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Abstract

The l∞ performance of Linear Time-Invariant (LTI) systems has been one of the corner stones of the robust control

theory for over the past 30 years. The l∞ performance has been studied mostly for LTI systems and the scarcity of

the results for other types of systems is prominent in this area. This dissertation aims to depart from LTI systems

and investigate the l∞ performance for other classes of systems. In particular, the l∞ performance of Linear Switched

Systems (LSS) and of linear systems with cone constraints is studied in the first and second part of this dissertation,

respectively.

Part I: In Part I, we first consider the worst-case l∞ induced norm computation of LSS. That is, supσ ‖Gσ‖,

where Gσ is a LSS, σ is the switching sequence, and the norm, ‖.‖, is the l∞ induced norm. This problem can be

linked to robustness of systems when the switching is arbitrary. We provide lower and upper bounds of this quantity.

These bounds are hard to compute and in general conservative. Hence, we narrow our attention to special classes of

LSS by defining the classes of input, output, and input-output LSS and show that for these classes, exact expressions

for the worst-case l∞ induced norm can be found. Moreover, we introduce the class of generalized input-output

LSS and show how their l∞ gains can be computed exactly via Linear Programming (LP). The class of generalized

input-output LSS proves to be a sufficiently rich class as it is dense in the set of all stable LSS. We further derive

new stability and stabilizability conditions and control synthesis in terms of LP utilizing generalized input-output

LSS.

The other extreme from the worst-case norm is the minimal norm, i.e., infσ ‖Gσ‖. The interest in this type of

problem is motivated by situations where there may be limited sensor and/or actuator resources for filtering and

control. We show that for Finite Impulse Response (FIR) switching systems the minimizing switching sequence can

be chosen to be periodic. For input-only or output-only switching systems an exact characterization of the minimal

l∞ gain is provided, and it is shown that the minimizing switching sequence is constant, which, as also shown, is not

true for input-output switching.

Moreover, we study Markov Linear Switched Systems (MLSS). These are LSS whose switching sequence is a

Markov process. We introduce the notion of the stochastic l∞ gain and provide exact expression to compute it.

However, this computation is challenging, as we show, and hence we resort to a more relaxed but tractable notion

of l∞ mean performance. We provide tractable computation and control synthesis method with respect to the l∞

mean performance.
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Part II: Part II of this dissertation deals with the l∞ gain of linear systems with positivity type of constraints.

The study of such systems is well justified as there are many physical problems in which some variables are restricted

be non-negative (or non-positive); examples can be found in biology, economics, and many other areas. We consider

the case when the output is forced to be in the positive l∞ cone when the input is in this cone. This reflects as,

so-called, an external positivity constraint on the system. As we point out, if such a constraint is imposed on the

closed loop map, finding an optimal controller is LP and hence a tractable problem. If, on the other hand, the

constraint known as internal positivity is sought, we show that a dynamic controller offers no advantage over a static

one. These results can be used to obtain an optimal (static) state feedback controller. However, designing an optimal

output feedback controller (which is static) is a harder problem and in general leads to a bilinear program. We show

that this bilinear program can be reduced to LP, if the null space of the measurement matrix is invariant under

multiplication by diagonal matrices.

Besides the positive systems mentioned above, we consider the case where only the input is restricted to be in

the positive cone of l∞, denoted by l+∞, and seek to characterize the induced norm from l+∞ to l∞. We stress here

that no positivity constraint is imposed on the system itself. As an example, consider a positive nonlinear system

with positive input that is linearized about a point other than origin. The linearized model is no longer a positive

system as it is not linearized about the origin. Its inputs, however, remain positive and hence fit into this class of

problems. We obtain an exact characterization of this norm (the induced norm from l+∞ to l∞) which can be used

to synthesis a controller minimizing the induced norm from l+∞ to l∞ via LP.
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Chapter 1

Introduction

1.1 On l∞ Performance: a Historical Overview

The l∞ performance of Linear Time-Invariant (LTI) systems has been an important complement to l2 performance and

a significant aspect in the development of robust control theory over the past 30 years. While several developments

in control with quadratic type of criteria have been extended to other types of systems such as Linear Switched

Systems (LSS) and positive systems, it is not the case for l∞ criteria. This is what this dissertation aims to achieve.

In particular, the first part of this work is devoted to the l∞ performance of LSS, and in the second part, we provide

new results on systems with positive cone constraints.

Figure 1.1 depicts the general setup of a control system. Therein, G is the nominal generalized plant, K is the

controller, ∆ is the uncertainty block, w is the exogenous input, and z is the regulated output. Most of the control

problems can be reduced to this form where the objective is to design a controller K such that it robustly stabilizes

the plant for all admissible ∆’s while minimizing the effects, measured in a certain metric, of the exogenous input

on the regulated output. The l1 control theory developed to deal with persistent but bounded disturbances. The

rejection of l∞ disturbances was first formulated in [1]. Back then, approaches were only available to deal with two

types of exogenous inputs. Either the exogenous input was somehow known, e.g. sinusoid or step, or it was assumed

to be square-integrable, i.e. l2 signal. In either case, the objective was to minimize the maximum (weighted) energy

of the output. [1] was a genuine paper as it gave birth to the theory of l1 robust control but did not provide a

G

∆

K

w z

yu

Figure 1.1: General setup of a control system
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complete solution. The l1 control problem was first fully solved in [2] for SISO systems. It was shown that the

optimal controller can be retrieved from a solution to a finite dimensional Linear Program (LP). Furthermore, the

MIMO case was considered and solved in [3]. Later, in [4] and [5], the l1 control theory proved to be a cornerstone of

the robust control together with the H∞ theory. The l1 theory gained popularity not only because it allows one to

cope with persistent disturbances but also finding the optimal solution is computationally efficient as it reduces to

LP. Another appealing feature of the l1 (or l∞) framework is that the time-domain constraints, such as saturation,

can be handled directly whereas this is not the case in the l2 setting.

The common approach in finding an l1 optimal controller is to formulate the problem as a Model-Matching

Problem (MMP). This can be done through the Youla-Kucera parameterization [6]; that is parameterizing the set of

all stabilizing controllers by a stable parameter Q which is referred to as the Youla parameter. Then, the set of all

closed-loop maps can be written as affine maps in the Youla parameter and consequently the problem reduces to

inf
Q
‖H − UQV ‖ , (1.1)

where H, U , and V are stable systems defined in terms of the plant parameters and ‖.‖ is the l∞-induced (l1) norm.

A few years after this problem solved in [3], it was also shown that a time-varying or a smooth nonlinear control

offers no advantage over LTI one [7], [8]. Also, it was shown that even in the case of full state feedback, unlike the

H∞ optimal control, the l1 optimal control can be dynamic of arbitrarily high order [9]. However, invoking viability

theory, it is proved [10] that there exists an optimal static (possibly non-smooth) nonlinear controller for the full

state feedback. Moreover, the author presents a constructive algorithm for such a controller in [11]. On the subject

of l∞ filters, one can refer to [12] where the author addresses the problem of minimizing the worst-case magnitude

of the estimation error over unknown but l∞ input signals. The problem is essentially formulated as a MMP and

solved via LP.

Aside for the LTI systems, the l1 control theory for other classes of systems is not studied very much. Of the

few extensions departing from LTI, one can refer to [13] and [14]. In the former, it was shown that the performance

of slowly time-varying systems cannot be drastically different from that of the time-invariant frozen-time systems.

In [14], the multirate and periodic systems are studied. The authors use lifting techniques to reduce the problem to

time-invariant with additional constraints imposed on the controller to ensure causality. It was shown that control

synthesis for periodic systems is not much different than the standard l1 control problem.

1.2 Linear Switched Systems

Linear Switched Systems (LSS) are a special class of hybrid systems and have been the subject of many studies

over the last twenty years or so. Researchers have focused on many aspects of such systems. We refer to [15], [16],

[17], and references therein for some of the works done in this area. LSS can be used to model various practically
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important situations and hence deserve a thorough study. They can be used to model systems with sudden parameter

variations, sudden change of system structure due to various reasons such as failures, lossy communications, etc.

In the literature, stability analysis and stabilizability of such systems have been given a major attention. One

can refer to [18], [19], [20], [21], and [22] regarding the stability analysis and stabilizability conditions for switched

linear systems. Unfortunately, these conditions are all combinatorial and computationally hard to check. Indeed, the

stability of a switched linear system is, in general, an undecidable problem [23]. As a trade-off, one can consider the

tractable but sufficient conditions such as quadratic stabilizability, or the existence of a common Lyapunov function.

Similar to LTI systems, input-output properties of LSS are important. A relevant question is what the different

gains of a LSS are and how they are possibly related to the gains of the LTI modes of this system. There are works

such as [24], [25], [26], [27], [28], and [29] that deal with finding the quadratic type of performance for such systems.

In [26], the worst-case L2 induced gain of a LSS is studied when the switching is slow and the time between two

consecutive switches approaches infinity. In the case of slow switching (when the dwell time approaches infinity),

on the contrary to what one might expect, the gain of the switched system can be, in general, arbitrarily larger

than that of its LTI modes. It is argued that the worst-case switching scenario suffices to have one switch when the

dwell time approaches infinity. In [29], the L2 induced norm of periodic LSS is studied in the case of fast switching

(when the rate of switching approaches infinity). It was shown that the L2 induced norm of a fast switching LSS is

in general different than that of the average system. The authors defined the term input-output energy gain of the

system and showed for a fixed L2 input signal, if only the state coefficient matrix switches, the input-output energy

gain of a LSS approaches the L2 gain of the average system as the rate of switching grows to infinity. In [28], an H2

type of cost is studied and upper and lower bounds are provided for continuous as well as discrete-time systems.

In stochastic frameworks, Markov Linear Switched Systems (MLSS) have been studied in a large body of literature,

e.g., [30], [31], [32], and [33]. A MLSS is a LSS whose switching law is a Markov process. As an example, the packet

delivery of a network can be modeled as a Markov process and combined with the LTI plant results in a MLSS. Most

of the literature on the input-output properties of LSS and MLSS are analyzed in quadratic setting. In the context

of l1 or l∞ induced gains, very little has been done. This is what we address in the first part of this dissertation.

1.3 Systems with Cone Constraints

There are many dynamical systems in which some variables are restricted to be non-negative (or non-positive);

examples can be found in biology, economics, and many other areas [34], [35], [36]. Motivated by such problems, the

theory of positive systems has been the focus of many researchers. Notions such as stability, stabilizability, positive

realization, and (distributed) control synthesis of such systems have been the subject of research, see e.g. [37], [38],

[39], [40].

For linear systems, the notion of internal positivity refers to the case when the states of the system remain
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nonnegative if the inputs and the initial conditions are nonnegative. Many aspects of positive linear systems have

been investigated extensively, see for example [41]. The controllability of linear positive systems is studied in [42].

The problem of positive realization is considered in [43] and [44]. The input-output properties, and in particular

the gains of such systems, have also been given major attention in [45], [46], [47], and references therein. In [45],

copositive linear Lyapunov functions and linear supply rates are used, in the context of dissipativity theory, to

investigate robust stability and performance. Further, the problem of synthesizing an optimal l∞-induced static

state-feedback controller with given sparsity or boundedness constraints is considered and solved. Synthesizing an

optimal l1-induced static state-feedback controller is studied in [46] and [48]. In the latter, the problem is reduced

to a bilinear program and an iterative algorithm is utilized to solve it. The output feedback, however, is a more

challenging problem. This problem, in general, can be cast as a bilinear program and in certain cases, it can be

reduced to a linear program. In [49], a linear program is provided to find a rank one static output-feedback gain

such that the closed loop system is stable and internally positive. For l2 type of performance, one can refer to [50],

[51], and [47].

Aside from positive systems whose states and outputs are positive, there are types of systems with cone constraints.

For example, one can think of a not necessarily positive system whose input is restricted to be positive. As an

example, consider a positive nonlinear system with positive input that is linearized about a point other than origin.

The linearized model is no longer a positive system as it is not linearized about the origin. Its inputs, however,

remain positive and hence fit into this class of problems. To the best of our knowledge, the input-output properties

of this type of systems are not considered before although they deserve theoretical investigation. In the second part

of this dissertation, we develop novel results on positive systems as well as the on the less studied systems with

positive input.

1.4 Contribution of the Dissertation

As mentioned above, the l1 theory is mainly limited to LTI systems and the extensions address slowly time-varying

and periodic systems. We extend this theory to the classes of LSS, MLSS, and general LTV systems, in the first part

of this dissertation.

In Chapter 2, Section 2.2, we consider the worst-case l∞-induced norm computation of LSS. This is a highly

complex problem. In fact, a prerequisite to compute the gain of LSS is stability, which is an undecidable problem

[23]. Therefore, for the sake of well-definedness, we assume that the LSS is stable when computing the norm.

We find bounds on the worst-case l∞-induced norm and discuss how finding those bounds is a complicated task.

This, indeed, is not surprising due to the complexity of the class of LSS. Therefore, we restrict our study to the

subsets of LSS whose gain computation can be done more efficiently. To this end, we introduce the classes of output

switching systems, input switching systems, input-output switching systems, and generalized input-output switching
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systems. For these classes of LSS, we provide exact expressions to compute the worst-case gain via LP. The interest

in these classes of LSS is not only because their gain can be computed efficiently but also they can be used to model

interesting practical situations, for example switching between actuator/sensors. Furthermore, as we show, the class

of generalized input-output switching systems is dense in the space of all stable LSS. We use this fact to derive new

stability condition for LSS in terms of MMP which can be cast as LP. Furthermore, utilizing generalized input-output

switching systems, we compute the gain of a general LSS and can synthesize optimal controllers.

Next, in Section 2.3, we consider the problem of computing the minimal gain. That is, we try to answer the

question of what switching law results in the smallest l∞-induced norm. We show that an optimal switching is

periodic. This relates to the sensor scheduling problems. Furthermore, for a periodic switching, one can employ

lifting techniques and design a filter/controller for the invariant representation of the system similarly to [14].

In Chapter 3, we study the Markov Linear Switched (MLSS) systems. These are LSS where the switching sequence

is a Markov process. To study these systems, we define the notion of the stochastic l∞ gain and show how it can

be computed. Moreover, we study the mean performance of MLSS and present an optimal controller synthesis to

minimize the l∞ gain of the mean representation.

In the second part of this dissertation, we study the l∞ performance and control design of the LTI systems subject

to positivity constraints. More precisely, we study two types of systems, the LTI systems whose inputs are restricted

to the positive cone of l∞ and positive LTI systems.

In Chapter 4, the (not necessarily positive) systems with positive inputs are studied. We introduce the notion of

plus norm to characterize the input-output gain of such systems. The plus norm is defined to be the induced norm

of the system from the positive cone of l∞ to l∞. We provide exact computation of the plus norm in terms of the l∞

and the DC gain of the system which can be performed via LP. This can be used to synthesize optimal plus norm

controllers. Using duality theory, we further show that the optimal plus norm controller exhibits certain features

similar to those of the standard l1 optimal controller. More precisely, for one-block problems, both controllers can

be found through finite dimensional LP in the dual space and both result in FIR closed-loop. Moreover, we show

that a smooth time-varying nonlinear controller cannot outperform a LTI controller, in the plus norm sense.

In Chapter 5, two notions of positive systems are considered, external and internal. Externally positive systems

are the systems whose outputs remain nonnegative as long as the inputs are nonnegative. A system is said to be

internally positive if, in addition to the outputs, the states remain nonnegative when the initial condition and inputs

are nonnegative. Examples of such systems arise naturally in economics, biology, etc. We show how synthesizing a

controller enforcing closed-loop external positivity can be cast as LP. Furthermore, if the internal positivity of the

closed-loop is desirable, we argue that a dynamic controller offers no advantage over a static one. Finding the static

controller turns out to be a bilinear program, in general. However, in certain cases, the problem reduces to LP. As

shown, these are the cases of full or partial state feedback, or if the measurement matrix (C-matrix) is invariant

under multiplication by diagonal matrices.
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To summarize, the contributions of this work are the following:

• Worst-case l∞ gain computation for certain classes of LSS; these are input, output, input-output, and gener-

alized input-output switching systems.

• Worst-case l∞ gain computation for general LSS through approximation with generalized input-output switch-

ing systems.

• Minimal l∞ gain computations.

• The extension of the l1 optimal control theory to LTV and LSS in both deterministic and stochastic frameworks.

• l∞ analysis and control synthesis for externally and internally positive systems:

• l∞ analysis and control synthesis for systems with positive inputs.

1.5 Some Generic Notation

In this section we define the notation used throughout this dissertation. By R and Z we mean the sets of real

numbers and integers, respectively. We further use Z+ to denote the set of non-negative integers. The set of n-tuples

x = {x (k)}n−1
k=0 where x (k)s are real numbers is denoted by Rn. For any x ∈ Rn, its l∞ and l1 norm are defined as

‖x‖∞ = max
k∈{0,1,...,n−1}

|x (k)| ,

‖x‖1 =

n−1∑
k=0

|x (k)| .

Let g = {g (k)}∞k=0 be a sequence where g (k) ∈ Rn. Then, the l∞ and l1 norm of this sequence are defined as

‖g‖∞ = sup
k∈Z+

‖g (k)‖∞ ,

‖g‖1 =

∞∑
k=0

‖g (k)‖1 ,

whenever they are finite. The set of sequences whose l∞ norm (l1 norm) is finite is denoted by ln∞ (ln1 ). We

may use l∞ (l1) instead of ln∞ (ln1 ) when the dimension n is clear from context or not important. For a sequence

g = {g (k)}∞k=0 ∈ l∞, its λ-transform is defined as

Ĝ (λ) =

∞∑
k=0

g (k)λk,

6



for the values of λ that the summation converges. Given a linear operator (or matrix) T : l∞ → l∞ ( T : Rn → Rm),

its l∞ induced norm, ‖T‖, is defined as

‖T‖ := sup
f 6=0

‖Tf‖∞
‖f‖∞

.

It can be easily verified that for a finite dimensional matrix X : Rn → Rm,

‖X‖ = sup
i

n∑
j=1

|xij | ,

where xij is the entry at row i and column j of X. The standard truncation and delay operators are denoted by Π

and Λ, respectively. More precisely, for any k ∈ Z+ and any sequence g = {g (0) , g (1) , ...},

Λkg =

0, ..., 0︸ ︷︷ ︸
k zeros

, g (0) , g (1) , ...

 ,

Πkg = {g (0) , g (1) , ..., g (k − 1) , 0, 0, ...} ,

and Λ−kg = {g (k) , g (k + 1) , ...}.

7



Part I

Linear Switched Systems
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Chapter 2

Deterministic Linear Switched Systems

2.1 Background

In general, a LSS is composed of finite number of LTI subsystems and a rule that orchestrates switching between

subsystems. In state-space, a LSS Hσ can be realized as

Hσ :

 x (t+ 1) = Aσ(t)x (t) +Bσ(t)u (t)

y (t) = Cσ(t)x (t) +Dσ(t)u (t)
, (2.1)

where σ : Z+ → ZN : = {1, 2, ..., N} is referred to as the switching sequence and the 4-tuples
(
Aσ(k), Bσ(k), Cσ(k), Dσ(k)

)
assumes values in the set

{(Ai, Bi, Ci, Di) : i ∈ ZN} ,

for k ∈ Z+. Sometimes, σ is restricted to be in the set of admissible switching sequences. We denote this set by Ξ

which is a subset of all N valued sequences. Each LTI subsystem is referred to as the LTI mode of the LSS.

Example 1 (Switching between sensors)

Consider N LTI systems Pi =

 Ai Bi

Ci Di

 for i = 1, 2, ..., N . Suppose, due to certain restrictions on the

communication channel, only output of one of these systems is measured and transmitted at each time step. In block

G1

G2

GN

...

σ

uy

Figure 2.1: Output Switching System
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diagram this system can be shown as in Figure 2.1. This system can be represented as

Pσ :

 x (t+ 1) = Āx (t) + B̄u (t)

y (t) = Cσ(t)x (t) +Dσ(t)u (t)
,

where σ : Z+ → ZN , Ā = diag (A1, A2, ..., AN ), and B̄ =



B1

B2

...

BN


.

1

Figure 2.2: Buck-boost DC-DC converter

Example 2 The buck-boost converter in Figure 2.2 can be mathematically written as

ẋ (t) = Aσ(t)x (t) +Bσ(t)u (t) ,

where

A0 =

 0 − 1
L

1
C − 1

RC

 , A1 =

 0 0

0 − 1
RC

 ,
B0 =

 0

0

 , B1 =

 VIN
L

0

 .
The input-output properties of LSS is mostly studied in l2 framework. In the context of l1 or l∞ induced gains,

very little has been done. This is what we are concerned with in this part. In particular, we are concerned first with

the worst-case l∞ induced norm computation of LSS (Section 2.2). We consider a general LSS under the assumption

10



Gσ

Hσ

Figure 2.3: Interconnection of two switching systems

that the LSS is stable under arbitrary switching and study the following problem

sup
σ
‖Gσ‖ , (2.2)

where Gσ is a LSS, σ is the switching sequence, and the norm, ‖.‖, is the l∞ induced norm. This problem can be

linked to robustness of systems when the switching is arbitrary. For example, invoking the small-gain theorem, the

interconnection of two stable LSS Gσ and Hσ in Figure 2.3 is stable if supσ ‖GσHσ‖ < 1. We provide lower and

upper bounds of the worst-case gain (2.2). These bounds are hard to compute and in general conservative. Hence,

we narrow our attention to special classes of LSS by defining the classes of input, output, input-output, and the

generalized input-output LSS and show that for these classes, exact and tractable expressions for the worst-case l∞

induced norm can be found. The class of generalized input-output LSS proves important since any stable LSS can

be approximated by one in this class with arbitrary accuracy. Moreover, we present a new necessary and sufficient

condition equivalent to the stability of LSS in terms of a model matching problem that involves generalized input-

output switching systems. Also, utilizing the generalized input-output switching systems we provide conditions to

checking the gain of a LSS and also synthesize controllers for LSS via LP.

Moreover, in Section 2.3, we study the other extreme of (2.2) which is the minimal-gain problem. That is,

inf
σ
‖Gσ‖ . (2.3)

The interest in this type of problem is motivated by situations where there may be limited sensor and/or actuator

resources for filtering and control. For example, there might be restrictions on how often a particular sensor or

actuator is used. In these cases, the switching sequence may become an important decision variable to explore in

minimizing estimation or tracking errors. More specifically, if the corresponding map of interest Gσ depends on a

switching controller or filter Qσ to be designed based on switching among a collection of LTI systems Qi that depend

on the availability of a sensor/actuator i, then a relevant performance optimization should involve both the selection

of σ and Qi. As one can see, studying the problem of minimizing the norm of a map of interest over the switching

sequence σ is very relevant in order to tackle the bigger problem of optimizing jointly over the sequence σ and

the controller/filter systems Qi. This is so since, in principle, one can alternate between two disjoint optimizations

over σ and Qis to get a better solution at each time. In Section 2.3, we show that for FIR switching systems the
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minimizing switching sequence can be chosen to be periodic. For input-only or output-only switching systems an

exact characterization of the minimal l∞ gain is provided, and it is shown that the minimizing switching sequence is

constant, which, as also shown, is not true for input-output switching.

2.1.1 Preliminaries and Notation

Here, we define the notation used in this part of the dissertation. First, notice that any linear causal map T : u ∈

l∞ → y ∈ l∞ can be thought of as an infinite dimensional lower triangular matrix,

T =



T00 0 0 · · ·

T11 T10 0 · · ·

T22 T21 T20

...
...

. . .


. (2.4)

By R [T ]n we mean the causal part of the nth block row in the matrix representation of T , i.e.

R [T ]n :=

[
Tnn Tn,n−1 · · · Tn0

]
.

In terms of this representation

‖T‖ = sup
n
‖R [T ]n‖ .

We say a linear causal map T : l∞ → l∞, with matrix representation (2.4), is Finite Impulse Response (FIR) of some

order M ∈ Z+ if for any integer n ≥M ,

R [T ]n =

[
0 · · · 0 Tn,M−1 · · · Tn0

]
.

A LTV system

G :

 x (t+ 1) = A (t)x (t) +B (t)u (t)

y (t) = C (t)x (t) +D (t)u (t)
, with x (0) = x0 given,

where u (t) ∈ Rm, x (t) ∈ Rn, y (t) ∈ Rp, and x0 ∈ Rn are input, state, output, and the initial condition of the system

and A (t) , B (t) , C (t) , and D (t) are bounded matrices with appropriate dimensions for all t ∈ Z+, can be rewritten

as

G :

 Λ−1x = Âx+ B̂u

y = Ĉx+ D̂u
, (2.5)
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where x = {x (t)}∞t=0, y = {y (t)}∞t=0, u = {u (t)}∞t=0, Λ is the delay operator,

Â = diag (A (0) , A (1) , ...) :=


A (0) 0 · · ·

0 A (1)

...
. . .

 ,

and B̂, Ĉ, and D̂ are defined analogously. We assume that Â, B̂, Ĉ, and D̂ are bounded maps. It can be easily

shown that (2.5) can also be written

G :

 x =
(
I − ΛÂ

)−1

ΛB̂u+
(
I − ΛÂ

)−1

x̄0

y = Ĉx+ D̂u
, (2.6)

where x̄0 = {x0, 0, 0, ...}. In (2.6), the effects of the initial condition on the state variables are made explicit through

the mapping
(
I − ΛÂ

)−1

.

