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ABSTRACT 

 

Construction projects must comply with various regulations. The manual process of checking 

the compliance with regulations is costly, time consuming, and error prone. With the 

advancement in computing technology, there have been many research efforts in automating 

the compliance checking process, and many software development efforts led by industry 

bodies/associations, software companies, and/or government organizations to develop 

automated compliance checking (ACC) systems. However, two main gaps in the existing 

ACC efforts are: (1) manual effort is needed for extracting requirements from regulatory 

documents and encoding these requirements in a computer-processable rule format; and (2) 

there is a lack of a semantic representation for supporting automated compliance reasoning 

that is non-proprietary, non-hidden, and user-understandable and testable. To address these 

gaps, this dissertation proposes a new ACC method that: (1) utilizes semantic natural 

language processing (NLP) techniques to automatically extract regulatory information from 

building codes and design information from building information models (BIMs); and (2) 

utilizes a semantic logic-based representation to represent and reason about the extracted 

regulatory information and design information for compliance checking. The proposed 

method is composed of four main methods/algorithms that are combined in one 

computational framework: (1) a semantic, rule-based method and algorithm that leverage 

NLP techniques to automatically extract regulatory information from building codes and 
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represent the extracted information into semantic tuples, (2) a semantic, rule-based method 

and algorithm that leverage NLP techniques to automatically transform the extracted 

regulatory information into logic rules to prepare for automated reasoning, (3) a semantic, 

rule-based information extraction and information transformation method and algorithm to 

automatically extract design information from BIMs and transform the extracted information 

into logic facts to prepare for automated reasoning, and (4) a logic-based information 

representation and compliance reasoning schema to represent regulatory and design 

information for enabling the automated compliance reasoning process. To test the proposed 

method, a building information model test case was developed based on the Duplex 

Apartment Project from buildingSMARTalliance of the National Institute of Building 

Sciences. The test case was checked for compliance with a randomly selected chapter, 

Chapter 19, of the International Building Code 2009. Comparing to a manually developed 

gold standard, 87.6% precision and 98.7% recall in noncompliance detection were achieved, 

on the testing data.  
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1 CHAPTER 1 – INTRODUCTION  

1.1 Motivation and Overview 

Construction projects are governed by a multitude of federal, state, and local regulations, 

such as the International Building Code (IBC), the ADA Standards for Accessible Design, the 

International Fire Code, the International Energy Conservation Code, the OSHA’s Cranes 

and Derricks in Construction, the Illinois Accessibility Code, the Illinois Energy 

Conservation Code, the Illinois Plumbing Code, and the Municipal Code of Chicago. Each 

regulation has a large set of provisions. For example, the IBC 2006 is composed of 329 

sections, where each section includes several to tens of provisions that address a variety of 

requirements (e.g., safety, environmental). 

Due to the large number of construction regulatory documents, the variability of their 

provisions in terms of formatting and semantics, and the large amount and complexity of the 

information they describe; like other manual processes (Boken and Callaghan 2009), the 

manual process of regulatory compliance checking is time-consuming, costly, and 

error-prone. For example, in the city of Mesa, Arizona, the turn-around time for a commercial 

building plan review is 18 business days, with a fee assessed at a rate of $90 per hour (City of 

Mesa 2012). Failure to comply with regulations could further result in incurring much higher 

costs. For example, Wal-Mart Stores Inc. was fined $1 million due to violation of 

storm-water regulations (US EPA 2004; Salama and El-Gohary 2011). Automated 
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compliance checking (ACC) is expected to reduce the cost, time, and errors of compliance 

checking (Tan et al. 2010; Eastman et al. 2009).  

