values in the set Zy infinitely many times, similar to the unconstraint problem, an optimal

sequence will be periodic.

Example 30 As discussed above, even in the case of imposing certain constraints on the switching sequence, one

can find an optimal periodic sequence. Consider the filtering problem depicted in Figure 2.9, where u is the input

P,
to the output switching channel, Py := S, ! , and Qo = [ Q1 Qs } S* is an input switching filter. At each
Py

time step, t, the measurement of (Pyu) (t) is fed to Qy. The interest is to estimate u by designing Q1, Q2, and the

switching sequence o. More precisely, the problem of interest is

inf ||[T—Q,P,|.
it 1= QuPy)

2,0
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We assume that there should be no channel that is used constantly for all time. This, for example, may represent
an operational requirement. Therefore, the admissible switching requires that measurements from Py and P> are used
infinitely many times, i.e., we exclude the cases that o has a tail sequence identically equal to 1 or 2. Mathematically,
o should satisfy the following:

Pk € Zy : A "0 is constant.

For this example, we assume Py and Py are FIR and their A-transforms are given by

Pi(\)=—2+0.1)\Py(\) = —1.84 0.2\

Moreover, we search for Q1 and Qo in the space of all FIR systems of order 2. It is easy to verify that [ — Q, Py is
FIR of order 3. Given o, finding Q1 and Q2 is a convex problem. On the other hand, finding the minimizing o is
in general not convex. However, by Theorem 27 we know that o is periodic and its basic period is at most 23 = 8.
Therefore, one can run an ezhaustive search over the space of all possible switching sequence (which is finite but

possibly large) to find and optimal o. For this particular example, an optimal solution turns out to be

Q1 (\) = —0.4916 — 0.0556,

Q
[ V]
—~
>
SN—
I

—0.5556 — 0.0225A,

o o= (2,1,2,1,2,1,..),
with optimal value infg, g,.» || — Qo Ps|| = 0.0301.

There are classes of systems for which a constant switching sequence (i.e. no switching) is the best strategy. It
turns out that if G, is MISO input only or output only switching then the minimum norm can be achieved by a

constant switching sequence. The result is given in what follows:

Theorem 31 Let G, be an output only switching or a MISO input only switching system. Then
inf |Gy || = min ||G,] . (2.49)
o neLn

Proof. First suppose, G, is output switching. Then, given an input v and a switching sequence o, the output

y = G,u at time ¢ is given by
t—1

Y (t) = Coy »_ A "FBu (k) + Dygpyu (t).
k=0

Hence, for any switching sequence
t—1

Co Y A" Bu (k) + Dyul(t)
k=0

]l oo = sup ||y (t)[|o, > sup min
t t nNEZLN

oo
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That is
ch SL AR By (k) + Dy (1)

|G| > min HOO = min ||G,],
neLn neLn

[l oo
where the equality is achieved for o (.) = argming ez, ||Gnl| -

Now, we will show (2.49) when G, is MISO input only switching. Without loss of generality, suppose there are
only two modes of operation, i.e. the switching sequence takes values in the set {1,2}, and |G| < ||Gz2||. By the

way of contradiction, suppose inf, |G, || < ||G1]|. Let

¢ i {1011~ 0k G211l 1611
. ot |Gl Il — 1G],

Let M > 0 be the integer in the proof of Corollary 28 for such . Then, there exists a T-periodic switching sequence

o*, for some T > 0, and an FIR system G, of order M, such that

H;f HGU” —e< ||Ga*

< inf |G, | (2.50)

and

1G1l — & < ||Ga| < IIGAll, (2.51)

where G is the FIR approximation of G of order M. From (2.50) and (2.51) we have

|G-

<G4 - (2.52)

Now, we will show if (2.52) holds, we arrive at the contradiction ||Gz|| < ||G1]|, and hence inf, ||G,| = ||G1]|- To this
M-1

M1
end, notice that, since G,- and Gy are FIR of order M, ||G1| = Z |Gy (k)| and Go+ = supys sy Z |G 2 (K)|.
Y e k=0 k=0
Hence, Z |Gon 1y (K)| < Z |G; (k)|, and
k=0 k=0
M(T+1) M—1 M-1 -
S Y [Gorry (B)| < MT > |Gy (k)| = MT |Gy |- (2.53)
t=M+1 k=0 k=0

By changing the order of summation on the left hand side and direct calculation, one can verify

M(T+1) M—1 M—1 M-1
7N [Goriry (B)| = MTy Y |Gy (k)| + MT2 Y |Ga (), (2.54)
t=M+1 k=0 k=0 k=0

where 77 and T are the number of times that G; or G5 is active, respectively, in one period and T} + T = T.
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Therefore, from (2.53) and (2.54), we have
ML Gl + M Gall < MT G
or equivalently HGQH < ||G1H As

IGill = < |[[Gif < lIGull

IGall = < |Gz < [IGall

|Gl

G —
and ¢ < %, we have

_ Gaf + [GAl

IGall - >

< |Gl < IGull < el

which in turn implies ||G2|| < ||G1|. =
Also, there are types of input-output switching systems (with fixed A matrix) for which a constant sequence is

optimal. This is the case when one of the diagonal terms has the smallest norm as the following indicates.

Proposition 32 For the MISO input-output switching system (2.15), if for some i € Zn, |Gyl < |Gkl for all
ik € Zn, then
inf [|Go || = [|Giall

and the optimal sequence is the constant o (.) = i.

G111 G
Proof. For simplicity, we assume G, = S, Sk with G; MISO for 7,7 € {1,2}. It is easy to see that
Ga1 G2
G11 G2
inf |Gy || > inf ||Se, S,
7 Tne Ga1 G2

G G
Notice that, Hy, 0, := Soy 11 12 g

o2
Ga1 Gaa

switch independently of output matrices. By inspecting the rows of the matrix representation of H,,,,, we have

is an input-output switching system where the input matrices can

01,02 o2

inf [[Hyyo,| > infmin{[ Gi1 Gz } 5;27 { Ga1 Ga2 ] 5;2}~

Hence, if for some i, |Gy || < ||Gyj]| for 4,5 € {1,2}, according to Theorem 31, we have

infmin{[ G G ]53;2, [ G G } S;:Z} Gl

g2
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Clearly, this lower bound is achievable by G, and hence the proof is complete. m
On the other hand, if the conditions of Proposition 32 are not satisfied, an optimal switching sequence may not

necessarily be constant for an input-output LSS as the following example indicates.

Example 33 Consider the (static) switched system (2.1) where the switching sequence takes values in the set {1,2}

and matrices A;, B;, C;, and D; fori € {1,2} satisfy

Ay =Ay=0,C; = BY,

and

BI'B; C;B; =1,

BBy = CiBy=CyB;=0.

Then, y (t) = Cyt)By—1yu (t —1). It is easy to see, for constant o (.), y (t) = u(t —1). However, for the periodic
sequence o = {1,2,1,2,1,2,....}, y (t) = 0. That is, the constant sequence is not optimal, while a periodic with period

2 1s optimal.

2.4 Miscellaneous Problems

In this section we provide some miscellaneous results on LSS. First, the composition of input and output switching
systems is considered. We note that we can use input-output switching systems as building blocks to create more
complicated structures. Then, the worst-case gain of slowly switching systems is studied. Finally, a sensitivity
minimization and certain model matching problems are studied and it is shown that a LTV compensation cannot

outperform a LTI one.

2.4.1 Composition of Output and Input Switching Systems

In some situations (e.g., see Section 2.3, Figure 2.9), one can have different compositions of input and output switching
systems. Suppose @, € S; and P, € Sp. In this case, it is of interest to study the worst-case norm of P,Q, and

Qs P,. It is easy to see that the former can be written as an input-output switching system and hence the previous
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results can be used for its norm computation. Indeed,

Al 0 Bl
P,Q, = BPCY AP BP (2.55)

Drca P ‘DﬁDé’,

Py
P,Q, = S, : [Q1 QN}S;
Py
PQ - PQn
= SJ - 527
i PnQy PnQnN
AP | BP A? | B4
where P, = and Q, = . Clearly, P,Q, belongs to S;o and Theorem 7 can be used
cr | D? c? | D2

to calculate its worst-case [, induced norm.

On the other hand, the worst-case norm computation of @, P, is more involved as

151
QUPUZ|:Q1 QN]S;SU )
Py

and is not in the form of an input-output switching system. In fact, consider the state-space realization of @, P,

AP 0 BP

QoPy, = | BICr At BY (2.56)

pice 9 | DLDE

Clearly, in (2.56), the state coefficient matrix is also switching. But note that this switching does not cause any
instability if P, and @, are stable (or equivalently A? and AP are Schur stable) . The next theorem provides
lower and upper bounds for the worst-case norm of such systems. To this end, notice that infinite lower triangular

representation of S;.S, only has diagonal terms. These diagonal terms can assume finitely many values. In fact, let
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For k € Z., s (k) is a matrix with identity on the o (k)th block row and column and zero anywhere else. Let the set of
possible values of s (k) be denoted by S. For example, if the system only has two switching modes, i.e. o (k) = {1,2},

then

s(k)e S = )

It is easy to see that there is a one to one corresponding between o (k) and s (k). Moreover, as discussed before, Q.

and P, can be decomposed into LTT systems and the switching operator (or its adjoint). Let,
QU:Q‘S?;) PO':SO'P7

where @ and P are LTI with impulse responses {q (k)};—, and {p (k)},—,. respectively. Then, the following holds:

Proposition 34 Let Q, € S; and P, € So. Suppose Q, is a multi-input single output system. Then

T

> hip (k)

T
< sup [|QoFo | < Slj{p ZQT (k). (2.57)
k=0 7

k=0

max sup
t T

where, for given T € Z, the finite sequences gr := {gr (k)}fzo . hho= {hd (k)}::(y and h3 := {h% (k)}::o are

given by
k
gr (k) = meagx\lq(T—k)sp(k—T)ll’
s =0
k
h (k) = T—k k—1),
T (k) rgeag;q( )sp(k—7)
k
K2 (k) = mi T-—k k—1).
% (k) {?ég;fﬂ )sp(k—T)

Proof. Notice that, for 7,7 € Z, and 7 < T, the entry at T*" block row and 7¢" block column of lower triangular

infinite dimensional representation of Q, Py is given by [Q, Pyls, = Z;‘::T q(T —k)s(k)p(k— 7). Therefore,

T T
Qo Pyl = Sl;pz > (T —k)s(k)p(k—7)

7=0 ||k=T
Clearly, ||Q,P»|| can upper and lower bounded as:
T k
sup YD (T —k)s(k)p(k—7)|| < [|QoPs|
T llk=07=0
T k
Qo Pyl < Sl%pzz||Q(T—k)8(k)p(k—7)||- (2.58)
k=071=0
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Taking sup,, we have:
T
> kg (k)

T
< sup||Qo Pyl < snggT (k),
k=0 7

k=0

max sup
toT

which completes the proof. m

We will show that the computations in this theorem are tractable. Noting that any stable system can be
approximated by FIR systems with arbitrary accuracy, we will show how this theorem is computationally tractable
when specialized to FIR systems. Hence, suppose @, and P, (or equivalently @ and P) are FIR of some order

M. Then, the non-zero part of sequences in Proposition 34 can be written as gr := {gr (k;)}f:max(T7 M.0) =

T T
{hr (k‘)}k:max(TfM,O)’ and b7 := {hi (k)}k:max(Tfjw,O) where

k
gr (k) = max Z lg (T — k) sp(k—7)ll, (2.59)
s€S T=max(k—M,0)
k
R} = — - .
T (k) max Y (T —k)spk—7), (2.60)
T=max(k—M,0)
k
h2 (k) = mi Tk k—1). 2.61
7 (k) min Z q( )sp(k—1) (2.61)

T=max(k—M,0)

It is easy to verify that for any integers 17,715 > 2M,
1 132 2
ar, = ngath = hT27 th = th’

and (2.57) reduces to
T

max max <sup||Q,P,|| £ max ZgT (k). (2.62)
J o T€Zam =0

i T€Zam

> hir (k)
k=0

Now, notice that, for given T, each element in the sequences gr, ht., and h% is determined independently of the

other elements in these sequences. Furthermore, determining each element of these sequences, e.g., gr (k) for some
T and k, amounts to calculating the summations in (2.59)-(2.61) N times (N is the number of switching modes and
also the number of elements in S) for each s € S and letting g7 (k) to be the maximum of these N summations.
That is, given T, calculating (2.59)-(2.61) and consequently determining gz, ht., and h% is a simple task. Therefore
the summations and the bounds in (2.62) are easily computable.

Although this theorem provides bounds that could be conservative in general, there are classes of systems for

which these bounds are sharp. The following corollary can be easily verified.

