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ABSTRACT

With the rapid growth of technology in areas such as the internet-of-things

(IOT), network infrastructure, big data, etc., there has grown a need for low

power and low cost integrated solutions in order to meet the specifications

of these larger scale systems. Currently, many semiconductor industries are

allocating their resources to implement different communication protocols

in order to meet these demands. These integrated system components are

being developed on systems-on-chips (SoCs) and are an absolute necessity in

many wireline applications. Every way to reduce bit error rate, while saving

chip space and power consumption is being taken, and the ability to do so is

essential.

Throughout the past 20 years, there has also been a lot of research into de-

signing integrated circuits (ICs) in complementary metal-oxide semiconduc-

tor technology (CMOS), especially on designing both Tx and Rx equalizers.

The equalizer is a key component in insuring communication as signals that

propagate through some channel will have to endure insertion loss and cross

talk, where this can cause two major problems: larger rise/fall times and

lower signal levels, meaning that it will be difficult to distinguish between a

“0” and a “1”, and there will be less time to actually sample the signal.

This thesis studies two different types of equalizers: CTLE (continuous

time linear equalizer) and FFE (feed-forward equalizer). The transistor-level

schematics that are implemented are done using the TSMC 65 nm CMOS

process with targeted data rates of 6 Gbps and 12 Gbps. Furthermore,

tutorials will be provided to explain proper design and implementation of

these equalizers using the Cadence Toolset. These are all compared in terms

of functionality and power consumption, along with understanding the actual

use cases for each. A guide for both analysis and design will be presented,

and the results will further justify equalizer choices for a given application.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

Some of the biggest accomplishments over these past few decades have been

the advancements made within the area of computing and data processing.

This has spawned many new realms recently, such as Big Data, the Internet

of Things (IOT), and much more [1]. The increasing demand for faster data

rates has driven the desire for research and implementation of new circuits,

systems, and communication protocols. Integrated circuit (IC) technology

has been continuously reducing in size while increasing in its processing abil-

ity. We are able to reach frequencies and data rates that are in several tens

to hundreds of GHz and Gbps, where less than two decades ago, that was the

ideal goal of many different research labs. As we go smaller and faster, we

realize that we are seeing the limits within IC design, as there is a significant

trade-off between size, speed, and power consumption.

These limitations have driven the need for dedicated Systems-on-Chips

(SOCs) that are essential to ensure efficient communication, especially with

interfaces like processor-to-memory on computers and fiber-optic internet.

One thing that needs to be taken into account is how scaling the links relates

to scaling the data rates. Since both scalings are not properly proportional,

this results in a massive bottleneck in high speed link design and performance.

Another set of issues comes with the loss characteristics of the channel

themselves (backplanes, traces, etc.). Large amounts of insertion loss, cross

talk, and signal distortion from these transmission lines result in a lot of

intersymbol interference (ISI). With these further degrading characteristics,

the demand for fast and efficient equalizers has become a major factor in the

industry.

In Figure 1.1, we can see the quantitative trends shown in the 2011 annual
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Figure 1.1: Input/Output Link Data Rate Trends [2]

semiconductor roadmapping report from the International Solid State Cir-

cuits Conference (ISSCC) [2]. On average we see a rise in 2X every 4 years

in the data rates, yet the channel bandwidth is still the same. Another thing

to notice is that the majority of research discusses the fundamentals and the

mathematics behind equalization, yet none provide a comprehensive tutorial

and understanding of the actual implementation.

There are many examples where they discuss the design of some equalizers

in detail, especially in cases including novel designs, but none go through the

understanding and implementation of the simulation itself. As these tool sets

are very broad and cover a lot of areas, it is essential to provide some guides

and understanding towards the simulation procedure within an electronic

design automation (EDA) toolset.

As the data rates increase, so do the insertion loss, cross talk, and even the

parasitics of the transmitting media. Due to this, there is an increasing need

for equalizers, and in designing these, circuit designers need to understand

not only the amount of loss to recover, but also the delays to reduce, the

jitter characteristics, and lastly, the specifications and performance issues

of other blocks in the system, especially with the clock and data recovery

(CDR) circuit.

With all of this, the motivation of this thesis is simply this: To fill the gap
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that exists between the fundamental and theoretical aspects of the equalizer

design and the simulation and execution stages that signal integrity engineers

will have to go through, by providing a basic expertise in both realms and in

the effective design of high speed systems.

1.2 Outline

This thesis aims to accomplish two major goals: The first is to provide

an elaborate understanding of equalization and the design process behind a

continuous-time and a discrete-time based equalizer. The second is to provide

a comprehensive tutorial for students entering/planning to enter graduate

school to study mixed-signal integrated circuit design. By going through the

theory, the design process, and the simulation process, users of this tutorial

will get a well-rounded understanding of the implementation and simulation

of high speed links, with a key emphasis on equalization.

1. Chapter 1 provides the motivation behind the research problem, along

with some justification for the key emphasis on equalization.

2. Chapter 2 gives an overview on high speed serial links (HSSLs) by

going through each of the blocks that goes into building an end-to-end

serializer-deserializer (SerDes) system, along with further justifying the

need and benefits of serial links over parallel links.

3. Chapter 3 discusses the theory that justifies the need for equalization,

along with some basic understanding of equalization techniques on its

own (outside of the SerDes system).

4. Chapter 4 introduces the feed-forward equalizer (FFE) and provides

an explanation of both the design process and an implementation with

results.

5. Chapter 5 introduces the continuous time linear equalizer (CTLE) and,

similar to Chapter 4, provides an explanation of both the design process

towards building one, along with an implementation with results.
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6. Chapter 6 explains the procedure for setting up the behavioral model

of an FFE. Afterwards, the procedure describes the testbench setup for

simulating a transient response.

7. Chapter 7 explains the procedure for building, simulation, and analyz-

ing a transistor-level CTLE in both the time and frequency domains.

8. Chapter 8 concludes the thesis by explaining the overall accomplish-

ments from the different implementations of the equalizers, and then

discusses the future utilizations of these techniques towards more com-

plex designs with an understanding of the design process behind it.
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CHAPTER 2

AN OVERVIEW OF SERDES

2.1 Why Serial Links?

The first thing to understand, before we delve into serial links, is the transi-

tion from parallel links to serial links in many applications. Most input/out

(I/O) systems that connect to processing units do so via communication

interfaces like peripheral component interconnects (PCI/PCI-X) and inte-

grated drive electronics (IDE). Due to the parallel nature of these links, wide

data buses were required in order to handle sending each bit of the trans-

mitted data, as they each required their own conductors. Due to this im-

plementation, data rates were limited to speeds less than hundreds of Mb/s

[3]. Anything with higher performance was typically used in larger scale

supercomputers and work stations.

Over the past 20 years, data rates have started increasing. The fix to these

parallel links was to increase the number of conductors [4], but again, we see

an issue of cost and space becoming a major problem in this “solution.” By

transitioning to serial links, we are able to avoid those two major bottle-

necks. From this transition, interfaces like PCI-Express (PCIe) and Serial

ATA (SATA) were developed and are still used in computers today.

Serial Links are able to address some of the really important factors in

design specifications: cost, space, bandwidth, and power. By utilizing a

serial link topology over a parallel link, there is an immediate drop in cost

and used space. Finally, without using parallel links, there is no longer

a usage of really wide data buses, resulting in larger bandwidths for data

transfer.

Furthermore, serial links mitigate issues in crosstalk because the high speed

parallel signals do not electromagnetically interfere with each other. Since

all of the data is being transferred on one line, you eliminate the problem
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of data skew, while still having more burden on a single line. In the case of

parallel links, the parasitics of the conductors can cause potential differences

in the delays towards the received signals. Lastly, as the transistor sizes scale

down, the supply voltages for serial links will also scale down significantly,

which unfortunately is not the case for parallel link buses [5].

In the case of area, utilizing serial links means a decrease in the amount of

traces used on the motherboard’s printed circuit board (PCB). This provides

more flexibility in the packaging for processor’s IC, along with improving

isolation. Along with saving traces on data, serial links will also eliminate

the clock trace, as it is not necessary to send transmitter (TX) clock with

the data itself.

With all of these significant improvements that are introduced by the uti-

lization of serial links over parallel links, serial links have proven themselves

to be the solution towards reaching our goals of increased data rates and

higher transmission efficiency that the industry truly needs.

2.2 Usage of Serial Links

Serial links have many different uses in today’s society, such as telecom

companies that utilize fiber optics and computers with local access net-

work (LAN) cables. Also, a very common usage is with backplane PCB

traces. Backplanes are very popularly used in data centers, work stations,

etc. Through utilization of line cards, data can be transmitted through the

backplane via high speed SERDES chips.

Line cards are utilized as follows: ICs are mounted onto packages to be

soldered onto the line card. Then, the line cards are connected via through

hole connectors and use the backplane channel as their transmitting medium.

The backplane is used to connect these line cards to each other, of which a

cross-section is shown in Figure 2.1.