With the advancement in computing technology, there have been many research efforts in 

automating the compliance checking process (e.g., Garrett and Fenves 1987; Delis and Delis 

1995; Han et al. 1997; Lau and Law 2004; Eastman et al. 2009; Tan et al. 2010). Larger 

research and software development efforts for automated building code checking led by 

industry bodies/associations, software companies, and/or government organizations include 

Solibri Model Checker (Corke 2013), EPLAN/BIM led by Fiatech (Fiatech 2011), 

Construction and Real Estate NETwork (CORENET) led by the Singapore Ministry of 

National Development (Singapore Building and Construction Authority 2006), REScheck 

and COMcheck led by the U.S. Department of Energy (US DOE 2011), SMARTcodes led by 

the International Code Council (ICC 2011), and Avolve Software (Avolve Software 

Corporation 2011). Previous research and software development efforts have undoubtedly 

paved the way for ACC in the in the architectural, engineering, and construction (AEC) 

industry. However, these efforts are limited in their automation and reasoning capabilities 

(Zhong et al. 2012); existing ACC systems (1) require manual effort for extracting 

requirements from textual regulatory documents (e.g., codes) and encoding these 

requirements in a computer-processable rule format. Rules are either hard-coded into the 

developed systems or hand-coded as a rule database or set of files. For example, in the most 

recent effort of the AutoCodes project led by Fiatech (Fiatech 2015), the creation of 
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regulatory rules requires manual extraction and encoding effort; and (2) lack a semantic 

representation for supporting automated compliance reasoning that is non-proprietary, 

non-hidden, and user-understandable and testable.  

To address these gaps, this dissertation aims at developing a semantic, Natural Language 

Processing (NLP)-enabled, and logic-enabled system for ACC in the construction domain. 

NLP is a field utilizing artificial intelligence to enable computers to understand and process 

natural language text in a human-like manner (Cherpas 1992). Formally-defined logic 

provides the theoretical basis and utilities for inference-making. Semantic modeling aims at 

providing the level of knowledge representation that is needed to facilitate such deep levels of 

information processing and compliance reasoning; it will help in processing applicable 

regulations and checking compliance of designs to the provisions/rules that are prescribed by 

those regulations. Semantic NLP techniques will facilitate textual document analysis and 

processing for the extraction of regulatory information from regulatory documents. Semantic 

building information modeling-based methods will facilitate the extraction of design 

information from building information modeling-based designs. Semantic logic-based 

reasoning techniques will facilitate automated compliance reasoning and analysis. 

1.2 State of the Art in Automated Compliance Checking and Practical Gaps 

Since the first attempt to computerize building regulations in 1960s (Fenves et al. 1969), 

efforts for ACC in the construction domain have been ongoing, such as the checking of safety 
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and reliability requirements of structures (Garrett and Fenves 1987), fire code compliance 

(Delis and Delis 1995), facility accessibility code compliance (Han et al. 1997), accessibility 

(Lau and Law 2004), egress, environmental protection, and energy conservation (FIC 2007), 

construction inspection and quality control (Boukamp and Akinci 2007), building envelope 

performance (Tan et al. 2007; Tan et al. 2010), and building design (Eastman et al. 2009). In 

industry, several software systems have been developed for ACC purposes, such as 

REScheck and COMcheck (US DOE 2011), Avolve Software (Avolve Software Corporation 

2011), and Solibri Model Checker (Corke 2013). However, the state-of-the-art development 

in ACC still requires manual extraction of regulatory provisions/requirements from textual 

regulatory documents and encoding of these extracted provisions/requirements into a 

computer-processable rule format. Rules are either hard-coded into the systems or 

hand-coded as a rule database or set of files. For example, Solibri Model Checker (Corke 

2013) currently includes a set of 300 proforma-based rules that allow for some degree of user 

customization of rules. However, such customization does not allow for the creation of new 

rules. The development of new rules in Solibri Model Checker requires professional software 

engineering expertise and deep understanding of the software’s environment and data 

structure (Corke 2013). The software tools developed by OptaSoft for ACC with 

International Code Council (ICC) codes need major manual data entry and navigation 

(OptaSoft 2014).  

Also, the state-of-the-art development in ACC is limited in terms of offering a semantic 
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representation that is non-proprietary, non-hidden, and user-understandable and testable. 