Corollary 35 Let Q, = QS € St and P, = S,P € So. Suppose Q, is a MISO system. Furthermore, suppose Q)

and P are positive systems, i.e. the infinite lower triangular representations of Q and P contain only non-negative
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terms. Then

T
supHQafZH::$§>§:gT(k). (2.63)
7 k=0

Proof. The proof follows easily by noticing that in the proof of Theorem 34, if Q, P, is a positive system, one has

equality in (2.58). m

Remark 36 The above theorem holds true if instead of Q and P being positive, we assume Q4 P, is positive for a

Ysuprimizing” switching sequence.

The generalization of the results of this section to MIMO systems is immediate and follows the same line of

argument proceeding Theorem 7.

2.4.2 Slowly Switching Systems

Motivated by [26], one can consider the [, induced norm computation of a LSS in the case of slow switching. To this

A(T BO'
end, let G, = be a given LSS. We define the set S [r], for 7 € Z4, to be a set of switching sequences

Co | D,

for which any two consecutive switches is at least 7 steps apart. Clearly, sup,¢gj,) [|Go|| is a non-increasing function
of 7. Hence, the limit

|de:gg£gﬂau

exists and we refer to it as the slowly switching gain of the system.

AO' o
Proposition 37 Given G, = that switches between N modes, its slowly switching gain |G|, s
CO' DU'
given by
sup max (2.64)
kv
O]AfBZ c C]AZBIL C]BZ Dj
CjA;AY'B; ... CjA;B; C;B; D

Proof. For the sake of simplicity, we assume there are only two modes of switching and each mode is FIR of order
M. That is, AY = A5 = 0 for K > M. Also, as we are interested to characterize SUp,esir [|Goll as 7 approaches
infinity, assume 7 > 2M. Without loss of generality, suppose ¢ (0) = 1. Furthermore, suppose that the first switch

occurs at the time instant 7' € Z,. If this switching sequence belongs to S [7] for some 7 > 2M, there exists and
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integers k; > 2M such that o (T) = ¢ (T +1) = ... = o (T + k) = 2. Now, consider the " row of the lower

triangular infinite dimensional representation of G,. If 1 <t < T,

RI[G,], =
{ClAtﬂB1 ... C1A1By C1By Dy |,
ifT<t<T+M,
R[Ga]t—[ch’gAlTBl CoAbAT-1B, . (2.65)
CyA5B, CyAS™'B, ... CyBy Dy |,
and if T+ M <t <T+ki,
R[G(r]t = 0 ... 0 CQAgBl
CyAEB, CoAE™'By, ... CyBy Dy |,

where k = ¢t — T. Clearly, the effects of the first mode are not present on the rows T 4+ M to T + k1 (or negligible if
the modes are not FIR). Using the same rationale, it is easy to argue that finding the slowly switching gain of the
system amounts to finding the worst-case norm of the LSS with over the space of switching sequences with maximum
one switch. By the inspection of the matrix representation of the LSS with one switch, it is easy to see that the row
with maximum /; norm is one of the rows in the matrix (2.64) and hence the proof is complete. m

To show the tractability of this result, suppose that each mode of the LSS is FIR. More precisely, suppose there
exists an integer M such that AM = 0 for i € Zy. Then, it is easy to see that to find the slowly switching gain of
G, one needs to evaluate (2.64) for k = 2M and each pair of (i,5) € Zps x Zps. That is, the size of (2.64) grows

linearly in the size of FIR and hence it is computationally tractable.

2.4.3 Sensitivity Minimization

Consider a sensitivity minimization problem as depicted in Figure 2.10. Suppose P; and P, are two stable systems
and the output of the plant at each time instant is either the output of P; or Ps. In this case, the plant can be seen
Py

as an output switching plant P, = S, . The interest is to design a controller, K, to minimize the map, ®,,
Py

from output disturbances, d, to plant output, y, for the worst switching sequence. That is,

inf sup [P0 (Ko)ll-
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d
U Pl—O'
P2'_ y
K,

Figure 2.10: Sensitivity Minimization

Notice that the dependency of the controller on the switching signal is assumed in this problem. Since P, is stable,
the set of all stabilizing controllers for this plant is parametrized by Youla-Kucera parameter as K, = Q (I + PUQ)fl,
where () is any [, bounded operator. It is well known that restricting @ to specific subsets of bounded operators,
e.g. linear, nonlinear, time-invariant, or time-varying operators, spans different subsets of stabilizing controllers. For
example, allowing @ to be linear switched system spans the set of stabilizing switched linear controllers. A class of
tractable problems is obtained by restricting @) to be a linear input switching system. That is Q, = [ Q1 Qs } Sz,
where 1 and @7 are stable LTT systems. We remark here that these resulting controllers are a subset of all possible
stabilizing controllers due to the fact that we prescribe the structure of @) as an input switching system. At this point,
it is not clear how much is missed by imposing this structure on @, but we certainly search over a large class of Ks
which lead to exact convex optimization problems. Indeed, the resulting sensitivity map ®, : d—y = (I — P, K,)"!
becomes

®, =1+ P,Q,. (2.66)

A more general class of maps of this type, that includes (2.66) as special case and result in a convex optimization,
is given by ¢, = H, + P,Q,, where H, = S, HS! € S;0, P, = S,P € S0, Q, = QS% € Sr and H, P, and @ are

LTI. Upon substitution of H,, P,, and @, we obtain
infsup B, | = infsup |, (H + PQ) 5. (2.67)

which involves the minimization of the worst-case norm of an input-output switching system. Based on the develop-

ment in the previous section (Theorem 7), minimizing ||®,|| over Q for the worst-case switching sequence is a convex

problem.
H,y Py
Example 38 Suppose H, = S, , P, =5, be output switching systems where
Hy Py
Hi(\) = —0440.3)—0.2)2,
Hy(\) = —0.140.2)4+0.1)2,
Pi(\) = 01+02\P(\)=—-1+3\
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Notice that although H, is only output-switching but it can be written in a form consistent with (2.67) as H, =

H, H;
Sy S%. We want to design an input switching Q, = [ Q1 Q- ] Sk to minimize the worst-case ls
Hy Hs

induced norm of H, — P,Q,. This problem can be written as

glfsup HHG - PJQU” = (268)
. Hy—PQ1 Hi—PQz | |
inf sup||S, o

(@1.Q2) & Hy — PQv Hy— P2(Q»

As discussed before, this problem can be cast as a linear program which along the methods of [54], one can obtain the
optimal value of 0.7386 for
Q1 (\) =0.1684 — 0.0333X, Q2 (\) = —0.1 — 0.0333\.

In the next subsection, we will deal with the case of other model matching problems where ), can be any linear
switched system (not necessarily input switching) and we show under some conditions, if the plant is strictly causal,

we can still reduce the problem to a tractable one.

2.4.4 Model Matching Problems

Recently in [55] a typical model matching problem was considered involving the output switching systems and the

underlying norm being [.-induced or Hy. The authors studied a problem of the form

inf sup ||H(7H *UUUQUQH )

°Q (om,0u,0Q

where H,,;, Uy, , and Q,, are output switching systems associated respectively with (possibly different) switching
sequences oy, oy, and og. It was shown that in the case of independent switching or partially matched switching,
i.e. og = oy # 0@, an output switching ¢ cannot out-perform an LTI Q.

In this section, we consider a similar problem and extend the results of [55] to show that a switched linear
compensation of any type (not only output switching) cannot lead to a better performance over an LTI compensation
if the compensator can switch independently of the plant or the plant is strictly causal.

To make the statements precise we have the following two theorems hold.

Theorem 39 Let Hy,, ,Uy,, and Q,, belong to S. If o switches independently of oy and og, then

to = inf  sup ||HD'H - UUUQUQH

QES (o4,00,00)

= inf sup |He, —Us,Z|. (2.69)

ZELTI (0,0v)
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Theorem 40 Let o be a switching sequence, H, € So, and U, € Sp be output switching, and Q, € S be any

switching system. Further, assume U, ts strictly causal. Then
vy 1= Qiflefs Sl;p |Hy — UsQol| = Zie%fﬂ Sl;p |Hy — UsZ]| . (2.70)
Proof. Let € > 0 be arbitrary. Then, there exists @), € S such that
vy < sgp |Hy — UpQoll < vo+e. (2.71)
First, we show that for Vk € Z .,
vy = Sl;p HHJ - UUA*kQJAkH < Sl;p |Hy — UsQoll - (2.72)

To show this, since the associated norm is the I, induced norm, for any ¢’ > 0, there exist a switching sequence o’
and ¢’ > 0 such that
v, —e' < ||R [HU/ — Ua/AinglAk] o

< V.

Defined a sequence 7 (.) as
o (t+k) fort#t
I A
o' () fort =1t/

Then, one can write

R [Hy — Up A*Qo A*],

MAFQuA*], 0
= RI[Hy], —R[Us], [ Lo
R[A*QqAM],

Aik O'/Ak ’
= RI[Hs], — R[Us], M[ATQr AT, 0
R [AFQ, A¥]

t

where 0 is a zero matrix with the same number of columns as M [A‘kQU:Ak] - Notice that, M [A‘kQU:Ak] b=

M[Qs]y_y, but R [A*QuA*],, # RI[Qs], if o' (t' + k) # o’ (t'). Also, notice that since Us is strictly causal the

outcome of
M [A* kQqr A* ] 0

t'—1

R [Ua']t’ R [AkaUIAk]

+

does not depend on R [A’on/Ak} ., and hence one can write

R [Hy U A~ QoA

=R [Hs — UsQ5], |-
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Moreover

IR [Ho = UsQsyll < [Ho = Us Qs || < sup [Hy — Us Qo -

Therefore,

v —€e <sup||Hy — UsQs|l
(o

M
for any ¢ > 0 and this proves (2.72). Now, define the averaging system Qf, := ﬁ ZA*’“QUA]c . Using
k=0
(2.72) and the triangle inequality, it is easy to see sup, ||H, — U,Q%;|| < sup, ||Hs — UsQs||. Then, following the
same line of argument as in [55, Theorem 3.1], [56], or [7], there exists a weak* convergent subsequence such that

QT = limg 00 weak™ QF, , where Q7 r; € Lr1 € S. Moreover,
sup [|Hy — Us Q7| < sup||Ho — Us Qo - (2.73)
From (2.71) and (2.73) in one hand, and the fact that @75, € S on the other hand, one can write

Vg < sup ”Ha - UUQZTI” <y +e,

(om,00)

for every € and this completes the proof. m
In the light of these theorems, one can consider the problem in (2.68) of the previous section when H, and P,
are output switching systems but @, is a general linear switched system in §. The following corollary is a straight

forward consequence of Theorem 40 and Proposition 5.

Corollary 41 Consider the map ® := H,,, + P, Qo , where Hy,,, Py, € So is output switching and Q,, € S. If

the switching sequences oy, op, and og are independent then

inf . Pl = inf ||H; +P;Z|. 2.74
o Rl = max i+ P2 =

(0m,0pP,0Q)

Moreover, if og = op = 0g and P, is strictly causal, then

inf Q|| = inf ||H; +PZ|. 2.75
il sup |0 = max inf |H; +RZ| (2.75)

(om,0pP,0Q)

We note here that (2.74) and (2.75) are standard [; problems and can be solved by standard methods in [54],

57], and [58].

Example 42 Consider (2.70) with output switching H, and U, given as follows:

Hi(A\) = =044 03X — 02X\, Hy (\) = —0.1 4 0.2X + 0.1A2,
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0.1 2 0.3

U, = 0.2 -1 1 ,
{—1 0.5J 0
0.7 02 2

Uy = —-1.8 —0.3 -1
[ 0a] | o

In this case, Q, is any general LSS. Then, using the methods of [54], the problem has the optimal value of 0.6832

and an optimal Q is LTI given by

Q (\) = —0.0840 — 0.0756\ — 0.0252A2.

2.5 Summary

We presented results to characterize the worst (maximum) I, gain of linear switched systems. It was shown that
for certain classes of these LSS, namely for input-output switching systems, the exact computation of this gain
is tractable and can be obtained via linear programming. Furthermore, the results on the input-output switching
systems allow one to find tighter bounds for the gain of general switching systems. To this end, we introduced the
richer class of the generalized input-output switching systems and showed that any stable LSS can be approximated
by one in this class. Based on this class, we provided a new necessary and sufficient condition for the stability of
LSS.

Moreover, it was shown that for general LSS, the computation of the gain is tractable when slowly switching is
imposed. Certain control design optimization problems were studied for input-output LSS in the context of model
matching and shown to be convex in the Youla-Kucera parameter. Further, in the same context and generalizing
earlier works of the authors to general LSS, it was shown that switching compensators cannot out-perform LTI
compensators in the case of unmatched switching sequences, or even in the case of matched switching when the plant
is strictly causal.

Also in this chapter, we studied the problem of characterizing the minimum [, gain of LSS over switching
sequences. It was shown that for FIR systems, a minimizing sequence is periodic. The computation of its period
however remains an open issue. For input only or output-only switching, it is shown that a constant switching
sequence (i.e., no switching) is the minimizing one, which also readily determines the minimal /., gain. For input-
output switching on the other hand, periodic switching is in general necessary to minimize the [, gain. All of these

results hold true also when restrictions on the switching sequence (relating for example to percentage usage of each
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sensor or/and actuator) are imposed.