In Figure 2.1, “1” corresponds to the IC chips with packaging (aka the

transceivers), “2” corresponds to the traces themselves (backplane and other

copper traces), and “3” corresponds to the connectors between the line cards

and the backplane. These connectors utilize a via in order to appropriately

connect the line cards to the backplane [6].

Now that the physical representation of the communication system is
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Figure 2.1: Illustrated View of a Backplane Trace Applied to Line Cards

known, it is time to get deeper into the loss characteristics. By understanding

the nature of the channel and the parasitics that it presents to data flowing

through it, the serializer-deserializer (SERDES) chip can be designed more

intelligently. For the most part, the circuit designers will be given the design

and loss properties of the channel in order to properly design the circuits to

efficiently transmit the signals. These channels are designed and provided by

either the system-level engineers, the signal integrity engineers, or in many

cases, both.

The way the channel is provided to the circuit designer is typically in

the form of its S-parameters. S-parameters are measurements taken in the

domain that are utilized to characterize the channel’s transient response. S-

parameters are typically obtained via actual measurements utilizing a Vector

Network Analyzer (VNA) or a Performance Network Analyzer (PNA). If the

channel itself is not available for measurement, or is still to be fabricated,

its geometry and material can be drawn and set on the computer, and then

its S-parameters can be obtained via numerical simulations through electro-

magnetic field solvers like ANSYS HFSS.

After obtaining the S-parameters, many new metrics can be obtained: in-

sertion loss, cross talk, jitter, and most importantly, the intersymbol inter-

ference (ISI). Using these metrics (along with the S-parameter data itself),

the data at the receiver end can be properly simulated and estimated using

programs like Cadence Spectre or Keysight ADS. The loss characteristics of

the channel will affect both the signal levels, meaning the ability to distin-
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Figure 2.2: SERDES Implementation with Representation of Loss
Characteristics [7]

guish between a “0” and a “1”, and the sampling time, meaning the window

of time that the receiver end has to properly analyze the bit. An example of

this is shown in Figure 2.2 [7].

On the transmitter end, the data (transmitted at a rate of 10 Gb/s) is sent

properly, such that it is clear enough to distinguish between a “0” and a “1”

and there is enough room to sample each bit. However, at the receiver end,

there is so much interference in the data that there is no appropriate time to

sample the bits, nor are there any clear signal levels to distinguish between

“0” and “1”. Because of this, a proper receiver needs to be designed not only

to clean up the received data stream, but also to sample the data accurately

and efficiently, with a minimal bit error rate (typically less than 10−13 [1 in

every 1013 bits]). There can also be some work done on the transmitting end

as well to reduce the degrading effects of the channel, all of which will be

explained in the following chapters.

2.3 SERDES Building Blocks

A typical implementation of a SerDes system is shown in Figure 2.3, and

each block is explained in Sections 2.3.1 - 2.3.9.

8



Figure 2.3: A Typical SerDes System

2.3.1 Serializer

Digital signals operate in binary representation, so the data that is used to

represent words is transmitted with some length of bits that is a power of 2

(16, 32, 64, 128, etc.). Because of this, the input to the SerDes system as a

whole is a set of bit streams that are both synchronous and parallel. Every

clock cycle, the newly received word on these lines will arrive and needs to

be transmitted before the following clock cycle, as the next word will arrive.

The transmission of each of these words during the clock cycles are done so

via the serializer. Essentially, a serializer takes a set of parallel streams of

data, and transmits it as one serial stream. Fundamentally, a serializer is a

multiplexer circuit whose select bits are changed via a counter, and the clock

for this serializer is generated by the phase-locked loop (PLL).

2.3.2 Phase Locked Loop (PLL)

A phase-locked loop (PLL) is a system that takes a reference clock input

fin, and generates an output clock of some frequency fout, where fout is

greater than fin by some factor α. Basically, fout = αfin. Clock inputs

can usually be provided by crystal oscillators, but unfortunately, they only

provide clean clock signals up to 200 MHz. If solely crystal oscillators were
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Figure 2.4: A Block Representation of the PLL-based Clock Generator

used at microwave frequencies (GHz), then there would be too much jitter

(timing noise), and as a result, the serializer would not accurately transmit

bits. Because of this, a clean clock signal of 200 MHz is inputted to a PLL

that will take this reference signal and output a clean clock signal with a

significantly higher frequency by applying it to a negative-feedback system.

By doing so, well-designed PLLs will provide the desired clock with little

jitter and phase noise.

Figure 2.4 shows a block diagram representation of a PLL. The phase-

frequency detector (PFD) will compare both the frequency and phase of the

feedback signal with the reference clock. Based on the comparison, it will

provide a pulse width modulated (PWM) signal that will drive a charge pump

(CP). This charge pump will then pump or drain charge from the capacitors

in the loop filter (LF). The loop filter is usually just a low-pass filter used

to mitigate the high frequency components of the output signal of the PFD

before giving it to the voltage controlled oscillator (VCO). Based on the

control voltage (Vctrl) applied, the VCO will output a clock of proportional

frequency. Lastly, the output signal of the VCO will go via the feedback loop

to a frequency divider circuit, which divides the frequency by some factor N,

where N is equivalent to the constant α. After running through this feedback

properly, the outputted signal will be a clock of frequency fout, that will be

equal to αfin.

2.3.3 Drivers

The drivers are amplifiers that are used on both the transmitting (TX) and

receiving (RX) ends of the channel. The TX driving amplifier will amplify the

data stream before sending it through the channel to the receiver, where some

amplification will be done. Furthermore, the driver amplifiers will provide
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Figure 2.5: Insertion Losses of Different Types of Channels [8]

50 Ω terminations on each end in order to make sure that both the TX and

RX sides of the system are appropriately matched.

2.3.4 Channel

As briefly mentioned earlier in this chapter, the channel is the physical

medium by which the data is transmitted from the TX side to the RX side.

The channel connecting the two line cards together from the example in

Section 2.2 is a good example of a channel used in serial links.

In Figure 2.5, the insertion loss characteristics of different FR4 channels

are shown. In S-parameters, the insertion loss is typically represented as

S21[8]. A key characteristic of the insertion loss of passive devices, which

is shown in this graph, is that as the frequency increases, the insertion loss

decreases. The reason for this is because with a higher frequency, the time

to switch between “0” and “1” is lower, thus causing more loss from the

parasitics in the channel. Thus, as the data rate increases, the amount that

the signal degrades increases as well.

While Figure 2.5 shows the degradation of the signal with respect to fre-

quency (i.e, different data rates), Figure 2.6(a) and Figure 2.6(b) represent

the degradation in the time domain using eye diagrams. In the first diagram

(a), where the data rate is 2.5 Gb/s, the eye is more open, meaning that
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it is easier to distinguish between “0” and “1” signal levels, and that there

is enough of a window to sample the signal (which is better represented by

the rectangle in the center). In the second diagram (b), the signal is barely

open, and as a result, there is little difference between a “0” and “1”, and the

sampling window is significantly less than the period of the bit itself. This

will drastically increase the bit error rate on the receiver end, making this a

terrible high speed serial link (HSSL). The effects shown in (b) are a result of

many different factors: insertion loss, reflected voltages, ISI, and dispersion.

With all of these effects, a SERDES system needs a module to counteract

these effects and clean up the signal.

2.3.5 Equalizer

As shown in Figure 2.6(b), there are many physical characteristics of the

channel that contribute to the closed nature of the eye diagram. As a re-

sult, it is necessary to have something in the system to negate those effects.

Equalization at the TX end, RX end, or even both, is generally used to

reduce these effects and significantly increase the bit error rate. There are

multiple ways to equalize the received signal, two of which are shown in

Figure 2.7(a) and (b). In (a), the high frequencies are boosted, and in (b)

the lower frequencies are suppressed. In the case of (a), boosting the higher

frequencies accounts for the larger insertion loss at that rate. In the case of

(b), suppressing the lower frequencies reduces their levels without altering

any of the high frequency components. Both result in open eye diagrams

after being applied to the 5 Gb/s output shown previously [9]. Chapters 3-5

will further discuss the theory behind equalization, along with two different

methods used to equalize signals (with results to justify usage).

2.3.6 Clock and Data Recovery (CDR)

After the data is properly equalized and received, it is then fed through the

clock and data recovery (CDR) circuit. The TX clock is not used on the RX

side. Instead, the RX clock is generated based on the received bitstream and

used to sample the data stream as well. The block diagram representation

of a CDR is shown in Figure 2.8.
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Figure 2.6: Eye Diagrams at 2.5 Gb/s (a) and 5 Gb/s (b) [9]

Figure 2.7: Eye Diagrams Showing Equalization Through High Frequency
Boosting (a) and Low Frequency Suppression (b) [9]

Figure 2.8: Block Diagram Representation of a CDR
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In this case, the block diagram of the CDR is based on the PLL, where the

data generates a clock, except this time, the negative feedback loop is directly

compared with the input data signal, and solely the phase is compared. In

the PLL case, the phase should be exactly the same, but this time, there

should be a phase difference of some constant value, in order to ensure that

the data is sampled as closely to the center of the eye diagram as possible.