Existing systems typically hard code the specific compliance checking method (for the 

targeted checking topic) into programs that are procedural and rigid, which makes it difficult 

or impossible to separate the rules from specific programs to conduct more complex and 

flexible analysis in another software program. And, they typically utilized proprietary (thus 

hidden) information representation and reasoning mechanisms, which makes it difficult for 

the rules to be understood and tested by regulation writers and compliance checking users 

(Garrett and Palmer 2014). For example, the REScheck system for checking the compliance 

of residential buildings with energy codes utilizes a checklist of building elements (which 

have to be manually-created/selected from a pool of existing building components models) to 

calculate the U-factor × Area (UA) for each building assembly to determine the UA for the 

building overall. It then compares this UA with UA resulted from a building conforming to 

the code requirements to determine the compliance result of this building. This procedure is 

strictly procedural and rigid (US DOE 2013). And the rules are hidden from the users, and 

thus cannot be easily understood or tested by the users. The utilization of proforma-based 

rules in Solibri Model Checker makes the checking procedure more flexible than the 

checking procedure in REScheck. However, as mentioned earlier, the proforma-based rules 

set is fixed, although some rule parameter adjustment is allowed. This renders the checking 

mechanism in Solibri Model Checker to be also rigid and procedural, although more flexible 

than the strictly hard-coded procedure such as in the REScheck system, and thus to be limited 
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in its reasoning capability (Corke 2013). In addition, the proforma-based rules are in a 

proprietary format, and thus cannot be easily understood and tested by regulation writers and 

compliance checking users. The creation of totally new rules in Solibri Model Checker must 

be conducted by Solibri engineers.  

1.3 Proposed Approach 

1.3.1 Natural Language Processing (NLP) Approach 

In this dissertation, NLP techniques are used to facilitate textual document analysis and 

processing for the extraction of regulatory information from regulatory documents. In the 

author’s analysis, in comparison to general non-technical text (e.g., news articles, general 

websites), domain-specific regulatory text is more suitable for automated NLP (i.e., would 

allow for better interpretability and less ambiguity in automated processing) due to three 

main text characteristics. First, construction text is likely to have less homonym conflicts than 

non-technical text. For example, in news articles, the term “bridge” could refer to a structural 

bridge, the card game, a bridge of understanding, a dental bridge, etc. Second, it is easier to 

develop an ontology that captures domain knowledge as opposed to an ontology that captures 

general knowledge (or a wide variety of domains). A domain ontology may enhance 

automated interpretability and understandability of domain-specific text. Third, construction 

text is likely to exhibit less co-reference resolution problems. For example, construction 

regulatory text tends to mention the subjects (e.g., door) for each provision explicitly rather 
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than referring to the subjects using pronouns (e.g., “it”).  

1.3.2 Logic-Based Reasoning Approach 

In this dissertation, logic-based reasoning is used to facilitate automated compliance 

reasoning about regulatory rules and design information. A logic-based representation and 

reasoning schema for ACC is developed to allow for leveraging the inference-making 

capabilities of formally-defined logic. A formally-defined logic could represent and reason 

about the complicated logic relations in construction regulations more efficiently than 

procedural programming languages like C programming language. Logic has been essential 

in many automated reasoning systems (Portoraro 2011). Different types of formally-defined 

logic with varying degrees of descriptive and reasoning capabilities have been developed to 

support automated reasoning in various domains, such as in robotics (e.g., forming plans for 

autonomous robots) and artificial intelligence (e.g., automated question answering). The use 

of formally-defined logic for automated reasoning has successfully solved many famous 

problems some of which baffled human experts for decades, such as the Robbins Problem in 

algebra (Robinson and Voronkov 2001; Bundy 2013).  

1.3.3 Semantic Modeling Approach 

In this dissertation, semantic modeling is used to support content-based information 

processing and compliance reasoning. A domain-specific ontology is developed and used to 

(1) conduct NLP in a semantic way and (2) support the logic-based representation and 
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reasoning schema. An ontology models domain knowledge in form of concept hierarchies, 

relationships (between concepts), and axioms (El-Gohary and El-Diraby 2010). The domain 

knowledge captured in an ontology is expected to facilitate the processing of both regulatory 

text and design information and to guide the needed complex reasoning for compliance 

checking. For example, ontology-based semantic information extraction (i.e., using 

meaning/context-related features, in addition to syntax/grammar-related features) is expected 

to achieve higher performance in comparison to syntactic information extraction (i.e., 

information extraction using syntactic features only), because domain knowledge 

(represented in an ontology) could help to identify or distinguish domain-specific terms and 

meanings (Soysal et al. 2010).  