Definition 3 We say the LTV system G in (2.6) is stable if it is a bounded operator from

 x0

u

 to

 x

y

.

We note that stability in the sense of the above definition is equivalent to the boundedness of the mapping(
I − ΛÂ

)−1

in (2.6). By a LSS we mean a system in the form (2.1). Notice that given σ ∈ Ξ, (2.1) defines a LTV

system. Hence, one can define bounded linear operators Âσ, B̂σ, Ĉσ, and D̂σ that depend on the switching sequence

σ and rewrite (2.1) as

Hσ :

 Λ−1x = Âσx+ B̂σu

y = Ĉσx+ D̂σu
, (2.7)

where Âσ = diag (Aσ0
, Aσ1

, Aσ2
, ...) and B̂σ, Ĉσ, and D̂σ are defined analogously. Let S denote the class of LSS that

are internally stable for any switching sequence. We use the compact notation of Hσ =

 Aσ Bσ

Cσ Dσ

 to denote

(2.1) and by the ith mode of Hσ, we mean the LTI system

 Ai Bi

Ci Di

. We emphasize here that elements of S can

be seen as maps from u to y that are l∞-bounded uniformly with respect to the switching sequence [16]. That is, for

Hσ ∈ S, supσ ‖Hσ‖ is well defined.

2.2 Worst-Case l∞ Induced Norm

In this section, we present our results regarding the computation of l∞ induced norm of linear switched systems.

More precisely, assuming that the LSS is internally stable for any switching sequence, we are interested in finding
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the the worst-case l∞ norm of the system without imposing any constraint on the switching sequence. That is,

sup
σ
‖Gσ‖ . (2.8)

This proves to be an important problem since it links to the robustness with respect to switching. In general, the

exact calculation of (2.8) is a highly complex problem. However, we can find bounds for (2.8). Towards this end, let

α : = max
j∈ZN

‖Aj‖ , β := max
j∈ZN

‖Bj‖ ,

γ : = max
j∈ZN

‖Cj‖ , θ = max
j∈ZN

‖Dj‖

and let ‖Gj‖ be the norm of the LTI system associated with the state space matrices of index j, i.e., Gj = Aj Bj

Cj Dj

. Furthermore, since we assume that Gσ is stable for any switching sequence, it is known that [16] for

any matrix norm ‖.‖, there exists some integer q such that

ρ := max
Aik∈{Aj}j∈ZN

∥∥Ai1Ai2 . . . Aiq∥∥ < 1. (2.9)

The following proposition can be easily proved.

Proposition 4 If α < 1 then

max
j
‖Gj‖ ≤ sup

σ
‖Gσ‖ ≤

γβ

1− α
+ θ.

If α ≥ 1 then

max
j
‖Gj‖ ≤ sup

σ
‖Gσ‖ ≤

γβᾱ

1− ρ
+ θ,

where ᾱ := 1 + α+ α2 + · · ·+ αq.

Proof. The lower bound follows trivially as the specific Gj correspond to a constant σ(t) = j for all t ≥ 0. For the

case α < 1 the result follows immediately as

‖y(t)‖∞ =

∥∥∥∥∥Cσ(t)

t−1∑
τ=0

Aσ(t) . . . Aσ(t−τ−1)Bσ(τ)u(τ) +Dσ(t)u (t)

∥∥∥∥∥
∞

≤

[
γ

t−1∑
τ=0

αt−τ−1β + θ

]
max
τ≤t
‖u(τ)‖∞ .

The case α ≥ 1 follows in a similar pattern by bounding any product Aσ(t) . . . Aσ(t−τ−1) in chunks of size q as∥∥Aσ(t) . . . Aσ(t−τ−1)

∥∥ ≤ ρbt/qcαt−τ−1−bt/qc if bt/qc ≤ t− 1.

The above bounds can be in general conservative and, in the case where α ≥ 1, finding the integer q and hence ρ

is a combinatorial problem, so these general bounds may not be very practical. This problem will be revisited later in
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Subsection 2.2.4 where the general LSS are approximated by the generalized input-output switching systems. Also, it

is obvious that if we define an average system Ḡ := 1
N

∑N
j=1Gj then

∥∥Ḡ∥∥ ≤ maxj ‖Gj‖ for any system norm. In the

sequel we elaborate on specific classes of switched systems where exact expressions for supσ ‖Gσ‖ can be obtained.

These are systems with non-switching state dynamics, that is they have a constant A-matrix. We begin with the

output switching systems.

2.2.1 Output Switching Systems

The set of output switching systems, denoted by S1
O, is a subset of S whose elements, Gσ, can be realized as

Gσ :

 x (t+ 1) = Ax (t) +Bu (t)

y (t) = Cσ(t)x (t) +Dσ(t)u (t)
,

where matrices A and B are constant and A is Schur stable. This class of systems can be thought of as the composition

of a time-varying operator with a time-invariant one. More precisely, for

f =




f1 (0)

...

fN (0)

 ,


f1 (1)

...

fN (1)

 ,


f1 (2)

...

fN (2)

 , ...
 ∈ lNp∞ ,

define the switching operator Sσ : lNp∞ → lp∞ as

(Sσf) (t) = fσ(t) (t) , for t ∈ Z+. (2.10)

Using this operator any Gσ ∈ SO can be written as

Gσ = Sσ


G1

...

GN

 , (2.11)

where

Gi =

 A B

Ci Di

 ∈ LTI , for i ∈ ZN .

Output switching systems have an obvious interpretation. As shown in Figure 2.4, they can be seen as N LTI

systems driven by the same input and at each time step the output of only one of them is sampled. This, for example,

can be the case when, due to some restrictions, only a subset of all sensors can provide measurements at each time

step.

Given a switching sequence σ = {σ (0) , σ (1) , ...}, Gσ defines a linear time varying operator whose infinite
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G1

G2

GN

...

σ

uy

Figure 2.4: Output Switching System

G1 G2 GN. . .

σ
u

y

Figure 2.5: Input Switching System

dimensional lower triangular representation is as follows:

Gσ =



gσ(0) (0)

gσ(1) (1) gσ(1) (0)

gσ(2) (2) gσ(2) (1) gσ(2) (0)

...
. . .


, (2.12)

where {gi (k)}∞k=0 is the impulse response of LTI system Gi. Clearly, the tth row of (2.12), and consequently y (t),

depends only on the value of switching sequence at time t. In other words, the output of this system, y, at each

time instant, t, is y (t) = yσ(t) (t) where yi = Giu, for i ∈ ZN . From the definition of l∞ norm, one can write

‖y‖∞ ≤ maxi∈ZN ‖yi‖∞. Hence, based on the Proposition 4, it follows that supσ ‖Gσ‖ = maxi∈ZN ‖Gi‖. Therefore,

the following proposition is immediate.

Proposition 5 For an output switching system of the form (2.11), we have

sup
σ
‖Gσ‖ =

∥∥∥∥∥∥∥∥∥∥


G1

...

GN


∥∥∥∥∥∥∥∥∥∥
.
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2.2.2 Input Switching Systems

Dual, in a sense, to the previous case is the input switching. The set of such systems is denoted by SI and is a subset

of S whose elements of the form

Gσ :

 x (t+ 1) = Ax (t) +Bσ(t)u (t)

y (t) = Cx (t) +Dσ(t)u (t)
.

In this case, the matrices A and C are constant, A is Schur stable, and the input matrices B and D switch. Such

systems can be decomposed into an LTI system and a time varying operator. That is,

Gσ =

[
G1 G2 · · · GN

]
S∗σ,

where

Gi =

 A Bi

C Di

 ∈ LTI , for i ∈ ZN ,

and S∗σ is defined as

(S∗σu) (k) =



0

...

u (k)

...

0


← σ (k)

th
position .

In block diagram, such systems are depicted in Figure 2.5. The norm computation of input switching systems is

more involved than that of output switching ones. Hence, for the sake of clarity, we assume that there are only two

modes, N = 2, and each mode is a single input single output system. We will relax these assumptions in Theorem 7.

We note that the infinite lower triangular representation of Gσ in this case is made of columns that belong to

either G1 or to G2 depending on what σ(t) is. It can be easily verified that the form of Gσ is as

Gσ =



gσ(0) (0)

gσ(0) (1) gσ(1) (0)

gσ(0) (2) gσ(1) (1) gσ(2) (0)

...
...

...
. . .


,

where {gi (k)}∞k=0 is the impulse response of Gi, for i ∈ {1, 2}. In this case, the norm of T th row of matrix

representation of Gσ is given by

‖R [Gσ]T ‖ =

T∑
k=0

∣∣gσ(T−k) (k)
∣∣ .
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G11 G12 G1N
. . .

σ

uy

σ

G21

GN1

G22
. . .

. . .

. . .
...

...

G2N

GNN

...

GN2

Figure 2.6: Input-Output Switching System

Clearly, the worst-case norm of the T th row is obtained by

max
σ
‖R [Gσ]T ‖ =

T∑
k=0

max {|g1 (k)| , |g2 (k)|} ,

where the use of maxσ is justified as the T th row only has finitely many non-zero elements. Therefore, we have

sup
σ
‖Gσ‖ = sup

σ
sup
T
‖R [Gσ]T ‖ = sup

T
max
σ
‖R [Gσ]T ‖

=

∞∑
k=0

max {|g1 (k)| , |g2 (k)|} .

Thus, the following is immediate:

Proposition 6 Let Gσ =

[
G1 G2

]
S∗σ be a SISO input switching system. Then, its worst-case l∞ induced norm

is given by

sup
σ
‖Gσ‖ = ‖ḡ‖1 =

∞∑
t=0

|ḡ(t)|, (2.13)

where ḡ := {ḡ(t)}∞t=0 := {max{|g1(t)|, |g2(t)|}}∞t=0.

Notice that for any ε > 0, since G1 and G2 are (exponentially) stable systems, one can apriori choose an integer

n such that Πnḡ is in any ε > 0 neighborhood of ḡ in l1 sense. Furthermore, generating ḡ can be easily done as

each term of ḡ can be determined independently of the other terms by comparing only two numbers. Therefore,

computing ‖ḡ‖1 to an apriori accuracy is a simple task.

2.2.3 Input-Output Switching Systems

Having defined input and output switching systems, it is intuitive to consider input-output switching systems. These

are systems whose state matrix, A, remains constant and is Schur stable but the other matrices in their state space

realization may switch among finitely many possibilities. The set of such systems is denoted by SIO where each
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element Gσ can be realized as

Gσ :

 x (t+ 1) = Ax (t) +Bσ(t)u (t)

y (t) = Cσ(t)x (t) +Dσ(t)u (t)
. (2.14)

Similar to input or output switching systems, these systems can be written as the composition of the switching

operator with an LTI system as follows:

Gσ = Sσ


G11 · · · G1N

...
. . .

GN1 · · · GNN

S∗σ, (2.15)

where Gij =

 A Bj

Ci Di

 ∈ LTI , for i, j ∈ ZN . Figure 2.6 is the block diagram of an input-output switching

system. It is clear that this class of systems covers input only or output only switching systems. Here, we give

an exact expression for computing the l∞ induced norm of these (not necessarily SISO) systems. First, we state

the results for Multi-Input Single-Output (MISO) systems and then argue how they can be generalized to the more

general MIMO case.

Theorem 7 For a MISO input-output switching system Gσ as in (2.15), the worst-case l∞ induced norm can be

calculated as

sup
σ
‖Gσ‖ = max

j∈ZN
‖ḡj‖1 ,

where for each j ∈ ZN the sequence ḡj := {ḡj (n)}∞n=0 is defined as

ḡj (n) =

 ‖gjj (0)‖ for n = 0

maxk∈ZN ‖gjk (n)‖ for n > 1
,

and {gij (k)}∞k=0 is the impulse response of Gij.

Proof. It is easy to verify that the lower triangular infinite dimensional matrix representation of Gσ is given by

Gσ =



gσ(0)σ(0) (0)

gσ(1)σ(0) (1) gσ(1)σ(1) (0)

gσ(2)σ(0) (2) gσ(2)σ(1) (1) gσ(2)σ(2) (0)

...
...

. . .


.

The worst-case l∞ induced norm, supσ ‖Gσ‖, for this operator is given by

sup
t

sup
σ

∥∥[gσ(t)σ(0) (t) gσ(t)σ(1) (t− 1) ... gσ(t)σ(t) (0)
]∥∥ .
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Notice that the value of σ (t) ∈ ZN has finite number of possibilities and does not affect the value of σ (k) for k < t.

Thus, we can write

sup
σ

∥∥[gσ(t)σ(0) (t) gσ(t)σ(1) (t− 1) ... gσ(t)σ(t) (0)
]∥∥

= max
j∈ZN

sup
{σ(k)}t−1

k=0

∥∥[gjσ(0) (t) gjσ(1) (t− 1) ... gjj (0)
]∥∥

= max
j∈ZN

sup
{σ(k)}t−1

k=0

(
t∑

τ=0

∥∥gjσ(τ) (t− τ)
∥∥) ,

where we used the fact that Gσ is MISO. Therefore,

sup
σ
‖Gσ‖ = sup

t
max
j∈ZN

sup
{σ(k)}t−1

k=0

(
t∑

τ=0

∥∥gjσ(τ) (t− τ)
∥∥)

= max
j∈ZN

lim
t→∞

sup
{σ(k)}t−1

k=0

(
t∑

τ=0

∥∥gjσ(τ) (t− τ)
∥∥) = max

j∈ZN
‖ḡj‖1 ,

and thus the proof is complete.

It is emphasized that, similar to the input switching case, determining ḡj and the computation of its l1 norm is

tractable as each term in ḡj can be determined independently of the other terms in ḡj . Furthermore, notice that the

gain of an input-output switching system can be arbitrarily larger than that of its LTI modes. It can be done by

having ‖gjk (n)‖ , for k 6= j and n > 1, larger than ‖gjj (n)‖ in the above theorem.

Now, suppose Gσ is a MIMO input-output switching system with m inputs and p outputs. That is, y = Gσu,

where u = (u1, u2, ..., um) ∈ lm∞ and y = (y1, y2, ..., yp) ∈ lp∞. Define a MISO map Hr
σ to be the mapping from u to

yr, for r = 1, 2, ..., p. That is, Gσ can be partitioned as

Gσ =


H1
σ

...

Hp
σ

 ,

where for any r ∈ {1, 2, ..., p}, Hr
σ is also an input-output switching system that can be written as

Hr
σ = Sσ


Hr

11 · · · Hr
1N

...
. . .

Hr
N1 · · · Hr

NN

S∗σ,

with Hr
ij , for i, j ∈ ZN , can be realized as Hr

ij =

 A Bj

R [Ci]r R [Di]r

. So, to compute the worst-case l∞ norm of
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Figure 2.7: Switching Controller

Gσ we have:

sup
σ
‖Gσ‖ = sup

σ

‖Gσu‖∞
‖u‖∞

= sup
σ

max
r∈Zp

‖Hr
σu‖∞
‖u‖∞

= max
r∈Zp

sup
σ
‖Hr

σ‖ ,

where supσ ‖Hr
σ‖ can be calculated exactly based on Theorem 7 as Hr

σ is MISO.

Remark 8 The input-output switching systems are particularly important when, for a given LTI plant P , a finite set

of stabilizing controllers, {Ki}Ni=1, is given and one wants to realize them in a way that switching causes no instability.

Let

 X̃ −Ỹ

−Ñ M̃


 M Y

N X

 = I be a doubly-coprime factorization of P . Also, define J :=

 Y X−1 X̃−1

X−1 −X−1N

.

Then, appealing to Youla-Kucera parameterization, each Ki can be written as the following lower linear frac-

tional transformation Ki = Fl (J,Qi) , see Figure 2.7. Clearly, switching between stabilizing controllers amounts

to switching between Qis. Furthermore, arbitrary switching between Kis results in a closed loop switching system

which is stable if arbitrary switching between Qis is stable. Therefore, consider an input-output switching system

Qσ := Sσ


Q1

. . .

QN

S∗σ. Obviously, Qσ is stable for arbitrary switching sequence and hence yields to a

stabilizing switching controller Kσ = Fl (J,Qσ). Notice that Kσ has a more complicated structure than input-output

switching system and it coincides with Ki for fixed switching sequence σ ≡ i. Similar ideas have been exploited in

[52] and [21].

Remark 9 For the sake of gain computation, we mainly consider the initial condition of zero. However, there are

problems for which one needs to guarantee robustness (in some sense) with respect to the bounded initial conditions as

well as bounded inputs. In this case, consider (2.14) and without loss of generality suppose that the initial conditions

and input satisfy ‖x0‖∞ ≤ 1, ‖u‖∞ ≤ 1. We are interested to find

sup
σ

sup
‖x0‖∞≤1,‖u‖∞≤1

‖y‖∞ .
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Define ũ :=

 x0

u

 ∈ l∞ and consider the mapping Gσ : ũ→ y. Clearly, supσ sup‖ũ‖∞≤1 ‖y‖∞ = supσ ‖Gσ‖, where

Gσ has the following matrix representation,

Gσ =



Cσ(0) gσ(0)σ(0) (0)

Cσ(1)A gσ(1)σ(0) (1) gσ(1)σ(1) (0)

Cσ(2)A
2 gσ(2)σ(0) (2) gσ(2)σ(1) (1) gσ(2)σ(2) (0)

...
...

...
. . .


, (2.16)

with {gij (n)}∞n=0 being the impulse response of Gij =

 A Bj

Ci Di

 . Following the same line of argument as in

Theorem 7, one can show the following:

Theorem 10 For a MISO input-output switching system with bounded non-zero initial condition (2.14),

sup
σ

sup
‖ũ‖∞≤1

‖y‖∞ = max
j∈ZN

sup
M

∥∥ḡMj ∥∥1
,

where for each M ∈ Z+ and j ∈ ZN , ḡMj :=
{
ḡMj (n)

}M+1

n=0
is defined by

ḡMj (n) =


‖gjj (0)‖ for n = 0

maxk∈ZN ‖gjk (k)‖ for n ∈ ZM∥∥CjAM−1
∥∥ for n = M + 1

.

This result can be extended to the MIMO case following the arguments proceeding Theorem 7. Furthermore, similar

to the previous cases the computations to obtain the worst-case norm with arbitrary accuracy is tractable.

Next, we introduce the class of generalized input-output switching systems which can be used to approximate

the worst-case gain of the general LSS (with A-matrix switching).

2.2.4 Approximation of LSS by Input-Output Switching Systems

Equation (2.1) represents a LSS in its generic form. Previously, we defined input-output switching systems and

provided exact expression to compute their l∞ gain. One can also extend the notion of input-output switching

systems as follows:

Definition 11 Let M be a positive integer. We say a LSS Pσ is an input-output LSS of degree M if it is stable and

admits the realization

Pσ :

 x (t+ 1) = Ax (t) +Bσ(t)u (t)

y (t) = C{σ(k)}tk=t−M+1
x (t) +D{σ(k)}tk=t−M+1

u (t)
. (2.17)
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The class of such systems is denoted by SMIO and SIO =

∞⋃
M=1

SMIO.

We are also interested in a subclass of input-output LSS defined below:

Definition 12 Let M be a positive integer. We say a LSS Pσ is an output-only LSS of degree M if it is stable and

admits the realization

Pσ :

 x (t+ 1) = Ax (t) +Bσ(t)u (t)

y (t) = C{σ(k)}tk=t−M+1
x (t) +D{σ(k)}tk=t−M+1

u (t)
.

The class of such systems is denoted by SMO and SO =

∞⋃
M=1

SMO .

The classes of generalized input-output and output-only LSS are of particular interest for two reasons. First, any

stable LSS can be approximated by elements of SO and SIO with arbitrary accuracy (see the next theorem). Second,

we provide exact and tractable expressions to calculate the l∞ induced norm of these systems.

Theorem 13 Let Gσ be a stable LSS and ε > 0. Then, there exist an integer M , Ḡσ ∈ SMIO, and G̃σ ∈ SMO such

that

∥∥Gσ − Ḡσ∥∥ < ε,∥∥∥Gσ − G̃σ∥∥∥ < ε,

for any switching sequence σ. Moreover, Ḡσ and G̃σ can be made FIR.

Proof. Let Gσ =

 Aσ Bσ

Cσ Dσ

 be a stable system. Suppose, Aσ ∈ Rn×n, Bσ ∈ Rn×m, Cσ ∈ Rp×n, Dσ ∈ Rp×m.

Since, Gσ is stable, there exists and integer q such that for any integer M ≥ q, maxAik∈{Aj}j∈ZN ‖Ai1Ai2 . . . AiM ‖ < δ.

Let i := q + 2 and define Ḡσ ∈ SiIO with state-space matrices

Ā =



0 Im

0
. . .

. . . Im

0


∈ R(i−1)m×(i−1)m,

B̄σ(t) =

[
0 0 · · · Bσ(t)

]T
∈ R(i−1)m×m,

C̄{σ(k)}tk=l = Cσ(t)

[
t−1∏
k=l+1

Ak

t−1∏
k=l+2

Ak · · · I

]
,

D̄σ(t) = Dσ(t),

where l = max {t− i+ 1, 0}. It is easy to see for t ≥ i−1, following the same argument as in the proof of Proposition
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4,

sup
σ

∥∥Gσ − Ḡσ∥∥ ≤ max
i
‖Ci‖max

i
‖Bi‖

δ

1− δ
.

Since one can choose δ such that maxi ‖Ci‖maxi ‖Bi‖ δ
1−δ < ε, the proof is complete.

In the light of this theorem, to find the input-output gain of a generic LSS (with A-matrix switching), it suffices

to find the worst-case gain of a generalized input-output switching system that is sufficiently close it. In the rest of

this subsection, we show how to compute the l∞ induced norm of a generalized input-output LSS Pσ of degree M .

It is obvious from (2.17) that the C and D-matrices of Pσ can assume NM values at each time instant t; each value

associates with the segment {σ (t) , σ (t− 1) , ..., σ (t−M + 1)} of the switching sequence. Let IM be the set of all

Nvalued sequences of size M , i.e. IM =
{
i = {ik}M−1

k=0 : ik ∈ ZN
}

. We notice that each Pσ ∈ SMIO can be associated

with NM+1 LTI systems denoted by Pi,j , where i ∈ IM , j ∈ ZN and

Pi,j :

 x (t+ 1) = Ax (t) +Bju (t)

y (t) = Cix (t) +Diu (t)
.

Then, the l∞ gain of Pσ can be computed in terms of the impulse responses of the LTI systems Pi,j denoted by

{Pi.j (k)}∞k=0, for i ∈ IM and j = ZN .

Lemma 14 Let Pσ be an input-output LSS of order M . Further, assume Pσ is multi-input and single-output (MISO).

Then

sup
σ
‖Pσ‖ = sup

i={ik}M−1
k=0 ∈IM

M−1∑
k=0

‖Pi,ik (k)‖+

∞∑
k=M

max
j
‖Pi,j (k)‖ (2.18)

Remark 15 Although, Lemma 14 addresses MISO systems, it can be easily extended to MIMO systems. In fact,

suppose Pσ : u →


y1

...

yp

 is a MIMO input-output LSS and let P kσ to be the MISO mapping from the input to the

kth output, i.e. P kσ : u→ yk. Then, it can be verified that supσ ‖Pσ‖ = maxk supσ
∥∥P kσ ∥∥ and Lemma 14 can be used

to compute supσ
∥∥P kσ ∥∥ as P kσ is MISO.

Remark 16 The l∞ gain computation (2.18) can be written as a LP. For simplicity, suppose Pσ is SISO and it is

FIR of order T > M for all switching sequences. Then,

sup
σ
‖Pσ‖ = min γ,
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such that for any i = {ik}M−1
k=0 ∈ IM , k ∈ {0, 1, ...,M − 1}, k′ ∈ {M,M + 1, ..., T − 1}, and j ∈ ZN

|Pi,ik (k)| ≤ γi (k) ,

|Pi,j (k′)| ≤ γi (k′) ,

T−1∑
s=0

γi (s) ≤ γ.

2.2.5 Stability of LSS and LTV Systems

Our perspective in this subsection is greatly influenced by the fact that LSS reduce to LTV systems for a fixed

switching sequence. Hence, we take the approach of first establishing the results for LTV systems and then tailoring

them to LSS. More precisely, we study the stability and stabilizability of LTV systems and reduce them to convex

optimization problems. Then, we extend the results to LSS and argue how the stability/stabilizability problem can

be converted to a partially nested sequence of LP.

Notice that the LTV system G in (2.6) is stable if and only if the mapping
(
I − ΛÂ

)−1

is stable. In other words,

G is stable if and only if Â stabilizes Λ. Invoking the Youla-Kucera parameterization, Â stabilizes Λ if and only if

there exists a stable LTV system QA such that

Â = QA (I + ΛQA)
−1

= (I +QAΛ)
−1
QA,

or equivalently,

Â (I + ΛQA)−QA = 0, (2.19)

(I +QAΛ) Â−QA = 0. (2.20)

Finding QA satisfying (2.19) or (2.20) and making them exact equalities is a computationally challenging task.