Based on the phase comparison, a control voltage is provided to a charge

pump to again drain/pump the capacitor on the low-pass filter before the

signal is sent to the voltage-controlled oscillator. The output of the VCO is

used to clock the decision circuit, which samples the incoming bitstream.

2.3.7 Deserializer

In the beginning, the system needs to turn a set of parallel data streams

into one serial stream to send through properly. Now that the data has been

sent through, the serial data stream needs to be converted back to a set of

parallel data streams. This is done using the deserializer. Fundamentally,

the deserializer can be implemented using a demultiplexer whose select bits

will be determined by counters. In actual implementation, a deserializer is

implemented using a tree of flip-flops, whose data rates are reduced with each

following stage to properly transmit the data without error.

2.3.8 Encoding Techniques

The purpose of encoding is to ensure that the data is transmitted efficiently

and accurately to keep a significantly low bit-error rate (BER). Encoding

can also keep DC balance by setting the numbers of 0s and 1s equal. Lastly,

encoding is especially beneficial towards detecting any possible errors, and

correcting them (if so). Two popular encoding schemes are 8B/10B and

16B/20B, where 8/16 bits are received, but 10/20 bits are transmitted, which

helps in improving the BER. While doing this helps in reducing error, it also

will add more complexity to the transceiver design as well, because now the

transceiver needs to be able to both convert a set of parallel data streams to

a serial stream, while also accurately encoding it on the TX and decoding it

on the RX.
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Data transmission is done through many different signaling schemes. The

most popular one is non-return to zero (NRZ) where “1” is a constant high

voltage and “0” is a constant low voltage. Another scheme called PAM,

particularly PAM-4, actually splits up the signal into different voltage levels

(4 in the case of PAM-4), which results in a lower bandwidth. Unfortunately,

like with encoding, complex signaling schemes result in more complex designs

on both the TX and RX end.

2.3.9 High Speed Serial Link Figures of Merit

There are many different factors that determine the success of a high speed

serial link. These factors apply to both the channel characteristics and the

circuit design itself. Since higher data rates result in higher degradation from

the channel, the design choices on the circuit side have become more difficult.

In order to ensure a robust HSSL system, the metrics used to characterize

the link are the BER, eye diagram analysis, and the jitter [10].

The first metric is the bit error rate (BER). Currently, BER is as high as

10−12 and as low as 10−15. As mentioned earlier, a BER of 10−12 implies that

for every 1012 bits sent, 1 bit will be erroneous. When initially measuring

and simulating designs via EDA toolsets, it is very difficult to check for BER,

as it requires sending at least 1012 bits in order to start seeing errors. This

is very difficult for some simulators/equipment, and nearly impossible for

most. Currently, the way BER is calculated is statistically through the ISI,

timing/deterministic jitter, etc. Along with that, random noise sources are

used to further estimate BER.

The next metric used to evaluate HSSLs is the eye diagram. As explained

in previous sections the sampling window is demonstrated by the eye width,

the signal levels by the eye height, along with other characteristics like the

amplitude, bit period, eye crossing percentage, etc. (see Figure 2.10 for

more information). For most links, there is a preset Eye Mask, which is

represented in Figure 2.9 [11]. The mask requires some predetermined eye

height, eye width, jitter, eye crossing, etc., as the bare minimum to meet the

specifications shown by this mask.

The final figure of merit is the jitter. Both deterministic and random jitter

are very significant in link design as they can affect the clock pulse, the
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Figure 2.9: Eye Diagram with Compliance Mask [11]

sampling time of the receiver, etc. A time domain representation of jitter

is shown in Figure 2.11 [12]. As Figure 2.10 shows, the ends of the eye

(horizontally) can be used to calculate the peak clock jitter. However, on the

transmitter side, this is not enough, because jitter gets dominated by noise

from the supply voltage. Since bit periods reduce with higher data rates,

the performance will be severely limited by the clock jitter, as the values

will get closer and closer. A summary of common jitter profiles is shown in

Figure 2.12 [2].
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Figure 2.10: Eye Diagram with Detail Annotations of Metrics [11]

Figure 2.11: Example of Timing Jitter [12]
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Figure 2.12: Common Jitter Profiles [2]
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CHAPTER 3

EQUALIZATION THEORY AND
BACKGROUND

3.1 Understanding Equalization

Chapter 2 discussed the need for equalization and precision within HSSLs.

The two biggest problems with the eye diagram directly after the channel

(without equalization) are the miniscule eye width and eye height. As a

result, it will be really difficult to receive bits with a low BER. This is the

motivation behind the usage of equalizers in high speed serial links. By fixing

the eye width and the eye height, equalizers are able to fix the ISI, thus

ensuring the HSSL can reach the desired data rate. This chapter will discuss

the overview of different methods used to equalize signals in HSSLs with the

assumption of minimal detrimental effects from the serializer, deserializer,

PLL, and CDR.

3.2 TX Equalization

As discussed in Chapter 2, equalization can be done in either the TX (trans-

mitter) side or the RX (receiver) side of the HSSL. In this chapter, different

methods for TX-based equalization are presented. The goal behind TX equal-

ization is to emphasize or distort the signal before transmission in order to

counteract the effects of the channel. That is why TX equalizers are typically

implemented with pre-emphasis, de-emphasis, or pre-distortion filters. One

method used to pre-emphasize the signal is to first analyze a sampled pulse

response taken from the channel.

Figure 3.1 shows both the continuous time pulse response (a) of the chan-

nel, and the sampled response (b), which is in discrete time. What is shown

here is that while the pulse spans for just one bit period, there are still volt-
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Figure 3.1: Example Pulse Response of channel (a) and Sampled Discrete
Time Representation (b) [13]

Figure 3.2: Example Pulse Response (with Precursors) of Channel (a) and
Sampled Discrete Time Representation (b) [13]

ages greater than zero in later bit periods as well. At each bit period after

the channel, these points are referred to as the postcursors of the channel.

Pre-emphasis filters aim to “emphasize” the signal by adding contributions

from previous bits in order to counteract the effects of the channel. These

channel effects are typically due to losses from the dielectrics, along with skin

effect. However, Figure 3.1 only accounts for the postcurcors, but there is

also some contribution before the peak [14],[13].

Figure 3.2 represents both a continuous-time pulse response (a) and the

discrete-time response (b) of the channel, except it incorporates the contri-

butions of the precursors, which denote the voltage contributions before the

peak. The peak, which is typically normalized to a value of 1, is known as the

main cursor of the channel response. Lastly, the contributions after the peak

are known as the postcursors. Pre-emphasis filters utilize multiple “taps”,

which amplify the later bit periods and then sum up the total voltage right

before transmission, resulting in a distorted signal [14].

Figure 3.3 is a block diagram representation of pre-emphasis filters. In

this representation, the δ blocks correspond to delay elements whose outputs
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Figure 3.3: Block Diagram Representation of Pre-emphasis Filter [15]

are the previous bits, which are used to remove the postcursors. All of these

delayed voltages are combined at the end in a feed-forward manner, which in

this case removes the post and the precursors, leaving just the main cursor

of the channel response at the RX end [15].

Figure 3.4 properly shows the results of utilizing pre-emphasis (b) after fil-

tering the raw channel’s pulse response (a). When designing the pre-emphasis

filter, the Cn coefficients are calculated in order to distort the waveform such

that the convolution of the filter output with the channel results in solely the

main cursor on the RX end.

However, there are some drawbacks that occur from TX equalization. Since

the signal is attenuated, this equalizer only accounts for the precursors and

postcursors of the channel, without accounting for the noise itself, thus main-

taining the signal-to-noise Ratio (SNR). Furthermore, there will be a signif-

icant amount of crosstalk, due to the desire to keep a large enough output

swing. Lastly, these filters unfortunately are not able to account for all of the

ISI [16], resulting in some residuals on the receiver end. This results in lower

signal levels, which can be seen in Figure 3.4(b). Thus, TX pre-emphasis
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Figure 3.4: Sampled Pulse without (a) and with (b) TX Pre-emphasis
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Figure 3.5: Analog RX FIR Filter [17]

filters can be used, as long as efforts to mitigate crosstalk, residual ISI, and

noise are taken separately [15].

3.3 RX Equalization

As shown with TX equalization, there are issues with noise, SNR, and

crosstalk that result from the pre-emphasis technique. Previously, the options

of boosting the high frequency components or suppressing the low frequency

components were discussed as examples of RX equalization. This will result

in some amplification of noise at these frequencies, which can potentially be

detrimental to the system. This section will discuss some techniques used on

the receiver end to mitigate ISI and ensure readability of the signal at the

CDR module.

As in the previous section, the first discussed technique will utilize the same

sampled pulse response of the channel. This time, instead of pre-emphasizing

the signal by combining the voltage waveforms to counteract the channel,

the filter will counteract the channel by subtracting the contributions from

previous bits. This means that the filter will take the delayed bits, amplify

them by the same value as the postcursors of the channel, and then subtract

them from the distorted received current bit, such that all that remains will

be the main cursor itself.