51



Chapter 3

Markov Linear Switched Systems

3.1 Introduction and Background

In the previous chapter, we studied the LSS with deterministic switching sequence; that is no statistics on the
switching sequence are available. In this chapter, we consider LSS where switching is a random process. To this end,

consider a LSS G, given by

z(t+1) =Agwyx (t) + By yw (t) + Byyu(t)
Go:q y(t) =0l (t) + Dyfw(t) , (3.1)

z(t) = Oz (t) + Dyiyw (t) + Dyyu (t)

where o = {0 (t)},—, is the switching sequence taking finitely many values, w and u are the exogenous and control
input, z and y are the regulated and measured output; matrices A, (1), By ), C’fj(t), CZ 4y D5iyy and D::(yt) are of
appropriate dimension for t € Z,, where e € {w,u}. We study the [, performance and control synthesis of LSS in
the form (3.1) when the switching sequence is a Markov process with a known transition matrix. We refer to such
systems as Markovian Linear Switched Systems (MLSS). To study the l..-like performance of MLSS, we introduce
a metric that mimics the [, induced norm of a system in the deterministic framework. We call this metric the
stochastic 1o, gain of the system. This gain captures the maximal expected deviation of the output over inputs that
could depend on the switching. As such, it can be used in situations where absolute value constraints are of interest
e.g., position error in formation flight. We will present an exact expression to find the stochastic 5, gain. We will
show that computing the stochastic [, gain involves adding exponentially many terms and hence it is not easy to

compute in general. As a trade-off, we will also consider the so-called mean performance of the MLSS and further

synthesize an optimal control for minimizing the mean performance.

To formalize the notion of the stochastic [, gain, we define the space of bounded random processes as

Roo=4yr= c| (k) :SIIiP]E[HJJ(k)IIOOKOO ,
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where ||z (k)| = max;eq1,2,....n} {|2i (k)|} and E[] stands for the expected value. The ball of bounded random

processes can be defined as

BR, = {x = (e (W} € R Bl (9] < 1}.

For a LSS

z(t+1)=A;nz(t)+ BY, w(t
o L O = A0+ B @) )
z(t) = CF yyz (t) + Dy w (1)

where ¢ is a random process with known distribution, we define the stochastic [, gain, from the exogenous input w
to the regulated output z, as

sup, Eq.w |||z k -
|Gol| == sup Pk Eow [[12 (K)o

WER sup Eg,u [[lw (B)[[ 0]
supy Bouw [[[w (k)| .| £0

(3.3)

We make sense of the above expression as follows: First, given a distribution for the random process w, z becomes
a random process whose distribution depends on that of o and w. Hence, the expectation is taken with respect to
the distribution of o and w in the numerator, i.e. Eq ., [||2 (k)| ]- Also, since w may depend on ¢ in general, the

expectation in the denominator should be taken with respect to both o and w, i.e. Eq,, [||w (k)||]. Therefore, for a

supy, Eo.u [[12(0)] 0]
supy, Eo [ [w(k)]l 0]

the sup over all random processes w (possibly dependent on o) with the property that 0 < E, ., [||w (k)| ] < oc.

given random process w the ratio is well-defined as long as supy, E, ., [|w (k)|] # 0. Finally, we take

We will use E[.] instead of E, ,, [.] when no confusion arises. Throughout this chapter, we make certain assumptions
on the switching sequence and its dependency on the input as follow:
Assumption 43 Given a nonnegative integer k, o (k + 1) is conditionally independent of {w (t)}fzo given {o (t)}fzo.

Assumption 44 The switching sequence, o, is a Markov process with the probability transition matric P = [p;;].

Furthermore, o takes values in the set {1,2}.

Assumption 45 The MLSS (3.1) is SISO. That is, the exogenous input and the regulated output are one dimen-

stonal.
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We emphasize that the Assumptions 44 and 45 are made, merely, for the simplicity of the presentation. The
extension to the case when o takes finitely many values or when the MLSS is MIMO is immediate. Furthermore,

based on Assumptions 43 and 44, we have

Pr (o (k+1) = ilo (k) = 4, {0 (O} {w (D}_o) = pi-

As o is a Markov process, we refer to the above LSS as Markovian Linear Switched System (MLSS). We use 1 to

denote the standard indicator function. In particular, for k € Z, 15(;)=; is given by

lifo(k)=1
1o)==
0 otherwise

3.2 Stochastic [, Gain Calculation for MLSS

In this section, we compute the stochastic [, gain of MLSS as defined in (3.3). To this end, consider the plant (3.2)

with Assumptions 43, 44, and 45. The following theorem holds:

Theorem 46 Consider the LSS in (3.2). Then, the stochastic loo gain is given by

|Go || = max {|D}*|, [Dy?]} + > max{S (k),Ss (k)}, (3.4)
k=0
where
k
Si (k) = Z Pigyrin--Piri |Chr H Ai, B, (3.5)
’il,‘..,ik+1 s=1
for {i, i1, io, . ingr} € {1,272
Proof. Notice that from (3.2), for k = 1,2,..., we have
k—2 k—1
2(k)=> Ciuy [ Aeto)BEwyw (t) + CiyBoguryw (k — 1) + D¥iw (k) . (3.6)
t=0 s=t+1
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Furthermore,

swp Efz(b+1= sup E[lz(k+1)]
WEBR o EfJw(t)|]<1
t=0,1,....k+1
k— k
= sup Z o (k+1) H As(s)Bymyw (t) + CF k1) Boyw (k) + Dy pyw (k + 1)
Eflw(®)[1<1 —0 s=t+1
t=0,1,...,k+1
k
< sup E [|CZ..q Ags)Bioyw (0)
Eflw(0)[]<1 e )51_[1 )
+ sup Z Cotht) H Ao Byinyw (t) + C5 441y Bo(yw (k) + DG yw (k + 1) (3.7)
IE[Iw(i‘)|<1 t=0 s=t+1
t=1,1,...,k+1
It is easy to see that
sup Ef[z(k)[]=  sup (1) H Ao(s)Byiyw (t) + CF 1) Boyw (k) + Dgjqyw (k + 1)
wWEBR oo [Iw(lf)|]<1 s=t+1
t=11,...,
Hence, from (3.7), we have
sup Eflz(k+1)[]=5(k)+ sup E[z(k)], (3.8)
WEBR oo WEBR oo
where
k
S(k)y= sup E|[|CZ..q Ay Byioyw (0)]] -
Eflw(0)[]<1 e )szl_‘[l Ve

In the last expression, S (k) can be calculated as follows. Let i; € {1,2}, for t =0,1,...,k + 1. Then,

k
CZkr1) H Ao(s) Bgyw (0)| 1

s=1

S (k)

Z sup

o (0)=io "'1U(k+1)_ik+1]
10,01,k 1 E[lw(0)[]<1

U(O)_i0‘|

1k+1 H A Bitw (

Z Pipiqig---Pirig  SUP
Eflw(0)]]<

10,815y Th41

max {57 (k),S2 (k)},

where for ¢ € {1,2}

5 H A; BY|.

E pik+1ik"'pi1i0

115tk

Note that sup,,cpr_ E[|z(0)|]] = max {|Df|,|D3|}. Also, it is obvious from (3.8) that sup,,czr_ E[|z (k+1)]] is an
increasing sequence and hence its sup happens when k approaches infinity. Taking the limit of (3.8) gives (3.4) and
thus the proof is complete. =

We would like to point out here that computing S; (k) in (3.5) involves adding up 2**! terms which grows
exponentially with k. Therefore, the computation of the stochastic l, gain for MLSS is in general harder than that

of LTI systems. This computation, however, becomes easier for the case of input-output switching systems as is
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discussed next.

3.2.1 Input-Output Markov Linear Switched Systems

As mentioned in the earlier chapter of this dissertation, by input-output switching systems we mean those switching

systems whose A-matrix remains constant. The next corollary is the direct consequence of Theorem 46.

Corollary 47 For the input-output MLSS

o (t+1) = Az (t) + Bypyw (1)

z(t) = C’O.(t)m (t) + Dg(t)w (t)

the stochastic lo, gain is given by

1Ho || = max {|D1], [Do]} + Y max {S1 (k) Sz (k)},

k=0

where for {i,j} € {1,2},
Si(k) = D _ej P Hlei|CiAM B
j
and
P11 P12 1 0

]P: , €1 = , 62 =
P21 D22 0 1

Proof. According to Theorem 46, when A; = A; = A, we have

k
Cik+1 H ABiow (O)

S(k) = Z sup E [
i0sings Ellw(0)]]<1 =1
k
= > el P, sup E||Ci,, [ ABiw(0)
10, k41 E[lw(0)]]<1 s=1

= max{S; (k),S (k)}.

This together with Theorem 46 completes the proof. m

1”(0)—i01”(k+1)—ik+1]

10(0)_1'01

(3.10)

(3.11)

We note here that the computations in (3.10) are tractable, in fact LP, and can be done with arbitrary accuracy.

In the context of stochastic I, gain, one could think of finding the minimal gain. That is, finding the probability

distribution of the switching sequence such that the norm is minimized. This problem is considered and solved in

the following theorem.

Theorem 48 Consider the input-output MLSS in (3.9). Suppose, Pr (o (t + 1) = jlo (1)

mal gain is given by the following LP.

h;f 1o = 7 vr(?lylll s
P1,pP2

56

=1i) =pj.

Then the mini-



subject to

Yo+mn+.o..+m+... <9,

IDil < o,

D1 |ClAkBi| + D2 |CQAkBi| < Yk
p+p = 1

fori=1,2, and k=1,2,3,....

We emphasize here that the computations in the above theorem are LP and tractable with arbitrary accuracy.

3.3 Mean Performance

We studied the stochastic I, gain of MLSS in the previous section. We argued that its computation is challenging
as it involves adding exponentially many terms. In this section, we consider a different performance metric that can

be computed easily. For the MLSS in (3.2), we define its mean performance as

1Gollpp = sup sup [Eo . [z (K)]] - (3.12)

w
supy [Eo w [w(k)]|=1

The rest of this section is devoted to characterizing the right hand side of (3.12). To this end, we will construct
an LTI system that has E[z (k)] as its output. This system is induced from (3.1) and is given in the following

proposition:

Proposition 49 Consider the MLSS in (3.1). Then,

T loesn=al " |w+a| " |w+a| " |,

12 72 W2 V2

01 _ m _ w1

(k) =C"Y (k) + D" (k),

02 72 w2

Th Wz w1 Uz U1
E = (k)] = [ o o3 } (k) + D (K)+D (k). (3.13)

2 w2 V2
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where

p11A1  p12As

A= ;
p21A1  paoAs
B [ pu By p12B3
=| B By |= ) aE
- p21B7  p2aB3
) croo | D™ 0
cv = DY — ,
0 ¥ 0 DY

CZ{CIZ C3 ],D'Z{D;Z Dy},
i (k) = E [2 (k) Logy=i] ,wi (k) = E [w (k) Lo (k)] ,
0; (k) =E [y (k) Logy=i] ,vi (k) = E [u (k) Lo)=) »
and o € {w,u}.
Proof. The proof follows similarly to that of Proposition 3.1 in [30] and hence is omitted here. m

Definition 50 We refer to the LTI representation (3.13) as the mean representation of G, and denote it by E [G,].

We emphasize here that the proof of the above proposition depends on the validity of Assumption 43. It turns
out that the mean performance of the system is completely characterized by its mean representation. Let G; be the

LTI mapping from w; to E [z (k)] with the impulse response {g; (k)},—,, for i = 1,2. That is,

Then, the mean performance of G, is given in terms of G; as stated in the next theorem.

Theorem 51 Given a MLSS (3.1) with u = 0, its mean gain, from w to z, is given by

1Gollprp =Y max{lgi (t)],1g2 (1)} -
t=0

Proof. By definition, we have that

1Gollprp = sup sup IE [z ()]| - (3.14)
k|22 Blw(k) 1 )=i]|=1
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Based on Proposition 49, E [z (k)], for given k € Z, reads

k k

Bl (k) = Y a1 (k= O [w(t) Logmr] + D52 (= O [w(8) Log=s)] (3.15)

t=0 t=0

E |w* (t) 15()=1 sgn (g1 (k — 1)) .
b Ol | it gy (6= 0] > lga (6~ 1), (3.10)
E [w* (1) Lo()=2] 0
E|w* (t) 10 t)=1 0 .
[ Olow=] ) _ i Jgn (k— 0)] < g2 (b= )] (3.17)
E [w* () 1o(1)=2] sgn (g2 (k — 1))
and hence
sug]E [(Gow) Zmax{|g1 =8)],192 (k —t)[}.
we
Taking sup,, from both sides results in
Il =sup sup E( ZmaX{Im ) 132 ()]} -

In what follows, we address the control synthesis with respect to the mean performance and show how this problem

is analogous to control synthesis for an LTI system with added constraints on the D-matrix of the controller.