However, as stability is a robust property, one can think of relaxing the above conditions while preserving the

necessity and sufficiency of the results as follows:

Theorem 17 Consider the LTV system G in (2.6). Then G is a stable if and only if there exists an LTV system Q

such that one of the following equivalent conditions hold

∥∥∥Â (I + ΛQ)−Q
∥∥∥ < 1, (2.21)∥∥∥(I +QΛ) Â−Q
∥∥∥ < 1. (2.22)

Proof. First, suppose G is stable. Based on the argument preceding the theorem, Â stabilizes Λ and hence there

exists QA satisfying (2.19) and (2.20). Obviously, QA satisfies (2.21) and (2.22) as well.
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Conversely, suppose (2.21) and (2.22) hold for some Q. Then the state equation of G can be written as

x− x̄0 = ΛÂx+ ΛBu

= ΛQ (I + ΛQ)
−1
x+ Λ

[
Â−Q (I + ΛQ)

−1
]
x+ ΛBu,

where we added and subtracted ΛQ (I + ΛQ)
−1
x to the right hand side. Now, after moving this term to the left

hand side, we obtain [
I − ΛQ (I + ΛQ)

−1
]
x = Λ

[
Â−Q (I + ΛQ)

−1
]
x+ ΛB + x̄0.

Thus,

x =
[
I − ΛQ (I + ΛQ)

−1
]−1 {

Λ
[
Â−Q (I + ΛQ)

−1
]
x+ ΛB + x̄0

}
= (I + ΛQ) Λ

[
Â−Q (I + ΛQ)

−1
]
x+ (I + ΛQ) ΛBu+ (I + ΛQ) x̄0

= Λ
[
(I +QΛ) Â−Q

]
x+ (I + ΛQ) ΛBu+ (I + ΛQ) x̄0. (2.23)

Using a small-gain like argument, one can show that x in (2.23) remains bounded for bounded u and x0 if (2.22)

holds. To prove (2.21), define η =
[
Â−Q (I + ΛQ)

−1
]
x. Then,

x = (I + ΛQ) Λη + (I + ΛQ) ΛBu+ (I + ΛQ) x̄0.

Clearly, x remains bounded if η does. We will show that the evolution of η is stable if (2.21) holds. It is easy to

verify that

η =
[
Â (I + ΛQ)−Q

]
Λη +

[
Â (I + ΛQ)−Q

]
(I + ΛQ) ΛBu+

[
Â (I + ΛQ)−Q

]
x̄0,

which is stable if (2.21) holds.

The above proof holds as long as the norms in (2.21) and (2.22) are induced norms from any vector space to the

same vector space. Furthermore, (2.21) and (2.22) are convex. And indeed, for the l∞ induced norm, we will show

how (2.21) can be cast as a linear program. To this end, suppose Q is FIR of order T with the following matrix

representation

Q =



q0 (0)

q1 (1) q1 (0)

q2 (2) q2 (1) q2 (0)

...
. . .

0 qT (T − 1) qT (T − 2) · · · qT (0)

. . .


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Then

R
[
Â (I + ΛQ)−Q

]
T

= AT

[
qT−1 (T − 1) · · · qT−1 (0) I

]
−
[

0 qT (T − 1) · · · qT (0)

]
,

and (2.21) can be written as

∥∥∥Â (I + ΛQ)−Q
∥∥∥ = sup

t

∥∥∥R [Â (I + ΛQ)−Q
]
t

∥∥∥
= sup

l,j

{
|e′l [Aj − qj (0)]|+

T−1∑
s=1

|e′l [Ajqj−1 (s− 1)− qj (s)]|+
∣∣eTl [Ajqj−1 (T − 1)]

∣∣} < 1, (2.24)

where the absolute value |.| is taken component wise and el is a vector of all zeros and one for the lth entry. It is

obvious, from (2.24), that finding Q is a linear program.

A LSS reduces to a LTV system for a given switching sequence σ. Hence, its stability can be checked via Theorem

17 for that particular switching sequence. Clearly, if we want to check the stability of an LSS for every switching

sequence, we have the check the stability of every induced LTV system as stated below:

Corollary 18 Consider the LSS Pσ as in (2.7). Let Ξ be a set of switching sequences containing the sequences of

interest. Then, Pσ is stable for any σ ∈ Ξ if and only if there exists a stable switching system Qσ such that

sup
σ∈Ξ

∥∥∥Âσ (I + ΛQσ)−Qσ
∥∥∥ < 1, (2.25)

sup
σ∈Ξ

∥∥∥(I +QσΛ) Âσ −Qσ
∥∥∥ < 1. (2.26)

We note that conditions (2.25) and (2.26) are in the so-called model matching form. In what follows, we discuss

how (2.25) can be cast as a linear program if the norm is the l∞ induced. Notice that given Qσ satisfying (2.25), it

can be approximated arbitrarily closely by an FIR input-output or output-only LSS. Therefore, the following holds

true:

Theorem 19 Consider the LSS Pσ as in (2.7). Let Ξ be a set of switching sequences containing the sequences of

interest. Then, Pσ is stable for any σ ∈ Ξ if and only if there exists an integer M such that one of the following

holds:

inf
Qσ∈SMIO

sup
σ∈Ξ

∥∥∥Âσ (I + ΛQσ)−Qσ
∥∥∥ < 1, (2.27)

inf
Qσ∈SMO

sup
σ∈Ξ

∥∥∥Âσ (I + ΛQσ)−Qσ
∥∥∥ < 1. (2.28)

It is easy to see that for Qσ ∈ SMIO or Qσ ∈ SMO , the mapping Âσ (I + ΛQσ)−Qσ is indeed an input-output LSS

of degree M + 1. Therefore, Lemma 14 can be used to reduce (2.27) or (2.28) to LPs.
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The following example illustrates the utility of our approach.

Example 20 Consider a LSS with two modes,

A1 =

 0.63 −1

−0.08 0.51

 , A2 =

 −0.31 0.33

−0.68 0.38

 .
It is interesting to note that there exists no common quadratic Lyapunov function for this system. However, the

stability of this system is guaranteed by the above corollary since, using linear programming, it can be computed that

inf
Qσ∈S1

IO

sup
σ

∥∥∥ÂσΛ +
(
ÂσΛ− I

)
QσΛ

∥∥∥ = 0.7694 < 1.

2.2.6 Gain Computation for general LSS

In the previous section, we looked at the LTV systems (or LSS) as operators mapping

 x0

u

 to

 x

y

 and derived

conditions for their boundedness (stability). For a bounded operator, we will proceed to quantifying its bound, a.k.a.

its gain. Conventionally, in the context of finding the gain of linear system, the initial condition is set to zero and

further, without loss of generality, only the effect of u on y is studied. We emphasize that our computations can be

cast as a LP. First, we state the results for LTV systems:

Theorem 21 Consider the LTV system G in (2.6). Then G is stable and ‖G‖ < 1 if and only if there exist a stable

LTV Q and δ > 0 such that the following holds

∥∥∥∥∥∥∥
 [A (I + ΛQ)−Q] δ [A (I + ΛQ)−Q] ΛB

1
δ Ĉ (I + ΛQ) Ĉ (I + ΛQ) ΛB + D̂


∥∥∥∥∥∥∥ < 1. (2.29)

Proof. First, suppose G is stable and ‖G‖ < 1. That is,

∥∥∥∥Ĉ (I − ΛÂ
)−1

ΛB̂ + D̂

∥∥∥∥ < 1 and Â stabilizes Λ. Then,

for Q = Â
(
I − ΛÂ

)−1

, (2.29) reads

∥∥∥∥∥∥∥
 0 0

1
δ Ĉ
(
I − ΛÂ

)−1

Ĉ (I + ΛQ) ΛB + D̂


∥∥∥∥∥∥∥ < 1,

which holds for sufficiently large δ.

Conversely, suppose (2.29) holds true. We want to show that G is stable and ‖G‖ < 1. The stability is guaranteed

according to Theorem 17 as (2.29) implies ‖A (I + ΛQ)−Q‖ < 1. To prove ‖G‖ < 1, we use a small-gain theorem

like argument. It is proved in [53] that if the interconnection of G :

 x0

u

 →
 x

y

 and ∆ : y → u is stable
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for all ∆, possibly nonlinear and time-varying, with ‖∆‖ ≤ 1, then ‖G‖ < 1. Therefore, it suffices to show that the

condition in (2.29) guarantees the stability of the interconnection of G and ∆. Now, consider the expression of G as

in (2.23). Define, η =
[
A−Q (I + ΛQ)

−1
]
x. Then, from (2.23), we have

x = (I + ΛQ) Λη + (I + ΛQ) ΛBu+ (I + ΛQ) x̄0.

From this, it is clear that the boundedness of η guarantees the boundedness of x and consequently the boundedness

of y. Furthermore, one can write the evolution of η as

η =
[
A−Q (I + ΛQ)

−1
]
x

= [A (I + ΛQ)−Q] Λη + [A (I + ΛQ)−Q] ΛBu+ [A (I + ΛQ)−Q] x̄0.

Now, instead of checking the stability of the interconnection of G :

 x0

u

→
 x

y

 and ∆ : y → u, we check the

stability of the interconnection of H1 :


x0

η

u

→
 η

y

 and H2 :

 η

y

→
 η

y

 given by

H1 :

 η = [A (I + ΛQ)−Q] Λη + [A (I + ΛQ)−Q] ΛBu+ [A (I + ΛQ)−Q] x̄0

y = Ĉ (I + ΛQ) Λη +
[
Ĉ (I + ΛQ) ΛB + D̂

]
u+ Ĉ (I + ΛQ) x̄0

,

H2 =

 I 0

0 ∆

 .
The interconnection of H1 and H2 is stable if

∥∥∥∥∥∥∥D−1

 [A (I + ΛQ)−Q] [A (I + ΛQ)−Q] ΛB

1
γ Ĉ (I + ΛQ) 1

γ Ĉ (I + ΛQ) ΛB + D̂

D
∥∥∥∥∥∥∥ < 1,

for some D. In particular, for D =

 I 0

0 δI

 we have

∥∥∥∥∥∥∥
 [A (I + ΛQ)−Q] δ [A (I + ΛQ)−Q] ΛB

1
δ Ĉ (I + ΛQ) Ĉ (I + ΛQ) ΛB + D̂


∥∥∥∥∥∥∥ < 1.
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We note that (2.29) is not convex in both δ and Q. It is, however, convex given δ. Condition (2.29) can be further

simplified for the l∞ case as follows:

Corollary 22 The LTV system G is stable and ‖G‖ < γ for some γ > 0 if and only if there exist a stable LTV Q

and δ > 0 such that the following hold

∥∥∥Â (I + ΛQ)−Q
∥∥∥+ δ

∥∥∥Â (I + ΛQ) ΛB̂ −QΛB̂
∥∥∥ < 1, (2.30)

1

δ

∥∥∥Ĉ (I + ΛQ)
∥∥∥+

∥∥∥Ĉ (I + ΛQ) ΛB̂ + D̂
∥∥∥ < γ. (2.31)

We note that if G is stable, (2.21) holds true and hence for sufficiently small value of δ, (2.30) and (2.31) admit a

solution (Q, γ). Therefore, in principle, one can start from small values δ and gradually increase δ until either (2.30)

becomes infeasible or the desired performance level γ is met. In fact, if ‖G‖ < γ, then (2.30) and (2.31) admit a

solution for large enough δ that is quantified in the next proposition.

Proposition 23 Suppose ‖G‖ < γ. Then, the set of δ for which there exists a Q satisfying (2.30) and (2.31)

contains the semi-infinite interval (δ0,+∞), where

δ0 =

∥∥∥∥Ĉ (I − ΛÂ
)−1

∥∥∥∥
γ − ‖G‖

.

Proof. Notice that since ‖G‖ < γ, there exists QA such that (2.21) holds. For this QA, (2.30) is always satisfied

and (2.31) reduces to

1

δ

∥∥∥∥Ĉ (I − ΛÂ
)−1

∥∥∥∥+ ‖G‖ < γ,

which clearly holds for all δ > δ0.

This proposition is particularly useful since it guarantees that if one keeps increasing δ and checking the feasibility

of (2.30) and (2.31) for the given δ, the procedure eventually stops once δ is greater that δ0. Theorem 21 can be

extended for LSS as below:

Corollary 24 Let LSS Pσ be given as in (2.7). Then Pσ is stable and ‖Pσ‖ < γ for any σ ∈ Ξ if and only if there

exist δ, γi > 0, for i ∈ {1, 2, 3, 4, }, a positive integer M , and Qσ ∈ SMO such that

γ1 + δγ2 < 1,

1

δ
γ2 + γ3 < γ,
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and

sup
σ∈Ξ

∥∥∥Âσ (I + ΛQσ)−Qσ
∥∥∥ < γ1, (2.32)

sup
σ∈Ξ

∥∥∥Âσ (I + ΛQσ) ΛB̂σ −QσΛB̂σ

∥∥∥ < γ2, (2.33)

sup
σ∈Ξ

∥∥∥Ĉσ (I + ΛQσ)
∥∥∥ < γ3 (2.34)

sup
σ∈Ξ

∥∥∥Ĉσ (I + ΛQσ) ΛB̂σ + D̂σ

∥∥∥ < γ4. (2.35)

Using Lemma 14 and Remark 16, one can cast (2.32)-(2.35) as LPs.

2.2.7 Stabilizability

Consider a LTV system H with the exogenous input w, control input u, measured output y, and regulated output z

H :


Λ−1x = Âx+ B̂ww + B̂uu

z = Ĉzx+ D̂zww + D̂zuu

y = Ĉyx+ D̂yww

. (2.36)

It can be easily shown that a state-feedback controller K : x→ u stabilizes the closed-loop if and only if Â+ B̂K

stabilizes Λ. According to Theorem 17,
[
I − Λ

(
Â+ B̂K

)]−1

is stable if and only if there exist two stable LTV

systems Q and Z such that ∥∥∥Â (I + ΛQ) + B̂uZ −Q
∥∥∥ < 1, (2.37)

where Z = K (I + ΛQ). Clearly, (2.37) is convex in Q and Z and can be seen as a state-feedback stabilizability check

for (2.36). We further develop an output-feedback stabilizability test as follows:

Theorem 25 There exists a stabilizing output-feedback controller if and only if there exist stable LTV systems Q,

ZF , and ZL such that

∥∥∥Â (I + ΛQ) + B̂uZF −Q
∥∥∥ < 1,∥∥∥(I +QΛ) Â+ ZLĈy −Q
∥∥∥ < 1. (2.38)

In this case the controller is given by

K :

 χ = Λ
(
Â+ B̂uF + LĈy

)
χ− ΛLy

u = Fχ
,

where F = ZF (I + ΛQ)
−1

and L = (I +QΛ)
−1
ZL.
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Proof. We notice that the controller K given above is analogous to the an observer-based controller for linear time

invariant systems. In fact, the proof follows similarly to proving observer-based controllers stabilize LTI systems.

This is done by defining new variable x̃ = χ − x and showing that the evolution of

 x

x̃

 is stable. In fact, the

stability of

 x

x̃

 is guaranteed as (2.38) implies Â+ B̂uF and Â+ LĈy stabilize Λ.

It is obvious at this point that this theorem can be immediately extended to LSS by letting Q ∈ SMO and

ZF , ZL ∈ SM+1
O . In this case, the mappings in (2.38) become input-output LSS of degree M + 1 and (2.38) can be

converted to a LP in the case of l∞.

2.2.8 Control Synthesis

Based on our previous developments, one can synthesize controllers that guarantee certain performance level. Here,

we discuss the state-feedback control synthesis.

Consider a LSS plant given by

Pσ :

 Λ−1x = Âσx+ B̂wσ w + B̂uσu

z = Ĉzσx+ D̂zw
σ w + D̂zu

σ u
,

and a switching state-feedback controller Kσ : x→ u. The closed-loop, Φσ, is given by

Φσ : Λ−1x = Âclσ x+ B̂clσ w, z = Ĉclσ x+ D̂cl
σ w,

where

Âclσ = Âσ + B̂uσK, B̂
cl
σ = B̂wσ ,

Ĉclσ = Ĉz + D̂zuK, D̂cl
σ = D̂zw

σ .

From Corollary 24 and letting Zσ = Kσ (I + ΛQσ), we have that Φσ is stable and ‖Φσ‖ < γ if and only if there exist

δ, γi > 0, for i ∈ {1, 2, 3, 4, }, a positive integer M , Qσ ∈ SMO , and Zσ ∈ SM+1
O (or Zσ ∈ SM+1

IO ) such that

γ1 + δγ2 < 1, (2.39)

1

δ
γ2 + γ3 < γ,
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Achievable l∞ gain
δ T = 2 T = 3 T = 5
1 17.71 15.02 11.72
5 4.71 4.42 3.97
10 3.11 2.80 2.63
50 2.01 1.72 1.49
100 2.01 1.68 1.41
1000 2.00 1.67 1.41
10000 2.00 1.67 1.41

T : FIR order of Qσ

Table 2.1: Closed-loop gain

and

sup
σ∈Ξ

∥∥∥Âσ (I + ΛQσ) + B̂uσZσ −Qσ
∥∥∥ < γ1, (2.40)

sup
σ∈Ξ

∥∥∥Âσ (I + ΛQσ) ΛB̂wσ + B̂uσZσΛB̂wσ −QσΛB̂wσ

∥∥∥ < γ2, (2.41)

sup
σ∈Ξ

∥∥∥Ĉzσ (I + ΛQσ) + D̂zuZσ

∥∥∥ < γ3 (2.42)

sup
σ∈Ξ

∥∥∥Ĉzσ (I + ΛQσ) ΛB̂wσ + D̂zuZσΛB̂wσ + D̂zw
σ

∥∥∥ < γ4. (2.43)

We emphasize again that the mappings in (2.40)-(2.43) are input-output LSS and their l∞ induced norm can be

computed via LP.

Example 26 Consider the barbell of length l illustrated in Figure 2.8. There is mass of size m = 1kg that jumps

from one end of the barbell to the other end. The actuator torque (control input) and the disturbance torque are

labeled as u and τ , respectively. After letting l equal to the gravitational constant and discretizing the model at 2Hz

we obtain x (t+ 1) = Aσ(t)x (t) +Bτσ(t)τd (t) +Buσ(t)u (t) where

A1 =

 1.001 0.050

0.050 1.001

 , A2 =

 0.999 0.050

−0.050 0.999

 ,
Bτ1 = Bτ2 = Bu1 = Bu2 =

 0.001

0.050

 .
We want to design a state-feedback controller, K : x → u, that stabilizes the closed-loop and study the l∞ gain of

the closed-loop from the disturbance torque τd to the states and control input, i.e.

 x

u

. To this end, one can use

(2.39) - (2.43). For this example, we let Qσ ∈ S1
O be FIR of some order T and Zσ ∈ S2

O. Then we minimize (Qσ, γ)

subject to (2.39) - (2.43) for different values of δ as tabulated in Table 2.1.
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s jm sjm
u

τd l

Figure 2.8: a barbell with switching mass at the end

P1

P2

g σσ
Q1 Q2−

u− û uû

Figure 2.9: Filtering Problem

2.3 Minimal l∞ Induced Norm

In the previous section, the problem of computing the worst-case l∞ induced norm of switching systems over the

switching sequence was considered. In this section, we consider the minimal gain problem infσ ‖Gσ‖. We show

that an optimal switching sequence is constant, i.e. no need to switch, in case of output only or MISO input only

switching Gσ and periodic in case of general switching FIR Gσ. As mentioned earlier, in some applications, the

switching sequence may be used as a control variable. For example, one can consider a filtering problem depicted

in Figure 2.9, where the interest is to estimate the input u by designing a filter Q = (Q1, Q2) and a switching

law to switch between different measurements. Having such a motivation, the following theorem may be used in

characterizing minimizing switching sequences:

Theorem 27 Let Gσ be a linear switched system as in (2.1). Suppose Gσ is FIR of order M for any σ. Then

inf
σ
‖Gσ‖ (2.44)

is achieved by a periodic switching sequence with the period of at most NM , where N is the number of switching

modes of the system.

Proof. Suppose Gσ is FIR of order M . First, we will show that an optimal switching sequence exists. Let R [Gσ]t

denote the tth block row of infinite dimensional lower triangular representation of Gσ. It is straight forward to verify

that R [Gσ]t, for t ≥ M , is uniquely determined by a segment of switching sequence of size M . More precisely,

R [Gσ]t is fully determined by the M -tuple {σ (n)}tn=t−M+1, if t ≥M and by {σ (0) , σ (1) , ..., σ (t)}, if t ≤M − 1. It

is hence immediate that the entire set of switching sequences can generate at most NM distinct rows in the matrix

representation of the system. This makes (2.44) a finite dimensional optimization and thus an optimal switching
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sequence exists. Now let σ∗ be an optimal switching sequence. We will show that one can create an optimal periodic

switching sequence from σ∗. To this end define the set Ωσ∗ as Ωσ∗ :=
{

(σ∗ (k))
t+M−1
k=t : t ≥M

}
. That is Ωσ∗ is

the set of M -tuples one can extract from the tail sequence {σ∗ (t)}∞t=M . As discussed above, Ωσ∗ can have at most

NM distinct elements. Thus, there should be at least one M -tuple that keeps showing up in {σ∗ (t)}∞t=M infinitely

often. That is there exists a sequence of time instants {t∗k}
∞
k=1 such that {σ∗ (t)}t

∗
i+M−1
t=t∗i

= {σ∗ (t)}t
∗
j+M−1

t=t∗j
for

i, j ∈ {1, 2, ...} . Pick i and j such that t∗j − t∗i ≥M . Define

σper (t) =

 σ∗ (t∗i +M + t) if t ≤ t∗j +M − 1

σper (t−M) if t ≥M
.

Notice that, the rows generated by the switching sequence σper, i.e. R
[
Gσper

]
t

for t∈ Z+, is a subset of those

generated by σ∗. Therefore,

∥∥Gσper∥∥ = sup
t

∥∥R [Gσper]t∥∥ ≤ sup
t
‖R [Gσ∗ ]t‖ = ‖Gσ∗‖ .

This implies,
∥∥Gσper∥∥ = ‖Gσ∗‖ = infσ ‖Gσ‖ . Furthermore, it is clear that the period is at most NM .

The validity of the arguments in the proof of Theorem 27 strongly depends on the type of the norm. The fact that,

in the l∞ induced norm, one considers the rows of the matrix representation of the system is central. In particular,

certain arguments in this proof fail if one tries to extend the results to the case of l2 induced norm and considers the

sub-matrices as opposed to the rows.

As mentioned earlier, if a switching system is stable for any switching sequence, for any matrix norm, there

exists an integer q such that (2.9) holds. Hence, in general, any stable switching system in the form (2.1) can be

approximated by an FIR system. Consequently, as a corollary of Theorem 27 we have:

Corollary 28 For any ε > 0, there exists a periodic switching sequence σ∗ such that

inf
σ
‖Gσ‖ − ε ≤ ‖Gσ∗‖ ≤ inf

σ
‖Gσ‖+ ε.

Furthermore, there exists an FIR approximation of Gσ∗ , denote it by Ḡσ∗ , such that

inf
σ
‖Gσ‖ − ε <

∥∥Ḡσ∗∥∥ < inf
σ
‖Gσ‖ .

Proof. As Gσ is stable for any switching sequence σ, it can be uniformly approximated by FIR systems. That is,

for ε > 0, there exists an FIR approximation Ḡσ, of some order M > 0 such that

‖Gσ‖ − ε <
∥∥Ḡσ∥∥ < ‖Gσ‖ ,
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for any switching sequence σ. Therefore,

inf
σ
‖Gσ‖ − ε < inf

σ

∥∥Ḡσ∥∥ < inf
σ
‖Gσ‖ . (2.45)

By Theorem 27, there exists a periodic sequence σ∗ such that

inf
σ

∥∥Ḡσ∥∥ =
∥∥Ḡσ∗∥∥ . (2.46)

As, Ḡσ∗ is the FIR approximation of Gσ∗ we have

‖Gσ∗‖ − ε <
∥∥Ḡσ∗∥∥ < ‖Gσ∗‖ . (2.47)

From (2.45),(2.46), and (2.47) we have

inf
σ
‖Gσ‖ − ε ≤ ‖Gσ∗‖ ≤ inf

σ
‖Gσ‖+ ε.

In the light of Theorem 27, one can consider a typical model matching problem

inf
(σ,Qσ)

‖Hσ − UσQσVσ‖ , (2.48)

where Hσ, Uσ, Vσ, and Qσ are FIR (and bounded) switching systems as in (2.1). Then, as an optimal switching σ

exists that is periodic, finding an optimal Qσ amounts to finding an optimal periodic solution to the above model

matching problem.

Remark 29 Notice that, one can consider the problem of (2.44) with added constraints on the switching sequence

σ. Some of these constraints can be handled in the proof of Theorem 27 analogously. For example, if one requires

that σ assumes all the values in the set ZN infinitely many times, similar to the unconstraint problem, an optimal

sequence will be periodic.