Figure 3.5 is an analog block diagram representation of an RX FIR filter

used to de-emphasize the received signal. The benefit of this is that now it

can account for the majority of the ISI and boost the high frequency content.
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Figure 3.6: Passive Continuous-Time Equalizer using Just RC Components
[15]

In fact, with the coefficients being the same as the postcursors, this adds the

ability of adaptability, meaning that the equalizer is not tied to solely one

channel. However, an issue arises with the high precision that is required

with each of these taps. Furthermore, another issue to take into account

(as with the TX equalizer) is the issue of clock jitter. The clock jitter will

limit the ability to perfectly sample the data in order to accurately distort

the signal before sending it. Secondly, if the clock for the equalizer comes

from the PLL, there is the issue of parasitics from the trace running from the

PLL to the RX end. That trace will have transmission line properties that

can cause clock jitter in what’s received as well, resulting in synchronization

issues. Lastly, there is still the issue (as with the TX pre-emphasis filter) with

the SNR staying the same since the noise and crosstalk are being amplified

by the same amount as the signal itself [17].

An alternative to discrete-time equalizers is to design a continuous-time

equalizer. In this case, it will be able to boost high frequencies while only

using one tap (without any sampling). With this, the issue of clock jitter and

synchronization disappear, as the focus is to counteract the transfer function

and flatten the channel response. This can be done either passively (solely

with RLC components) or actively (with gain as well).

An example of a passive continuous-time equalizer is shown in Figure 3.6.

The characteristic equations of this equalizer are as follows:

H(s) =
R2

R1 +R2

1 +R1C1s

1 + R1R2

R1+R2
(C1 + C2)s

(3.1)
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ωz =
1

R1C1

(3.2)

ωp =
1

R1R2

R1+R2
(C1 + C2)

(3.3)

DC Gain =
R2

R1 +R2

(3.4)

The utilization of this RC network will result in high frequency boosting

by attenuating the low frequency components via the resistors and boosting

the high frequency content by allowing it via the capacitors. Figure 3.7 shows

the eye diagram of the equalized output. By suppressing the lower frequency

components and allowing the high frequency content, there is an distinct

open-ness in the eye, which is very beneficial for the next stage.

There are, however, problems with a purely passive continuous-time equal-

izer. Firstly, there is an issue with matching the input of the channel to the

output of the channel. In order to account for this, there will need to be

a matching network (utilizing inductors and/or capacitors). Since inductors

are larger than the rest of the components, this can limit on-chip integration.

Figure 3.7: Eye Diagram after Passive RC Equalizer [15]
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Lastly, this will scale down both signal and noise, resulting in no change in

SNR. Thus, this is not a practical use case for HSSLs [15]. Chapter 5 discusses

an active CTLE topology, the design process behind its implementation, and

simulated results using Cadence Spectre.
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CHAPTER 4

FFE DESIGN AND IMPLEMENTATION

Chapter 3 discussed the pre-emphasis filtering technique for TX equalization

with the feed-forward equalizer (FFE). “Feed-forward” denotes the method

by which the current bit and the delay blocks are distorted, and then added

together at the end before transmission. This is contrary to the feedback

method, which was discussed in the RX FIR filter technique, where the

distorted delayed signals get combined and then subtracted from the current

bit in order to remove the postcursors of the channel. The advantage of

the TX feed-forward method is that it accounts for both postcursors and

precursors, whereas with the RX feedback method, it eliminates more of

the ISI. This chapter discusses the design process for implementing an FFE,

along with presenting the results for a behavioral implementation of a 2-Tap

FFE meant to eliminate solely the precursor.

4.1 FFE Design Overview

The implementation of a 5-tap behavioral feed-forward equalizer (FFE) is

done via this design process:

1. Analyze the normalized pulse response to find the main cursor, the

precursor, and the post-cursors.

2. Using the values of the main cursor, precursor, and postcursors (a-

coefficients), find the factors for the FFE (b-coefficients) to distort the

signal such that only the main cursor is at the output. This is mathe-

matically represented by the equation

A× b = c (4.1)
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where A, b, and c are represented as (respectively):
a0 a−1 0 0 0

a1 a0 a−1 0 0

a2 a1 a0 a−1 0

a3 a2 a1 a0 a−1

0 a3 a2 a1 a0

×

b−1

b0

b1

b2

b3

 =


0

1

0

0

0

 (4.2)

From this, the equation to solve for the FFE coefficients is simply:

b = A−1c [13].

3. Test the FFE-coefficients mathematically by convolving the b-matrix

with the A-matrix and check that there is solely the main cursor at the

output.

4. Design the behavioral model of the FFE using Verilog-AMS and verify

successful compilation.

5. Set up and simulate a testbench on EDA (Electronic Design Automa-

tion) tools (like Cadence Virtuoso + Spectre) and verify the output

voltage waveform entering the RX end after placing the FFE before

the channel.

4.2 FFE Implementation and Results

There are three modifications that are made to this design process in the

presented FFE implementation:

1. The presented FFE only focuses on eliminating the precursor, thus

instead of an A-matrix with a width of 5, it is reduced to a width of

2, as the b matrix is now reduced to a height of 2 (only solving for b−1

and b0).

2. In order to account for as much ISI as possible, the heights of matrix

A and c are increased, meaning that the pulse response of the channel

is taken to a length of over 1000 unit intervals (UI), where in this case,

a UI is equivalent to one bit period. This means that in solving for
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Figure 4.1: Full Normalized Raw Channel Response (taken over 1000 UI)

b, the matrix will be the solution to an overdetermined system, rather

than simple algebraic calculation.

3. Lastly, in implementation, the behavioral model will be used on a dif-

ferential signal instead of single ended, meaning that there will be an

FFE on each of “+” and the “-” ends of the signal before entering the

channel. This does not affect the FFE’s performance.

With these modifications, the first step is to look at the channel response.

The full channel response (length = 1000+ UI) and the zoomed-in channel

response are shown in Figure 4.1 and Figure 4.2, respectively.

The precursor and postcursors are calculated from sampling the channel

response starting from the maincursor, with a sampling period equal to the

bit period (in this case, the bit period = 167 psec, derived from the desired

operating data rate of 12 Gb/s). With the modifications discussed previously,
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Figure 4.2: Zoomed-In Normalized Raw Channel Response

our updated A matrix is now shown as

A =



a−1 0

a0 a−1

a1 a0

a2 a1

a3 a2

a4 a3
...

...

0 an


(4.3)

where n is equal to the number of postcursors taken, which is determined by

amount of UI covering the pulse response. Furthermore, since the A matrix
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extends back one more bit period, our updated c matrix is now shown as

c =



0

0

1

0
...

0


(4.4)

Using the raw channel response, our cursors are

Precursor a−1 = 0.1109 (4.5)

Postcursor a1 = 0.2605 (4.6)

Postcursor a2 = 0.104 (4.7)

Postcursor a3 = 0.0588 (4.8)

Postcursor a4 = 0.0387 (4.9)

Postcursor a5 = 0.0284 (4.10)

.

Beyond these, the values are significantly lower, where the final postcursor

an = 9.896× 10−6. As previously mentioned, sampling over a longer channel

response helps in reducing more ISI.

The next step is to invert the updated A matrix and multiply with the

updated c matrix. In solving this overdetermined system, the solution for b

matrix is

b = A−1 × c =

[
−0.1193

0.9549

]
(4.11)

In actual implementation, the coefficients are used as multipliers towards

the current used in differential amplifiers, where the current sources in each

tap draw some amount of current in order to distort the output voltage.

With this circuit topology, which is shown in Figure 4.3, the output swing is

limited by the headroom of the design itself [15]. This means that any extra

taps that are added to this equalizer will result in a reduction of the cursor’s
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Figure 4.3: Circuit Topology of 2-Tap FFE[15]

tap weight. Because of this, the sum of currents from each tap needs to be

equal to the current across the output termination, meaning that:

I × Σ|bi| = I ⇒ Σ|bi| = 1 (4.12)

With this realization, the normalized FFE coefficients are now:

bnew =
b

|b|
=

[
−0.111

0.889

]
(4.13)

The next step is to mathematically test these coefficients by convolving

the new b matrix with the sampled raw channel response in order to see if

the precursor is successfully eliminated. See Figure 4.4. The precursor has

been properly reduced, resulting in a slight reduction in the main cursor as

well. With the utilization of a driver amp and either further taps on the FFE

or an RX FIR filter, the signal will be at the appropriate voltage levels, and

the postcursors will be eliminated.

The next step is to implement this behaviorally on a testbench. As dis-

cussed in previous chapters, this thesis utilizes the Cadence toolset to imple-
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Figure 4.4: Raw Sampled Channel Response vs. Equalized Sampled
Response

33



Figure 4.5: FFE Testbench on Cadence Virtuoso

ment and test all designs in order to check the behavior of the output. The

testbench for the FFE is shown in Figure 4.5. Chapter 6 will discuss the full

procedure in order to set up and simulate the testbench for this design.

From this testbench, the signals vip and vin correspond to the input data

stream, which is created by a PRBS (pseudo-random bit sequence), with a

swing of 350 mV, that is converted into a differential signal using voltage-

controlled voltage sources with a common mode voltage, Vdc, of 800 mV. The

signals vinn and vinp correspond to the signals on the output of the FFE

being transmitted through the channel, whose insertion loss characteristics

are shown in Figure 4.6.