3.3.1 Control Synthesis

Here, we are interested in designing a controller to stabilize and minimize the mean performance of the system
from the exogenous input to regulated output. The stability in this section is taken with respect to the mean
performance. That is, a stable system is the one with bounded mean output for bounded mean input. We consider

a mode-dependent linear switched controller K, in the form

K zo(t+1) = Ag(t) o(t)+ Ba(t) y(t)

u(t) = C5yze () + DSy (t)

(3.18)

The interconnection of (3.1) and (3.18) is denoted by T (G, K,). This is the closed loop system mapping w to z.

The control synthesis problem amounts to

T (Go Koy (3.19)

K, stabilizing
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Similarly to the mean representation of the plant, one can write a mean representation for K, and T (G,, K,,) as
) 01 U1 w1 .
LTT systems mapping to and to E [z (k)], respectively. These LTI systems are denoted
92 (%) W2

by E[K,| and E [T (G,, K,)]. It is straight forward to verify that
E[T(Go, Kq)| = T (E[G,], E[Ko]), (3.20)

where T (E [G,],E [K,]) is the interconnection of the two LTI mean representations E [G,] and E [K,]. Notice that

E [T (Gy, K,)] can be partitioned as
BIT (6o ) = T €6 BID = [ 1 |

where T; is an LTI system mapping w; to E [z (k)], for ¢ = 1,2. It is clear from (3.20) that, given K,, T; depends

oo
on E[K,]. Let {fIzE (K] (k)} . be the impulse response of T;, where the dependence on E[K,] is made explicit.

Furthermore, according to Theorem 51, the mean gain of the closed loop is given by

I (G ol = 3 e {758 ) [155) o} (3:21)
k=0

Therefore, the closed-loop is stable, it maps bounded mean inputs to bounded mean outputs, if 7 and 75 are stable
systems, i.e. their impulse responses are absolute summable. From (3.20), it is clear that T} and T» are stable if and

only if E [K,] stabilizes E [G,]. Therefore, (3.19) reduces to

| (/f)‘} . (3.22)

)
. . i
inf 1T (Go, Ko)llasp = inf E max{‘tl (k)
K, stabilizing ’ MP K stabilizing E[G,] =

K LTI mean representation =~

It is worth noting that the inf in (3.22) is taken over Ks that stabilize E [G,,] and they are mean representation of
some MLSS. Invoking the Youla-Kucera parameterization, K stabilizes E [G,] if and only if

K=Y -MQ)(X-NQ) ", (3.23)

for some stable ), where
X Y M Y
-N M N X

is the doubly coprime factorization of the LTI mean representation E [G,,]. This parameterization is known to make

the controller synthesis, and in particular (3.22), convex in the Youla parameter. More precisely, using (3.23),

T (E[G,],K)=H+UQV,
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where H := { H, H, }, U,and V := [ i Vs } are stable systems depending on E [G,]. Obviously, the impulse
responses T} and Th are convex in Q. We further need to make sure that K is a mean representation of some MLSS.

To this end, note that the mean representation of K,, E [K,], is given by

& - &1 _ 0
(k+1)=A (k) + Be (k),
52 52 92
(3.24)
U1 _ &1 _ 01
(k) = Cc (k) + D¢ (),
U2 &2 02
where
- p11AY poAY
AC = )
AT paAY
Be - p11BY  p12BY 7
po1 B p2BY
_ ce 0 _ DY 0
Co = ,Dc = ;
0 c§ 0 DY

& (k) = E [zc (k) Logy=i] -

From this, it is obvious that the D-matrix of the mean representation E[K,], D¢, is diagonal. This proves to be also
sufficient for an LTI system to be a mean representation when the switching sequence is Independently Identically

Distributed (IID) as stated in the following theorem:

Theorem 52 Consider a MLSS (3.18) with o IID. That is Pr (o (k + 1) =ilo (k) = j) = py, for all k € Zy. Then
the D-matriz of its mean representation (3.24), mapping two inputs to two outputs, is diagonal. Conversely, any

LTI system mapping two inputs to two outputs with diagonal D-matriz is a mean representation of some MLSS in

the form of (3.18).

Proof. Here we prove the converse part. We will show that if o is IID any LTI system with diagonal D-matrix
mapping two inputs to two outputs can be written as the mean representation of some MLSS. First, notice that if

-1
p; I O
o is IID then p1; = p12 = p1 and p; = P22 = p2. Now, let X = ! . Then, apply the the coordinate
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&1

1
transformation =X on (3.24). The state-space matrices of the transformed system is given by
G &2
- AG + po AT ptAS
XACX_l _ P1Aq pP2Ag Py 2 ’
0 0
_ B¢ BY
XBe - 1 2 7
0 0
_ p CE 0
CcX_l = t ,
p2C§ priCf
_ DY 0
De =
0 DY

From this, it is easy to see that (; = 0 and hence one can reduce the order of the system and find an equivalent

state-space representation as
mAY +p2AS | BE BY
ElK.] =1 pcf D¢ o |- (3.25)

p2C§ 0 DY

Now, given any LTI system, K, mapping two inputs to two outputs with diagonal D-matrix as

K
A Bf* Bf
K = ClK D{{ 0 )
ck 0 DX
one can choose the state-space matrices of K, as
AY = AKX BY = BK,
1
¢ = =cf,Df =DF.

K3

Then, the mean representation of K,, given in (3.25) matches K. m

In the light of above theorem, if o is IID, the inf in (3.22) should be taken over the stabilizing K with diagonal
D-matrix. Notice that this condition is, in general, hard to enforce. But, since the D-matrix of E [G,] is diagonal as
well, this condition, as shown in [59] when considering a different problem, is satisfied if and only if the D-matrix of

the Youla parameter in (3.23) is diagonal.
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Theorem 53 For the MLSS (3.1) with IID o

oo
inf T (G Ko)llyp = _ inf max{‘f? (k)
K, stabilizing Q stable
q(0) diagonal k=0

: ’éz (k)]} , (3.26)

where {q (k)}r—q is the impulse response of Q and {fZQ (k)}oo is the impulse response of T; = H; + UQV;, for

i=1,2.

We point out that (3.26) can be computed with arbitrary accuracy. Indeed, it can be cast as a linear program
and hence is tractable. Similar type of constrained problems have been dealt with in the past in the context of
optimal disturbance rejection for periodic and multirate systems in [14] and [60]. If o is a Markov process but not
IID, then g (0) being diagonal is only a necessary condition and not sufficient in general. Hence, (3.26) results in a
lower bound of the achievable performance. The sufficient conditions needed to be enforced on K such that its is a

mean representation of some MLSS is the subject of our future research.

3.4 Summary

In this chapter, we introduced the notion of the stochastic I, gain for LSS. This gain captures the peak to peak
performance of the system when the switching sequence is a random process with a given distribution. We provided an
exact expression for computing this gain. We further studied the mean performance of MLSS. The mean performance
is characterized in terms of the LTI mean representation of the plant. Furthermore, we considered the problem of
mean performance optimal control synthesis. In the case when the switching sequence is 11D, this problem is reduced
to a convex optimization. This optimization can be solved with arbitrary accuracy using linear programming and

hence is tractable.
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Part 11

Systems with Cone Constraints
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Chapter 4

Systems with Positive Inputs

4.1 Introduction

The study of systems with positivity constraints is well justified as they appear in many fields when modelling

nonnegative entities such as mass, density, volume, etc. as illustrated in the following example:

Example 54 The tumor-immune interaction can be modeled as

. x

r = —ucxln(>—'yxy—mcu,
To

g = pr(r—pr%)y—dy+a,

where y stands for the immunocompetent cells, x is tumor volume, u is the chemotherapy agent, and pc, Too, 7,
K, 1, 8, and « are constant parameters [34]. The phase portrait of this system is shown in Figure 4.1 for u = 0.
This system has three equilibria away from the origin marked by asterisks in the figure. The state variables x and y

remain nonnegative for nonnegative initial condition and inputs.

»
o
]

~
T

o

s
.
.
o
i
o
.
-
-
z=

immunocompetent cell density, y

=%
e
=
P

= i r , n | N
0 100 200 300 400 500 600 700
tumor volume,x

Figure 4.1: Phase portrait of tumor immune interaction

In this part, we are interested in characterizing and optimizing the [, gain of linear systems that contain positivity
type of constraints. Two cases are considered: when the input to the system is positive and when the system itself is

positive. The former is studied in this chapter while the latter is considered in the next chapter. As an example for
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the first case, consider the positive nonlinear system in Example 54. If one linearizes this tumor-immune interaction
model around one of its equilibria, the linearized model is no longer a positive system as it is not linearized about
the origin. However, its input, the chemotherapy agent, remains positive and hence fit into this class of systems.

In this chapter, we assume that the input is restricted to be in the positive cone of I, denoted by IZ, and seek
to characterize the induced norm from I} to lo. That is, for a given (not necessarily positive) linear system G,

we are interested to find sup, ||(Gu) (t)]|.,, where 0 < u (k) < 1 (the inequalities are taken component wise) for all

00
nonnegative integers k. We obtain an exact characterization of this norm (the induced norm from [% to l) in terms
of the standard [, induced norms of appropriately defined subsystems which is particularly easy to calculate in the
case of LTI systems. We emphasize that no positivity assumption is made on the system itself. We further consider
the more general asymmetric input signals and characterize the input output gain of such systems. More precisely,

for two real numbers a and b, we compute sup, |[(Gu) (t)] ., where a < u (k) < b for all nonnegative integers k.

00
As an application of the above developments, we consider a filtering problem in which the signal to be estimated,
s, is known to live in a positive cone, i.e. s € [ . In general, just designing a filter to minimize the standard I,
induced norm of the operator from signal to the estimation error will be conservative. Instead, we can use the apriori
knowledge of positiveness of the signal by considering the same problem with I} to o, induced norm.

Based on this development, we consider the model matching problem to show that time-varying linear or nonlinear
control or filtering does not improve the performance with respect to this norm for LTI systems. Also, synthesizing
an LTI controller to optimize the [ to [ induced norm reduces to linear programming. We further generalize the
results to the case of mixed input signals when there are inputs both in {1 and l. As an example, we consider

the aforementioned filtering problem and solve it when the signal is positive and bounded and there also exists noise

which is only bounded but not necessarily positive.

4.2 Background and Notation

For any M = [my;] € R™™, ||M||; = max; Y°5° ) [mijl, [[M]],, = max; >3;_, [ms], and its null space is denoted by

Null (M). Also, associated to M, we define two matrices M T = [m:;] eR™™ ™ and M~ = [m;j] € R™™ ag
mj; =0 \/mij,mi_j =0V —Myj,

where V stands for the max operator. That is, for two real numbers a and b, a V b := max {a,b}. We refer to M+
and M~ as the positive decomposition M and it can be easily verified that M = M+ — M~. Given a sequence
y = {y(k)};—, where y(k) € R™, for k € Z,, one can define its positive decomposition into two non-negative

sequences y* and y~ in an analogous way. In this chapter, we are interested in the positive cone of ", which is
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denoted by I"F. This set is defined by
I ={{y(k)} e, €12y (k) >0,k € Zy,i=1,...,n},

where y; (k) is the i** entry of vector y (k) € R™. In other words, I} is the set of bounded non-negative sequences.
By B (I, ¢) (B(I",¢)), for € > 0, we mean the ball of radius € in I"ZF (I7).
Let L73™ be the space of all linear, causal, and bounded operators, T : 2 — I%. That is, for any z,y € 12,

T(x+y)=Tx+ Ty, P,TPyu = TPyu, for Vk € Z,, and

T
1T = sup Loy o (4.1)
w0 [l

where Py is the truncation operator defined by
Pyx = (xo, 21, .., Tk—-1,0,0,...) .
Also, denote by L7™ the subspace of all T' € L3 such that AT = T'A,where A is the delay operator
Ax = A (g, 21,...) = (0,20, 21, ...), for Vo €.