Example 30 As discussed above, even in the case of imposing certain constraints on the switching sequence, one

can find an optimal periodic sequence. Consider the filtering problem depicted in Figure 2.9, where u is the input

to the output switching channel, Pσ := Sσ

 P1

P2

, and Qσ :=

[
Q1 Q2

]
S∗σ is an input switching filter. At each

time step, t, the measurement of (Pσu) (t) is fed to Qσ. The interest is to estimate u by designing Q1, Q2, and the

switching sequence σ. More precisely, the problem of interest is

inf
Q1,Q2,σ

‖I −QσPσ‖ .
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We assume that there should be no channel that is used constantly for all time. This, for example, may represent

an operational requirement. Therefore, the admissible switching requires that measurements from P1 and P2 are used

infinitely many times, i.e., we exclude the cases that σ has a tail sequence identically equal to 1 or 2. Mathematically,

σ should satisfy the following:

@k ∈ Z+ : Λ−kσ is constant.

For this example, we assume P1 and P2 are FIR and their λ-transforms are given by

P̂1 (λ) = −2 + 0.1λ, P̂2 (λ) = −1.8 + 0.2λ.

Moreover, we search for Q1 and Q2 in the space of all FIR systems of order 2. It is easy to verify that I −QσPσ is

FIR of order 3. Given σ, finding Q1 and Q2 is a convex problem. On the other hand, finding the minimizing σ is

in general not convex. However, by Theorem 27 we know that σ is periodic and its basic period is at most 23 = 8.

Therefore, one can run an exhaustive search over the space of all possible switching sequence (which is finite but

possibly large) to find and optimal σ. For this particular example, an optimal solution turns out to be

Q̂1 (λ) = −0.4916− 0.0556λ,

Q̂2 (λ) = −0.5556− 0.0225λ,

σ = (2, 1, 2, 1, 2, 1, ...) ,

with optimal value infQ1,Q2,σ ‖I −QσPσ‖ = 0.0301.

There are classes of systems for which a constant switching sequence (i.e. no switching) is the best strategy. It

turns out that if Gσ is MISO input only or output only switching then the minimum norm can be achieved by a

constant switching sequence. The result is given in what follows:

Theorem 31 Let Gσ be an output only switching or a MISO input only switching system. Then

inf
σ
‖Gσ‖ = min

n∈ZN
‖Gn‖ . (2.49)

Proof. First suppose, Gσ is output switching. Then, given an input u and a switching sequence σ, the output

y := Gσu at time t is given by

y (t) = Cσ(t)

t−1∑
k=0

At−1−kBu (k) +Dσ(t)u (t) .

Hence, for any switching sequence

‖y‖∞ = sup
t
‖y (t)‖∞ ≥ sup

t
min
n∈ZN

∥∥∥∥∥Cn
t−1∑
k=0

At−1−kBu (k) +Dnu (t)

∥∥∥∥∥
∞

.
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That is

‖Gσ‖ ≥ min
n∈ZN

∥∥∥Cn∑t−1
k=0A

t−1−kBu (k) +Dnu (t)
∥∥∥
∞

‖u‖∞
= min
n∈ZN

‖Gn‖ ,

where the equality is achieved for σ (.) = arg minn∈ZN ‖Gn‖ .

Now, we will show (2.49) when Gσ is MISO input only switching. Without loss of generality, suppose there are

only two modes of operation, i.e. the switching sequence takes values in the set {1, 2}, and ‖G1‖ < ‖G2‖. By the

way of contradiction, suppose infσ ‖Gσ‖ < ‖G1‖. Let

ε = min

{
‖G1‖ − infσ ‖Gσ‖

2
,
‖G2‖ − ‖G1‖

2

}
.

Let M > 0 be the integer in the proof of Corollary 28 for such ε. Then, there exists a T -periodic switching sequence

σ∗, for some T > 0, and an FIR system Ḡσ∗ of order M , such that

inf
σ
‖Gσ‖ − ε <

∥∥Ḡσ∗∥∥ < inf
σ
‖Gσ‖ (2.50)

and

‖G1‖ − ε <
∥∥Ḡ1

∥∥ < ‖G1‖ , (2.51)

where Ḡ1 is the FIR approximation of G1 of order M . From (2.50) and (2.51) we have

∥∥Ḡσ∗∥∥ < ∥∥Ḡ1

∥∥ . (2.52)

Now, we will show if (2.52) holds, we arrive at the contradiction ‖G2‖ < ‖G1‖, and hence infσ ‖Gσ‖ = ‖G1‖. To this

end, notice that, since Ḡσ∗ and Ḡ1 are FIR of order M ,
∥∥Ḡ1

∥∥ =

M−1∑
k=0

|G1 (k)| and Ḡσ∗ = supt≥M−1

M−1∑
k=0

∣∣Gσ∗(t) (k)
∣∣.

Hence,
M−1∑
k=0

∣∣Gσ∗(t) (k)
∣∣ < M−1∑

k=0

|G1 (k)|, and

M(T+1)∑
t=M+1

M−1∑
k=0

∣∣Gσ∗(t) (k)
∣∣ < MT

M−1∑
k=0

|G1 (k)| = MT
∥∥Ḡ1

∥∥ . (2.53)

By changing the order of summation on the left hand side and direct calculation, one can verify

M(T+1)∑
t=M+1

M−1∑
k=0

∣∣Gσ∗(t) (k)
∣∣ = MT1

M−1∑
k=0

|G1 (k)|+MT2

M−1∑
k=0

|G2 (k)| , (2.54)

where T1 and T2 are the number of times that G1 or G2 is active, respectively, in one period and T1 + T2 = T .
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Therefore, from (2.53) and (2.54), we have

MT1

∥∥Ḡ1

∥∥+MT2

∥∥Ḡ2

∥∥ < MT
∥∥Ḡ1

∥∥ ,
or equivalently

∥∥Ḡ2

∥∥ < ∥∥Ḡ1

∥∥. As

‖G1‖ − ε <
∥∥Ḡ1

∥∥ < ‖G1‖

‖G2‖ − ε <
∥∥Ḡ2

∥∥ < ‖G2‖

and ε ≤ ‖G2‖−‖G1‖
2 , we have

‖G2‖ − ε =
‖G2‖+ ‖G1‖

2
<
∥∥Ḡ2

∥∥ < ∥∥Ḡ1

∥∥ < ‖G1‖ ,

which in turn implies ‖G2‖ < ‖G1‖.

Also, there are types of input-output switching systems (with fixed A matrix) for which a constant sequence is

optimal. This is the case when one of the diagonal terms has the smallest norm as the following indicates.

Proposition 32 For the MISO input-output switching system (2.15), if for some i ∈ ZN , ‖Gii‖ ≤ ‖Gjk‖ for all

j, k ∈ ZN , then

inf
σ
‖Gσ‖ = ‖Gii‖ ,

and the optimal sequence is the constant σ (.) = i.

Proof. For simplicity, we assume Gσ = Sσ

 G11 G12

G21 G22

S∗σ with Gij MISO for i, j ∈ {1, 2}. It is easy to see that

inf
σ
‖Gσ‖ ≥ inf

σ1,σ2

∥∥∥∥∥∥∥Sσ1

 G11 G12

G21 G22

S∗σ2

∥∥∥∥∥∥∥ .

Notice that, Hσ1σ2
:= Sσ1

 G11 G12

G21 G22

S∗σ2
is an input-output switching system where the input matrices can

switch independently of output matrices. By inspecting the rows of the matrix representation of Hσ1σ2
, we have

inf
σ1,σ2

‖Hσ1σ2
‖ ≥ inf

σ2

min

{[
G11 G12

]
S∗σ2

,

[
G21 G22

]
S∗σ2

}
.

Hence, if for some i, ‖Gii‖ ≤ ‖Gij‖ for i, j ∈ {1, 2}, according to Theorem 31, we have

inf
σ2

min

{[
G11 G12

]
S∗σ2

,

[
G21 G22

]
S∗σ2

}
= ‖Gii‖ .
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Clearly, this lower bound is achievable by Gσ and hence the proof is complete.

On the other hand, if the conditions of Proposition 32 are not satisfied, an optimal switching sequence may not

necessarily be constant for an input-output LSS as the following example indicates.

Example 33 Consider the (static) switched system (2.1) where the switching sequence takes values in the set {1, 2}

and matrices Ai, Bi, Ci, and Di for i ∈ {1, 2} satisfy

A1 = A2 = 0, Ci = BTi ,

and

BTi Bi = CiBi = 1,

BT1 B2 = C1B2 = C2B1 = 0.

Then, y (t) = Cσ(t)Bσ(t−1)u (t− 1). It is easy to see, for constant σ (.), y (t) = u (t− 1). However, for the periodic

sequence σ = {1, 2, 1, 2, 1, 2, ....}, y (t) = 0. That is, the constant sequence is not optimal, while a periodic with period

2 is optimal.

2.4 Miscellaneous Problems

In this section we provide some miscellaneous results on LSS. First, the composition of input and output switching

systems is considered. We note that we can use input-output switching systems as building blocks to create more

complicated structures. Then, the worst-case gain of slowly switching systems is studied. Finally, a sensitivity

minimization and certain model matching problems are studied and it is shown that a LTV compensation cannot

outperform a LTI one.

2.4.1 Composition of Output and Input Switching Systems

In some situations (e.g., see Section 2.3, Figure 2.9), one can have different compositions of input and output switching

systems. Suppose Qσ ∈ SI and Pσ ∈ SO. In this case, it is of interest to study the worst-case norm of PσQσ and

QσPσ. It is easy to see that the former can be written as an input-output switching system and hence the previous
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results can be used for its norm computation. Indeed,

PσQσ =


Aq 0

BpCq Ap

Bqσ

Bp

Dp
σC

q Cpσ Dp
σD

q
σ

 (2.55)

PσQσ = Sσ


P1

...

PN


[
Q1 · · · QN

]
S∗σ

= Sσ


P1Q1 · · · P1QN

...
. . .

PNQ1 PNQN

S∗σ,

where Pσ =

 Ap Bp

Cpσ Dp
σ

 and Qσ =

 Aq Bqσ

Cq Dq
σ

 . Clearly, PσQσ belongs to SIO and Theorem 7 can be used

to calculate its worst-case l∞ induced norm.

On the other hand, the worst-case norm computation of QσPσ is more involved as

QσPσ =

[
Q1 · · · QN

]
S∗σSσ


P1

...

PN

 ,

and is not in the form of an input-output switching system. In fact, consider the state-space realization of QσPσ

QσPσ =


Ap 0

BqσC
p
σ Aq

Bp

Bqσ

Dq
σC

p
σ Cq Dq

σD
p
σ

 . (2.56)

Clearly, in (2.56), the state coefficient matrix is also switching. But note that this switching does not cause any

instability if Pσ and Qσ are stable (or equivalently Aq and Ap are Schur stable) . The next theorem provides

lower and upper bounds for the worst-case norm of such systems. To this end, notice that infinite lower triangular

representation of S∗σSσ only has diagonal terms. These diagonal terms can assume finitely many values. In fact, let

S∗σSσ =


s (0) 0 · · ·

0 s (1) · · ·
...

...
. . .

 .

41



For k ∈ Z+, s (k) is a matrix with identity on the σ (k)
th

block row and column and zero anywhere else. Let the set of

possible values of s (k) be denoted by S̄. For example, if the system only has two switching modes, i.e. σ (k) = {1, 2},

then

s (k) ∈ S̄ =


 I 0

0 0

 ,
 0 0

0 I


 .

It is easy to see that there is a one to one corresponding between σ (k) and s (k). Moreover, as discussed before, Qσ

and Pσ can be decomposed into LTI systems and the switching operator (or its adjoint). Let,

Qσ = QS∗σ, Pσ = SσP,

where Q and P are LTI with impulse responses {q (k)}∞k=0 and {p (k)}∞k=0, respectively. Then, the following holds:

Proposition 34 Let Qσ ∈ SI and Pσ ∈ SO. Suppose Qσ is a multi-input single output system. Then

max
i

sup
T

∥∥∥∥∥
T∑
k=0

hiT (k)

∥∥∥∥∥ ≤ sup
σ
‖QσPσ‖ ≤ sup

T

T∑
k=0

gT (k) . (2.57)

where, for given T ∈ Z+, the finite sequences gT := {gT (k)}Tk=0 , h1
T :=

{
h1
T (k)

}T
k=0

, and h2
T :=

{
h2
T (k)

}T
k=0

are

given by

gT (k) = max
s∈S̄

k∑
τ=0

‖q (T − k) sp (k − τ)‖ ,

h1
T (k) = max

s∈S̄

k∑
τ=0

q (T − k) sp (k − τ) ,

h2
T (k) = min

s∈S̄

k∑
τ=0

q (T − k) sp (k − τ) .

Proof. Notice that, for τ, T ∈ Z+ and τ ≤ T , the entry at T th block row and τ th block column of lower triangular

infinite dimensional representation of QσPσ is given by [QσPσ]T,τ =
∑T
k=τ q (T − k) s (k) p (k − τ). Therefore,

‖QσPσ‖ = sup
T

T∑
τ=0

∥∥∥∥∥
T∑
k=τ

q (T − k) s (k) p (k − τ)

∥∥∥∥∥ .
Clearly, ‖QσPσ‖ can upper and lower bounded as:

sup
T

∥∥∥∥∥
T∑
k=0

k∑
τ=0

q (T − k) s (k) p (k − τ)

∥∥∥∥∥ ≤ ‖QσPσ‖
‖QσPσ‖ ≤ sup

T

T∑
k=0

k∑
τ=0

‖q (T − k) s (k) p (k − τ)‖ . (2.58)
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Taking supσ, we have:

max
i

sup
T

∥∥∥∥∥
T∑
k=0

hiT (k)

∥∥∥∥∥ ≤ sup
σ
‖QσPσ‖ ≤ sup

T

T∑
k=0

gT (k) ,

which completes the proof.

We will show that the computations in this theorem are tractable. Noting that any stable system can be

approximated by FIR systems with arbitrary accuracy, we will show how this theorem is computationally tractable

when specialized to FIR systems. Hence, suppose Qσ and Pσ (or equivalently Q and P ) are FIR of some order

M . Then, the non-zero part of sequences in Proposition 34 can be written as gT := {gT (k)}Tk=max(T−M,0) ,h1
T :={

h1
T (k)

}T
k=max(T−M,0)

, and h2
T :=

{
h2
T (k)

}T
k=max(T−M,0)

where

gT (k) = max
s∈S̄

k∑
τ=max(k−M,0)

‖q (T − k) sp (k − τ)‖ , (2.59)

h1
T (k) = max

s∈S̄

k∑
τ=max(k−M,0)

q (T − k) sp (k − τ) , (2.60)

h2
T (k) = min

s∈S̄

k∑
τ=max(k−M,0)

q (T − k) sp (k − τ) . (2.61)

It is easy to verify that for any integers T1, T2 ≥ 2M ,

gT1 = gT2 , h
1
T1

= h1
T2
, h2
T1

= h2
T2
,

and (2.57) reduces to

max
i

max
T∈Z2M

∥∥∥∥∥
T∑
k=0

hiT (k)

∥∥∥∥∥ ≤ sup
σ
‖QσPσ‖ ≤ max

T∈Z2M

T∑
k=0

gT (k) . (2.62)

Now, notice that, for given T , each element in the sequences gT , h1
T , and h2

T is determined independently of the

other elements in these sequences. Furthermore, determining each element of these sequences, e.g., gT (k) for some

T and k, amounts to calculating the summations in (2.59)-(2.61) N times (N is the number of switching modes and

also the number of elements in S̄) for each s ∈ S̄ and letting gT (k) to be the maximum of these N summations.

That is, given T , calculating (2.59)-(2.61) and consequently determining gT , h1
T , and h2

T is a simple task. Therefore

the summations and the bounds in (2.62) are easily computable.

Although this theorem provides bounds that could be conservative in general, there are classes of systems for

which these bounds are sharp. The following corollary can be easily verified.

Corollary 35 Let Qσ = QS∗σ ∈ SI and Pσ = SσP ∈ SO. Suppose Qσ is a MISO system. Furthermore, suppose Q

and P are positive systems, i.e. the infinite lower triangular representations of Q and P contain only non-negative
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terms. Then

sup
σ
‖QσPσ‖ = sup

T

T∑
k=0

gT (k) . (2.63)

Proof. The proof follows easily by noticing that in the proof of Theorem 34, if QσPσ is a positive system, one has

equality in (2.58).

Remark 36 The above theorem holds true if instead of Q and P being positive, we assume QσPσ is positive for a

”suprimizing” switching sequence.

The generalization of the results of this section to MIMO systems is immediate and follows the same line of

argument proceeding Theorem 7.

2.4.2 Slowly Switching Systems

Motivated by [26], one can consider the l∞ induced norm computation of a LSS in the case of slow switching. To this

end, let Gσ =

 Aσ Bσ

Cσ Dσ

 be a given LSS. We define the set S [τ ], for τ ∈ Z+, to be a set of switching sequences

for which any two consecutive switches is at least τ steps apart. Clearly, supσ∈S[τ ] ‖Gσ‖ is a non-increasing function

of τ . Hence, the limit

‖Gσ‖ss := lim
τ→∞

sup
σ∈S[τ ]

‖Gσ‖

exists and we refer to it as the slowly switching gain of the system.

Proposition 37 Given Gσ =

 Aσ Bσ

Cσ Dσ

 that switches between N modes, its slowly switching gain ‖Gσ‖ss is

given by

sup
k

max
i,j

(2.64)∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥



CiA
k
iBi . . . CiAiBi CiBi Di

CjA
k
iBi . . . CjAiBi CjBi Dj

CjAjA
k−1
i Bi . . . CjAjBi CjBj Dj

...

CjA
k
jBi . . . CjBj Dj



∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥
.

Proof. For the sake of simplicity, we assume there are only two modes of switching and each mode is FIR of order

M . That is, Ak1 = Ak2 = 0 for k ≥ M . Also, as we are interested to characterize supσ∈S[τ ] ‖Gσ‖ as τ approaches

infinity, assume τ > 2M . Without loss of generality, suppose σ (0) = 1. Furthermore, suppose that the first switch

occurs at the time instant T ∈ Z+. If this switching sequence belongs to S [τ ] for some τ > 2M , there exists and
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integers k1 > 2M such that σ (T ) = σ (T + 1) = ... = σ (T + k1) = 2. Now, consider the tth row of the lower

triangular infinite dimensional representation of Gσ. If 1 ≤ t < T,

R [Gσ]t =[
C1A

t−2
1 B1 . . . C1A1B1 C1B1 D1

]
,

if T ≤ t < T +M,

R [Gσ]t =

[
C2A

k
2A

T
1 B1 C2A

k
2A

T−1
1 B1 . . . (2.65)

. . . C2A
k
2B1 C2A

k−1
2 B2 . . . C2B2 D2

]
,

and if T +M ≤ t < T + k1,

R [Gσ]t =

[
0 . . . 0 C2A

k
2B1 . . .

. . . C2A
k
2B1 C2A

k−1
2 B2 . . . C2B2 D2

]
,

where k = t− T . Clearly, the effects of the first mode are not present on the rows T +M to T + k1 (or negligible if

the modes are not FIR). Using the same rationale, it is easy to argue that finding the slowly switching gain of the

system amounts to finding the worst-case norm of the LSS with over the space of switching sequences with maximum

one switch. By the inspection of the matrix representation of the LSS with one switch, it is easy to see that the row

with maximum l1 norm is one of the rows in the matrix (2.64) and hence the proof is complete.

To show the tractability of this result, suppose that each mode of the LSS is FIR. More precisely, suppose there

exists an integer M such that AMi = 0 for i ∈ ZN . Then, it is easy to see that to find the slowly switching gain of

Gσ, one needs to evaluate (2.64) for k = 2M and each pair of (i, j) ∈ ZM × ZM . That is, the size of (2.64) grows

linearly in the size of FIR and hence it is computationally tractable.

2.4.3 Sensitivity Minimization

Consider a sensitivity minimization problem as depicted in Figure 2.10. Suppose P1 and P2 are two stable systems

and the output of the plant at each time instant is either the output of P1 or P2. In this case, the plant can be seen

as an output switching plant Pσ = Sσ

 P1

P2

. The interest is to design a controller, Kσ, to minimize the map, Φσ,

from output disturbances, d, to plant output, y, for the worst switching sequence. That is,

inf
Kσ

sup
σ
‖Φσ (Kσ)‖ .
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fP1
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σ

Kσ

d

y

u

Figure 2.10: Sensitivity Minimization

Notice that the dependency of the controller on the switching signal is assumed in this problem. Since Pσ is stable,

the set of all stabilizing controllers for this plant is parametrized by Youla-Kucera parameter as Kσ = Q (I + PσQ)
−1

,

where Q is any l∞ bounded operator. It is well known that restricting Q to specific subsets of bounded operators,

e.g. linear, nonlinear, time-invariant, or time-varying operators, spans different subsets of stabilizing controllers. For

example, allowing Q to be linear switched system spans the set of stabilizing switched linear controllers. A class of

tractable problems is obtained by restricting Q to be a linear input switching system. That is Qσ =

[
Q1 Q2

]
S∗σ,

where Q1 and Q2 are stable LTI systems. We remark here that these resulting controllers are a subset of all possible

stabilizing controllers due to the fact that we prescribe the structure of Q as an input switching system. At this point,

it is not clear how much is missed by imposing this structure on Q, but we certainly search over a large class of Ks

which lead to exact convex optimization problems. Indeed, the resulting sensitivity map Φσ : d 7→ y = (I−PσKσ)−1

becomes

Φσ = I + PσQσ. (2.66)

A more general class of maps of this type, that includes (2.66) as special case and result in a convex optimization,

is given by Φσ = Hσ + PσQσ, where Hσ = SσHS
∗
σ ∈ SIO, Pσ = SσP ∈ SO, Qσ = QS∗σ ∈ SI and H, P , and Q are

LTI. Upon substitution of Hσ, Pσ, and Qσ we obtain

inf
Qσ

sup
σ
‖Φσ‖ = inf

Q
sup
σ
‖Sσ (H + PQ)S∗σ‖ , (2.67)

which involves the minimization of the worst-case norm of an input-output switching system. Based on the develop-

ment in the previous section (Theorem 7), minimizing ‖Φσ‖ over Q for the worst-case switching sequence is a convex

problem.

Example 38 Suppose Hσ = Sσ

 H1

H2

 , Pσ = Sσ

 P1

P2

 be output switching systems where

Ĥ1 (λ) = −0.4 + 0.3λ− 0.2λ2,

Ĥ2 (λ) = −0.1 + 0.2λ+ 0.1λ2,

P̂1 (λ) = 0.1 + 0.2λ, P̂2 (λ) = −1 + 3λ.
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Notice that although Hσ is only output-switching but it can be written in a form consistent with (2.67) as Hσ =

Sσ

 H1 H1

H2 H2

S∗σ. We want to design an input switching Qσ =

[
Q1 Q2

]
S∗σ to minimize the worst-case l∞

induced norm of Hσ − PσQσ. This problem can be written as

inf
Qσ

sup
σ
‖Hσ − PσQσ‖ = (2.68)

inf
(Q1,Q2)

sup
σ

∥∥∥∥∥∥∥Sσ
 H1 − P1Q1 H1 − P1Q2

H2 − P2Q1 H2 − P2Q2

S∗σ
∥∥∥∥∥∥∥ .

As discussed before, this problem can be cast as a linear program which along the methods of [54], one can obtain the

optimal value of 0.7386 for

Q̂1 (λ) = 0.1684− 0.0333λ, Q̂2 (λ) = −0.1− 0.0333λ.

In the next subsection, we will deal with the case of other model matching problems where Qσ can be any linear

switched system (not necessarily input switching) and we show under some conditions, if the plant is strictly causal,

we can still reduce the problem to a tractable one.

2.4.4 Model Matching Problems

Recently in [55] a typical model matching problem was considered involving the output switching systems and the

underlying norm being l∞-induced or H2. The authors studied a problem of the form

inf
QσQ

sup
(σH ,σU ,σQ)

∥∥HσH − UσUQσQ
∥∥ ,

where HσH , UσU , and QσQ are output switching systems associated respectively with (possibly different) switching

sequences σH , σU , and σQ. It was shown that in the case of independent switching or partially matched switching,

i.e. σH = σU 6= σQ, an output switching Q cannot out-perform an LTI Q.

In this section, we consider a similar problem and extend the results of [55] to show that a switched linear

compensation of any type (not only output switching) cannot lead to a better performance over an LTI compensation

if the compensator can switch independently of the plant or the plant is strictly causal.

To make the statements precise we have the following two theorems hold.

Theorem 39 Let HσH , UσU , and QσQ belong to S. If σQ switches independently of σU and σH , then

µ0 := inf
Q∈S

sup
(σH ,σU ,σQ)

∥∥HσH − UσUQσQ
∥∥

= inf
Z∈LTI

sup
(σH ,σU )

‖HσH − UσUZ‖ . (2.69)
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Theorem 40 Let σ be a switching sequence, Hσ ∈ SO, and Uσ ∈ SO be output switching, and Qσ ∈ S be any

switching system. Further, assume Uσ is strictly causal. Then

ν0 := inf
Qσ∈S

sup
σ
‖Hσ − UσQσ‖ = inf

Z∈LTI
sup
σ
‖Hσ − UσZ‖ . (2.70)

Proof. Let ε > 0 be arbitrary. Then, there exists Qσ ∈ S such that

ν0 ≤ sup
σ
‖Hσ − UσQσ‖ < ν0 + ε. (2.71)

First, we show that for ∀k ∈ Z+,

νk := sup
σ

∥∥Hσ − UσΛ−kQσΛk
∥∥ ≤ sup

σ
‖Hσ − UσQσ‖ . (2.72)

To show this, since the associated norm is the l∞ induced norm, for any ε′ > 0, there exist a switching sequence σ′

and t′ ≥ 0 such that

νk − ε′ <
∥∥R [Hσ′ − Uσ′Λ−kQσ′Λk

]
t′

∥∥ ≤ νk.
Defined a sequence σ̄ (.) as

σ̄ (t) =

 σ′ (t+ k) for t 6= t′

σ′ (t′) for t = t′
.