The results of utilizing the FFE are shown in the data output in Figure 4.8,

along with the input PRBS sequence in Figure 4.7. The output swing is

reduced, as expected, but along with the reduction, there is a distinct set

of voltage levels as well, due to only removing the precursor. When looking

at the zoomed in output response, there are four distinct levels that show

the detrimental impact of the ISI from the postcursors. However, the FFE
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Figure 4.6: Insertion Loss, S12 and S34, of channel

Figure 4.7: Input PRBS to FFE
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Figure 4.8: Output of Channel after Equalization by FFE (Zoomed In)

has still performed as expected, where the precursor was removed, and the

effects of the channel have not ruined the readability of the received data.

The following chapter will go through the design and implementation of the

continuous-time equalizer, in order to compare with that of an FFE.
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CHAPTER 5

CTLE DESIGN AND IMPLEMENTATION

At the end of Chapter 3, the passive continuous-time equalizer was presented

and critiqued. The RC network topology is not used due to mismatch issues,

where the matching network can be too big to be made on-chip. This chapter

presents an active CTLE (continuous-time linear equalizer) topology and

shows an implementation working at a desired data rate of 6 Gb/s (3 GHz

operating frequency).

5.1 CTLE Design Overview

In an active CTLE, high frequency content should be boosted with enough

gain to counteract the insertion loss of the channel (as shown in Chapter 4,

11 dB at 3 GHz). Figure 5.1 shows the proposed design for the CTLE. This

design utilizes a differential amplifier with source and capacitive degenera-

tion [18]. In this topology, the high frequency content gets boosted by a

larger amount than the low frequency content, meaning that the insertion

loss characteristics are still properly accounted for. The equations for this

equalizer are:

H(s) =
gm
CL

s+ 1
RDCD

(s+ gmRD+1
RDCD

)

1

(s+ 1
RLCL

)
(5.1)

ωz =
1

RDCD

(5.2)

ωp1 =
gmRD + 1

RDCD

(5.3)

ωp2 =
1

RLCL

(5.4)

DC Gain =
gmRL

gmRD + 1
(5.5)
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Figure 5.1: CTLE Topology Using Capacitive Degeneration

With the degeneration, there are two poles and one zero. This results

in a transfer function that starts at some DC gain, then once the zero is

introduced, the gain increases to some peaking gain, whose value is gmRL.

After the first zero, the first pole is introduced, followed by the second pole,

which causes the transfer function to go back down after reaching that initial

peak. The zero and pole frequencies are meant to be designed accordingly in

order to keep the desired high frequency content boosted, without amplifying

any of the later noise. However, this still does result in amplifying noise and

crosstalk at these frequencies as well [15].

The design process of the CTLE is as follows:

1. Decide a desired peaking gain and DC gain. This is usually based on

the loss characteristics of the channel.

2. Decide the zero frequency and the pole frequencies. This is based on

the performance specifications of the equalizer itself.

3. Decide the value of the capacitor that will be placed at the load. This

is usually determined by the CDR’s input stage.
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4. Determine the output swing of the equalizer. This is generally deter-

mined by the input specifications of the CDR as well.

5. Calculate the appropriate biasing current, and the width and length of

the transistor, in order to satisfy the design equations for this differen-

tial amplifier.

6. Calculate the total load capacitance, which is typically based on the

load capacitor and the parasitics of the transistors.

7. Calculate the load resistance to satisfy pole frequency ωp2.

8. Calculate the degeneration resistance from the transconductance of the

amplifier with the ratio of the peaking gain and the DC gain. This is

found from the following equation:

RD =

Hpeak

HDC
− 1

Gm

(5.6)

9. Calculate the degeneration capacitance to satisfy zero frequency ωz.

10. Test design and optimize parameters as necessary.

This design process from Step 5 onwards becomes iterative in order to

ensure that the CTLE properly accounts for the losses in the channel and

keeps the eye open enough for the CDR with minimal jitter.

5.2 CTLE Implementation and Results

For the scope of this research project, the design specs are as follows:

1. Operating Frequency = 3 GHz

2. CL = 30 fF

3. fp2 = 4 GHz

4. fz = 500 MHz

5. Peaking Gain = 10 dB
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6. DC Gain = 7 dB

7. Output Swing = 300 mV

8. Vdd = 1.2 V

The design parameters for the CTLE circuit, after running through the

iterative design process, are:

1. W = 12.5 µm

2. L = 100 nm

3. Ibias = 250 µA

4. CD = 1.52 pF

5. RD = 209 Ω

6. RL = 1.2 kΩ

Figure 5.2 shows the schematic for the CTLE in the Cadence Toolset.

Chapter 7 will cover in detail how to set up and simulate the CTLE within

Cadence Virtuoso and Spectre. Figure 5.3 shows the output response (in

dB) after running an AC simulation from 1 Hz to 100 GHz. At the operating

frequency, the gain of the CTLE is very close to 10 dB. At DC, the gain is very

close to 7 dB. The peaking gain is at 1.8 GHz with a gain of approximately

10.3 dB. As shown, the desired specs are met closely, but the AC response

only accounts for the desired performance in the frequency domain. The next

step is to check the transient response of the equalizer in order to ensure that

there is an appropriate eye width and eye height.

Figure 5.4 shows the eye diagram before the channel, after the channel,

and after equalization. Before the channel, there is a swing of approximately

200 mV. This reduces to approximately 120 mV after the channel, with

significantly more distortion. This distortion also causes the eye width to

decrease from one UI to 0.9 UI. In this case, the detrimental effects are on

the eye height, and the jitter, as those two are very important for the CDR,

in order to ensure that the CDR samples the data accurately. With the

CTLE, the eye width goes back up to 321.5 ps, which is very close to the bit

period of 333 psec, and the eye height goes up to 306.1 mV, which is just
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Figure 5.2: CTLE Schematic in Cadence Virtuoso
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Figure 5.3: CTLE AC Response in Cadence Spectre

Figure 5.4: Eye Diagram before Channel (Yellow), after Channel (Green),
and after Equalization (Red)

42



over our desired voltage swing. This means that the CDR will have enough

time to properly sample the data and can easily distinguish between a “0”

and a “1”. Lastly, the jitter reduces to 12.5 ps from the 65 ps of jitter it

reached after the channel. Overall, this CTLE performed as expected.

In conclusion, the CTLE provides the equalization needed to account for

both the losses and the slowed down transition times due to the channel.

Since it is operating in continuous-time, clock jitter and sampling do not

cause issues here. However, the limitations of the CTLE are shown in the

output swing and the gain. Since the CTLE is providing both gain and a large

output swing, it is difficult to accomplish that with small dimensions and

low power consumption. Due to that, the design process becomes iterative

in order to accomplish both high gain and output swing, as well as small size

and low power consumption.

Chapter 6 and Chapter 7 will provide tutorials for users to design their own

FFE, CTLE, and testbenches for both the behavioral model and transistor

model simulations.
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CHAPTER 6

BEHAVIORAL LEVEL SIMULATION OF
FFE

6.1 Overview of Behavioral Simulation

Chapter 4 discussed the design process behind a behavioral implementation

of an FFE. This chapter will provide a tutorial towards executing the design

process for an FFE.

There are two main types of implementations that are beneficial to do when

designing and testing circuits. SPICE (Simulation Program with Integrated

Circuit Emphasis) is traditionally the simulation engine base that is used

to simulate circuits, especially in the mixed-signal/analog realm. However,

as the circuits get more and more complex, so does the simulation time.

This results in fewer revisions by the designer. SPICE simulates the circuits

by performing a nodal analysis through KCL (Kirchhoff’s current law) at

every node. In the case of complex circuits, all of the KCL equations can

be represented through matrices (as they are a system of equations). The

solutions to the equations will require matrix inversion, which will have a

computational complexity of at least O(n2). Thus, the computation time will

rapidly increase with the increasing number of nodes. Behavioral modeling

serves the purpose of testing functionality while significantly reducing the

number of nodes and in turn, reducing the simulation time.

In the case of complex systems, the simulation time is significantly faster,

as there are no computationally complex operations during performance.

Furthermore, behavioral modeling allows for testing different systems itera-

tively. This allows for significantly faster optimization time, which is espe-

cially beneficial in the case of the FFE tap coefficients. Since these models

work in SPICE simulations, the same testbench can be utilized in both be-

havioral and transistor-level testing. This also enables quickly re-running

tests after simply changing parameter values, where in transistor-level sim-
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ulations, much of the circuit would need to be redesigned in order to meet

the new design parameter. Lastly, as different technology is used, the whole

transistor-level circuit will need to be re-designed, whereas behavioral models

are simply re-allocated by changing the design parameters.