It is well-known that any 7' € L.3™ can be represented by a lower triangular infinite dimensional matrix

T(0,00 0 0

) T(L,0) T(L1) 0 - )
U r@2,0) T@1) T2 ’ '

where T'(i,j) € R™*™ for all i,j € Z, i > j. Moreover, (4.1) defines a norm on L.3™ and

{T(i,@) T(i,1) - T(i,i)} (4.3)

IT]| = sup
i€Ly 1

Also, one can think of the positive decomposition of T into T% = [T (i, j)],5,; € L7y and T~ = [T~ (i,5)];5; €
P

In [7], the authors introduced the normed space £5"*" whose elements, G € L£§'*", can be represented by upper
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Figure 4.2: Filtering problem

triangular infinite dimensional matrices

G(0,0) G(0,1) G(0,2)
0 G111 G(L,2)
0 0 G(22)

where G (,7) € R™*" for all i, j€ Zy and j > i. Moreover, £7"*" is equipped with a norm, -1l s

IGllz, =D IICIGTill »

where C [G];

(3

Trace (TG). Furthermore, ||T[| = supg), <1 (T, G).
s

is the " column of G. It was shown that £{*" is the pre-dual of L3 with pairing (T,G) =

4.3 The Plus Norm Computation

In this chapter, we are interested in linear systems whose input is positive. More precisely, for T' € L3, define the

functional (norm) |||, : £75™ — R as

[ Tu]
1T, = sup . (4.4)
* u5£0+ ”uHoo
u€el

Intuitively speaking, this functional (induced norm), similarly to /; norm for LTT systems, gives the peak to peak
ratio of the output to input when the input is restricted to a positive cone. Note that {T is not a linear space,
however (4.4) is indeed a norm and thus is referred to as the plus norm henceforth. It is obvious that the plus norm
is dominated by the [, induced norm. As an example, consider the filtering problem depicted in Figure 4.2 where
the input to a (stable) plant P is to be estimated. Suppose s belongs to the ball of [, and there is no noise for
now, i.e. n = 0. It is of interest to design the filter @ to minimize the worst case estimation error, s — §. Therefore,
one needs to minimize the worst-case input-output gain of the map I — QP which is the map from input s to the
estimation error s — §. Clearly, just designing a filter to minimize the standard [, induced norm of this operator is
in general conservative. Instead, we can use the apriori knowledge of positiveness of the input signal by considering
the same problem with [X to [, induced norm. In what follows, one of our goals is to characterize this newly defined

norm (4.4) and find tractable expressions to compute it.
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We develop expressions to calculate the plus norm in terms of the standard /., induced norm of the system. For
the simplicity of presentation, we mainly focus on Multi-Input Single-Output (MISO) systems. By doing so, we will

not lose any generality for our purposes since any 7' € L£7.7" can be written as

Ty

where T; € L1 fori € {1,2,...,n} and it is straight forward to show that ||T|| = max; || T}/, and 1T, = max; | T3],

In fact by definition,
1 Tiu]| o

[Tullo

T|, = sup = max sup = max ||T;], . 4.6
|| ||+ w0 ||u||oo i w0 HUHOO i€{l,.n} || ’L||+ ( )
uel™t uel?t

Therefore, we mainly state and prove our results for MISO system and note that the extension to MIMO case follows

from (4.6). The next lemma connects the plus norm to the standard I, norm of its positive decomposition.

Lemma 55 Consider a MISO LTV system T with n inputs, T € £%§/m. Then
1Tl = max {[[ 7 7]} (4.7)

Proof. By the definition of the plus norm we have | T'||, =sup kez, |y(k)|, where
ueB(1L,,1)

k k. m
) = DT (k) u ()| =Dt (ks ) ur (5]
7=0 7j=0r=0
where t,. (k,7) is the r*" entry of row vector T (k,j) = [t1 (k,J),t2 (k,7) ..., tm (k,7)]. Given k € Z,, to maximize
ly (k)|, u should be chosen in a way to make y (k) either as large (positive) as possible or as small (negative) as

possible. In other words, for k € Z,

max ly (k)] = max { ’mgxy (k) rnuiny (k) ’} . (4.8)

)

First, consider the case of maximizing y (k), max, y (k). To make y (k) as positive as possible, it is obvious that one
needs to set u,. (j) = 1if ¢, (k,j) > 0 and u, (j) = 0if ¢, (k,j) < 0. That is, max, y (k) = Z?:o S (e (k,j) Vo) =
Z?:o |T* (k,7)||. Next, to minimize y (k), one needs to set u,. (j) = 1 if ¢, (k,j) < 0 and u, (§) = 0 if ¢, (k,j) > 0.

This implies, min,, y (k) = — 325 Y (=t (k,§) V 0) = = Y5 [|T~ (k. 5)|. Hence, by (4.8) we have

k k
max [y ()| = max § > |7 (s, D 1| (k. 5)|
j=0 j=0
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Taking the sup with respect to k € Z, in turn implies

1Ty = sup |y (k)] = max {7, 77},
kEZy

UGB(Z;,I)

where we have used the fact that 7" and 7~ are MISO positive operators and supyez, Z?:o T+ (k, )| = T

k — (1 _
and supyez,, Zj:o 1T~ (kDI =1T"]. =
This lemma provides an exact expression for computation of ||7'[| . Another expression for ||T'||, which fits our

purposes in later sections is presented next.

Theorem 56 Let T € L% Then,

I, = sup 5 S G S k) ). (49)

j=07r=1 j=0r=1
where t, (k,j) is the " entry of row vector T (k,5) = [t1 (k, ) ,t2 (k,5) oy tm (K, 5)] -
Proof. First, we will show that for given k € Z

k
tr(k,§)| | =max{ > |7 (
= j=0

r=1

(4.10)

ZZhﬁ k]|+i

j=0r=1

Without loss of generality assume Z?:o T+ (k,5)| > E?:o IT~ (k,4)||. The other case, can be handled similarly.

This assumptions implies

kK m
St (k) 20 (@.11)

j=0r=0
and that the right hand side of (4.10) Z?:o 7" (k,7)||. Furthermore, by (4.11), the left hand side of (4.10) can be

simplified as:

k m k. m k m k m
ZZItr (k, ) ZZ k) = % (Zztr (ko) + D>t (k)
j=0r=1 j=0r=1 j=07r=1 j=07r=1
k m
= Sl ()l (B )]
j=0r=1
k m k
= 2D i) vo)y=> [IT* (k.5
j=0r=1 7=0

Hence, (4.10) holds. Now, by Lemma 77, taking sup with respect to k from both sides of (4.10) completes the proof.
|
In dealing with LTI systems, (4.9) can be simplified and linked to the usual I; (I, induced) norm of the system.

Before presenting the results for LTI case, we need to recall that the A-transform for 7' € £77™ with impulse response
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{T (k)},—, is defined by T\ = > neo AFT (k), for X’s such that the series converges. The following holds true:

Corollary 57 For a MISO LTI system T € L35™,

1 N
171l = 5 [IT1+ |7 ()1

} , (4.12)

where 1 is the vector of ones.

Proof. The proof follows similarly to the proof of Theorem 56 and hence is omitted here. For the SISO case, one

can also refer to [61, Proof of Theorem 5]. ®

4.4 Model Matching Problems

In this section, we consider a generic model matching problem
igf |H-UQV|,, (4.13)

where H, U, and V' are stable LTI systems and show that this problem with the norm ||.||, is indeed convex and
tractable. Moreover, we will show that time varying compensation, () € Ly, can not outperform time invariant

compensation, ) € Lry. That is,

inf |H—UQV|, = inf |[H-—UQV]|,.
ngTIH QV|, git [ QV|,

H, Uy

Let H = and U = , where U;, H; € EITXI" for some integers m and n. The following corollary

Hy, Un
is a direct consequence of Corollary 57:

Corollary 58 For the model matching problem (4.13), we have

inf ||H—UQV]|, =inf
Qér}/TI H Q ||+ lg lE{lr,%aX,m}

1 vQvi + [ 1 - @y v ] (114)

Note that (4.14) is a linear programming (LP) problem and the optimal value can be found with arbitrary

accuracy using methods in [62].
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Example 59 Consider the model matching problem (4.13) with the following:

0.15 -0.3 0.08 —0.42
H = 0.07 04 0 -0.3

[CORICED

(02 007 —0.12
U = 05 0.2 —0.22 ,
<0.65 0.8) —0.8
[ —04 006 03 0.13
Vv o= 002 03 ~0.18 0.5
<—0.4 0.3> (0.5 0.4)

For this problem, we have

inf |[H — UQV| ~ 1.646,

and

inf | H — UQV|l, ~0.946.

Notice that the optimal values for the standard 1 greater than that of the plus norm. Also, it is worth mentioning

that the minimizer of the standard Iy problem does not necessarily minimize the plus norm.

As indicated above, the general, multi-block, model matching problem can be solved via the abstract LP methods
in [62]. These primal-dual methods lead to solutions which perform arbitrarily close to the optimal cost, within any
prescribed degree of accuracy. However, for single block problems, one can say more about the problem. Indeed,
as we elaborate below, we use the standard duality approach of [63] or [62] to obtain exact solutions which also
reveal the FIR structure of the optimal solutions. This feature of the norm ||.||, is similar to that of the standard Iy

problem.

4.4.1 On Exact Solutions

Herein, we consider the one block problem [63] and, to avoid a lengthy exposition, we treat only the SISO case.
The results hold true for MIMO as well. In the previous part, we linked the plus norm to the [; norm and the
DC gain of the system. Here, invoking duality theory, we will derive some important properties of the optimal
solution for the model matching problem. A key in applying the duality approach of [63] and [62] is characterizing

the primal and dual spaces. To this end, for a sequence z = {z (k)},—, define two sequences z* = {z* (k)},—, and
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z” = {2~ (k)12 by

Clearly, x = 2T — 2~ and we refer to such a decomposition as the positive decomposition. Also, (with some abuse

of notation,) define the plus norm of the sequence z as

[l —max{Zm+ (k),Y a~ (k)}, (4.15)

k=0 k=0

whenever the summations are finite. It is straight forward to show that the space of sequences with finite plus norm

is a normed linear space and we denote it by l;. The following lemma characterizes the dual space of lh:

Lemma 60 The dual space of I, is denoted by loo and is the space of all bounded sequences y with the norm

o0

lyll;_ = sup y(R)z (k)| = [lv* |+ lvy [l
lzll o<1 | =0

where y = y* — y~ is the positive decomposition of y.

Proof. It can be easily verified that any given y € I defines a bounded functional on the space of 11 with the pairing
(y.x) = > 2oy (k)z (k), for any x € l,. Conversely, as [; possesses a Schauder basis, any functional f on [, gives
rise to an element y € I with y (k) given as the action of f on the k' basis vector. It remains to show the induced
norm of the functional. To this end, let y € Io. Then, lyll;. = SUD)| |, <1 > ooy (k)x (k). Let y =y* —y~ be
the positive decomposition of y. Then,

Y yka k)= [y" (k)at (k) +y~ (k)a™ ()] =D [y~ k)at (k) +y" (k)2 (W)
- k k

k=0

Therefore, it can be easily verified that

iy(k)x(k’) < max Nyl Snat (k) + |y [l op 2™ (k)
k=0 - Iy~ 1l Sp ot (k) + [lyt il ez (k)

And since ||z[|, <1, we have

<My llo + M1y~ Moo

> yk)x (k)
k=0
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Now, given € > 0, let k; # ko such that

IN

yt (k) =y (k) <|ly*]

Yy~ (ka) = —y (k) < |ly |-

™l ==

IA

ly~llc ==
Now, let z°P* = {z°P! (k)},_, be a sequence of zeros except at ki and ks with the values of

CEOpt (kl) = ].,

l‘om (]{32) = -1

Clearly, [|z°P*||, <1 and

Doy k) e (k) = [yl + vl — 2
k=0

The problem of interest is

inf | H ~UQ, (4.16)

where H and U are stable SISO LTI systems. Further, we assume that U does not have any zero on the unit circle
and, for simplicity, its unstable zeros are of multiplicity one. Let {ai}f-v:l be the set of (unstable) zeros of U in the
unit disk, i.e. U (a;) = 0. Then, a stable LTI system R can be written as R = UQ if and only if R (a;) = 0 for

i=1,2,...,N. Therefore, (4.16) reduces to
iréf |H — R, , subject to R(a;) =0 fori=1,2, .. N. (4.17)

Also, notice that the space of stable LTI systems equipped with the plus norm is isomorphic to I, and (4.17) can be
viewed as a minimum distance problem in I;. Let r = {r (k)};=, and h = {h (k)}5>, be the impulse responses of H
and R. Also, define the sequences

a; {I,Re (a;),Re (ag),...},

?

- {0,Im (a;) ,Im (a3) , ...} .

)
N
1

Then, (4.17) is equivalent to

inf =7l (4.18)

where M = {r ely: (a,r)=(a,r)=0,i=1,.., N}. Using the standard duality approach the following can now

be shown as in [63]
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Theorem 61 The optimal value of (4.16) is given by

max ZalRe[ }+lem|: ()}7

{auﬂz i=1 =1

subject to

p1 > 0,0 > 0,01 +pp <1

—,u2<ZaZa, )+ Bia; (k) < pq, fork=1,2,..,J,

where J is a pre-computable index that depends only on a;’s. Moreover, an optimal solution ®o = H — UQq to the

original problem always exists for some Qo and it is FIR of length J

We note that the above is a finite dimensional LP and that ®y can be easily obtained from its solution using
alignment, or by directly solving the primal problem which is, after all, a finite dimensional LP. Also note that the

constraints in the maximization in the above theorem come directly from the size constraint

Z @it + Bia;

i=1

<1
loo

b

on the dual functional.