1.3.4 Proposed Framework  

The proposed ACC framework includes a number of elements (as per Figure 1.1): (1) a 

building code in textual format such as the International Building Code, (2) a building 

information model (BIM) based on industry foundation classes (IFC) (i.e., .ifc file) to 

represent building design information, (3) an ontology representing knowledge in the 

construction domain to support the processing of regulatory and design information and the 

automated compliance reasoning process, (4) a semantic, rule-based algorithm that leverages 

NLP techniques to automatically extract regulatory information from building codes and 

represent the extracted information into semantic tuples, (5) a semantic, rule-based algorithm 

that leverages NLP techniques to automatically transform the extracted regulatory 
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information into logic rules to prepare for automated reasoning, (6) a semantic, rule-based 

information extraction (IE) and information transformation (ITr) algorithm to automatically 

extract design information from building information models (BIMs) (.ifc file) and transform 

the extracted information into logic facts to prepare for automated reasoning, (7) a 

logic-based information representation and compliance reasoning schema to represent 

regulatory and design information for enabling the automated compliance reasoning process, 

(8) automated regulatory information extraction from building codes and representation of 

the extracted information into semantic tuples, (9) automated regulatory information 

transformation into logic rules, (10) automated design information extraction from BIMs and 

transformation of the extracted information into logic facts, (11) compliance testing: using 

logic-based reasoning to check compliance of design information (in the form of logic facts) 

with regulatory information (in the form of logic rules), and (12) compliance reporting: 

reporting the results of compliance testing in terms of compliance or noncompliance, 

including the associated analysis of a noncompliance (e.g., reason of violation). All the 

above-mentioned processes (element #8 through #12) are facilitated by the domain 

knowledge captured by the ontology. Elements #8 and #9, additionally, require the use of 

NLP techniques, in the form of information extraction and information transformation 

algorithms. Elements #11 and #12 require the use of logic reasoning based on the logic-based 

information representation and compliance reasoning schema. As such, the framework 

involves developing a set of methods/algorithms, along with an information representation 
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and reasoning schema, and combining them into one computational platform: (1) a semantic, 

rule-based NLP regulatory information extraction (IE) algorithm, (2) a semantic, rule-based 

NLP regulatory information transformation (ITr) algorithm, (3) a semantic, rule-based design 

information extraction (IE) and design information transformation (ITr) algorithm, and (4) a 

logic-based information representation and compliance reasoning schema. 

 

Figure 1.1 Proposed Framework 

1.4 Knowledge Gaps 

1.4.1 Gaps in Existing NLP Efforts 

There is a lack of methods for automated deep information extraction (IE) from textual 

sources for supporting compliance checking purposes. The state of the art in NLP has 

achieved reasonable performances for shallow NLP tasks, whereas it is still being challenged 

by deep NLP tasks. Shallow NLP conducts partial analysis of a sentence or analyzes a 

sentence from a specific angle of view [e.g., part-of-speech (POS) tagging, text chunking]. 

Deep NLP, on the other hand, aims at full sentence analysis with a more complex 
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understanding of the text toward capturing the entire meaning of sentences (Zouaq 2011). 

Correspondingly, shallow information extraction extracts specific type(s) of information from 

a sentence, whereas deep information extraction aims to extract all information expressed by 

a sentence based on the full analysis of the sentence. Deep NLP/information extraction, thus, 

requires elaborate knowledge representation and reasoning, which remains to be a challenge 

for AI (Tierney 2012). For the purpose of ACC, a successful information extraction does 

require correct understanding of the text source (i.e., textual regulatory documents). This 

need of a deep level of NLP makes the problem of automated information extraction for 

compliance checking purposes challenging.  