Then, one can write

R
[
Hσ′ − Uσ′Λ−kQσ′Λk

]
t′

= R [Hσ′ ]t′ −R [Uσ′ ]t′

 M [
Λ−kQσ′Λ

k
]
t′−1

0

R
[
Λ−kQσ′Λ

k
]
t′


= R [Hσ̄]t′ −R [Uσ̄]t′

 M [
Λ−kQσ′Λ

k
]
t′−1

0

R
[
Λ−kQσ′Λ

k
]
t′

 ,
where 0 is a zero matrix with the same number of columns asM

[
Λ−kQσ′Λ

k
]
t′−1

. Notice that,M
[
Λ−kQσ′Λ

k
]
t′−1

=

M [Qσ̄]t′−1, but R
[
Λ−kQσ′Λ

k
]
t′
6= R [Qσ̄]t′ if σ′ (t′ + k) 6= σ′ (t′). Also, notice that since Uσ̄ is strictly causal the

outcome of

R [Uσ̄]t′

 M [
Λ−kQσ′Λ

k
]
t′−1

0

R
[
Λ−kQσ′Λ

k
]
t′


does not depend on R

[
Λ−kQσ′Λ

k
]
t′

and hence one can write

∥∥R [Hσ′ − Uσ′Λ−kQσ′Λk
]
t′

∥∥ = ‖R [Hσ̄ − Uσ̄Qσ̄]t′‖ .
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Moreover

‖R [Hσ̄ − Uσ̄Qσ̄]t′‖ ≤ ‖Hσ̄ − Uσ̄Qσ̄‖ ≤ sup
σ
‖Hσ − UσQσ‖ .

Therefore,

νk − ε′ ≤ sup
σ
‖Hσ − UσQσ‖ ,

for any ε′ > 0 and this proves (2.72). Now, define the averaging system QσM := 1
M+1

{
M∑
k=0

Λ−kQσΛk

}
. Using

(2.72) and the triangle inequality, it is easy to see supσ ‖Hσ − UσQσM‖ ≤ supσ ‖Hσ − UσQσ‖. Then, following the

same line of argument as in [55, Theorem 3.1], [56], or [7], there exists a weak* convergent subsequence such that

QσLTI = limk→∞ weak∗ QσMk
, where QσLTI ∈ LTI ⊆ S. Moreover,

sup
σ
‖Hσ − UσQσLTI‖ ≤ sup

σ
‖Hσ − UσQσ‖ . (2.73)

From (2.71) and (2.73) in one hand, and the fact that Q
σQ
LTI ∈ S on the other hand, one can write

ν0 ≤ sup
(σH ,σU )

‖Hσ − UσQσLTI‖ ≤ ν0 + ε,

for every ε and this completes the proof.

In the light of these theorems, one can consider the problem in (2.68) of the previous section when Hσ and Pσ

are output switching systems but Qσ is a general linear switched system in S. The following corollary is a straight

forward consequence of Theorem 40 and Proposition 5.

Corollary 41 Consider the map Φ := HσH + PσPQσQ , where HσH , PσP ∈ SO is output switching and QσQ ∈ S. If

the switching sequences σH , σP , and σQ are independent then

inf
Q∈S

sup
(σH ,σP ,σQ)

‖Φ‖ = max
i,j

inf
Z∈LTI

‖Hi + PjZ‖ . (2.74)

Moreover, if σH = σP = σQ and PσP is strictly causal, then

inf
Q∈S

sup
(σH ,σP ,σQ)

‖Φ‖ = max
i

inf
Z∈LTI

‖Hi + PiZ‖ . (2.75)

We note here that (2.74) and (2.75) are standard l1 problems and can be solved by standard methods in [54],

[57], and [58].

Example 42 Consider (2.70) with output switching Hσ and Uσ given as follows:

Ĥ1 (λ) = −0.4 + 0.3λ− 0.2λ2, Ĥ2 (λ) = −0.1 + 0.2λ+ 0.1λ2,
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U1 =



 0.1 2

−0.2 −1


 0.3

1

[
−1 0.5

]
0

 ,

U2 =



 0.7 0.2

−1.8 −0.3


 2

−1

[
0.2 −0.3

]
0

 .

In this case, Qσ is any general LSS. Then, using the methods of [54], the problem has the optimal value of 0.6832

and an optimal Q is LTI given by

Q̂ (λ) = −0.0840− 0.0756λ− 0.0252λ2.

2.5 Summary

We presented results to characterize the worst (maximum) l∞ gain of linear switched systems. It was shown that

for certain classes of these LSS, namely for input-output switching systems, the exact computation of this gain

is tractable and can be obtained via linear programming. Furthermore, the results on the input-output switching

systems allow one to find tighter bounds for the gain of general switching systems. To this end, we introduced the

richer class of the generalized input-output switching systems and showed that any stable LSS can be approximated

by one in this class. Based on this class, we provided a new necessary and sufficient condition for the stability of

LSS.

Moreover, it was shown that for general LSS, the computation of the gain is tractable when slowly switching is

imposed. Certain control design optimization problems were studied for input-output LSS in the context of model

matching and shown to be convex in the Youla-Kucera parameter. Further, in the same context and generalizing

earlier works of the authors to general LSS, it was shown that switching compensators cannot out-perform LTI

compensators in the case of unmatched switching sequences, or even in the case of matched switching when the plant

is strictly causal.

Also in this chapter, we studied the problem of characterizing the minimum l∞ gain of LSS over switching

sequences. It was shown that for FIR systems, a minimizing sequence is periodic. The computation of its period

however remains an open issue. For input only or output-only switching, it is shown that a constant switching

sequence (i.e., no switching) is the minimizing one, which also readily determines the minimal l∞ gain. For input-

output switching on the other hand, periodic switching is in general necessary to minimize the l∞ gain. All of these

results hold true also when restrictions on the switching sequence (relating for example to percentage usage of each
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sensor or/and actuator) are imposed.
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Chapter 3

Markov Linear Switched Systems

3.1 Introduction and Background

In the previous chapter, we studied the LSS with deterministic switching sequence; that is no statistics on the

switching sequence are available. In this chapter, we consider LSS where switching is a random process. To this end,

consider a LSS Gσ given by

Gσ :


x (t+ 1) = Aσ(t)x (t) +Bwσ(t)w (t) +Buσ(t)u (t)

y (t) = Cyσ(t)x (t) +Dwy
σ(t)w (t)

z (t) = Czσ(t)x (t) +Dwz
σ(t)w (t) +Duz

σ(t)u (t)

, (3.1)

where σ = {σ (t)}∞t=0 is the switching sequence taking finitely many values, w and u are the exogenous and control

input, z and y are the regulated and measured output; matrices Aσ(t), B
•
σ(t), C

y
σ(t), C

z
σ(t), D

•z
σ(t) and Dwy

σ(t) are of

appropriate dimension for t ∈ Z+, where • ∈ {w, u}. We study the l∞ performance and control synthesis of LSS in

the form (3.1) when the switching sequence is a Markov process with a known transition matrix. We refer to such

systems as Markovian Linear Switched Systems (MLSS). To study the l∞-like performance of MLSS, we introduce

a metric that mimics the l∞ induced norm of a system in the deterministic framework. We call this metric the

stochastic l∞ gain of the system. This gain captures the maximal expected deviation of the output over inputs that

could depend on the switching. As such, it can be used in situations where absolute value constraints are of interest

e.g., position error in formation flight. We will present an exact expression to find the stochastic l∞ gain. We will

show that computing the stochastic l∞ gain involves adding exponentially many terms and hence it is not easy to

compute in general. As a trade-off, we will also consider the so-called mean performance of the MLSS and further

synthesize an optimal control for minimizing the mean performance.

To formalize the notion of the stochastic l∞ gain, we define the space of bounded random processes as

Rn∞ =

x =




x1

...

xn

 (k)



∞

k=1

: sup
k

E [‖x (k)‖∞] <∞

 ,
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A1 B1

C1 D1

A2 B2

C2 D2

p21

p12

p11

p22

where ‖x (k)‖∞ = maxi∈{1,2,...,n} {|xi (k)|} and E [.] stands for the expected value. The ball of bounded random

processes can be defined as

BRn∞ =

{
x = {x (k)}∞k=1 ∈ R

n
∞ : sup

k
E [‖x (k)‖∞] ≤ 1

}
.

For a LSS

Gσ :

 x (t+ 1) = Aσ(t)x (t) +Bwσ(t)w (t)

z (t) = Czσ(t)x (t) +Dwz
σ(t)w (t)

, (3.2)

where σ is a random process with known distribution, we define the stochastic l∞ gain, from the exogenous input w

to the regulated output z, as

‖Gσ‖ := sup
w∈R∞

supk Eσ,w[‖w(k)‖∞] 6=0

supk Eσ,w [‖z (k)‖∞]

supk Eσ,w [‖w (k)‖∞]
. (3.3)

We make sense of the above expression as follows: First, given a distribution for the random process w, z becomes

a random process whose distribution depends on that of σ and w. Hence, the expectation is taken with respect to

the distribution of σ and w in the numerator, i.e. Eσ,w [‖z (k)‖∞]. Also, since w may depend on σ in general, the

expectation in the denominator should be taken with respect to both σ and w, i.e. Eσ,w [‖w (k)‖∞]. Therefore, for a

given random process w the ratio
supk Eσ,w[‖z(k)‖∞]
supk Eσ,w[‖w(k)‖∞]

is well-defined as long as supk Eσ,w [|w (k)|] 6= 0. Finally, we take

the sup over all random processes w (possibly dependent on σ) with the property that 0 < Eσ,w [‖w (k)‖∞] < ∞.

We will use E [.] instead of Eσ,w [.] when no confusion arises. Throughout this chapter, we make certain assumptions

on the switching sequence and its dependency on the input as follow:

Assumption 43 Given a nonnegative integer k, σ (k + 1) is conditionally independent of {w (t)}kt=0 given {σ (t)}kt=0.

Assumption 44 The switching sequence, σ, is a Markov process with the probability transition matrix P = [pji].

Furthermore, σ takes values in the set {1, 2}.

Assumption 45 The MLSS (3.1) is SISO. That is, the exogenous input and the regulated output are one dimen-

sional.
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We emphasize that the Assumptions 44 and 45 are made, merely, for the simplicity of the presentation. The

extension to the case when σ takes finitely many values or when the MLSS is MIMO is immediate. Furthermore,

based on Assumptions 43 and 44, we have

Pr
(
σ (k + 1) = i|σ (k) = j, {σ (t)}k−1

t=0 , {w (t)}kt=0

)
= pij .

As σ is a Markov process, we refer to the above LSS as Markovian Linear Switched System (MLSS). We use 1 to

denote the standard indicator function. In particular, for k ∈ Z+, 1σ(k)=i is given by

1σ(k)=i =

 1 if σ (k) = i

0 otherwise
.

3.2 Stochastic l∞ Gain Calculation for MLSS

In this section, we compute the stochastic l∞ gain of MLSS as defined in (3.3). To this end, consider the plant (3.2)

with Assumptions 43, 44, and 45. The following theorem holds:

Theorem 46 Consider the LSS in (3.2). Then, the stochastic l∞ gain is given by

‖Gσ‖ = max {|Dwz
1 | , [Dwz

2 ]}+

∞∑
k=0

max {S1 (k) , S2 (k)} , (3.4)

where

Si (k) =
∑

i1,...,ik+1

pik+1ik ...pi1i

∣∣∣∣∣Czik+1

k∏
s=1

AisB
w
i

∣∣∣∣∣ , (3.5)

for {i, i1, i2, ..., ik+1} ∈ {1, 2}k+2
.

Proof. Notice that from (3.2), for k = 1, 2, ..., we have

z (k) =

k−2∑
t=0

Czσ(k)

k−1∏
s=t+1

Aσ(s)B
w
σ(t)w (t) + Czσ(k)Bσ(k−1)w (k − 1) +Dwz

σ(k)w (k) . (3.6)
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Furthermore,

sup
w∈BR∞

E [|z (k + 1)|] = sup
E[|w(t)|]≤1
t=0,1,...,k+1

E [|z (k + 1)|]

= sup
E[|w(t)|]≤1
t=0,1,...,k+1

E

[∣∣∣∣∣
k−1∑
t=0

Czσ(k+1)

k∏
s=t+1

Aσ(s)B
w
σ(t)w (t) + Czσ(k+1)Bσ(k)w (k) +Dwz

σ(k+1)w (k + 1)

∣∣∣∣∣
]

≤ sup
E[|w(0)|]≤1

E

[∣∣∣∣∣Czσ(k+1)

k∏
s=1

Aσ(s)B
w
σ(0)w (0)

∣∣∣∣∣
]

+ sup
E[|w(t)|]≤1
t=1,1,...,k+1

E

[∣∣∣∣∣
k−1∑
t=0

Czσ(k+1)

k∏
s=t+1

Aσ(s)B
w
σ(t)w (t) + Czσ(k+1)Bσ(k)w (k) +Dwz

σ(k+1)w (k + 1)

∣∣∣∣∣
]
. (3.7)

It is easy to see that

sup
w∈BR∞

E [|z (k)|] = sup
E[|w(t)|]≤1
t=1,1,...,k+1

E

[∣∣∣∣∣
k−1∑
t=0

Czσ(k+1)

k∏
s=t+1

Aσ(s)B
w
σ(t)w (t) + Czσ(k+1)Bσ(k)w (k) +Dwz

σ(k+1)w (k + 1)

∣∣∣∣∣
]
.

Hence, from (3.7), we have

sup
w∈BR∞

E [|z (k + 1)|] = S (k) + sup
w∈BR∞

E [|z (k)|] , (3.8)

where

S (k) = sup
E[|w(0)|]≤1

E

[∣∣∣∣∣Czσ(k+1)

k∏
s=1

Aσ(s)B
w
σ(0)w (0)

∣∣∣∣∣
]
.

In the last expression, S (k) can be calculated as follows. Let it ∈ {1, 2}, for t = 0, 1, ..., k + 1. Then,

S (k) =
∑

i0,i1,...,ik+1

sup
E[|w(0)|]≤1

E

[∣∣∣∣∣Czσ(k+1)

k∏
s=1

Aσ(s)B
w
σ(0)w (0)

∣∣∣∣∣1σ(0)=i0 ...1σ(k+1)=ik+1

]

=
∑

i0,i1,...,ik+1

pik+1ik ...pi1i0 sup
E[|w(0)|]≤1

E

[∣∣∣∣∣Czik+1

k∏
s=1

AisB
w
i0w (0)

∣∣∣∣∣1σ(0)=i0

]
= max {S1 (k) , S2 (k)} ,

where for i ∈ {1, 2}

Si (k) =
∑

i1,...,ik+1

pik+1ik ...pi1i0

∣∣∣∣∣Czik+1

k∏
s=1

AisB
w
i

∣∣∣∣∣ .
Note that supw∈BR∞ E [|z (0)|] = max {|Dz

1 | , |Dz
2 |}. Also, it is obvious from (3.8) that supw∈BR∞ E [|z (k + 1)|] is an

increasing sequence and hence its sup happens when k approaches infinity. Taking the limit of (3.8) gives (3.4) and

thus the proof is complete.

We would like to point out here that computing Si (k) in (3.5) involves adding up 2k+1 terms which grows

exponentially with k. Therefore, the computation of the stochastic l∞ gain for MLSS is in general harder than that

of LTI systems. This computation, however, becomes easier for the case of input-output switching systems as is
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discussed next.

3.2.1 Input-Output Markov Linear Switched Systems

As mentioned in the earlier chapter of this dissertation, by input-output switching systems we mean those switching

systems whose A-matrix remains constant. The next corollary is the direct consequence of Theorem 46.

Corollary 47 For the input-output MLSS

Hσ :

 x (t+ 1) = Ax (t) +Bσ(t)w (t)

z (t) = Cσ(t)x (t) +Dσ(t)w (t)
, (3.9)

the stochastic l∞ gain is given by

‖Hσ‖ = max {|D1| , |D2|}+

∞∑
k=0

max {S1 (k) , S2 (k)} , (3.10)

where for {i, j} ∈ {1, 2}2,

Si (k) =
∑
j

eTj Pk+1ei
∣∣CjAkBi∣∣ , (3.11)

and

P =

 p11 p12

p21 p22

 , e1 =

 1

0

 , e2 =

 0

1

 .

Proof. According to Theorem 46, when A1 = A2 = A, we have

S (k) =
∑
i0,ik+1

sup
E[|w(0)|]≤1

E

[∣∣∣∣∣Cik+1

k∏
s=1

ABi0w (0)

∣∣∣∣∣1σ(0)=i01σ(k+1)=ik+1

]

=
∑
i0,ik+1

eTik+1
Pk+1ei0 sup

E[|w(0)|]≤1

E

[∣∣∣∣∣Cik+1

k∏
s=1

ABi0w (0)

∣∣∣∣∣1σ(0)=i0

]
= max {S1 (k) , S2 (k)} .

This together with Theorem 46 completes the proof.

We note here that the computations in (3.10) are tractable, in fact LP, and can be done with arbitrary accuracy.

In the context of stochastic l∞ gain, one could think of finding the minimal gain. That is, finding the probability

distribution of the switching sequence such that the norm is minimized. This problem is considered and solved in

the following theorem.

Theorem 48 Consider the input-output MLSS in (3.9). Suppose, Pr (σ (t+ 1) = j|σ (t) = i) = pj. Then the mini-

mal gain is given by the following LP.

inf
σ
‖Hσ‖ = min

γ,γ0,γ1,...
p1,p2

γ,
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subject to

γ0 + γ1 + ...+ γk + ... ≤ γ,

|Di| ≤ γ0,

p1

∣∣C1A
kBi
∣∣+ p2

∣∣C2A
kBi

∣∣ ≤ γk,

p1 + p2 = 1,

for i = 1, 2, and k = 1, 2, 3, ....

We emphasize here that the computations in the above theorem are LP and tractable with arbitrary accuracy.

3.3 Mean Performance

We studied the stochastic l∞ gain of MLSS in the previous section. We argued that its computation is challenging

as it involves adding exponentially many terms. In this section, we consider a different performance metric that can

be computed easily. For the MLSS in (3.2), we define its mean performance as

‖Gσ‖MP = sup
w

supk|Eσ,w[w(k)]|=1

sup
k
|Eσ,w [z (k)]| . (3.12)

The rest of this section is devoted to characterizing the right hand side of (3.12). To this end, we will construct

an LTI system that has E [z (k)] as its output. This system is induced from (3.1) and is given in the following

proposition:

Proposition 49 Consider the MLSS in (3.1). Then,

 η1

η2

 (k + 1) = Ā

 η1

η2

 (k) + B̄w

 ω1

ω2

 (k) + B̄u

 υ1

υ2

 (k) ,

 θ1

θ2

 (k) = C̄y

 η1

η2

 (k) + D̄wy

 ω1

ω2

 (k) ,

E [z (k)] =

[
Cz1 Cz2

] η1

η2

 (k) + D̄wz

 ω1

ω2

 (k) + D̄uz

 υ1

υ2

 (k) , (3.13)
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where

Ā =

 p11A1 p12A2

p21A1 p22A2

 ,
B̄• =

[
B̄•1 B̄•2

]
=

 p11B
•
1 p12B

•
2

p21B
•
1 p22B

•
2

 ,
C̄y =

 Cy1 0

0 Cy2

 , D̄wy =

 Dwy
1 0

0 Dwy
2

 ,
C̄z =

[
Cz1 Cz2

]
, D̄•z =

[
D•z1 D•z2

]
,

ηi (k) = E
[
x (k) 1σ(k)=i

]
, ωi (k) = E

[
w (k) 1σ(k)=i

]
,

θi (k) = E
[
y (k) 1σ(k)=i

]
, υi (k) = E

[
u (k) 1σ(k)=i

]
,

and • ∈ {w, u}.

Proof. The proof follows similarly to that of Proposition 3.1 in [30] and hence is omitted here.

Definition 50 We refer to the LTI representation (3.13) as the mean representation of Gσ and denote it by E [Gσ].

We emphasize here that the proof of the above proposition depends on the validity of Assumption 43. It turns

out that the mean performance of the system is completely characterized by its mean representation. Let Ḡi be the

LTI mapping from ωi to E [z (k)] with the impulse response {ḡi (k)}∞k=0 , for i = 1, 2. That is,

Ḡi =

 Ā B̄wi

C̄z Dwz
i

 , for i = 1, 2.

Then, the mean performance of Gσ is given in terms of Ḡi as stated in the next theorem.

Theorem 51 Given a MLSS (3.1) with u = 0, its mean gain, from w to z, is given by

‖Gσ‖MP =

∞∑
t=0

max {|ḡ1 (t)| , |ḡ2 (t)|} .

Proof. By definition, we have that

‖Gσ‖MP = sup
k

sup
|∑2

i=1 E[w(k)1σ(k)=i]|=1

|E [z (k)]| . (3.14)
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Based on Proposition 49, E [z (k)] , for given k ∈ Z+, reads

E [z (k)] =

k∑
t=0

ḡ1 (k − t)E
[
w (t) 1σ(t)=1

]
+

k∑
t=0

ḡ2 (k − t)E
[
w (t) 1σ(t)=2

]
. (3.15)

w∗ is a maximizer and belongs to S if and only if it satisfies

 E
[
w∗ (t) 1σ(t)=1

]
E
[
w∗ (t) 1σ(t)=2

]
 =

 sgn (ḡ1 (k − t))

0

 , if |ḡ1 (k − t)| ≥ |ḡ2 (k − t)| , (3.16)

 E
[
w∗ (t) 1σ(t)=1

]
E
[
w∗ (t) 1σ(t)=2

]
 =

 0

sgn (ḡ2 (k − t))

 , if |ḡ1 (k − t)| < |ḡ2 (k − t)| . (3.17)

and hence

sup
w∈S

E [(Gσw) (k)] =

k∑
t=0

max {|ḡ1 (k − t)| , |ḡ2 (k − t)|} .

Taking supk from both sides results in

‖Gσ‖ = sup
k

sup
w∈BR∞

E [(Gσw) (k)] =

∞∑
t=0

max {|ḡ1 (t)| , |ḡ2 (t)|} .

In what follows, we address the control synthesis with respect to the mean performance and show how this problem

is analogous to control synthesis for an LTI system with added constraints on the D-matrix of the controller.

3.3.1 Control Synthesis

Here, we are interested in designing a controller to stabilize and minimize the mean performance of the system

from the exogenous input to regulated output. The stability in this section is taken with respect to the mean

performance. That is, a stable system is the one with bounded mean output for bounded mean input. We consider

a mode-dependent linear switched controller Kσ in the form

Kσ :

 xC (t+ 1) = ACσ(t)xC (t) +BCσ(t)y (t)

u (t) = CCσ(t)xC (t) +DC
σ(t)y (t)

. (3.18)

The interconnection of (3.1) and (3.18) is denoted by T (Gσ,Kσ). This is the closed loop system mapping w to z.

The control synthesis problem amounts to

inf
Kσ stabilizing

‖T (Gσ,Kσ)‖MP . (3.19)
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Similarly to the mean representation of the plant, one can write a mean representation for Kσ and T (Gσ,Kσ) as

LTI systems mapping

 θ1

θ2

 to

 υ1

υ2

 and

 ω1

ω2

 to E [z (k)], respectively. These LTI systems are denoted

by E [Kσ] and E [T (Gσ,Kσ)]. It is straight forward to verify that

E [T (Gσ,Kσ)] = T (E [Gσ] ,E [Kσ]) , (3.20)

where T (E [Gσ] ,E [Kσ]) is the interconnection of the two LTI mean representations E [Gσ] and E [Kσ]. Notice that

E [T (Gσ,Kσ)] can be partitioned as

E [T (Gσ,Kσ)] = T (E [Gσ] ,E [Kσ]) =

[
T1 T2

]
,

where Ti is an LTI system mapping ωi to E [z (k)], for i = 1, 2. It is clear from (3.20) that, given Kσ, Ti depends

on E [Kσ]. Let
{
t̄
E[Kσ]
i (k)

}∞
k=0

be the impulse response of Ti, where the dependence on E [Kσ] is made explicit.