4.4.2 Linear vs. Nonlinear

Herein, we prove that time varying () does not improve performance, which can then be used to establish that the

same holds for smooth nonlinear @). In particular we have the following.

Theorem 62 Let H,U, and V be LTI systems. Then,
inf ||[H-UQV|,= inf ||H-UQV]|..
QéﬁTI H ” QéILlTV ” H

Proof. This proof is the adaptation of the results of [7] to our problem. We start the proof by showing for any given
stable Q € Ly
|H —UATFQAMY||, < |H -UQV||, .

This holds since

H-UQV
HH*UQV”_’_ — sup ||( Q )uHoo
uElg:r,u;éO ||U’||oc
|(H = UQV) Al B N
> o — ||[ATF (H-UQV)A ,
= e ARl I QV)AH,
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which in turn equals ||H — UA_]“QA]“VH+ as H, U, and V are LTI and commute with the delay operator. Now,

define QN = % ff;ol A~FQA*. Using triangle inequality, it follows that for any N € Z,
|H-UQNV| < [H-UQV|,.

It is argued in [7], [64], and [55] that {Qn}x_, has a weak* convergent subsequence, denote it by {Qn, }7—,. That

weak™

is, @n, — Qrrr, where Qrrr € Lpy is stable. Obviously, for any X € Ear with HX||[:O < 1 it holds that
<H— UQNk‘/,X> — <H— UQLT]VY,X> .

It can be easily verified that
|H-UQrriV].= sup (H-UQrriV,X).

Now, for ¢ > 0, let X € £ such that X, =1 and

|H-UQrriVl, —e <(H-UQrriV,X) <||H-UQrr/V]|, -
Notice that,

(H-UQnV,X) <[[H=-UQn VI, Xl = 1H-UQNVI, -

Hence,

(H-UQrriV,X) (H-UQn,V,X) < limkiilgo |H—-UQN, VI,

= lim
k—o0
and consequently,

1H = UQuriVI|, —e <lim inf |[H—-UQNVI, .

Since, this inequality holds for any &, we have
[ =UQrr V|, <lim if ||H-UQn V], <[H-UQV|,,

and this completes the proof. m

Similarly as in [8], one can show that nonlinear smooth @ cannot outperform linear Q.

4.5 Mixed Signals

In the previous section, we focused on the [, gain of the output when the input is restricted to the positive cone

I%,. In this section, we consider a more general case when only part of the input is positive, i.e. u € "2 T x "2, To
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motivate this problem, we give the following example related to filtering:
Consider the problem depicted in Figure 4.2, where s € B (lég‘ , 1) is the input to the (stable) plant P and
neb (léo, b), for some b > 0, is the measurement noise. The interest is to design a filter ) such that the difference

between the input signal, s, and its estimate § is minimized in the /., sense. That is, the problem amounts to

s
inf  sup { I-QP —-bQ }
@ seB(iif 1) n
neB(léQ,l) S
Generally, given H; € £1X™ and Hy € L33™2, if u = (u{,ug)T € ™1t x ™2 from the definition of the norm

it follows that

[ ]

sup
uelmIt x 1T ”uHoo

= = (| Hull, + [ H2l-

Specializing this to the abovementioned filtering problem, we have

inf sup s — 5l = inf [5]Ql + |1 — QP
seB(IL 1) Q
nGB(l}x,b)
It should be noted that, as before, it can be similarly argued that nonlinear smooth @’s offer no advantage over
LTI @Q’s. However, if non-smooth @’s are allowed, there is a possibility of improving performance, e.g. see [65]
and [66] using the invariant set methods. In particular, it is of interest to know if thresholding results in a better
performance. More precisely, any LTI solution () obtained by our methods can be used to generate a simple non-
smooth (thresholding) estimator Qn;, = TQ where
x(k), ifx(k)>0
(Tz) (k) = , for z € l.
0,ifx(k)<0

Clearly, such a @y does not perform worse than @ as it keeps the estimate of @ if it is non-negative and sets it to

zero if negative. However, as stated in the following proposition, it does not perform strictly better either.

Proposition 63 Let Y be the thresholding operator. Then

S PIQI+IT=QPI )= it [b|YQ)+ 1~ TQP],].

nonlinear smoot
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Proof. Note that T can be approximated arbitrarily closely by a smooth function

x (k) if z(k)>46
(Yomootn®) () = L (x(k)+0)® if —5<az(k)<s ,
0 it a(k) < -8

where § > 0. It is easy to verify that Y _ . is smooth and

smoot

||Tgmooth7fr||+ = ||’r(S TH =9.

smooth

Therefore, given € > 0 and a stable nonlinear smooth @, there exists § > 0 such that

b HTgmoothQH + HI - ’rgmoothCQIDHJr < bHTQH + ||I - TQP||+ te.

Now, note that as TgmoothQ is smooth it admits a linearization @ such that

|(TgmoothQP - QP) f||<>o

su
0<|\f\|iﬁa £l oo ’
and )
sup H (TgmoothQ - Q) fHoo
0<|fll.<a £l o

for some « > 0. Therefore,

b ’|TgmoothQ|| + HI - TgmoothQP||+

5 _ e
> b sup H (TsmoothQ) f”oo + sup || (I TsmoothQP) f||oo
0<Ifll . <a £l oo 0< |1/l <o £l oo
reit
> b||Q[ + |1 - QP — (1 +b)e.
Therefore, from (4.19) and (4.20) we have
R - 0P, <, IOl 41~ 0P,

(4.19)

(4.20)

Further, similarly to Theorem 62, one can argue that the LTV @Q’s cannot lead a better performance than LTT @’s.

And hence, we have

S PRI+ -QPIL] =t [b]TQ|+ |- YQP].].

Q@ smooth nonlinear
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Note that the above proposition asserts that even a nonlinear smooth @ followed by a thresholding Y does not

perform better than LTI.

4.6 Asymmetric Signals

In this subsection, we present results for a more general case when the input signal is asymmetric and its lower and
upper bounds are time-varying. To this end, let a,b € I be two bounded sequences and suppose that the input
satisfies

a<u<hb,
where the inequalities are taken component wise. Then the following can be easily proved:

Proposition 64 For a given T € ElT@m with positive decomposition T =T+ —T~,

sup ||Tul,, = max {||T*6—T al| _,|TTa—T70|_}.
a<u<b

Notice that, the above expression requires the positive decomposition of the operator. Similarly, to the proof of

Theorem 56, one can show the following:

Theorem 65 For given T € L}@m and a,b €17,

sup || Tul

a<u<b
1 k. m kK m
= 5sup q DDt (k) (an () 00 ()| + D2 D It (B )] (0r () = ar (7)) ¢ (4.21)
k j=0r=1 j=0r=1
where t, (k,j) is the r*" entry of the row vector T (k, j) = { ti(k,7) - tm(k,7) ] and a, (j) (b (j)) is the r™h

component of a (j) € R™ (b(j) € R™).

m

To relate (4.21) to the standard I, norm of the operator, for given z = {x (j)};io € 172, define the bounded

operator II, as

diag (z (0))
diag (z (1))
diag (z (2))

Then, we note that, the first on the right hand side of (4.21) is the sum of the i*” row of the matrix representation of
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the operator T (I, 4 IT;). Also, the second term is the I; norm of the k" row of the operator T (T1, — II). Therefore,

1
sup ITulloe = 5 Sl;p{lR [T (Mo + 10p)] 1 + [|R [T (T = TLa) ][I},

alu<

where 1 is the vector of ones with appropriate dimension and R [T (II, + II,)], (R [T (I, — I1,)],) is the k' row
of the infinite dimensional matrix representation of the operator T (II, + II;) (T (II, — I1,)). For LTI systems this

expression can be further simplified.

Corollary 66 Let a = {o,q,...} and b = {f,5,...} be constant sequences in I, with o, € R™. Then, for

TeLym,

swp [Tull, = 3 [|70) (et 9 + 17 (01, ~ 1))
b

a<u<
Given the above results, LP can be used to compute system’s performance and solve for optimal model matching,

similarly to the previous sections.

4.7 Summary

In this chapter, we considered linear systems whose inputs are restricted to be in the positive cone of .. This led
to introducing the plus norm, which is the induced norm from [} to l.. We presented an exact characterization
of this norm for both LTV and LTI systems. Further, for the LTI systems, we gave an expression for the plus
norm in terms of the standards [; norm of the system and its DC gain. As an application, a filtering problem was
studied. Furthermore, based on this development, we considered the model matching problem and showed that
time-varying linear or nonlinear control or filtering does not improve the performance with respect to the plus norm,

and synthesizing an optimal controller for minimizing the plus norm is a LP.
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Chapter 5

Positive Systems

5.1 Introduction

In this chapter, we address the case where the positivity constraints are imposed on the systems. From the input-
output perspective, an externally positive system is the one whose output is in the positive [, cone when the input
is in this cone, starting from zero initial condition. As we point out, if such a constraint is imposed on the closed
loop map, finding an optimal controller is a linear programming problem and hence tractable [62]. Also, if the model
matching problem for LTI systems is considered, time varying linear or nonlinear compensation cannot outperform
LTT even if external positivity is enforced. Furthermore, if internal positivity is sought, we show that a dynamic
controller offers no advantage over a static one as far as l1, o, or Hy performance is concerned. Therefore, the
abovementioned results can be readily used to obtain an optimal (static) state feedback controller or output feedback
for special cases. We note that, designing an optimal output feedback controller (which is static) is a harder problem
and in general leads to a bilinear program. In certain cases, however, when the measurement matrix satisfies certain

conditions, such problem is shown to reduce to a linear program as will be discussed.

5.2 External Positivity

nxm

An operator T € L3 is said to be externally positive if for all i,j€ Z4, i > j, T (3,7) € Rixm, where R’}rxm
is the closure of R}*™ in standard topology. The set of such operators is denoted by 5?6””. In analogous way,
we also define £7™F and L£5"™"*. Our first result is that designing a stabilizing controller such that the closed

loop system is externally positive can be cast as a convex optimization. Consider a general control problem where

Gii Gz w z . . :
G = : — is the generalized plant; w and u are the exogenous and control input; z

Ga1 Gaz U Y
and y are the regulated and measured output, respectively. The problem of interest is to find a controller K : y — u

that stabilizes the plant, minimizes the effects of w on z, and makes the map from w to z externally positive. Such

a problem can be converted to the following LP:

= inf H —
I leablell uQv|,
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for some stable H, U, and V [63], [62], subject to

H-UQV >0, (5.1)

where the inequality in (5.1) is taken component-wise on the impulse response of H — UQV or its lower triangular
representation. Although it is an infinite dimensional optimization, its solution can be obtained with arbitrary
accuracy, through finite dimensional LP. For problems of this sort, we refer to [62] and [58]. Moreover, as is discussed
in Appendix 7.1, nonlinear smooth @’s do not outperform LTI ones. In what follows, we present an example of the

filtering problem with positivity constraints both on signals and systems.

Example 67 Consider the abovementioned filtering problem depicted in Figure 4.2 where s € B (léj, 1) and n €
B (l(l)o, b). The objective is to design a filter Q) that minimizes the estimation error and produces a positive estimate
in the absence of noise. That is, if n = 0 and s € IX, then 5§ € II,. Based on our developments in the previous

section, one can arque that this problem amounts to

S
wf s || r-op @ — it {1 - QP|, +bQl} (52)
Q seB(1lf 1) n @
nGB(llo,b) ©
subject to
QP > 0. (5.3)

For this example, let b = 0.3 and

—-0.07 0.15 —0.25
P= —-0.78 0.12 —0.26

( 0.5 —0.1 ) (0.5)

igf{HI - QP|, +bQ]} ~ 0.715.

Then

It is worth noting that if instead of the plus norm, one uses the standard Iy norm, a different performance is achieved.

Indeed,

igf {1 = QP + [[bQ]|} =~ 0.850.

For this particular filtering example, it can be shown (see Appendiz 7.2) that solving (5.2) without the constraint
(5.3) does not lead a better performance, contrary to what one may expect. Therefore, if it is of interest to have a
positive estimate § even in the presence of the noise, after solving (5.2) for Q without the constraint (5.8), one can

replace Q with YQ without changing the performance. This is also discussed in Appendix 7.2.
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5.3 Internal Positivity

One can also think in terms of a state-space realization of T,

z(t+1) = Az (t) + Bu(¢)
y(t) = Cz (t) + Du(t)

: (5.4)

where z, u, and y are state, input and output, respectively; and A, B, C, and D are matrices of appropriate

dimensions.

Definition 68 An operator T with state-space realization of the form (5.4) is internally positive if and only if the

output and the states are nonnegative whenever the input and the initial condition are nonnegative.