The behavioral models for mixed-signal simulations are written in Verilog-

AMS (Verilog-Analog Mixed-Signal). This language defines both the behav-

ior and the structure for analog and mixed signal systems. Originally, be-

havioral modeling was typically done using just Verilog or VHDL, but these

two languages are meant specifically for digital circuits. Verilog-AMS is an

extension to these hardware description languages (HDLs) that provides the

designer with the ability to prototype their systems much faster, allowing

for quicker optimization. Verilog-AMS provides a language and simulator

ecosystem to be shared between analog, digital, and system level design, giv-

ing it a key advantage. By utilizing the speed and capacity of Verilog, along

with its own event-driven capabilities, Verilog-AMS provides the user with

the ability to easily simulate and optimize complex systems, such as PLLs,

CDRs, DFEs (Decision Feedback Equalizers), ADCs, and much more. How-

ever, Verilog-AMS does not have synthesis capabilities like Verilog, so it is

still not a replacement for transistor-level modeling. It is strictly meant to

speed up initial testing and optimization.

In this simulation, the Cadence toolset is used for simulation, as its Verilog-

AMS simulator works with both Verilog-D and Verilog-A models as well. Fur-

thermore, it operates cohesively with Spectre, Cadence’s tool for transistor-

level simulation. An example of a Verilog-AMS model, implementing a D-

type flip-flop, is shown in Figure 6.1.

The “disciplines.vams” file that is included in the beginning of the file

defines the signal types that are used in Verilog-AMS. These are typically

referred to as “natures”. The signals of the block itself are defined within

the parentheses of the module. In this case, the parentheses contain signals

”q”, ”qb”, ”clk”, and ”d”. These are the output, inverted output, clock, and

input, respectively. The input/output classifiers are set within the module’s

code itself (there is also a third type known as inout, which is typically used

in bi-directional digital communication buses). The parameter real classifier

is used to signify parameters whose value will be set externally within the

simulator. In Cadence, when the block is created, the user has to edit the

properties of the block and set the values before successfully simulating it.

45



Figure 6.1: D-type Flip-Flop Behavioral Model in Verilog-AMS
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The “analog begin” signifies when the simulator should start modeling this

block. Lastly, the “endmodule” is used to signify when the compiler should

stop compiling the code within the module’s role in the simulation.

6.2 FFE Behavioral Model Setup

In Chapter 4, the design process towards calculating the FFE was presented.

As a result of the design process, the FFE’s coefficients (designed to eliminate

solely the precursor) were:

b =

[
−0.111

0.889

]
(6.1)

Following this is the process towards setting up the behavioral model and

simulating it with a testbench:

1. First, create a new library that you will use to create your symbol,

testbench, etc., for your behavioral model simulation. In this case, we

will call our library FFE-Demo. Properly setting it up is shown in

Figure 6.2. When setting it up, attach it to an existing technology. In

this case, use the TSMC65N technology, as the 65 nm technology is

the basis behind all of the designs in this project.

2. The next step is to create the Verilog-AMS model for the FFE. To do

this, we must first create the cellview for this by going to “File...New...Cell

View” and inputting the parameters as shown in Figure 6.3.

3. After hitting “Ok”, there will be a text editor popup that will be black,

as shown in Figure 6.4. Fill in the skeleton code with the code shown

in Figure 6.5

4. Once completed, hit “Save” and exit the Text Editor. After doing this,

a pop-up will ask if you would like to create a symbol for this file. Click

“Yes”, as you need this symbol to be placed into the FFE testbench. In

this case, our symbol appears as shown in Figure 6.6, where the inputs

are on the left side and the outputs are on the right. Now, we have a

completed FFE behavioral model.

47



Figure 6.2: Setting Up the Library for the FFE
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Figure 6.3: Setting up the Cell View for the FFE

Figure 6.4: Blank Verilog File Created in Virtuoso
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Figure 6.5: FFE Behavioral Model Written in Verilog-AMS
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Figure 6.6: FFE Symbol After Successful Code Parsing

5. The next step is to set up the testbench for simulation. As discussed in

Chapter 4, this FFE model is single ended, so we will use one on each

end of the differential signal for implementation. The overall testbench

is shown in Figure 6.7. The first step is to again create a new Cell

View, and this time, select a “schematic” type and name it FFE-Test.

6. Next, we will set up the differential input, which is specifically shown

in Figure 6.8. To do this, you can hit the I button to add an instance

of any component into your testbench. Select the ”analogLib” library,

and place a vdc and a vsource component in series. Terminate it at

the bottom using a gnd, which you can get in the same library.

7. To connect them in series, you will need to use the W button, which

creates wires. Your schematic should currently look like Figure 6.9.

8. Next, we will edit the settings of each of these voltage components.

Using the Q button, you can edit the instance properties. Click on the

vdc object and hit Q in order to set the voltage to 800 mV, as that is

our common mode voltage. Next, click on the vsource object, and set

all of properties as shown in Figure 6.10. This will create our PRBS
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Figure 6.7: Testbench to Test the FFE

52



Figure 6.8: Differential Data Input for FFE Testbench
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Figure 6.9: Placed vdc and vsource Components in Series
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Figure 6.10: vsource Properties

input.

9. Now, we need to make these PRBS inputs differential for our testbench.

In order to do so, place two vcvs instances, edit their properties to set

the gains to +0.5 and -0.5, and wire them to the PRBS input as shown

in Figure 6.8. This will properly convert the data into a differential

data input.

10. In order to label the “vip” and “vin” as shown in Figure 6.8, you can

use the L key to create wire name ans place them accordingly. This

is really beneficial for cleaning up the testbench, and in the simulator,

you can plot the voltages at each of the labels. This will come in handy
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Figure 6.11: Clock vsource Properties

later.

11. Next, we will create our clock input for the FFE. To do this, create

another vsource, and edit the properties to be as shown in Figure 6.11.

After doing so, label the wire connecting upwards from the clock as

“clk”. That way, you can simply input the clock to each of the FFE

modules later.

12. Now that we have all of our inputs set up, we will place the FFE blocks.

Using I, select your FFE block from the “FFE-Test” library that we

made, and wire each of the “vin” and “vip” inputs to each of the “in”s

on the FFE blocks. The clock input will be the same “clk” input that

you set previously. In this case, just place a blank wire to each of these
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Figure 6.12: Differential Data Inputs with FFE Blocks on Testbench

inputs and write the label “clk” on it. That way, the nodal analysis

will know that these two are the same node. After all of this, your

setup should look like Figure 6.12. Label the output voltages of the

FFE as “vinn” and “vinp”, which are defined based on the “vin” and

“vip” inputs.

13. Lastly, before transmitting through the channel, you need to make sure

that you have your TX side terminated correctly. To do this, place two

res components in series and tie the top and bottom to the “vinn” and

“vinp” outputs of the FFE. From this, your schematic should look like

Figure 6.13.

14. The next step is to set up the channel. In this case, the channel file is

called “TECchannel.s4p”. In order to set up the channel, you will place

an instance of the nport component (found in the analogLib library)

and set the object properties as shown in Figure 6.14. The one thing

to make sure is that you place your s4p file in the proper location in

order for the symbol to properly use it.

15. After setting up the nport properties, the next thing to do is set up

the inputs. In this case, the input ports are 1 and 3. The output ports

are 2 and 4. With that knowledge, connect wires to each of the ports,
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Figure 6.13: FFE Input Setup with Proper Terminations

Figure 6.14: nport Properties
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Figure 6.15: nport Setup in Testbench

and set ports 1-4 as “vinn”, “von”, “vinp”, “vop”, respectively. Then,

terminate the common port with a gnd symbol. Your setup should

look as shown in Figure 6.15.

16. Now, your FFE testbench should be fully set up and ready for test-

ing, like in Figure 6.16. When working with behavioral models from

Verilog-AMS files, the next thing to set up is the configuration for

the testbench. In order to do this, create a new Cell View, keep the

FFE-testbench name, but this time, choose “Config” type.

17. You will now be prompted to set up your configuration for the test-

bench. Set the parameters of your config file as shown in Figure 6.17.

18. This concludes the FFE testbench setup tutorial. The next section will

cover how to check the transient response.

6.3 Transient Response Analysis and Results

Now that your FFE testbench is set up behaviorally with its config file, we

need to create the simulation setup. The process to do so is as follows:
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Figure 6.16: Finished FFE Testbench

Figure 6.17: FFE Testbench Config Properties
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Figure 6.18: ADE Blank Window

1. First, launch ADE. To do this, first go to your config file and then re-

open your schematic through the config file. Click “Launch” and select

“ADE L”. A window that looks like Figure 6.18.

2. Now that your window is opened, you need to select “Setup”, then

“Simulator”, and change the option from “spectre” to “AMS”. The

AMS simulator option operates as spectre, but allows you to utilize

your behavioral blocks in the simulation.

3. Set up a transient simulation by right clicking in the blank Analyses

portion, selecting “edit”, and setting up a “tran” type simulation with

the settings shown in Figure 6.19.

4. Next, set the outputs that you want to measure. Since the output is

differential, you want to look at the difference between nodes “vop”

and “von” in your testbench. You also want to compare with your

input voltage as well, to see if there are any delays, change in levels,

etc. To set your outputs, right click the blank portion of the Output

panel, select “edit”, and set up your outputs as shown in Figure 6.20.
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Figure 6.19: ADE Transient Simulation Setup

Figure 6.20: Transient Simulation Output Setup
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Figure 6.21: Transient Simulation Output

5. Now, your simulation setup is complete, and you can run your simula-

tion. To do so, click the green button on the side panel of the window,

and your voltage input and output should show on a separate window,

which is shown in Figure 6.21. This result is the same as that presented

in Chapter 4, which is as expected.