Furthermore, according to Theorem 51, the mean gain of the closed loop is given by

‖T (Gσ,Kσ)‖MP =

∞∑
k=0

max
{∣∣∣t̄E[Kσ]

1 (k)
∣∣∣ , ∣∣∣t̄E[Kσ]

2 (k)
∣∣∣} . (3.21)

Therefore, the closed-loop is stable, it maps bounded mean inputs to bounded mean outputs, if T1 and T2 are stable

systems, i.e. their impulse responses are absolute summable. From (3.20), it is clear that T1 and T2 are stable if and

only if E [Kσ] stabilizes E [Gσ]. Therefore, (3.19) reduces to

inf
Kσ stabilizing

‖T (Gσ,Kσ)‖MP = inf
K̄ stabilizing E[Gσ]

K̄ LTI mean representation

∞∑
k=0

max
{∣∣∣t̄K̄1 (k)

∣∣∣ , ∣∣∣t̄K̄2 (k)
∣∣∣} . (3.22)

It is worth noting that the inf in (3.22) is taken over K̄s that stabilize E [Gσ] and they are mean representation of

some MLSS. Invoking the Youla-Kucera parameterization, K̄ stabilizes E [Gσ] if and only if

K̄ = (Y −MQ) (X −NQ)
−1
, (3.23)

for some stable Q, where  X̃ −Ỹ

−Ñ M̃


 M Y

N X

 = I

is the doubly coprime factorization of the LTI mean representation E [Gσ]. This parameterization is known to make

the controller synthesis, and in particular (3.22), convex in the Youla parameter. More precisely, using (3.23),

T
(
E [Gσ] , K̄

)
= H + UQV,
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where H :=

[
H1 H2

]
, U , and V :=

[
V1 V2

]
are stable systems depending on E [Gσ]. Obviously, the impulse

responses T1 and T2 are convex in Q. We further need to make sure that K̄ is a mean representation of some MLSS.

To this end, note that the mean representation of Kσ, E [Kσ], is given by

 ξ1

ξ2

 (k + 1) = ĀC

 ξ1

ξ2

 (k) + B̄C

 θ1

θ2

 (k) ,

 υ1

υ2

 (k) = C̄C

 ξ1

ξ2

 (k) + D̄C

 θ1

θ2

 (k) ,

(3.24)

where

ĀC =

 p11A
C
1 p12A

C
2

p21A
C
1 p22A

C
2

 ,
B̄C =

 p11B
C
1 p12B

C
2

p21B
C
1 p22B

C
2

 ,
C̄C =

 CC1 0

0 CC2

 , D̄C =

 DC
1 0

0 DC
2

 ,
ξi (k) = E

[
xC (k) 1σ(k)=i

]
.

From this, it is obvious that the D-matrix of the mean representation E [Kσ], D̄C , is diagonal. This proves to be also

sufficient for an LTI system to be a mean representation when the switching sequence is Independently Identically

Distributed (IID) as stated in the following theorem:

Theorem 52 Consider a MLSS (3.18) with σ IID. That is Pr (σ (k + 1) = i|σ (k) = j) = pi, for all k ∈ Z+. Then

the D-matrix of its mean representation (3.24), mapping two inputs to two outputs, is diagonal. Conversely, any

LTI system mapping two inputs to two outputs with diagonal D-matrix is a mean representation of some MLSS in

the form of (3.18).

Proof. Here we prove the converse part. We will show that if σ is IID any LTI system with diagonal D-matrix

mapping two inputs to two outputs can be written as the mean representation of some MLSS. First, notice that if

σ is IID then p11 = p12 = p1 and p21 = p22 = p2. Now, let X =

 p−1
1 I 0

−p2I p1I

 . Then, apply the the coordinate
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transformation

 ζ1

ζ2

 = X

 ξ1

ξ2

 on (3.24). The state-space matrices of the transformed system is given by

XĀCX
−1 =

 p1A
C
1 + p2A

C
2 p−1

1 AC2

0 0

 ,
XB̄C =

 BC1 BC2

0 0

 ,
C̄CX

−1 =

 p1C
C
1 0

p2C
C
2 p−1

1 CC1

 ,
D̄C =

 DC
1 0

0 DC
2

 .
From this, it is easy to see that ζ2 = 0 and hence one can reduce the order of the system and find an equivalent

state-space representation as

E [Kσ] =


p1A

C
1 + p2A

C
2 BC1 BC2

p1C
C
1

p2C
C
2

DC
1 0

0 DC
2

 . (3.25)

Now, given any LTI system, K̄, mapping two inputs to two outputs with diagonal D-matrix as

K̄ =


AK BK1 BK2

CK1

CK2

DK
1 0

0 DK
2

 ,

one can choose the state-space matrices of Kσ as

ACi = AK , BCi = BKi ,

CCi =
1

pi
CKi , D

C
i = DK

i .

Then, the mean representation of Kσ, given in (3.25) matches K̄.

In the light of above theorem, if σ is IID, the inf in (3.22) should be taken over the stabilizing K̄ with diagonal

D-matrix. Notice that this condition is, in general, hard to enforce. But, since the D-matrix of E [Gσ] is diagonal as

well, this condition, as shown in [59] when considering a different problem, is satisfied if and only if the D-matrix of

the Youla parameter in (3.23) is diagonal.
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Theorem 53 For the MLSS (3.1) with IID σ

inf
Kσ stabilizing

‖T (Gσ,Kσ)‖MP = inf
Q stable

q̄(0) diagonal

∞∑
k=0

max
{∣∣∣t̄Q1 (k)

∣∣∣ , ∣∣∣t̄Q2 (k)
∣∣∣} , (3.26)

where {q (k)}∞k=0 is the impulse response of Q and
{
t̄Qi (k)

}∞
k=0

is the impulse response of Ti = Hi + UQVi, for

i = 1, 2.

We point out that (3.26) can be computed with arbitrary accuracy. Indeed, it can be cast as a linear program

and hence is tractable. Similar type of constrained problems have been dealt with in the past in the context of

optimal disturbance rejection for periodic and multirate systems in [14] and [60]. If σ is a Markov process but not

IID, then q̄ (0) being diagonal is only a necessary condition and not sufficient in general. Hence, (3.26) results in a

lower bound of the achievable performance. The sufficient conditions needed to be enforced on K̄ such that its is a

mean representation of some MLSS is the subject of our future research.

3.4 Summary

In this chapter, we introduced the notion of the stochastic l∞ gain for LSS. This gain captures the peak to peak

performance of the system when the switching sequence is a random process with a given distribution. We provided an

exact expression for computing this gain. We further studied the mean performance of MLSS. The mean performance

is characterized in terms of the LTI mean representation of the plant. Furthermore, we considered the problem of

mean performance optimal control synthesis. In the case when the switching sequence is IID, this problem is reduced

to a convex optimization. This optimization can be solved with arbitrary accuracy using linear programming and

hence is tractable.
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Part II

Systems with Cone Constraints
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Chapter 4

Systems with Positive Inputs

4.1 Introduction

The study of systems with positivity constraints is well justified as they appear in many fields when modelling

nonnegative entities such as mass, density, volume, etc. as illustrated in the following example:

Example 54 The tumor-immune interaction can be modeled as

ẋ = −µCx ln

(
x

x∞

)
− γxy − κxu,

ẏ = µI
(
x− βx2

)
y − δy + α,

where y stands for the immunocompetent cells, x is tumor volume, u is the chemotherapy agent, and µC , x∞, γ,

κ, µI , δ, and α are constant parameters [34]. The phase portrait of this system is shown in Figure 4.1 for u = 0.

This system has three equilibria away from the origin marked by asterisks in the figure. The state variables x and y

remain nonnegative for nonnegative initial condition and inputs.

1

Figure 4.1: Phase portrait of tumor immune interaction

In this part, we are interested in characterizing and optimizing the l∞ gain of linear systems that contain positivity

type of constraints. Two cases are considered: when the input to the system is positive and when the system itself is

positive. The former is studied in this chapter while the latter is considered in the next chapter. As an example for

65



the first case, consider the positive nonlinear system in Example 54. If one linearizes this tumor-immune interaction

model around one of its equilibria, the linearized model is no longer a positive system as it is not linearized about

the origin. However, its input, the chemotherapy agent, remains positive and hence fit into this class of systems.

In this chapter, we assume that the input is restricted to be in the positive cone of l∞, denoted by l+∞, and seek

to characterize the induced norm from l+∞ to l∞. That is, for a given (not necessarily positive) linear system G,

we are interested to find supt ‖(Gu) (t)‖∞, where 0 ≤ u (k) ≤ 1 (the inequalities are taken component wise) for all

nonnegative integers k. We obtain an exact characterization of this norm (the induced norm from l+∞ to l∞) in terms

of the standard l∞ induced norms of appropriately defined subsystems which is particularly easy to calculate in the

case of LTI systems. We emphasize that no positivity assumption is made on the system itself. We further consider

the more general asymmetric input signals and characterize the input output gain of such systems. More precisely,

for two real numbers a and b, we compute supt ‖(Gu) (t)‖∞, where a ≤ u (k) ≤ b for all nonnegative integers k.

As an application of the above developments, we consider a filtering problem in which the signal to be estimated,

s, is known to live in a positive cone, i.e. s ∈ l+∞. In general, just designing a filter to minimize the standard l∞

induced norm of the operator from signal to the estimation error will be conservative. Instead, we can use the apriori

knowledge of positiveness of the signal by considering the same problem with l+∞ to l∞ induced norm.

Based on this development, we consider the model matching problem to show that time-varying linear or nonlinear

control or filtering does not improve the performance with respect to this norm for LTI systems. Also, synthesizing

an LTI controller to optimize the l+∞ to l∞ induced norm reduces to linear programming. We further generalize the

results to the case of mixed input signals when there are inputs both in l+∞ and l∞. As an example, we consider

the aforementioned filtering problem and solve it when the signal is positive and bounded and there also exists noise

which is only bounded but not necessarily positive.

4.2 Background and Notation

For any M = [mij ] ∈ Rn×m, ‖M‖1 = maxi
∑m
j=1 |mij |, ‖M‖∞ = maxj

∑n
i=1 |mij |, and its null space is denoted by

Null (M). Also, associated to M , we define two matrices M+ =
[
m+
ij

]
∈ Rn×m and M− =

[
m−ij
]
∈ Rn×m as

m+
ij = 0 ∨mij ,m

−
ij = 0 ∨ −mij ,

where ∨ stands for the max operator. That is, for two real numbers a and b, a ∨ b := max {a, b}. We refer to M+

and M− as the positive decomposition M and it can be easily verified that M = M+ −M−. Given a sequence

y = {y (k)}∞k=1 where y (k) ∈ Rn, for k ∈ Z+, one can define its positive decomposition into two non-negative

sequences y+ and y− in an analogous way. In this chapter, we are interested in the positive cone of ln∞ which is
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denoted by ln+
∞ . This set is defined by

ln+
∞ = {{y (k)}∞k=1 ∈ l

n
∞ : yi (k) ≥ 0, k ∈ Z+, i = 1, ..., n} ,

where yi (k) is the ith entry of vector y (k) ∈ Rn. In other words, ln+
∞ is the set of bounded non-negative sequences.

By B (ln+
∞ , ε) (B (ln∞, ε)), for ε > 0, we mean the ball of radius ε in ln+

∞ (ln∞).

Let Ln×mTV be the space of all linear, causal, and bounded operators, T : lm∞ → ln∞. That is, for any x, y ∈ lm∞,

T (x+ y) = Tx+ Ty, PkTPku = TPku, for ∀k ∈ Z+, and

‖T‖ := sup
u6=0

‖Tu‖∞
‖u‖∞

< +∞, (4.1)

where Pk is the truncation operator defined by

Pkx = (x0, x1, ..., xk−1, 0, 0, ...) .

Also, denote by Ln×mTI the subspace of all T ∈ Ln×mTV such that ΛT = TΛ,where Λ is the delay operator

Λx = Λ (x0, x1, ...) = (0, x0, x1, ...) , for ∀x ∈ lm∞.

It is well-known that any T ∈ Ln×mTV can be represented by a lower triangular infinite dimensional matrix

T = [T (i, j)]i≥j =



T (0, 0) 0 0 · · ·

T (1, 0) T (1, 1) 0 · · ·

T (2, 0) T (2, 1) T (2, 2)

...
. . .


, (4.2)

where T (i, j) ∈ Rn×m for all i, j ∈ Z+, i ≥ j. Moreover, (4.1) defines a norm on Ln×mTV and

‖T‖ = sup
i∈Z+

∥∥∥∥[ T (i, 0) T (i, 1) · · · T (i, i)

]∥∥∥∥
1

. (4.3)

Also, one can think of the positive decomposition of T into T+ = [T+ (i, j)]i≥j ∈ L
n×m
TV and T− = [T− (i, j)]i≥j ∈

Ln×mTV .

In [7], the authors introduced the normed space Lm×n0 whose elements, G ∈ Lm×n0 , can be represented by upper
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Figure 4.2: Filtering problem

triangular infinite dimensional matrices

G =



G (0, 0) G (0, 1) G (0, 2) · · ·

0 G (1, 1) G (1, 2) · · ·

0 0 G (2, 2)

...
. . .


,

where G (i, j) ∈ Rm×n for all i, j∈ Z+ and j ≥ i. Moreover, Lm×n0 is equipped with a norm, ‖.‖L0
,

‖G‖L0
=
∑
i

‖C [G]i‖∞ ,

where C [G]i is the ith column of G. It was shown that Lm×n0 is the pre-dual of Ln×mTV with pairing 〈T,G〉 :=

Trace (TG). Furthermore, ‖T‖ = sup‖G‖L0≤1 〈T,G〉.

4.3 The Plus Norm Computation

In this chapter, we are interested in linear systems whose input is positive. More precisely, for T ∈ Ln×mTV , define the

functional (norm) ‖.‖+ : Ln×mTV → R as

‖T‖+ = sup
u6=0
u∈lm+
∞

‖Tu‖∞
‖u‖∞

. (4.4)

Intuitively speaking, this functional (induced norm), similarly to l1 norm for LTI systems, gives the peak to peak

ratio of the output to input when the input is restricted to a positive cone. Note that l+∞ is not a linear space,

however (4.4) is indeed a norm and thus is referred to as the plus norm henceforth. It is obvious that the plus norm

is dominated by the l∞ induced norm. As an example, consider the filtering problem depicted in Figure 4.2 where

the input to a (stable) plant P is to be estimated. Suppose s belongs to the ball of l+∞ and there is no noise for

now, i.e. n = 0. It is of interest to design the filter Q to minimize the worst case estimation error, s− ŝ. Therefore,

one needs to minimize the worst-case input-output gain of the map I − QP which is the map from input s to the

estimation error s− ŝ. Clearly, just designing a filter to minimize the standard l∞ induced norm of this operator is

in general conservative. Instead, we can use the apriori knowledge of positiveness of the input signal by considering

the same problem with l+∞ to l∞ induced norm. In what follows, one of our goals is to characterize this newly defined

norm (4.4) and find tractable expressions to compute it.
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We develop expressions to calculate the plus norm in terms of the standard l∞ induced norm of the system. For

the simplicity of presentation, we mainly focus on Multi-Input Single-Output (MISO) systems. By doing so, we will

not lose any generality for our purposes since any T ∈ Ln×mTV can be written as

T =


T1

...

Tn

 , (4.5)

where Ti ∈ L1×m
TV for i ∈ {1, 2, ..., n} and it is straight forward to show that ‖T‖ = maxi ‖Ti‖, and ‖T‖+ = maxi ‖Ti‖+.

In fact by definition,

‖T‖+ = sup
u6=0
u∈lm+
∞

‖Tu‖∞
‖u‖∞

= max
i

sup
u6=0
u∈lm+
∞

‖Tiu‖∞
‖u‖∞

= max
i∈{1,...,n}

‖Ti‖+ . (4.6)

Therefore, we mainly state and prove our results for MISO system and note that the extension to MIMO case follows

from (4.6). The next lemma connects the plus norm to the standard l∞ norm of its positive decomposition.

Lemma 55 Consider a MISO LTV system T with n inputs, T ∈ L1×m
TV . Then

‖T‖+ = max
{∥∥T+

∥∥ ,∥∥T−∥∥} . (4.7)

Proof. By the definition of the plus norm we have ‖T‖+ = sup k∈Z+

u∈B(l+∞,1)
|y (k)|, where

|y (k)| =

∣∣∣∣∣∣
k∑
j=0

T (k, j)u (j)

∣∣∣∣∣∣ =

∣∣∣∣∣∣
k∑
j=0

m∑
r=0

tr (k, j)ur (j)

∣∣∣∣∣∣ ,
where tr (k, j) is the rth entry of row vector T (k, j) = [t1 (k, j) , t2 (k, j) , ..., tm (k, j)]. Given k ∈ Z+, to maximize

|y (k)|, u should be chosen in a way to make y (k) either as large (positive) as possible or as small (negative) as

possible. In other words, for k ∈ Z+,

max
u
|y (k)| = max

{∣∣∣max
u

y (k)
∣∣∣ , ∣∣∣min

u
y (k)

∣∣∣} . (4.8)

First, consider the case of maximizing y (k), maxu y (k). To make y (k) as positive as possible, it is obvious that one

needs to set ur (j) = 1 if tr (k, j) ≥ 0 and ur (j) = 0 if tr (k, j) < 0. That is, maxu y (k) =
∑k
j=0

∑m
r=0 (tr (k, j) ∨ 0) =∑k

j=0 ‖T+ (k, j)‖. Next, to minimize y (k), one needs to set ur (j) = 1 if tr (k, j) < 0 and ur (j) = 0 if tr (k, j) ≥ 0.

This implies, minu y (k) = −
∑k
j=0

∑m
r=0 (−tr (k, j) ∨ 0) = −

∑k
j=0 ‖T− (k, j)‖. Hence, by (4.8) we have

max
u
|y (k)| = max


k∑
j=0

∥∥T+ (k, j)
∥∥ , k∑

j=0

∥∥T− (k, j)
∥∥ .
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Taking the sup with respect to k ∈ Z+ in turn implies

‖T‖+ = sup
k∈Z+

u∈B(l+∞,1)

|y (k)| = max
{∥∥T+

∥∥ ,∥∥T−∥∥} ,

where we have used the fact that T+ and T− are MISO positive operators and supk∈Z+

∑k
j=0 ‖T+ (k, j)‖ = ‖T+‖

and supk∈Z+

∑k
j=0 ‖T− (k, j)‖ = ‖T−‖.

This lemma provides an exact expression for computation of ‖T‖+. Another expression for ‖T‖+ which fits our

purposes in later sections is presented next.

Theorem 56 Let T ∈ L1×m
TV . Then,

‖T‖+ = sup
k

1

2

 k∑
j=0

m∑
r=1

|tr (k, j)|+

∣∣∣∣∣∣
k∑
j=0

m∑
r=1

tr (k, j)

∣∣∣∣∣∣
 , (4.9)

where tr (k, j) is the rth entry of row vector T (k, j) = [t1 (k, j) , t2 (k, j) , ..., tm (k, j)] .

Proof. First, we will show that for given k ∈ Z+

1

2

 k∑
j=0

m∑
r=1

|tr (k, j)|+

∣∣∣∣∣∣
k∑
j=0

m∑
r=1

tr (k, j)

∣∣∣∣∣∣
 = max


k∑
j=0

∥∥T+ (k, j)
∥∥ , k∑

j=0

∥∥T− (k, j)
∥∥ . (4.10)

Without loss of generality assume
∑k
j=0 ‖T+ (k, j)‖ ≥

∑k
j=0 ‖T− (k, j)‖. The other case, can be handled similarly.

This assumptions implies
k∑
j=0

m∑
r=0

tr (k, j) ≥ 0, (4.11)

and that the right hand side of (4.10)
∑k
j=0 ‖T+ (k, j)‖. Furthermore, by (4.11), the left hand side of (4.10) can be

simplified as:

1

2

 k∑
j=0

m∑
r=1

|tr (k, j)|+

∣∣∣∣∣∣
k∑
j=0

m∑
r=1

tr (k, j)

∣∣∣∣∣∣
 =

1

2

 k∑
j=0

m∑
r=1

|tr (k, j)|+
k∑
j=0

m∑
r=1

tr (k, j)


=

1

2

k∑
j=0

m∑
r=1

[|tr (k, j)|+ tr (k, j)]

=

k∑
j=0

m∑
r=1

(tr (k, j) ∨ 0) =

k∑
j=0

∥∥T+ (k, j)
∥∥ .

Hence, (4.10) holds. Now, by Lemma 77, taking sup with respect to k from both sides of (4.10) completes the proof.

In dealing with LTI systems, (4.9) can be simplified and linked to the usual l1 (l∞ induced) norm of the system.

Before presenting the results for LTI case, we need to recall that the λ-transform for T ∈ Ln×mTI with impulse response
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{T (k)}∞k=0 is defined by T̂ (λ) =
∑∞
k=0 λ

kT (k), for λ’s such that the series converges. The following holds true:

Corollary 57 For a MISO LTI system T ∈ L1×m
TI ,

‖T‖+ =
1

2

[
‖T‖+

∣∣∣T̂ (1) 1
∣∣∣] , (4.12)

where 1 is the vector of ones.

Proof. The proof follows similarly to the proof of Theorem 56 and hence is omitted here. For the SISO case, one

can also refer to [61, Proof of Theorem 5].

4.4 Model Matching Problems

In this section, we consider a generic model matching problem

inf
Q
‖H − UQV ‖+ , (4.13)

where H, U, and V are stable LTI systems and show that this problem with the norm ‖.‖+ is indeed convex and

tractable. Moreover, we will show that time varying compensation, Q ∈ LTV , can not outperform time invariant

compensation, Q ∈ LTI . That is,

inf
Q∈LTI

‖H − UQV ‖+ = inf
Q∈LTV

‖H − UQV ‖+ .

Let H =


H1

...

Hm

 and U =


U1

...

Um

, where Ui, Hi ∈ L1×n
TI for some integers m and n. The following corollary

is a direct consequence of Corollary 57:

Corollary 58 For the model matching problem (4.13), we have

inf
Q∈LTI

‖H − UQV ‖+ = inf
Q

max
i∈{1,2,...,m}

1

2

[
‖Hi − UiQV ‖+

∣∣∣Ĥi (1) 1− Ûi (1) Q̂ (1) V̂ (1) 1
∣∣∣] (4.14)

Note that (4.14) is a linear programming (LP) problem and the optimal value can be found with arbitrary

accuracy using methods in [62].
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Example 59 Consider the model matching problem (4.13) with the following:

H =



 0.15 −0.3

0.07 0.4


 0.08 −0.42

0 −0.3

(
0.01 0.9

) (
0.8 −0.7

)
 ,

U =



 0.2 0.07

−0.5 0.2


 −0.12

−0.22

(
0.65 0.8

)
−0.8

 ,

V =



 −0.4 −0.06

0.02 0.3


 0.3 0.13

−0.18 0.5

(
−0.4 0.3

) (
0.5 0.4

)
 .

For this problem, we have

inf
Q
‖H − UQV ‖ ' 1.646,

and

inf
Q
‖H − UQV ‖+ ' 0.946.

Notice that the optimal values for the standard l1 greater than that of the plus norm. Also, it is worth mentioning

that the minimizer of the standard l1 problem does not necessarily minimize the plus norm.

As indicated above, the general, multi-block, model matching problem can be solved via the abstract LP methods

in [62]. These primal-dual methods lead to solutions which perform arbitrarily close to the optimal cost, within any

prescribed degree of accuracy. However, for single block problems, one can say more about the problem. Indeed,

as we elaborate below, we use the standard duality approach of [63] or [62] to obtain exact solutions which also

reveal the FIR structure of the optimal solutions. This feature of the norm ‖.‖+ is similar to that of the standard l1

problem.

4.4.1 On Exact Solutions

Herein, we consider the one block problem [63] and, to avoid a lengthy exposition, we treat only the SISO case.

The results hold true for MIMO as well. In the previous part, we linked the plus norm to the l1 norm and the

DC gain of the system. Here, invoking duality theory, we will derive some important properties of the optimal

solution for the model matching problem. A key in applying the duality approach of [63] and [62] is characterizing

the primal and dual spaces. To this end, for a sequence x = {x (k)}∞k=0, define two sequences x+ = {x+ (k)}∞k=0 and
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x− = {x− (k)}∞k=0 by

x+ (k) = x (k) ∨ 0,

x− (k) = −x (k) ∨ 0.

Clearly, x = x+ − x− and we refer to such a decomposition as the positive decomposition. Also, (with some abuse

of notation,) define the plus norm of the sequence x as

‖x‖+ = max

{ ∞∑
k=0

x+ (k) ,

∞∑
k=0

x− (k)

}
, (4.15)

whenever the summations are finite. It is straight forward to show that the space of sequences with finite plus norm

is a normed linear space and we denote it by l̃1. The following lemma characterizes the dual space of l̃1:

Lemma 60 The dual space of l̃1 is denoted by l̃∞ and is the space of all bounded sequences y with the norm

‖y‖l̃∞ = sup
‖x‖+≤1

∣∣∣∣∣
∞∑
k=0

y (k)x (k)

∣∣∣∣∣ =
∥∥y+

∥∥
∞ +

∥∥y−∥∥∞ ,

where y = y+ − y− is the positive decomposition of y.