It can be shown that the above definition is equivalent to matrices A, B, C, and D having nonnegative entries
[37]. Obviously, internal positivity implies external positivity but the converse is not true, in general. In state-space,
there is a simple way to calculate the I3 norm (I, induced norm) of an externally positive LTI system, G, with

state-space matrices (A, B,C, D). As reported in [45], one has
1G] = Hc (I—A)" B1+D1H ,
(oo}

where 1 is a column vector of compatible dimension with all entries equal to one. Moreover, the following holds:

Lemma 69 (discrete-time counterpart of Lemma 2 of [45]) If G is internally positive then ||G|| < v for some v > 0

if and only if there exists v € R such that
Av + B1,, <v, Cv+D1,, <71,

where Ny, N, and n are the number of inputs, outputs, and states, respectively.

Let
A | By By
Ak Bk
G=| C | Dn Dy |:KE= ; (5.5)
Ck Dk
then, the map T from w to z is given by
Acl Bcl
T(G,K) = : (5.6)
Ocl Dcl

83



where

N A+ ByD,Cy BsCy Bi + By DDy

cd = y Del = ’
BkCQ Ak BkD21

Ca = [C1+ Di12DyC5, D12Cy], Doy = D11 + D12Dy Doy

Now, we present a new result regarding the optimal control synthesis for such systems. The next theorem addresses

a problem which was previously reported as an open problem in [67].

Theorem 70 For v > 0, if there exists a controller (5.5) of order ny such that the closed loop system (5.6) is
internally positive, stable, and has l; norm less than v (||T (G, K)|| < ), then there exists a static controller K such

that T (G, K) is also positive, internally stable, and ||T (G, f() H <.

Proof. Suppose a controller K with state-space matrices as in (5.5) yields to a positive closed loop system T (G, K)

with ||T' (G, K)|| < . The result follows by direct calculations showing T (G, K) has the desired properties where

010
0 | Dg

Indeed, since ||T' (G, K)|| < v, by Lemma 69, there should exists v, € R}, v, € R"* such that

V1 vy
Acl + Bcl]-nw < )
1) 9]
V1
Cy + Dyl,, <~v1,,.
D)

Since the closed loop (more precisely BoCy and D15C%) and vy are non-negative, from the above inequalities, it holds

that

(A+ BDyCo) vy + (B + BoDy Do) 1, < v,

(Cv + D12DyCo) v1 + (D11 + D12DkD21) 1, < ~1,,.

By Lemma 69, the above two inequalities imply HT (G, I_() H <7v. n

Finding a static controller K € R™*"s where n,, and n, are the number of control inputs and measured outputs
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such that ||T (G, K)|| < 7 is in general a bilinear program stated in the next Proposition. For simplicity, define

i | 4B € RO+ X ()
Ci1 Dn

. B .

B — 2 c R(n+ny)xnu’ = |: Cy Doy :| c Rnyx(n+nw),
Dy2

and assume the following:

Assumption 71 Suppose Cs is full row rank.

n—mny

Let the set of vectors {f;};_,"", for f; € R", span the null space of C5. Further, let the sets of vectors {g;}\*; and
{hi}zn:b1 span the null space of Do, BT, respectively, where g; € R™ and h; € R"*"; ng and n; are the dimensions

of the null spaces of Ds; and BT.

Proposition 72 There exists a static output feedback controller such that |T (G, K)| < and T (G, K) is internally

positive if and only if there exist v € R}, fi € R(erny)xn, FE e RT*"W”"’, and a set of vectors {(;};—,"" such that

v
’Ylnz
| II 0
hiA =hf[ﬂ E}, (5.8)
0 I
~ I o0 Cz Cz
A = { i E } : (5.9)
UG = fi. (5.10)
where I = diag (v1, ..., V). In this case, the controller K is given by
K=pB"t ([ A E } —A) c—F, (5.11)

where B~L and C~F are left and right inverses ofB and C, respectively.
The proof of this proposition depends heavily on the following standard linear algebra result [68]:

Lemma 73 Let A, 3, C’, and X be matrices with appropriate dimensions. Then, there exists a matrix K such that

A+ BKC =X, (5.12)
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if and only if

Af = XV,

A = KX,

for and f € Null (C’) and h € Null (ET) In this case, K = B~F (X — A) C—R, where B~L and C— R are left and

right inverses of B and C’, respectively.

Proof of Proposition 72. According to Lemma 69, ||T (G, K)|| < v and T (G, K) is internally positive for some

K if and only if there exist Ey € RUT™) " B, e RTT™) "™ ) ¢ R and K such that

v v

N . ot o
A+BKC[Q E} ,
0 I
v
|:[L E:|1n+n“,§
Y1,

Using Lemma 73, (5.15) has a solution for K if and only if conditions (5.8) and

| fi mt o fi
o]

A =
gi 0 I gi

(5.13)

(5.14)

(5.15)

(5.16)

which is equivalent to (5.9) after replacing f; with II(;. Therefore, the proof is complete by noticing that (5.16) is

the same as (5.7) and (5.11) is achieved by pre- and post-multiplying (5.13) by B~% and C~%. m

We comment here that (5.7)-(5.10) can be reduced to LP in some special cases. For example, in [69], the state

feedback problem is posed as a linear program. In this case, Co = I which has the trivial null space of {0}. This

simplifies conditions (5.9) and (5.10) to
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which together with (5.7) and (5.8) is a tractable linear program. This cannot however be done for the general

output-feedback problem unless the Cy matrix satisfies certain conditions as stated in the next corollary.

Corollary 74 Suppose that the null space of Cs is invariant under multiplication by invertible diagonal matrices.

That is, for any diagonal invertible matriz M,

Mfi € Span{fla-“afn—ny} .

Then, there exists an static output feedback controller such that ||T (G, K)|| < v and T (G, K) is internally positive

if and only if there exist v € R, i € I@.Erm_ny)xn, E e R(f'my)xn’“ such that

v
Y1ln,
| I 0
hi A =h] [ i E } : (5.18)
0 I
| I 0 f i
A 4 = [ i E ] f . (5.19)
0 I gi 9i

Proof. We note that since the null space of C5 is invariant under multiplication by I~ and TI, (; satisfies (5.10) if

and only if ¢; € Null (Cy). Therefore, (5.9) is simplified to (5.19). m

We would like to point out that an important class of output feedback program satisfies the condition in the
above corollary. The Cy matrix for the systems in this class has n — n, zero columns. This happens, for example, if
the n, measurements are the linear combinations of n, states and the rest n — n, states do not enter explicitly in
the output equation.

Finally, we would like to remark that results similar to Theorem 70 can be shown for some other performance

measures. For instance, the next theorem deals with the case when the performance is measured in Iy induced sense.

Theorem 75 If there exists a dynamic controller (5.5) such that the closed loop system (5.6) is internally positive,
stable, and has ly induced norm less than v (|T (G, K)l|;,_;,q < 7v) for some positive v, then there exists a static

controller K such that T (G, l_() 18 also internally positive, stable, and HT (G, I_() leind < 7.

Before proving this theorem, we need the following lemmas:

Lemma 76 Let G and H be non-negative matrices with 0 < G < H. Then, 6 (G) < & (H), where & (.) denotes the

maximum singular value.

Proof. Notice that 0 < GT < HT. Therefore, 0 < GTG < HTH, [48, Lemma 3], and hence p (GTG) <p (HTH),

[70], where p(.) is the spectral radius. m
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Lemma 77 Given an internally positive G with state-space matrices (A, B,C, D), the following three conditions are
equivalent:
(i) ||GH12—md <7, for some v > 0.

(ii) there exists a positive matriz Z of compatible dimension such that

AZ+B<Z, (5.20)
I CZ+D

is positive definite. (5.21)
ZTCT + DT 72[

(#ii) there exists a positive matriz Z of compatible dimension such that

ZA+C < Z,
1 ZB+ D
is positive definite.
ZTBT £ DT 4]
Proof. We only show the equivalency of (i) and (ii). Notice that since G is internally positive, |G||,,_;,, < 7 if and
only if HG’ (1)

=7 (G’ (1)) < 7, where G (1) is the DC gain of G. That is, 1Gl;,—ina <7 if and only if

lz—ind
5 [C(I—A)*13+D <. (5.22)

First, suppose (5.22) holds. Since A is non-negative and stable, (I — A)~"

is non-negative as well. Therefore, for
any positive matrix X, Y := (I — A)~' X > 0. Moreover, one can choose X > 0 such that ¥ > 0. Now, since (5.22)

is strict inequality, there exists € > 0 such that
& [C ((1-A)‘13+5Y) +D} <.

Let Z:= (I —A)"'B+eY. Then, (I — A)Z—B =¢Y >0, and 5 [CZ + D] < v which are equivalent to (5.20) and
(5.21), respectively.

Conversely, suppose (5.20) and (5.21) hold. Notice that, (5.20) implies A is Schur stable and (I — A)™' B < Z.
Therefore, C(I—A)"'B+ D < CZ + D. By Lemma 76, this implies & [C (I-A)7'B +D} < g|CZ+ D].
Furthermore, (5.21), invoking Schur complement type of argument, implies & [C'Z + D] < v which completes the

proof of the converse. m

Ay | By
Proof of Theorem 75. Now, to prove the theorem, let K = be the dynamic controller of some
Cy | Dy
_ 00
order ng in the statement of the theorem. We will show K = makes the closed-loop system internally
0 | Dg
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positive, stable, and HT (G, I_() < 7. We will only show that HT (G, I_()

ng—ind

follows similarly to that of Theorem 70.

ng—ind

< 7 as the rest of the proof

Z
Since ||T (G, K)||;,_ina < 7> according to Lemma 77, there exists Z = e RT+"’“)XH‘” such that
Zs
Z1 VA
A + By < , (5.23)
Zs Zs
and
I Cch + Dcl
is positive definite,
z'ch + Df, v
where the latter is equivalent to
5 (CaZ + Dy) <, (5.24)
One can easily show that (5.23) implies
(A + BQDkCQ) Z1+ (Bl + BngDgl) < 7. (525)
Furthermore, using Lemma 76, (5.24) implies
0 ((C1+ D12DyC2) Zy + (D11 + D12DyDar)) <7, (5.26)

since

(C1+ D12DyCs) Zy + (D11 + D12Dy D21 ) < CqZ + Dy

Invoking Lemma 77, (5.25) and (5.26) yield ||T (G, K)|[,,_,., <7-®

5.4 Summary

In this chapter, we considered the positive systems (internal and external) in the context of I, optimization. We

showed that if external positivity is imposed on the closed loop map, finding an optimal controller is LP and hence

tractable. Furthermore, if internal positivity is desired for the closed loop system, a dynamic controller offers no

advantage over a static one. We also solved the static output feedback problem for the case that the null space of

the output matrix is invariant under multiplication by diagonal matrices.
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Chapter 6

Summary and Future Work

This dissertation was split into two parts. In the first part, the theory of [; optimal control was extended to LSS. In
the second part, the [, performance and control design for system with positivity constraints were considered.

In Part I, we introduced the class of generalized input-output switching systems. We showed how the worst-case
gain of these systems can be cast as LP. Furthermore, any stable LSS can be approximated by a generalized input-
output switching system with arbitrary accuracy. Then, we addressed the problems of stability, gain computation,
and optimal control synthesis for a general LSS. We showed how these problems can be formulated as LPs. Also, we
considered the minimal-gain of LSS and showed that an optimal switching is periodic. Moreover, we introduced the
notion of the stochastic I, gain which mimics the standard [, induced norm. We characterized the input-output
behavior of MLSS in this metric. We further studied the [, mean performance of MLSS and synthesized controllers
with respect to this measure of performance.

In Part II, we dealt with characterization and optimization of the [, gain of linear systems that contain positivity
type of constraints. First, we considered the case where only the input is restricted to be in the positive cone of [,
and characterized the induced norm from [Z to I, the plus norm. This allowed us to synthesize optimal controllers
in the plus norm sense. Then, we considered both internally and externally positive systems. We pointed out that
finding an optimal controller while making the closed-loop externally positive is LP and hence a tractable problem.
If, on the other hand, the constraint known as internal positivity is sought, we showed that a dynamic controller offers
no advantage over a static one. These results can be used to obtain an optimal (static) state feedback controller.
However, designing an optimal output feedback controller (which is static) is in general a bilinear program. We
showed that this bilinear program can be reduced to LP, if the null space of the measurement matrix is invariant

under multiplication by diagonal matrices, such as in the case when part of the states is measured.

Future Work:

One can extend the results presented here in several directions as follows:
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Control Synthesis for LSS:

Based on Corollary 24, the gain computation of a general LSS is reduced to a search over two parameters ¢ € (0, +00)
and @, € S;o. The computation is not convex in both § and @, jointly. It is of interest to investigate if there is an
alternative way without this shortcoming. Moreover, the stabilizability results can be used in principle to find the
doubly coprime factors of a LSS. It may be interesting to see if the doubly coprime factors of a LSS can be linked to
those of its LTT modes, at least for the class of input-output switching systems.