One thing to note is that in behavioral simulations, the results will gener-

ally show results that are close to perfect. This sets the best case expectations

for the transistor-level simulation, but if desired, the simulations can be run

with more noise, jitter, etc. in order to get more realistic results. The next

chapter will provide a tutorial to obtain the results that are taken from the

transistor-level implementation of the CTLE.
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CHAPTER 7

TRANSISTOR LEVEL SIMULATION OF
CTLE

7.1 Overview of Simulation

SPICE is a circuit simulator that numerically solves the circuits through

nodal analysis. Because of this, it is capable of performing a DC, transient,

and AC analysis (along with a few other types) for electronic circuits con-

taining resistors, capacitors, inductors, transmission lines (both lossy and

lossless), switches, ideal voltage/current sources, dependent voltage/current

sources, etc. Most importantly, it can simulate MOSFETs, which is critical

for testing the CTLE in this section. Cadence Spectre is a variant of SPICE

that is used to perform these simulations. Unlike SPICE, Spectre simulates

analog and digital circuits at a differential equation level. However, both use

nodal analysis to calculate the solutions to the matrices. Overall, Spectre is

a better tool, as it is optimized for both speed and accuracy.

7.2 CTLE Design Setup

In Chapter 5, we presented the schematic for the CTLE (as shown in Fig-

ure 5.2). To recap, here is the list of component values for our CTLE:

1. W = 12.5 µm

2. L = 100 nm

3. Ibias = 250 µA

4. CD = 1.52 pF

5. RD = 209 Ω

6. RL = 1.2 kΩ
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Figure 7.1: CTLE Schematic: Transistor Placement

This chapter provides a tutorial towards implementing this on the transis-

tor level, and performing both an AC analysis and a transient analysis on the

CTLE to test its functionality. The process to do so is laid out as follows:

1. First, create a new library called CTLE-Demo, which you will attach to

the existing TSMCN65 technology, and make a Cell View called CTLE.

The Cell View type should be schematic, and you will see an empty

schematic pop up.

2. Now that our new library and cell view are ready, we will place our tran-

sistors. Hit I to create an instance. The library will be the TSMCN65

library, and the cell name will be “nch”. These are NMOS transistors

that will be the base for our differential amplifier. Once placed, the

schematic should look like Figure 7.1. (Note: To flip a component hor-

izontally, you can use do so by selecting the ”Flip Horizontally” tool

on the toolbar.)

3. The next step is to edit the properties of the instances to match those

shown in Figure 7.2.

4. Once that is done, place a resistor (res object) and a capacitor (cap

object) in parallel between the bottom nodes of each of the transis-
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Figure 7.2: Transistor Object Properties
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Figure 7.3: Schematic with Degeneration Resistor and Capacitor Now
Added

tors. These are known as the source nodes, and placing the resistor

and capacitor there is referred to as “source and capacitive degenera-

tion.” Then, edit the object properties of each of these to be 0.5*209 Ω

and 2*1.52 pF, respectively. The reason these factors are used is that,

as shown in the reference schematic, the equivalent differential degen-

eration resistance and capacitance are 209 Ω and 1.52 pF (aka the

resistance and capacitance in the differential half circuit on the source

end). When converting this to the diff-amp circuit, the resistance is

doubled and the capacitance is halved, as the half circuit components

are considered to be in series with each other, resulting in these values.

The schematic should now look like Figure 7.3.

5. Next, place a resistor and capacitor in parallel, and have the bottom

connect to the top node of the transistors (this node is known as the
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Figure 7.4: Schematic with Load Resistor and Capacitor Now Added

drain). Set their values as 1.2 kΩ and 30 fF, respectively. Refer to

Figure 7.4 to check.

6. Place two current sources (idc objects) below each of the resistor-

capacitor ends on the bottom of the circuit. These are our bias currents,

whose values you will set at 250 µA. Refer to Figure 7.5 to check.

7. Place a ground object at the bottom to terminate the other end of the

current sources, and tie the middle transistor nodes to this ground as

well (the middle ones that are in line with the drain and source, NOT

the one to the side). These nodes are referred to as the bulk, or the

body, of the transistor. Refer to Figure 7.6 to check.

NOTE: First perform the AC Response Simulation, the tu-

torial for which is in the next section, before proceeding to

finish creating the CTLE block.
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Figure 7.5: Schematic with Current Sources Now Added
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Figure 7.6: CTLE Schematic (Without Supply Voltage or Input Voltage)
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8. After verifying the AC performance of the CTLE, it is time to revert

the design back to that shown in Figure 7.6. Basically, delete the wire

labels and the input setup.

9. Now, use the P button to place pins. These pins can either be input,

output, or inputoutput. In this setup, we use four input pins and two

output pins. Create two input pins, labeled “vin” and “vip”, that will

connect to the left and right transistor gates, respectively.

10. Next, place one input pin connected to the top wire of the load resistor-

capacitors labelled as “vdd.”

11. Place one input pin connected to the bottom of the current sources,

labeled “gnd”.

12. Place two output pins, labeled “voutn” and “voutp”, connected to the

drains of the left and right transistor, respectively. Your schematic

should now look like Figure 7.7.

13. Finally, it is time to create the symbol. Select “Create”, then “Cel-

lview”, then “From Cellview”, and click ok. The default option is to

create a symbol, and in this case, that is what we need.

14. For convenience, set the top pin to “vdd”, the bottom pin to “gnd”,

the left pins to “vin” and “vip”, and lastly, the right pins to “voutn”

and “voutp”. Refer to Figure 7.8. Rearrange the pins, if desired. Now,

the CTLE transistor-level block has been completed.

7.3 AC Response Analysis and Results

At this point, your CTLE schematic should be complete (Step 7). Now,

the objective is to validate your component selection by checking the AC

response. This response verifies that your peaking range, your peaking gain,

and your DC gain are appropriate.

1. First, draw wires out of the drain of each of the transistors. Label them

“voutn” and “voutp”, respectively.
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Figure 7.7: CTLE Schematic before Being Converted to a Symbol

Figure 7.8: CTLE Schematic Symbol Configuration
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Figure 7.9: CTLE Schematic with Labeled Wires

2. Next, label the top wire connecting each of the load resistors and ca-

pacitors as “vdd”.

3. Now, there should be one final node of the transistor this is the middle

node on the side, known as the gate. Draw wires out from each of the

gates and label them as “vin” and “vip”, respectively.

Refer to Figure 7.9 to check.

4. At this point, it is time to set up the supply voltage and voltage inputs

to test the AC response. First, place a vdc component and a vsin

component in series, terminated by a ground. Set the DC voltage of

your DC voltage source to 800 mV. In the sine voltage source, the only

parameters you should set are: AC Magnitude = 1 V, Amplitude =

175m V, and Frequency = 3G Hz.
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Figure 7.10: CTLE Schematic Setup for AC Simulation

5. Add another vdc object with the bottom connected to ground, and the

top labeled as “vdd”. Set this voltage value as 1.2 V.

6. Set up vcvs objects to turn this sine wave into a differential input for

the CTLE, and set the gains to +0.5 and -0.5, respectively. Lastly,

draw wires out of the tops of the voltage controlled voltage sources,

and label them as “vip” and “vin”, respectively. Your total circuit

should look like Figure 7.10.

7. At this point, check and save your design, click “Launch”, and select

“ADE L”.

8. Set up an AC simulation sweeping from 1 Hz to 100 GHz (automatic

sweep type) as shown in the configuration in Figure 7.11.

9. Finally, set up your AC gain response in the output with the formula

shown in Figure 7.12. This equation calculations the AC gain of the

CTLE in dB.

10. Now, run your simulation, and you will see the output plot as shown

in Figure 7.13. If your DC gain and peaking gain are not at the appro-

priate values, run through the design process described in Chapter 5

again to optimize your values. Once your AC response looks as desired,
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Figure 7.11: AC Simulation Configuration
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Figure 7.12: AC Simulation Output Setup

return to the previous tutorial to finish setting up the CTLE symbol

for the Transient Response Testbench.

Figure 7.13: Simulated CTLE AC Response
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7.4 Transient Response Analysis and Results

Now that the CTLE block has been successfully created, it is time to set

up the CTLE testbench and check the equalized output. Like Chapter 6,

the testbench will take a differential PRBS input, which was also set up for

the FFE, along with the channel setup using the nport component. The

remaining setup for this testbench requires:

1. Place the CTLE block in a testbench schematic containing a differential

PRBS input (this time, set the bit period = 1/3G) and the channel for

transmission (setup described in Chapter 6)

2. Add a vdc component with a voltage of 1.2 V to provide a supply

voltage to the CTLE.

3. Connect the “gnd” node of the CTLE to the same ground as the dif-

ferential PRBS input.