Proof. It can be easily verified that any given y ∈ l̃∞ defines a bounded functional on the space of l̃1 with the pairing

〈y, x〉 =
∑∞
k=0 y (k)x (k), for any x ∈ l̃1. Conversely, as l̃1 possesses a Schauder basis, any functional f on l̃1 gives

rise to an element y ∈ l̃∞ with y (k) given as the action of f on the kth basis vector. It remains to show the induced

norm of the functional. To this end, let y ∈ l̃∞. Then, ‖y‖l̃∞ = sup‖x‖+≤1 |
∑∞
k=0 y (k)x (k)|. Let y = y+ − y− be

the positive decomposition of y. Then,

∞∑
k=0

y (k)x (k) =
∑
k

[
y+ (k)x+ (k) + y− (k)x− (k)

]
−
∑
k

[
y− (k)x+ (k) + y+ (k)x− (k)

]
.

Therefore, it can be easily verified that

∞∑
k=0

y (k)x (k) ≤ max

 ‖y
+‖∞

∑
k x

+ (k) + ‖y−‖∞
∑
k x
− (k)

‖y−‖∞
∑
k x

+ (k) + ‖y+‖∞
∑
k x
− (k)

 .

And since ‖x‖+ ≤ 1, we have ∣∣∣∣∣
∞∑
k=0

y (k)x (k)

∣∣∣∣∣ ≤ ∥∥y+
∥∥
∞ +

∥∥y−∥∥∞ .
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Now, given ε > 0, let k1 6= k2 such that

∥∥y+
∥∥
∞ − ε ≤ y+ (k1) = y (k1) ≤

∥∥y+
∥∥
∞ ,∥∥y−∥∥∞ − ε ≤ y− (k2) = −y (k2) ≤

∥∥y−∥∥∞ .

Now, let xopt = {xopt (k)}∞k=0 be a sequence of zeros except at k1 and k2 with the values of

xopt (k1) = 1,

xopt (k2) = −1.

Clearly, ‖xopt‖+ ≤ 1 and
∞∑
k=0

y (k)xopt (k) ≥
∥∥y+

∥∥
∞ +

∥∥y−∥∥∞ − 2ε.

The problem of interest is

inf
Q
‖H − UQ‖+ , (4.16)

where H and U are stable SISO LTI systems. Further, we assume that U does not have any zero on the unit circle

and, for simplicity, its unstable zeros are of multiplicity one. Let {ai}Ni=1 be the set of (unstable) zeros of U in the

unit disk, i.e. Û (ai) = 0. Then, a stable LTI system R can be written as R = UQ if and only if R̂ (ai) = 0 for

i = 1, 2, ..., N . Therefore, (4.16) reduces to

inf
R
‖H −R‖+ , subject to R̂ (ai) = 0 for i = 1, 2, ..., N. (4.17)

Also, notice that the space of stable LTI systems equipped with the plus norm is isomorphic to l̃1 and (4.17) can be

viewed as a minimum distance problem in l̃1. Let r = {r (k)}∞k=0 and h = {h (k)}∞k=0 be the impulse responses of H

and R. Also, define the sequences

āi =
{

1,Re (ai) ,Re
(
a2
i

)
, ...
}
,

ãi =
{

0, Im (ai) , Im
(
a2
i

)
, ...
}
.

Then, (4.17) is equivalent to

inf
r∈M
‖h− r‖+ , (4.18)

where M =
{
r ∈ l̃1 : 〈āi, r〉 = 〈ãi, r〉 = 0, i = 1, ..., N

}
. Using the standard duality approach the following can now

be shown as in [63]
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Theorem 61 The optimal value of (4.16) is given by

max
{αi,βi}Ni=1

N∑
i=1

αi Re
[
Ĥ (ai)

]
+ βi Im

[
Ĥ (ai)

]
,

subject to

µ1 ≥ 0, µ2 ≥ 0, µ1 + µ2 ≤ 1

− µ2 ≤
N∑
i=1

αiāi (k) + βiãi (k) ≤ µ1, for k = 1, 2, ..., J ,

where J is a pre-computable index that depends only on ai’s. Moreover, an optimal solution Φ0 = H − UQ0 to the

original problem always exists for some Q0 and it is FIR of length J

We note that the above is a finite dimensional LP and that Φ0 can be easily obtained from its solution using

alignment, or by directly solving the primal problem which is, after all, a finite dimensional LP. Also note that the

constraints in the maximization in the above theorem come directly from the size constraint

∥∥∥∥∥
N∑
i=1

αiāi + βiãi

∥∥∥∥∥
l̃∞

≤ 1,

on the dual functional.

4.4.2 Linear vs. Nonlinear

Herein, we prove that time varying Q does not improve performance, which can then be used to establish that the

same holds for smooth nonlinear Q. In particular we have the following.

Theorem 62 Let H,U, and V be LTI systems. Then,

inf
Q∈LTI

‖H − UQV ‖+ = inf
Q∈LTV

‖H − UQV ‖+ .

Proof. This proof is the adaptation of the results of [7] to our problem. We start the proof by showing for any given

stable Q ∈ LTV ∥∥H − UΛ−kQΛkV
∥∥

+
≤ ‖H − UQV ‖+ .

This holds since

‖H − UQV ‖+ = sup
u∈ln+
∞ ,u 6=0

‖(H − UQV )u‖∞
‖u‖∞

≥ sup
u∈ln+
∞ ,u 6=0

∥∥(H − UQV ) Λku
∥∥
∞

‖Λku‖∞
=
∥∥Λ−k (H − UQV ) Λk

∥∥
+
,
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which in turn equals
∥∥H − UΛ−kQΛkV

∥∥
+

as H, U , and V are LTI and commute with the delay operator. Now,

define QN = 1
N

∑N−1
k=0 Λ−kQΛk. Using triangle inequality, it follows that for any N ∈ Z+,

‖H − UQNV ‖+ ≤ ‖H − UQV ‖+ .

It is argued in [7], [64], and [55] that {QN}∞N=0 has a weak* convergent subsequence, denote it by {QNk}
∞
k=0. That

is, QNk
weak∗→ QLTI , where QLTI ∈ LTI is stable. Obviously, for any X ∈ L+

0 with ‖X‖L0
≤ 1 it holds that

〈H − UQNkV,X〉 → 〈H − UQLTIV,X〉 .

It can be easily verified that

‖H − UQLTIV ‖+ = sup
X∈L+

0

‖X‖L0≤1

〈H − UQLTIV,X〉 .

Now, for ε > 0, let X ∈ L+
0 such that ‖X‖L0

= 1 and

‖H − UQLTIV ‖+ − ε ≤ 〈H − UQLTIV,X〉 ≤ ‖H − UQLTIV ‖+ .

Notice that,

〈H − UQNkV,X〉 ≤ ‖H − UQNkV ‖+ ‖X‖L0
= ‖H − UQNkV ‖+ .

Hence,

〈H − UQLTIV,X〉 = lim
k→∞

〈H − UQNkV,X〉 ≤ lim inf
k→∞

‖H − UQNkV ‖+ ,

and consequently,

‖H − UQLTIV ‖+ − ε ≤ lim inf
k→∞

‖H − UQNkV ‖+ .

Since, this inequality holds for any ε, we have

‖H − UQLTIV ‖+ ≤ lim inf
k→∞

‖H − UQNkV ‖+ ≤ ‖H − UQV ‖+ ,

and this completes the proof.

Similarly as in [8], one can show that nonlinear smooth Q cannot outperform linear Q.

4.5 Mixed Signals

In the previous section, we focused on the l∞ gain of the output when the input is restricted to the positive cone

l+∞. In this section, we consider a more general case when only part of the input is positive, i.e. u ∈ ln1+
∞ × ln2

∞ . To
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motivate this problem, we give the following example related to filtering:

Consider the problem depicted in Figure 4.2, where s ∈ B
(
l1+
∞ , 1

)
is the input to the (stable) plant P and

n ∈ B
(
l1∞, b

)
, for some b ≥ 0, is the measurement noise. The interest is to design a filter Q such that the difference

between the input signal, s, and its estimate ŝ is minimized in the l∞ sense. That is, the problem amounts to

inf
Q

sup
s∈B(l1+∞ ,1)
n∈B(l1∞,1)

∥∥∥∥∥∥∥
[
I −QP −bQ

] s

n


∥∥∥∥∥∥∥
∞

.

Generally, given H1 ∈ L1×m1

TI and H2 ∈ L1×m2

TI , if u =
(
uT1 , u

T
2

)T ∈ lm1+
∞ × lm2

∞ , from the definition of the norm

it follows that

sup
u∈lm1+
∞ ×lm2

∞

∥∥∥∥[ H1 H2

]
u

∥∥∥∥
∞

‖u‖∞
= ‖H1‖+ + ‖H2‖ .

Specializing this to the abovementioned filtering problem, we have

inf
Q

sup
s∈B(l1+∞ ,1)
n∈B(l1∞,b)

‖s− ŝ‖∞ = inf
Q

[
b ‖Q‖+ ‖I −QP‖+

]
.

It should be noted that, as before, it can be similarly argued that nonlinear smooth Q’s offer no advantage over

LTI Q’s. However, if non-smooth Q’s are allowed, there is a possibility of improving performance, e.g. see [65]

and [66] using the invariant set methods. In particular, it is of interest to know if thresholding results in a better

performance. More precisely, any LTI solution Q obtained by our methods can be used to generate a simple non-

smooth (thresholding) estimator QNL = ΥQ where

(Υx) (k) =

 x (k) , if x (k) ≥ 0

0, if x (k) < 0
, for x ∈ l∞.

Clearly, such a QNL does not perform worse than Q as it keeps the estimate of Q if it is non-negative and sets it to

zero if negative. However, as stated in the following proposition, it does not perform strictly better either.

Proposition 63 Let Υ be the thresholding operator. Then

inf
Q∈LTI

[
b ‖Q‖+ ‖I −QP‖+

]
= inf
Q nonlinear smooth

[
b ‖ΥQ‖+ ‖I −ΥQP‖+

]
.
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Proof. Note that Υ can be approximated arbitrarily closely by a smooth function

(
Υδ

smoothx
)

(k) =


x (k) if x (k) ≥ δ

1
4δ (x (k) + δ)

2
if −δ ≤ x (k) < δ

0 if x (k) < −δ

,

where δ > 0. It is easy to verify that Υδ
smooth is smooth and

∥∥Υδ
smooth −Υ

∥∥
+

=
∥∥Υδ

smooth −Υ
∥∥ = δ.

Therefore, given ε > 0 and a stable nonlinear smooth Q, there exists δ > 0 such that

b
∥∥Υδ

smoothQ
∥∥+

∥∥I −Υδ
smoothQP

∥∥
+
≤ b ‖ΥQ‖+ ‖I −ΥQP‖+ + ε. (4.19)

Now, note that as Υδ
smoothQ is smooth it admits a linearization Q̄ such that

sup
0<‖f‖∞≤α

∥∥(Υδ
smoothQP − Q̄P

)
f
∥∥
∞

‖f‖∞
< ε,

and

sup
0<‖f‖∞≤α

∥∥(Υδ
smoothQ− Q̄

)
f
∥∥
∞

‖f‖∞
< ε

for some α > 0. Therefore,

b
∥∥Υδ

smoothQ
∥∥+

∥∥I −Υδ
smoothQP

∥∥
+

≥ b sup
0<‖f‖∞≤α

∥∥(Υδ
smoothQ

)
f
∥∥
∞

‖f‖∞
+ sup

0<‖f‖∞≤α
f∈l+∞

∥∥(I −Υδ
smoothQP

)
f
∥∥
∞

‖f‖∞

≥ b
∥∥Q̄∥∥+

∥∥I − Q̄P∥∥
+
− (1 + b) ε. (4.20)

Therefore, from (4.19) and (4.20) we have

inf
Q̄∈LTV

b
∥∥Q̄∥∥+

∥∥I − Q̄P∥∥
+
≤ inf
Q smooth nonlinear

b ‖ΥQ‖+ ‖I −ΥQP‖+ .

Further, similarly to Theorem 62, one can argue that the LTV Q’s cannot lead a better performance than LTI Q’s.

And hence, we have

inf
Q∈LTI

[
b ‖Q‖+ ‖I −QP‖+

]
= inf
Q smooth nonlinear

[
b ‖ΥQ‖+ ‖I −ΥQP‖+

]
.
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Note that the above proposition asserts that even a nonlinear smooth Q followed by a thresholding Υ does not

perform better than LTI.

4.6 Asymmetric Signals

In this subsection, we present results for a more general case when the input signal is asymmetric and its lower and

upper bounds are time-varying. To this end, let a, b ∈ lm∞ be two bounded sequences and suppose that the input

satisfies

a ≤ u ≤ b,

where the inequalities are taken component wise. Then the following can be easily proved:

Proposition 64 For a given T ∈ L1×m
TV with positive decomposition T = T+ − T−,

sup
a≤u≤b

‖Tu‖∞ = max
{∥∥T+b− T−a

∥∥
∞ ,
∥∥T+a− T−b

∥∥
∞

}
.

Notice that, the above expression requires the positive decomposition of the operator. Similarly, to the proof of

Theorem 56, one can show the following:

Theorem 65 For given T ∈ L1×m
TV and a, b ∈ lm∞,

sup
a≤u≤b

‖Tu‖∞

=
1

2
sup
k


∣∣∣∣∣∣
k∑
j=0

m∑
r=1

tr (k, j) (ar (j) + br (j))

∣∣∣∣∣∣+

k∑
j=0

m∑
r=1

|tr (k, j)| (br (j)− ar (j))

 , (4.21)

where tr (k, j) is the rth entry of the row vector T (k, j) =

[
t1 (k, j) · · · tm (k, j)

]
and ar (j) (br (j)) is the rth

component of a (j) ∈ Rm (b (j) ∈ Rm).

To relate (4.21) to the standard l∞ norm of the operator, for given x = {x (j)}∞j=0 ∈ lm∞, define the bounded

operator Πx as

Πx =



diag (x (0))

diag (x (1))

diag (x (2))

. . .


.

Then, we note that, the first on the right hand side of (4.21) is the sum of the ith row of the matrix representation of
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the operator T (Πa + Πb). Also, the second term is the l1 norm of the kth row of the operator T (Πa −Πb). Therefore,

sup
a≤u≤b

‖Tu‖∞ =
1

2
sup
k
{|R [T (Πa + Πb)]k 1|+ ‖R [T (Πb −Πa)]k‖} ,

where 1 is the vector of ones with appropriate dimension and R [T (Πa + Πb)]k (R [T (Πb −Πa)]k) is the kth row

of the infinite dimensional matrix representation of the operator T (Πa + Πb) (T (Πb −Πa)). For LTI systems this

expression can be further simplified.

Corollary 66 Let a = {α, α, ...} and b = {β, β, ...} be constant sequences in lm∞, with α, β ∈ Rm. Then, for

T ∈ L1×m
TI ,

sup
a≤u≤b

‖Tu‖∞ =
1

2

[∣∣∣T̂ (1) (α+ β)
∣∣∣+ ‖T (Πa −Πb)‖

]
.

Given the above results, LP can be used to compute system’s performance and solve for optimal model matching,

similarly to the previous sections.

4.7 Summary

In this chapter, we considered linear systems whose inputs are restricted to be in the positive cone of l∞. This led

to introducing the plus norm, which is the induced norm from l+∞ to l∞. We presented an exact characterization

of this norm for both LTV and LTI systems. Further, for the LTI systems, we gave an expression for the plus

norm in terms of the standards l1 norm of the system and its DC gain. As an application, a filtering problem was

studied. Furthermore, based on this development, we considered the model matching problem and showed that

time-varying linear or nonlinear control or filtering does not improve the performance with respect to the plus norm,

and synthesizing an optimal controller for minimizing the plus norm is a LP.
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Chapter 5

Positive Systems

5.1 Introduction

In this chapter, we address the case where the positivity constraints are imposed on the systems. From the input-

output perspective, an externally positive system is the one whose output is in the positive l∞ cone when the input

is in this cone, starting from zero initial condition. As we point out, if such a constraint is imposed on the closed

loop map, finding an optimal controller is a linear programming problem and hence tractable [62]. Also, if the model

matching problem for LTI systems is considered, time varying linear or nonlinear compensation cannot outperform

LTI even if external positivity is enforced. Furthermore, if internal positivity is sought, we show that a dynamic

controller offers no advantage over a static one as far as l1, l∞, or H∞ performance is concerned. Therefore, the

abovementioned results can be readily used to obtain an optimal (static) state feedback controller or output feedback

for special cases. We note that, designing an optimal output feedback controller (which is static) is a harder problem

and in general leads to a bilinear program. In certain cases, however, when the measurement matrix satisfies certain

conditions, such problem is shown to reduce to a linear program as will be discussed.

5.2 External Positivity

An operator T ∈ Ln×mTV is said to be externally positive if for all i, j∈ Z+, i ≥ j, T (i, j) ∈ R̄n×m+ , where R̄n×m+

is the closure of Rn×m+ in standard topology. The set of such operators is denoted by Ln×m+
TV . In analogous way,

we also define Ln×m+
TI and Lm×n+

0 . Our first result is that designing a stabilizing controller such that the closed

loop system is externally positive can be cast as a convex optimization. Consider a general control problem where

G =

 G11 G12

G21 G22

 :

 w

u

 →
 z

y

 is the generalized plant; w and u are the exogenous and control input; z

and y are the regulated and measured output, respectively. The problem of interest is to find a controller K : y → u

that stabilizes the plant, minimizes the effects of w on z, and makes the map from w to z externally positive. Such

a problem can be converted to the following LP:

µ := inf
Q stable

‖H − UQV ‖ ,
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for some stable H, U , and V [63], [62], subject to

H − UQV ≥ 0, (5.1)

where the inequality in (5.1) is taken component-wise on the impulse response of H − UQV or its lower triangular

representation. Although it is an infinite dimensional optimization, its solution can be obtained with arbitrary

accuracy, through finite dimensional LP. For problems of this sort, we refer to [62] and [58]. Moreover, as is discussed

in Appendix 7.1, nonlinear smooth Q’s do not outperform LTI ones. In what follows, we present an example of the

filtering problem with positivity constraints both on signals and systems.

Example 67 Consider the abovementioned filtering problem depicted in Figure 4.2 where s ∈ B
(
l1+
∞ , 1

)
and n ∈

B
(
l1∞, b

)
. The objective is to design a filter Q that minimizes the estimation error and produces a positive estimate

in the absence of noise. That is, if n = 0 and s ∈ l+∞ then ŝ ∈ l+∞. Based on our developments in the previous

section, one can argue that this problem amounts to

inf
Q

sup
s∈B(l1+∞ ,1)
n∈B(l1∞,b)

∥∥∥∥∥∥∥
[
I −QP Q

] s

n


∥∥∥∥∥∥∥
∞

= inf
Q

{
‖I −QP‖+ + ‖bQ‖

}
, (5.2)

subject to

QP ≥ 0. (5.3)

For this example, let b = 0.3 and

P =



 −0.07 0.15

−0.78 0.12


 −0.25

−0.26

(
−0.5 −0.1

)
(0.5)

 .

Then

inf
Q

{
‖I −QP‖+ + ‖bQ‖

}
' 0.715.

It is worth noting that if instead of the plus norm, one uses the standard l1 norm, a different performance is achieved.

Indeed,

inf
Q
{‖I −QP‖+ ‖bQ‖} ' 0.850.

For this particular filtering example, it can be shown (see Appendix 7.2) that solving (5.2) without the constraint

(5.3) does not lead a better performance, contrary to what one may expect. Therefore, if it is of interest to have a

positive estimate ŝ even in the presence of the noise, after solving (5.2) for Q without the constraint (5.3), one can

replace Q with ΥQ without changing the performance. This is also discussed in Appendix 7.2.
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5.3 Internal Positivity

One can also think in terms of a state-space realization of T ,

T :

 x (t+ 1) = Ax (t) +Bu (t)

y (t) = Cx (t) +Du (t)
, (5.4)

where x, u, and y are state, input and output, respectively; and A, B, C, and D are matrices of appropriate

dimensions.

Definition 68 An operator T with state-space realization of the form (5.4) is internally positive if and only if the

output and the states are nonnegative whenever the input and the initial condition are nonnegative.

It can be shown that the above definition is equivalent to matrices A, B, C, and D having nonnegative entries

[37]. Obviously, internal positivity implies external positivity but the converse is not true, in general. In state-space,

there is a simple way to calculate the l1 norm (l∞ induced norm) of an externally positive LTI system, G, with

state-space matrices (A,B,C,D). As reported in [45], one has

‖G‖ =
∥∥∥C (I −A)

−1
B1+D1

∥∥∥
∞
,

where 1 is a column vector of compatible dimension with all entries equal to one. Moreover, the following holds:

Lemma 69 (discrete-time counterpart of Lemma 2 of [45]) If G is internally positive then ‖G‖ < γ for some γ > 0

if and only if there exists ν ∈ Rn+ such that

Aν +B1nw<ν, Cν +D1nw < γ1nz ,

where nw, nz, and n are the number of inputs, outputs, and states, respectively.

Let

G =


A B1 B2

C1 D11 D12

C2 D21 0

 ,K =

 Ak Bk

Ck Dk

 , (5.5)

then, the map T from w to z is given by

T (G,K) =

 Acl Bcl

Ccl Dcl

 , (5.6)
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where

Acl =

 A+B2DkC2 B2Ck

BkC2 Ak

 , Bcl =

 B1 +B2DkD21

BkD21

 ,
Ccl = [C1 +D12DkC2, D12Ck] , Dcl = D11 +D12DkD21.

Now, we present a new result regarding the optimal control synthesis for such systems. The next theorem addresses

a problem which was previously reported as an open problem in [67].

Theorem 70 For γ > 0, if there exists a controller (5.5) of order nk such that the closed loop system (5.6) is

internally positive, stable, and has l1 norm less than γ (‖T (G,K)‖ < γ), then there exists a static controller K̄ such

that T
(
G, K̄

)
is also positive, internally stable, and

∥∥T (G, K̄)∥∥ < γ.

Proof. Suppose a controller K with state-space matrices as in (5.5) yields to a positive closed loop system T (G,K)

with ‖T (G,K)‖ < γ. The result follows by direct calculations showing T
(
G, K̄

)
has the desired properties where

K̄ =

 0 0

0 Dk

 .

Indeed, since ‖T (G,K)‖ < γ, by Lemma 69, there should exists ν1 ∈ Rn+, ν2 ∈ Rnk+ such that

Acl

 ν1

ν2

+Bcl1nw <

 ν1

ν2

 ,

Ccl

 ν1

ν2

+Dcl1nw < γ1nz .

Since the closed loop (more precisely B2Ck and D12Ck) and ν2 are non-negative, from the above inequalities, it holds

that

(A+B2DkC2) ν1 + (B1 +B2DkD21) 1nw < ν1,

(C1 +D12DkC2) ν1 + (D11 +D12DkD21) 1nw < γ1nz .

By Lemma 69, the above two inequalities imply
∥∥T (G, K̄)∥∥ < γ.

Finding a static controller K ∈ Rnu×ny where nu and ny are the number of control inputs and measured outputs
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such that ‖T (G,K)‖ < γ is in general a bilinear program stated in the next Proposition. For simplicity, define

Â =

 A B1

C1 D11

 ∈ R(n+ny)×(n+nw),

B̂ =

 B2

D12

 ∈ R(n+ny)×nu , Ĉ =

[
C2 D21

]
∈ Rny×(n+nw),

and assume the following:

Assumption 71 Suppose C2 is full row rank.

Let the set of vectors {fi}
n−ny
i=1 , for fi ∈ Rn, span the null space of C2. Further, let the sets of vectors {gi}ndi=1 and

{hi}nbi=1 span the null space of D21, B̂T , respectively, where gi ∈ Rnw and hi ∈ Rn+ny ; nd and nb are the dimensions

of the null spaces of D21 and B̂T .

Proposition 72 There exists a static output feedback controller such that ‖T (G,K)‖ < γ and T (G,K) is internally

positive if and only if there exist ν ∈ Rn+, µ̂ ∈ R̄(n+ny)×n
+ , E ∈ R̄(n+ny)×nw

+ , and a set of vectors {ζi}
n−ny
i=1 such that

[
µ̂ E

]
1n+nw ≤

 ν

γ1nz

 , (5.7)

hTi Â

 Π 0

0 I

 = hTi

[
µ̂ E

]
, (5.8)

Â

 Π 0

0 I


 ζi

gi

 =

[
µ̂ E

] ζi

gi

 , (5.9)

Πζi = fi. (5.10)

where Π = diag (ν1, ..., νn). In this case, the controller K is given by

K = B̂−L
([

µ̂Π−1 E

]
−A

)
Ĉ−R, (5.11)

where B̂−L and Ĉ−R are left and right inverses of B̂ and Ĉ, respectively.

The proof of this proposition depends heavily on the following standard linear algebra result [68]:

Lemma 73 Let Â, B̂, Ĉ, and X be matrices with appropriate dimensions. Then, there exists a matrix K such that

Â+ B̂KĈ = X, (5.12)
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if and only if

Âf = Xf,

hT Â = hTX,

for and f ∈ Null
(
Ĉ
)

and h ∈ Null
(
B̂T
)

. In this case, K = B̂−L
(
X − Â

)
Ĉ−R, where B̂−L and Ĉ−R are left and

right inverses of B̂ and Ĉ, respectively.