Moreover, when synthesizing controllers we assumed that the controller has the knowledge of the plant’s switching
sequence. It is of interest to investigate what happens if the controller does not have access to the switching sequence.
In this case, one can possibly rewrite P, as the upper linear fractional transformation of a nominal LTI system P
and a switching system A, which, due to its dependency on o, is not known to the controller. In this case, one can

synthesize a robust controller for the LTT P which guarantees the desired performance for all A,.

Best LTI Approximation of LSS:

Given a stable LSS Gy, it is interesting to know how closely it can be approximated by a LTI system G. That is,

v = inf supHGU—GH.
GLTI o

The interest in this problem arises from the situation when the switching sequence is not known to the controller. In
this case, the controller could be synthesized to robustly stabilize the LTI system G for any A, where A = G, — G
and ||A|| < 7. We conjecture that for an input-output LSS G, = S,GS*, one can fully characterize G in terms of

the impulse response of G. We would like to see what can be said for general G, .

Control Synthesis for LTV:

As mentioned before, we addressed the state feedback control synthesis for LSS and LTV systems while the output
feedback is left to be investigated more. Here, we provide some general results on the output feedback case. Although
these results in general are not computationally appealing, they are interesting from the theory point of view as they
give a unified framework to study any [, performance. Also, they may be extended in future in a direction to cope
with their computations.

Given a sequence of m x n matrices X = {X (t) € R™*"}7 | we defined a linear operator X as

X (0)

<)
Il
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We make an extensive use of these notations to write LTV systems in an operator form. To this end, consider a LTV
system P
z(t+1)=A{)z({t)+ B{#)w(t)
;2 (0) = o, (6.1)
y(t)=C )z )+ D(t)w(t)
where A(t), B(t), C(t), and D (t) are matrices with appropriate dimensions, for each ¢ € Z;. One can form
operators /T, E, 6, and D as discussed above and rewrite 6.1 as
PO B -1
v=(1-A4) ABuw+ (I-A4) w5
P: , (6.2)
Yy = ax + ﬁw

where z = {2 (t)}iog, w = {w (t)} =g, v = {y (1) },2,, and Zg = {20,0,0,...}. System P can be thought of as a linear

map from £y and w to z and y. Consequently, we define its stability as follows:

Definition 78 Let 29 € R™ and w = {w (t)},-, € V, where V is some vector space. System P in (6.2) is said to be
V to W =Wy x Wy stable if P maps any input sequence {zo,w} € R*®V to an output sequence {(z (t),y (t))}ieo

in the vector space W, where Wy and Ws are two vector spaces.

One can take ¥V and W to be the spaces of the bounded magnitude or bounded energy sequences, i.e. I and o,
and study the [, or la (Hoo) performance of the system. In this sense, we provide a unifying framework for studying
different types of input-output characteristics of a system.

In the sequel, we will appeal to the next lemma which is a standard linear algebra result, see e.g.[68].

Lemma 79 Let n and m be positive integers with m < n. Given matrices A € R"*™, B € R"*™ C € R™*", and

Q € R™ ", with BT and C being full row rank, the equation
A+ BKC=Q
has a solution for K if and only if
AN (C) = QN (C),
N (BT A=N(B")" Q.

In above N (C) and N (BT) are matrices whose columns span the null spaces of C and BT, respectively. In this
case, a solution for K is given by

K=B"Q-A4)C*",
where B~L and C~% are the left and right inverse of B and C.

Given a LTV system P as in 6.2, its stability is equivalent to the boundedness of (I — AA) . Invoking the
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Youla-Kucera parameterization, one can show that (I — AA) is stable if and only if
A=QU+AQ)", (6.3)

where @ is some stable LTV system. Hence, the following holds:

Proposition 80 Consider the LTV system P in 6.2. Suppose, §, 6, and D are bounded. Then, the system P is

stable if and only if there exists a stable QQ such that

~

A(I+AQ) =q, (6.4)

and

(I+QAN)A=Q. (6.5)

Proof. Equations (6.4) and (6.5) follow immediately from multiplying (6.3) by (I + AQ) from right or (I + QA)
from left. m
Conditions (6.4) and (6.5) are convex and checking them becomes particularly easier in the case of LTI system.
We use these two conditions for control synthesis. To this end, consider the generalized plant P given in operator
form by
{,C:AA\{L'—FAEU}-FA./B\QU—FZTO
P z:ax+l/);w+l/)1\2u ) (6.6)
y = Cax + Doy
where w is the exogenous input, u is the control input, z is the regulated output, and y is the measured output.
In the context of control synthesis, first, we want to find a controller, K, which maps the measured output, ,
to control input, u, and results in a stable closed loop system. To make the idea more concrete, suppose u = Ky

for some K. We emphasize that the only restriction we enforce on K is linearity and causality. That is, K can be

represented by an infinite dimensional lower triangular matrix
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Then, the closed loop system ¢ (P, K) is given by

r=ANAgx + AByw + 2
6(P,K): , 67)

z = Cyx + Dyw

where

Acl = A\+ B\QKEY\Qv
Bu = B + BoK Dy,
Ocl - 6'\1+5\12K6\2,

D¢ = D1y + D12KDo;.
The closed-loop system is a mapping from 2y and w to x and z. Therefore, it can be partitioned accordingly as

¢ (P,K) = otz | [ g0} L) (6.8)

P21 P22 w 2
According to Proposition 80, K results in a stable closed-loop if and only if conditions (6.4) and (6.5) hold for A.
Before we state our results on the stabilizability, we need to characterize the null spaces of the linear maps B\Q and
Cs. Recall that Cs is a diagonal operator with entries in the set {Cs (t)};2,. For any ¢ € Z,, let N (Cs (t)) be a
matrix whose columns span the right null space of Cs (t). Furthermore, we denote by m ) a diagonal operator

with entries in the set {N (C3 (t))},=,. Similarly, we can define N (BT )T consisting of elements in the left null space

of 1/3\2 or the right null space of BI. Henceforth, we make the following assumption:
Assumption 81 Operators B\z and 6’; have left and right inverses, respectively.

The necessary and sufficient condition for Assumption 81 is the existence of the left and right inverse of By ()

and Cs (t), respectively, for all t € Z,. We denote these inverses by By © and C; .

Theorem 82 Given the generalized plant P in (6.6), there exists an stabilizing output feedback control K mapping

y to u if and only if there exists a stable LTV @Q such that

o — —

N (BI)TA(I+AQ) =N (BY) @, (6.9)
and
(I+QA) AN (Cy) = QN (Ca). (6.10)
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In this case, a stabilizing controller is given by
K =Byt (Q (I+AQ)™" —X) Cy R (6.11)

Proof. Equations (6.9) and (6.10) are the direct consequence of Lemma 79 in conjuction with Proposition 80.More

precisely, K stabilizes the plant if and only if
Aa=QU+AQ) " =(I+QN) Q. (6.12)

Using Lemma 79, given @, (6.12) has a solution for K if and only if

—_—

N (B Aq =N (BD'QUI+AQ)™",

AaN (C) = (I +QA) " QN ().

After post and premultiplying these equations by (I + AQ) and (I + QA), we obtain (6.9) and (6.10). m
Upon substituting (6.11) in (6.7) and direct calculation, one can show that the closed-loop is an affine function

of @. In particular we have the following:

Theorem 83 The set of all closed-loop maps (6.7), for stabilizing K, is given by

o (P,K)= fu P12 : K stabilizing P 3 =

, ¢21 ¢22

{H+UQV : Q stable},

where
I AM;

My M + MyAM;
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and M;’s are diagonal operators given by

M, = Dy — DiaB; “AC; Dy,
M2=6'\1—51\23/2:LA
Ms = By — AC; Py,
M4=5£@7

Ms = Cy BDy;.

According to this theorem, to synthesize an optimal controller to minimize the input-output gain, one needs to
solve the convex optimization problem

inf ||H
leableH +0QV|,

subject to (6.9) and (6.10). Furthermore, if one wants to enforce any positivity constraint on the closed loop, ¢, it
can be readily done through enforcing linear constraints on Q.

We should mention that a major computational burden of this method is due to (6.9) and (6.10). These equations,
although convex, are infinite dimensional optimization and in general not easy to satisfy them exactly. However,
finding @ to ”almost” satisfy them with arbitrary accuracy is LP and tractable. At this point, it is not clear how
tightly (6.9) and (6.10) should be satisfied so the rest of the results still hold. We hope a small-gain like argument

helps us in analyzing the situation when we substitute (6.9) and (6.10) with

HN(/BQ?)TE(I +AQ) - N@Q\T)TQH <e (6.13)
and
|(1+Qa) AN (Go) - N ()| < e, (6.14)

for small enough € > 0.

Minimal Gain:

On the subject of the minimal-gain of LSS, Theorem 27 states that an optimal switching is periodic. However, its
period or finding what an optimal sequence remained unanswered. This problem can be related to sensor scheduling or
controlled sensing and might be easier to handle in the stochastic framework. We solved this problem for the stochastic

lo gain of the input-output LSS. It is however an open problem for the general case. This also relates to the filtering

P
problem in Figure 6.1. In this problem one needs to minimize the stochastic gain of I — [ Q1 Qs ] S8,
Py
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Figure 6.1: Filtering Problem

Systems over Positive Cones:

We defined the plus norm as the induced norm from IF to ... One can think of extending our results to other signal
spaces for example from l;’ to ly. Also, regarding the internally positive systems, as we showed, static controllers are
optimal if the internal positivity with respect to the states of the plant and the controller is enforced. We conjecture
that this is also the case when only the internal positivity with respect to the states of the plant is enforced. Moreover,
some results similar to those discussed earlier in this section, Control Synthesis for LTV systems, may be useful in
synthesizing an optimal controller which enforces the positivity of the states of the plant (and not necessarily the

plant).
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Chapter 7

Appendix

7.1 Nonlinear vs. Linear in the Presence of Positivity Constraints

In this section, we want to show that for the model matching problem

inf ||H —
omnf IH -UQVI,
subject to

H—-UQV >0,

nonlinear smooth @)’s cannot outperform LTI ones. First, we will show that smooth nonlinear @’s cannot outperform
LTV @Q’s. Let Qnr be a smooth nonlinear map. Let € > 0 be given. Then, there exist a linear map @ and § > 0

such that
U — 1%
sup U (Q@nz — QL) fHoo<€
0<|Ifll <6 £l oo

Now, similarly to the proof of Proposition 63, we have
IH-UQLV| <[H—-UQnLV].

It remains to show that the linearization, @, satisfies the positivity constraints. To this end, let f € [ and

H —-UQnLV > 0 then for given non-negative integer k,

g g _of
T (= VQuV) (1) () = (1 - UQuY) (” f|m) k)
— ((H-UQniV)+ U (Qxi - Q1) V) (“Jff) (k)

> V(@i — Q) V] (J‘fﬁf) ") (7.1)

Notice that
of

’[U (@ne — QL) V] <|f||0o

) (k)‘ < be.
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Hence, (7.1) becomes

(H=UQLV)(f) (k) = =lfllwe

and since it holds for any € > 0, f € IX, and k,
H—-UQ.V > 0.

That is the linearization of a nonlinear map leads a better performance while maintaining the positivity of the closed
loop. This linearization may not be time invariant. However, similarly to [8], one can argue LTV compensations
cannot do any better than LTI ones and hence in general smooth nonlinear @Q’s does not lead a better performance
that LTI Q’s even though the closed loop external positivity is enforced. Finally, as an obvious observation, we note
that positivity constraints can be present on any affine linear map of @ for all of the above to hold, i.e., not only to

a the same map H — UQV. This is the case in Example 67.

7.2 More on the Filtering Problem of Example 67

Define v (Q) := b[|Q|| + [/ — QP|| . where b is a positive number. Herein, we will show that

inf TQ) = inf = inf
Q nonlinlenar smooth v ( Q) leETI Y (Q) %16%1“1 v <Q) ’
P>0

where T is the thresholding operator. The first equality is proved in Proposition 63. Regarding the second equality,
note that we have

inf v(@Q)< inf v(Q).

QeLrr T Q€L
aP>0
We will show that
inf < inf TQ). 7.2
ngﬂ v (Q) T Q nonlinlglr smooth v ( Q) ( )

QP=>0
To this end, given @, let € > 0 and Y9 1, be the approximation of T as defined in the proof of Proposition 63

smoot

such that, v (T5

smooth

) <v(YQ) + . Now, note that TgmoothQ is smooth and TgmoothQP > 0. Therefore, by the
previous developments (Appendix 7.1), the linearization of Y°__ . @Q, denote it by Q € Ly, satisfies QP > 0 with

v (Q) <v (Y] ). Taking inf from the left hand side, we have for any nonlinear smooth @,

smooth

inf v (Q) v (Thoom®@) <V (TQ) +e.

Since, infgesr, v (Q) = infger,., v (Q), and € was arbitrary, (7.2) holds true.
QP>0 QP>0
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