4. Place a 50 Ω resistor in series with the differential input (on each end)

before sending through the channel. Since the equalizer is on the RX

side this time, we need to terminate right between the data input and

the channel. Label the wires coming out of the other end of the resistor

as “inn” and “inp”. This will be helpful for analysis, as this provides

the signal before the channel.

5. Terminate the output of the channel with two 50 Ω resistors connected

together before connecting to the CTLE. Label the wires coming out

of the channel as “vinn” and “vinp”. This provides the signal after the

channel, which we expect to be very noisy and incoherent.

6. Lastly, draw wires coming out of the output notes of the CTLE, labeled

as “outn” and “outp”. Now, your testbench should look as shown in

Figure 7.14

7. Next, launch ADE (same way as in AC response simulation), and set

up a transient response for 2 µs of time, with conservative accuracy.

The configuration is shown in Figure 7.15.

8. Set the different signal outputs of outn− outp, inn− inp, and vinn−
vinp. The setup is shown in Figure 7.16.
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Figure 7.14: CTLE Transient Response Testbench

9. Once completed, run the simulation to see the three transient responses.

(Note: This will take a little while to simulate, due to the more complex

numerical solution in this case.)

10. After completion, you will see three different outputs, all shown to-

gether. Select all three (via the bar on the left side), and click “Mea-

surements”, then go to “Eye Diagram.”

11. Leave your start and stop times as 0 and 2 µs (if you’d like to account

for the small bit of setup in the beginning, change the start time to 10

ns).

12. Set your sampling period to “2/3E9” (this is equal to twice the bit

period, or 2 UI).

13. Hit “Calculate”, and you will see an eye diagram that looks like that

shown in Figure 7.17.

The results match those shown in Chapter 5, as the design process, the

schematic setup, the testbench setup, and the simulation scheme were all the

same.

This tutorial has shown the later stages of circuit design and simulation

using Cadence. When designing high-speed systems, we start with a behav-

ioral model, but once the parameters themselves are verified, we implement

the transistor-level schematic to finalize the design and get it working in a
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Figure 7.15: CTLE Transient Simulation Setup

Figure 7.16: CTLE Testbench Output Setup
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Figure 7.17: CTLE Eye Diagrams

realistic model. By simulating the transistor model, we see the parasitics,

the delays, and the signal losses take much more of an effect.
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CHAPTER 8

DISCUSSION

8.1 Comparison of Results

In this thesis, equalization at both the transmitting (TX) and receiving (RX)

ends of a serial link is analyzed. In both cases, the design process is discussed,

both mathematically and electrically. In the first case, we look at equaliza-

tion in discrete time, where we only care about the sampled responses of

the link. Using that knowledge, we discuss how to determine the optimal

mathematical coefficients that are needed to design a feed-forward equalizer

(FFE) on the transmitting side. These coefficients are used in implementing

a pre-emphasis filter. In the second case, we look at equalization in con-

tinuous time, where we care about the voltage at every point in time, as

we want to accomplish faster transition times and higher voltage levels with

our equalizer. We then determine the specifications for our system in order

to calculate the component values of our continuous-time linear equalizer’s

(CTLE) circuit topology. The objective that is common in both cases is

to counteract the transfer function of the channel, whether in discrete time

(z-domain) or in continuous time (s-domain).

The results in Chapter 4 showed a working behavioral model of the FFE

that successfully accounted for a lot of the ISI in the channel, but still caused

an unwanted voltage output, due to only eliminating the precursors. There

were different voltage levels, which is better represented in Figure 8.1.

In this figure, the different voltage levels run during one bit period, which

will increase the BER. Furthermore, in circuit-level implementation, sam-

pling the signal means that clock jitter can affect the equalization output,

along with potential synchronization issues. Lastly, because of the multiple

taps (multiple amplifiers in our proposed topology), the FFE will also con-

sume more power, whereas the CTLE topology uses one differential amplifier.
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Figure 8.1: Closer Look at FFE Output

The results in Chapter 5 showed a working transistor-level model of the

CTLE that also accounted for a lot of the ISI in the channel. It even brought

the differential output swing to a level that was appropriate for the CDR

in the next stage. This was represented well in Figure 5.4, where we saw

a full voltage swing of 306 mV and a jitter reduced from approximately 65

psec to 12.5 psec. However, the major disadvantage to consider is that data

signals will be noisier and suffer from crosstalk. With the CTLE, the SNR

will not change because the noise and crosstalk will get amplified with the

signal content, which can be detrimental to the BER.

An overall comparison between the CTLE and FFE is as follows:

• The CTLE is a good option that works optimally with one set chan-

nel. It has the potential to be adaptive, but only if the load resistor,

degeneration resistor, and degeneration capacitor are all tunable. This

would, however, introduce a lot more issues with multiple control sig-

nals, power drain, etc., in order to properly implement this in a CTLE,

where the objective is to simplify the equalization in this design. If

appropriate noise filtering is used after the CTLE, followed by an RX

driver amp, the SNR would be greatly improved.

• The FFE is a great option, but adaptivity is a stretch. In order
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to accomplish adaptivity, the matrix solution for the coefficients will

need to be generated based on the channel’s performance, which is

too complex to implement, test, and optimize within the scope of an

HSSL. Furthermore, there is still ISI after implementation, along with

the noise/crosstalk remaining untouched. With appropriate filtering,

enough taps on the FFE (based on the channel’s pulse response), and

close to perfect sampling from the PLL’s clock, the FFE would be a

good solution.

8.2 Future Work

At higher speeds (and in turn, higher loss/parasitics), it is clear that both the

FFE and CTLE start to fall in their maximum potential. However, a more

complex equalization solution can be made, also utilizing a decision-feedback

equalizer (DFE). The DFE is a non-linear RX equalizer that utilizes a slicer

in order to decide if the symbol is “1” or “0”. After making a decision, the

DFE utilizes an RX FIR filter in feedback to subtract the ISI directly. Since

the coefficients are directly taken from the channel response, this equalizer

can be made to be adaptable. Furthermore, this equalizer improves SNR

since it solely improves the signal without amplifying noise and crosstalk as

well.

However, there are also some issues that exist with this implementation.

Firstly, since the DFE utilizes an RX FIR filter, it only accounts for the

postcursors, so an FFE would still be beneficial to eliminate the precursor

(our implementation would work very well here). Furthermore, if the decision

circuit is incorrect, the error will propagate to later bits, causing higher BER.

Lastly, since the DFE will need an accurate clock, which will most likely come

from the CDR, the clock jitter can play a very detrimental effect on the DFE’s

performance.

For future work, this design process can be utilized to implement an equal-

ization system utilizing an FFE, a CTLE, and a DFE. The representation of

this system is shown in Figure 8.2 [17]. The implementation of this system

would be done by following this design process:

1. Design a CTLE to account for enough loss at the operating frequency

in order to improve the ISI.
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Figure 8.2: Equalization Using a DFE, CTLE, and FFE [17]

Figure 8.3: Resistor-Load Summer DFE Topology [17]
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2. After the CTLE, design an RX driver amplifier in order to provide more

gain and a better voltage swing for the following stage (the DFE). Typ-

ically, the amplifier would need to provide a wideband gain of approxi-

mately 5-10 dB with a voltage swing determined by the input specs of

the DFE, along with the input specs of the CDR.

3. Once both the CTLE and Driver Amp have been tested together, the

FFE can now be designed. In order to calculate the FFE coefficients,

the pulse response of the channel followed by the CTLE and then the

Driver Amp will need to be taken. As mentioned in Chapter 4, simu-

lating over a lot of UI provides the benefit of reducing as much ISI as

possible.

4. A behavioral model of the FFE can first be tested in the testbench with

the CTLE and driver amp to ensure that the coefficients are correct.

5. After the coefficients are optimized and verified, the circuit design of

the FFE can be designed, where the delay element will be implemented

via a TSPC (true single phasing clock) latch-based flip-flop and the taps

will each be implemented via differential amplifiers, whose currents will

be adjusted based on the normalized coefficients.

6. Upon the FFE’s optimization, simulate the pulse response with the

FFE, channel, CTLE, and driver amp in order to see the postcursors

that now remain. These postcursors will set the coefficients for the taps

in the feedback FIR filter that will be used after the sampler.

7. With the calculated postcursors, implement a behavioral model of the

DFE in order to optimize those coefficients with the link.

8. After the coefficients have been optimized, the DFE can be made with

a transistor-level model. In the actual circuit, the sampler (and the

delay elements) can be implemented using a D-type flip-flop (or a TSPC

latch-based flip-flop), and the taps can be implemented with a resistor

load summer topology shown in Figure 8.3.

9. Final optimization of all the elements is to be done once testing the

whole system with the differential PRBS input, serializer, PLL, FFE,

channel, CTLE, driver amp, DFE, CDR, and deserializer.
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As discussed in the beginning, the major assumption made in this design

process is that the serializer, PLL, CDR, and deserializer work without any

detrimental contributions to the equalizer’s performance. When incorporat-

ing the realistic effects of each of these modules, this process becomes more

iterative within each step, as optimizing each module requires proper timing,

parasitic, noise, and jitter analysis in order to ensure successful equalization.
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