Proof of Proposition 72. According to Lemma 69, ‖T (G,K)‖ < γ and T (G,K) is internally positive for some

K if and only if there exist E1 ∈ R̄(n+ny)×n
+ , E2 ∈ R̄(n+ny)×nw

+ , ν ∈ Rn+, and K such that

Â+ B̂KĈ =

[
E1 E2

]
≥ 0, (5.13)

(
Â+ B̂KĈ

) ν

1nw

 <

 ν

γ1nz

 . (5.14)

Define Π := diag (ν1, ν2, ..., νn), µ̂ = E1Π ≥ 0, and E := E2 ≥ 0. Then, (5.13) and (5.14) simplify to

Â+ B̂KĈ =

[
µ̂ E

] Π−1 0

0 I

 , (5.15)

[
µ̂ E

]
1n+nw ≤

 ν

γ1nz

 . (5.16)

Using Lemma 73, (5.15) has a solution for K if and only if conditions (5.8) and

Â

 fi

gi

 =

[
µ̂ E

] Π−1 0

0 I


 fi

gi

 ,

which is equivalent to (5.9) after replacing fi with Πζi. Therefore, the proof is complete by noticing that (5.16) is

the same as (5.7) and (5.11) is achieved by pre- and post-multiplying (5.13) by B̂−L and Ĉ−R.

We comment here that (5.7)-(5.10) can be reduced to LP in some special cases. For example, in [69], the state

feedback problem is posed as a linear program. In this case, C2 = I which has the trivial null space of {0}. This

simplifies conditions (5.9) and (5.10) to

Â

 0

gi

 =

[
µ̂ E

] 0

gi

 ,
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which together with (5.7) and (5.8) is a tractable linear program. This cannot however be done for the general

output-feedback problem unless the C2 matrix satisfies certain conditions as stated in the next corollary.

Corollary 74 Suppose that the null space of C2 is invariant under multiplication by invertible diagonal matrices.

That is, for any diagonal invertible matrix M ,

Mfi ∈ span
{
f1, ..., fn−ny

}
.

Then, there exists an static output feedback controller such that ‖T (G,K)‖ < γ and T (G,K) is internally positive

if and only if there exist ν ∈ Rn+, µ̂ ∈ R̄(n+ny)×n
+ , E ∈ R̄(n+ny)×nw

+ such that

[
µ̂ E

]
1n+nw ≤

 ν

γ1nz

 , (5.17)

hTi Â

 Π 0

0 I

 = hTi

[
µ̂ E

]
, (5.18)

Â

 Π 0

0 I


 fi

gi

 =

[
µ̂ E

] fi

gi

 . (5.19)

Proof. We note that since the null space of C2 is invariant under multiplication by Π−1 and Π, ζi satisfies (5.10) if

and only if ζi ∈ Null (C2). Therefore, (5.9) is simplified to (5.19).

We would like to point out that an important class of output feedback program satisfies the condition in the

above corollary. The C2 matrix for the systems in this class has n− ny zero columns. This happens, for example, if

the ny measurements are the linear combinations of ny states and the rest n − ny states do not enter explicitly in

the output equation.

Finally, we would like to remark that results similar to Theorem 70 can be shown for some other performance

measures. For instance, the next theorem deals with the case when the performance is measured in l2 induced sense.

Theorem 75 If there exists a dynamic controller (5.5) such that the closed loop system (5.6) is internally positive,

stable, and has l2 induced norm less than γ (‖T (G,K)‖l2−ind < γ) for some positive γ, then there exists a static

controller K̄ such that T
(
G, K̄

)
is also internally positive, stable, and

∥∥T (G, K̄)∥∥
l2−ind

< γ.

Before proving this theorem, we need the following lemmas:

Lemma 76 Let G and H be non-negative matrices with 0 ≤ G ≤ H. Then, σ̄ (G) ≤ σ̄ (H), where σ̄ (.) denotes the

maximum singular value.

Proof. Notice that 0 ≤ GT ≤ HT . Therefore, 0 ≤ GTG ≤ HTH, [48, Lemma 3], and hence ρ
(
GTG

)
≤ ρ

(
HTH

)
,

[70], where ρ (.) is the spectral radius.
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Lemma 77 Given an internally positive G with state-space matrices (A,B,C,D), the following three conditions are

equivalent:

(i) ‖G‖l2−ind < γ, for some γ > 0.

(ii) there exists a positive matrix Z of compatible dimension such that

AZ +B < Z, (5.20) I CZ +D

ZTCT +DT γ2I

 is positive definite. (5.21)

(iii) there exists a positive matrix Z of compatible dimension such that

ZA+ C < Z, I ZB +D

ZTBT +DT γ2I

 is positive definite.

Proof. We only show the equivalency of (i) and (ii). Notice that since G is internally positive, ‖G‖l2−ind < γ if and

only if
∥∥∥Ĝ (1)

∥∥∥
l2−ind

= σ̄
(
Ĝ (1)

)
< γ, where Ĝ (1) is the DC gain of G. That is, ‖G‖l2−ind < γ if and only if

σ̄
[
C (I −A)

−1
B +D

]
< γ. (5.22)

First, suppose (5.22) holds. Since A is non-negative and stable, (I −A)
−1

is non-negative as well. Therefore, for

any positive matrix X, Y := (I −A)
−1
X ≥ 0. Moreover, one can choose X > 0 such that Y > 0. Now, since (5.22)

is strict inequality, there exists ε > 0 such that

σ̄
[
C
(

(I −A)
−1
B + εY

)
+D

]
< γ.

Let Z := (I −A)
−1
B+ εY . Then, (I −A)Z −B = εY > 0, and σ̄ [CZ +D] < γ which are equivalent to (5.20) and

(5.21), respectively.

Conversely, suppose (5.20) and (5.21) hold. Notice that, (5.20) implies A is Schur stable and (I −A)
−1
B < Z.

Therefore, C (I −A)
−1
B + D < CZ + D. By Lemma 76, this implies σ̄

[
C (I −A)

−1
B +D

]
< σ̄ [CZ +D].

Furthermore, (5.21), invoking Schur complement type of argument, implies σ̄ [CZ +D] < γ which completes the

proof of the converse.

Proof of Theorem 75. Now, to prove the theorem, let K =

 Ak Bk

Ck Dk

 be the dynamic controller of some

order nk in the statement of the theorem. We will show K̄ =

 0 0

0 Dk

 makes the closed-loop system internally
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positive, stable, and
∥∥T (G, K̄)∥∥

l2−ind
< γ. We will only show that

∥∥T (G, K̄)∥∥
l2−ind

< γ as the rest of the proof

follows similarly to that of Theorem 70.

Since ‖T (G,K)‖l2−ind < γ, according to Lemma 77, there exists Z =

 Z1

Z2

 ∈ R(n+nk)×nw
+ such that

Acl

 Z1

Z2

+Bcl <

 Z1

Z2

 , (5.23)

and  I CclZ +Dcl

ZTCTcl +DT
cl γ2I

 is positive definite,

where the latter is equivalent to

σ̄ (CclZ +Dcl) < γ, (5.24)

One can easily show that (5.23) implies

(A+B2DkC2)Z1 + (B1 +B2DkD21) < Z1. (5.25)

Furthermore, using Lemma 76, (5.24) implies

σ̄ ((C1 +D12DkC2)Z1 + (D11 +D12DkD21)) < γ, (5.26)

since

(C1 +D12DkC2)Z1 + (D11 +D12DkD21) ≤ CclZ +Dcl.

Invoking Lemma 77, (5.25) and (5.26) yield
∥∥T (G, K̄)∥∥

l2−ind
< γ.

5.4 Summary

In this chapter, we considered the positive systems (internal and external) in the context of l∞ optimization. We

showed that if external positivity is imposed on the closed loop map, finding an optimal controller is LP and hence

tractable. Furthermore, if internal positivity is desired for the closed loop system, a dynamic controller offers no

advantage over a static one. We also solved the static output feedback problem for the case that the null space of

the output matrix is invariant under multiplication by diagonal matrices.
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Chapter 6

Summary and Future Work

This dissertation was split into two parts. In the first part, the theory of l1 optimal control was extended to LSS. In

the second part, the l∞ performance and control design for system with positivity constraints were considered.

In Part I, we introduced the class of generalized input-output switching systems. We showed how the worst-case

gain of these systems can be cast as LP. Furthermore, any stable LSS can be approximated by a generalized input-

output switching system with arbitrary accuracy. Then, we addressed the problems of stability, gain computation,

and optimal control synthesis for a general LSS. We showed how these problems can be formulated as LPs. Also, we

considered the minimal-gain of LSS and showed that an optimal switching is periodic. Moreover, we introduced the

notion of the stochastic l∞ gain which mimics the standard l∞ induced norm. We characterized the input-output

behavior of MLSS in this metric. We further studied the l∞ mean performance of MLSS and synthesized controllers

with respect to this measure of performance.

In Part II, we dealt with characterization and optimization of the l∞ gain of linear systems that contain positivity

type of constraints. First, we considered the case where only the input is restricted to be in the positive cone of l∞

and characterized the induced norm from l+∞ to l∞, the plus norm. This allowed us to synthesize optimal controllers

in the plus norm sense. Then, we considered both internally and externally positive systems. We pointed out that

finding an optimal controller while making the closed-loop externally positive is LP and hence a tractable problem.

If, on the other hand, the constraint known as internal positivity is sought, we showed that a dynamic controller offers

no advantage over a static one. These results can be used to obtain an optimal (static) state feedback controller.

However, designing an optimal output feedback controller (which is static) is in general a bilinear program. We

showed that this bilinear program can be reduced to LP, if the null space of the measurement matrix is invariant

under multiplication by diagonal matrices, such as in the case when part of the states is measured.

Future Work:

One can extend the results presented here in several directions as follows:
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Control Synthesis for LSS:

Based on Corollary 24, the gain computation of a general LSS is reduced to a search over two parameters δ ∈ (0,+∞)

and Qσ ∈ SIO. The computation is not convex in both δ and Qσ, jointly. It is of interest to investigate if there is an

alternative way without this shortcoming. Moreover, the stabilizability results can be used in principle to find the

doubly coprime factors of a LSS. It may be interesting to see if the doubly coprime factors of a LSS can be linked to

those of its LTI modes, at least for the class of input-output switching systems.

Moreover, when synthesizing controllers we assumed that the controller has the knowledge of the plant’s switching

sequence. It is of interest to investigate what happens if the controller does not have access to the switching sequence.

In this case, one can possibly rewrite Pσ as the upper linear fractional transformation of a nominal LTI system P̄

and a switching system ∆σ which, due to its dependency on σ, is not known to the controller. In this case, one can

synthesize a robust controller for the LTI P̄ which guarantees the desired performance for all ∆σ.

Best LTI Approximation of LSS:

Given a stable LSS Gσ, it is interesting to know how closely it can be approximated by a LTI system Ḡ. That is,

γ = inf
Ḡ LTI

sup
σ

∥∥Gσ − Ḡ∥∥ .
The interest in this problem arises from the situation when the switching sequence is not known to the controller. In

this case, the controller could be synthesized to robustly stabilize the LTI system Ḡ for any ∆, where ∆ = Gσ − Ḡ

and ‖∆‖ ≤ γ. We conjecture that for an input-output LSS Gσ = SσGS
∗
σ, one can fully characterize Ḡ in terms of

the impulse response of G. We would like to see what can be said for general Gσ.

Control Synthesis for LTV:

As mentioned before, we addressed the state feedback control synthesis for LSS and LTV systems while the output

feedback is left to be investigated more. Here, we provide some general results on the output feedback case. Although

these results in general are not computationally appealing, they are interesting from the theory point of view as they

give a unified framework to study any lp performance. Also, they may be extended in future in a direction to cope

with their computations.

Given a sequence of m× n matrices X = {X (t) ∈ Rm×n}∞t=0, we defined a linear operator X̂ as

X̂ =



X (0)

X (1)

X (2)

. . .


.
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We make an extensive use of these notations to write LTV systems in an operator form. To this end, consider a LTV

system P

P :


x (t+ 1) = A (t)x (t) +B (t)w (t)

y (t) = C (t)x (t) +D (t)w (t)

;x (0) = x0, (6.1)

where A (t), B (t), C (t), and D (t) are matrices with appropriate dimensions, for each t ∈ Z+. One can form

operators Â, B̂, Ĉ, and D̂ as discussed above and rewrite 6.1 as

P :


x =

(
I − ΛÂ

)−1

ΛB̂w +
(
I − ΛÂ

)−1

x̄0

y = Ĉx+ D̂w

, (6.2)

where x = {x (t)}∞t=0, w = {w (t)}∞t=0, y = {y (t)}∞t=0, and x̄0 = {x0, 0, 0, ...}. System P can be thought of as a linear

map from x̄0 and w to x and y. Consequently, we define its stability as follows:

Definition 78 Let x0 ∈ Rn and w = {w (t)}∞t=0 ∈ V, where V is some vector space. System P in (6.2) is said to be

V to W =W1 ×W2 stable if P maps any input sequence {x0, w} ∈ Rn⊕V to an output sequence {(x (t) , y (t))}∞t=0

in the vector space W, where W1 and W2 are two vector spaces.

One can take V and W to be the spaces of the bounded magnitude or bounded energy sequences, i.e. l∞ and l2,

and study the l∞ or l2 (H∞) performance of the system. In this sense, we provide a unifying framework for studying

different types of input-output characteristics of a system.

In the sequel, we will appeal to the next lemma which is a standard linear algebra result, see e.g.[68].

Lemma 79 Let n and m be positive integers with m ≤ n. Given matrices A ∈ Rn×n, B ∈ Rn×m, C ∈ Rm×n, and

Q ∈ Rn×n, with BT and C being full row rank, the equation

A+BKC = Q

has a solution for K if and only if

AN (C) = QN (C) ,

N
(
BT
)T
A = N

(
BT
)T
Q.

In above N (C) and N
(
BT
)

are matrices whose columns span the null spaces of C and BT , respectively. In this

case, a solution for K is given by

K = B−L (Q−A)C−R,

where B−L and C−R are the left and right inverse of B and C.

Given a LTV system P as in 6.2, its stability is equivalent to the boundedness of
(
I − ΛÂ

)−1

. Invoking the
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Youla-Kucera parameterization, one can show that
(
I − ΛÂ

)−1

is stable if and only if

Â = Q (I + ΛQ)
−1
, (6.3)

where Q is some stable LTV system. Hence, the following holds:

Proposition 80 Consider the LTV system P in 6.2. Suppose, B̂, Ĉ, and D̂ are bounded. Then, the system P is

stable if and only if there exists a stable Q such that

Â (I + ΛQ) = Q, (6.4)

and

(I +QΛ) Â = Q. (6.5)

Proof. Equations (6.4) and (6.5) follow immediately from multiplying (6.3) by (I + ΛQ) from right or (I +QΛ)

from left.

Conditions (6.4) and (6.5) are convex and checking them becomes particularly easier in the case of LTI system.

We use these two conditions for control synthesis. To this end, consider the generalized plant P given in operator

form by

P :


x = ΛÂx+ ΛB̂1w + ΛB̂2u+ x̄0

z = Ĉ1x+ D̂11w + D̂12u

y = Ĉ2x+ D̂21w

, (6.6)

where w is the exogenous input, u is the control input, z is the regulated output, and y is the measured output.

In the context of control synthesis, first, we want to find a controller, K, which maps the measured output, y,

to control input, u, and results in a stable closed loop system. To make the idea more concrete, suppose u = Ky

for some K. We emphasize that the only restriction we enforce on K is linearity and causality. That is, K can be

represented by an infinite dimensional lower triangular matrix

K =



k00 0 0 0 · · ·

k10 k11 0 0 · · ·

k20 k21 k22 0 · · ·
. . .


.
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Then, the closed loop system φ (P,K) is given by

φ (P,K) :


x = ΛAclx+ ΛBclw + x̄0

z = Cclx+Dclw

, (6.7)

where

Acl = Â+ B̂2KĈ2,

Bcl = B̂1 + B̂2KD̂21,

Ccl = Ĉ1 + D̂12KĈ2,

Dcl = D̂11 + D̂12KD̂21.

The closed-loop system is a mapping from x̄0 and w to x and z. Therefore, it can be partitioned accordingly as

φ (P,K) =

 φ11 φ12

φ21 φ22

 :

 x̄0

w

→
 x

z

 . (6.8)

According to Proposition 80, K results in a stable closed-loop if and only if conditions (6.4) and (6.5) hold for Acl.

Before we state our results on the stabilizability, we need to characterize the null spaces of the linear maps B̂2 and

Ĉ2. Recall that Ĉ2 is a diagonal operator with entries in the set {C2 (t)}∞t=0. For any t ∈ Z+, let N (C2 (t)) be a

matrix whose columns span the right null space of C2 (t). Furthermore, we denote by N̂ (C2) a diagonal operator

with entries in the set {N (C2 (t))}∞t=0. Similarly, we can define
̂

N
(
BT2
)T

consisting of elements in the left null space

of B̂2 or the right null space of B̂T2 . Henceforth, we make the following assumption:

Assumption 81 Operators B̂2 and Ĉ2 have left and right inverses, respectively.

The necessary and sufficient condition for Assumption 81 is the existence of the left and right inverse of B2 (t)

and C2 (t), respectively, for all t ∈ Z+. We denote these inverses by B̂−L2 and Ĉ−R2 .

Theorem 82 Given the generalized plant P in (6.6), there exists an stabilizing output feedback control K mapping

y to u if and only if there exists a stable LTV Q such that

̂
N
(
BT2
)T
Â (I + ΛQ) =

̂
N
(
BT2
)T
Q, (6.9)

and

(I +QΛ) ÂN̂ (C2) = QN̂ (C2). (6.10)
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In this case, a stabilizing controller is given by

K = B̂−L2

(
Q (I + ΛQ)

−1 − Â
)
Ĉ−R2 . (6.11)

Proof. Equations (6.9) and (6.10) are the direct consequence of Lemma 79 in conjuction with Proposition 80.More

precisely, K stabilizes the plant if and only if

Acl = Q (I + ΛQ)
−1

= (I +QΛ)
−1
Q. (6.12)

Using Lemma 79, given Q, (6.12) has a solution for K if and only if

̂
N
(
BT2
)T
Acl =

̂
N
(
BT2
)T
Q (I + ΛQ)

−1
,

AclN̂ (C2) = (I +QΛ)
−1
QN̂ (C2).

After post and premultiplying these equations by (I + ΛQ) and (I +QΛ), we obtain (6.9) and (6.10).

Upon substituting (6.11) in (6.7) and direct calculation, one can show that the closed-loop is an affine function

of Q. In particular we have the following:

Theorem 83 The set of all closed-loop maps (6.7), for stabilizing K, is given by

φ (P,K) =

 φ11 φ12

φ21 φ22

 : K stabilizing P

 =

{H + UQV : Q stable} ,

where

H =

 I ΛM3

M2 M1 +M2ΛM3

 ,

U =

 Λ

M4 +M2Λ

 ,
V =

[
I M5 + ΛM3

]
,
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and Mi’s are diagonal operators given by

M1 = D̂11 − D̂12B̂
−L
2 ÂĈ−R2 D̂21,

M2 = Ĉ1 − D̂12B̂
−L
2 Â,

M3 = B̂1 − ÂĈ−R2 D̂21,

M4 = D̂12B̂
−L
2 ,

M5 = Ĉ−R2 D̂21.

According to this theorem, to synthesize an optimal controller to minimize the input-output gain, one needs to

solve the convex optimization problem

inf
Qstable

‖H + UQV ‖ ,

subject to (6.9) and (6.10). Furthermore, if one wants to enforce any positivity constraint on the closed loop, φ, it

can be readily done through enforcing linear constraints on Q.

We should mention that a major computational burden of this method is due to (6.9) and (6.10). These equations,

although convex, are infinite dimensional optimization and in general not easy to satisfy them exactly. However,

finding Q to ”almost” satisfy them with arbitrary accuracy is LP and tractable. At this point, it is not clear how

tightly (6.9) and (6.10) should be satisfied so the rest of the results still hold. We hope a small-gain like argument

helps us in analyzing the situation when we substitute (6.9) and (6.10) with

∥∥∥∥ ̂
N
(
BT2
)T
Â (I + ΛQ)− ̂

N
(
BT2
)T
Q

∥∥∥∥ ≤ ε, (6.13)

and ∥∥∥(I +QΛ) ÂN̂ (C2)−QN̂ (C2)
∥∥∥ ≤ ε, (6.14)

for small enough ε > 0.

Minimal Gain:

On the subject of the minimal-gain of LSS, Theorem 27 states that an optimal switching is periodic. However, its

period or finding what an optimal sequence remained unanswered. This problem can be related to sensor scheduling or

controlled sensing and might be easier to handle in the stochastic framework. We solved this problem for the stochastic

l∞ gain of the input-output LSS. It is however an open problem for the general case. This also relates to the filtering

problem in Figure 6.1. In this problem one needs to minimize the stochastic gain of I −
[
Q1 Q2

]
S∗σSσ

 P1

P2

.
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P1

P2

g σσ
Q1 Q2−

u− û uû

Figure 6.1: Filtering Problem

Systems over Positive Cones:

We defined the plus norm as the induced norm from l+∞ to l∞. One can think of extending our results to other signal

spaces for example from l+2 to l2. Also, regarding the internally positive systems, as we showed, static controllers are

optimal if the internal positivity with respect to the states of the plant and the controller is enforced. We conjecture

that this is also the case when only the internal positivity with respect to the states of the plant is enforced. Moreover,

some results similar to those discussed earlier in this section, Control Synthesis for LTV systems, may be useful in

synthesizing an optimal controller which enforces the positivity of the states of the plant (and not necessarily the

plant).
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Chapter 7

Appendix

7.1 Nonlinear vs. Linear in the Presence of Positivity Constraints

In this section, we want to show that for the model matching problem

inf
Q stable

‖H − UQV ‖ ,

subject to

H − UQV ≥ 0,

nonlinear smooth Q’s cannot outperform LTI ones. First, we will show that smooth nonlinear Q’s cannot outperform

LTV Q’s. Let QNL be a smooth nonlinear map. Let ε > 0 be given. Then, there exist a linear map QL and δ > 0

such that

sup
0<‖f‖∞≤δ

‖U (QNL −QL)V f‖∞
‖f‖∞

< ε.

Now, similarly to the proof of Proposition 63, we have

‖H − UQLV ‖ ≤ ‖H − UQNLV ‖ .

It remains to show that the linearization, QL, satisfies the positivity constraints. To this end, let f ∈ l+∞ and

H − UQNLV ≥ 0 then for given non-negative integer k,

δ

‖f‖∞
(H − UQLV ) (f) (k) = (H − UQLV )

(
δf

‖f‖∞

)
(k)

= {(H − UQNLV ) + U (QNL −QL)V }
(

δf

‖f‖∞

)
(k)

≥ [U (QNL −QL)V ]

(
δf

‖f‖∞

)
(k) . (7.1)

Notice that ∣∣∣∣[U (QNL −QL)V ]

(
δf

‖f‖∞

)
(k)

∣∣∣∣ ≤ δε.
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Hence, (7.1) becomes

(H − UQLV ) (f) (k) ≥ −‖f‖∞ ε,

and since it holds for any ε > 0, f ∈ l+∞, and k,

H − UQLV ≥ 0.

That is the linearization of a nonlinear map leads a better performance while maintaining the positivity of the closed

loop. This linearization may not be time invariant. However, similarly to [8], one can argue LTV compensations

cannot do any better than LTI ones and hence in general smooth nonlinear Q’s does not lead a better performance

that LTI Q’s even though the closed loop external positivity is enforced. Finally, as an obvious observation, we note

that positivity constraints can be present on any affine linear map of Q for all of the above to hold, i.e., not only to

a the same map H − UQV . This is the case in Example 67.

7.2 More on the Filtering Problem of Example 67

Define ν (Q) := b ‖Q‖+ ‖I −QP‖+ where b is a positive number. Herein, we will show that

inf
Q nonlinear smooth

ν (ΥQ) = inf
Q∈LTI

ν (Q) = inf
Q∈LTI
QP≥0

ν (Q) ,

where Υ is the thresholding operator. The first equality is proved in Proposition 63. Regarding the second equality,

note that we have

inf
Q∈LTI

ν (Q) ≤ inf
Q∈LTI
QP≥0

ν (Q) .

We will show that

inf
Q∈LTI
QP≥0

ν (Q) ≤ inf
Q nonlinear smooth

ν (ΥQ) . (7.2)

To this end, given Q, let ε > 0 and Υδ
smooth be the approximation of Υ as defined in the proof of Proposition 63

such that, ν
(
Υδ

smoothQ
)
≤ ν (ΥQ) + ε. Now, note that Υδ

smoothQ is smooth and Υδ
smoothQP ≥ 0. Therefore, by the

previous developments (Appendix 7.1), the linearization of Υδ
smoothQ, denote it by Q̄ ∈ LTV , satisfies Q̄P ≥ 0 with

ν
(
Q̄
)
≤ ν

(
Υδ

smoothQ
)
. Taking inf from the left hand side, we have for any nonlinear smooth Q,

inf
Q̄∈LTV
Q̄P≥0

ν
(
Q̄
)
≤ ν

(
Υδ

smoothQ
)
≤ ν (ΥQ) + ε.

Since, infQ∈LTI
QP≥0

ν (Q) = infQ̄∈LTV
Q̄P≥0

ν
(
Q̄
)
, and ε was arbitrary, (7.2) holds true.
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