1.4.2 Gaps in Existing Representation Schema for Automated Compliance Reasoning 

There is a lack of a semantic representation schema for construction regulations that is 

computer-processable, inference engine-independent, and user-understandable and testable to 

support automated reasoning for ACC (Garrett and Palmer 2014). In an automated reasoning 

system, the representation schema and reasoning mechanism influence each other. Reasoning 

needs affect the requirements and structure of the representation and successful reasoning 

depends on appropriate representations. Finding the right representation is, thus, a key to 

successful reasoning (Bundy 2013). Building regulations represent requirements using a 

variety of limits and relationships, and the building regulations are used for checking by 

different types of domain experts using different softwares. Thus, to support ACC, the 

computer-processable representation of building regulations needs to be (1) independent from 
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specific softwares or inference engines, and (2) user-understandable and testable (Garrett and 

Palmer 2014). Existing ACC systems do not provide such a representation for building 

regulations that is needed to allow the compliance checking of designs across different 

softwares and by experts with different knowledge and skills. Such a flexible representation 

to support compliance checking “remained always a challenge for Artificial Intelligence (AI) 

experts” (Santos and Farinha 2005). Besides, such a representation schema for construction 

regulations also requires: (a) a holistic representation to cover design information as well, and 

(b) a formal, computer-interpretable representation to facilitate automated reasoning. 

1.5 Problem Statement 

Compliance checking is a costly ‘bottleneck’ in the project delivery process, because it is a 

highly manual process. Manual code compliance checking is time-consuming, costly, and 

error-prone. Automating the compliance checking process is expected to reduce time, cost, 

and error of the process. However, previous efforts towards ACC have been limited, because 

they (1) require manual effort for extracting requirements from textual regulatory documents 

(codes) and encoding these requirements in a computer-processable rule format, and (2) lack 

a semantic representation that is non-proprietary, non-hidden, and user-understandable and 

testable.   

1.6 Research Objectives and Questions 

The overall objective of this research is to develop a semantic, natural language processing 
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(NLP)-enabled, and logic-enabled system (a proof-of-concept prototype) for ACC of 

BIM-based building designs (.ifc format) with building codes. For building codes, the scope 

of this dissertation is limited to information represented in natural language sentences, 

excluding information represented in figures or tables. For BIM-based building designs, the 

scope of this dissertation is limited to design information in the planning and design phases of 

a building project [i.e., a level of development (LOD) of 400]. The developed 

proof-of-concept prototype system will be initially tested in checking the compliance of one 

BIM test case with one chapter in the International Building Code. Accordingly, six specific 

objectives are defined: 

Objective 1: Develop a semantic, rule-based NLP algorithm for automatically extracting 

regulatory information from textual regulatory documents (i.e., building codes) for 

supporting ACC in the construction domain. 

Research Questions: How to automatically extract information from textual regulatory 

documents with a sufficient performance (in terms of precision and recall) for 

compliance reasoning purposes? What are the necessary features to represent 

domain-specific text for information extraction (IE)? Would the use of a semantic 

information extraction approach result in the desired performance in this application? 

Would the use of a rule-based information extraction approach result in the desired 

performance in this application? 
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Objective 2: Develop a semantic, rule-based algorithm for automatically transforming the 

extracted regulatory information into logic rules for supporting ACC in the construction 

domain.  

Research Questions: How to automatically transform the extracted regulatory 

information into a logic representation (consisting of logic rules) that would be ready for 

automated reasoning? How to map the extracted regulatory information to the logic rules? 

This mapping is expected to: (a) be more complicated than a simple one-to-one mapping; 

(b) be dependent on the semantic meaning of the extracted information (i.e., the concept 

or relation each extracted information instance is associated with); and (c) contain 

possible conflicts in the extracted information. 

Objective 3: Develop a semantic, rule-based and machine learning-based algorithm for 

semiautomatically extending the industry foundation classes (IFC) schema to facilitate the 

representation of ACC-related information in building information models (BIMs).  

Research Questions: How to automatically extract regulatory concepts from building 

codes with a sufficient performance (in terms of precision and recall) for representing 

ACC-related information? How to automatically find the most related IFC concept for 

each regulatory concept? How to automatically find the relationship between regulatory 

concepts and their most related IFC concepts? How to automatically integrate the 

regulatory concepts into the IFC schema? How to integrate user judgements into the IFC 
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extension process to eliminate/reduce possible errors of the automated processes? 

Objective 4: Develop a semantic, rule-based algorithm for automatically extracting design 

information from building information models (BIMs) and automatically transforming the 

extracted design information into logic facts for supporting ACC in the construction domain. 

Research Questions: How to automatically extract information from BIMs with a 

sufficient performance (in terms of precision and recall) for compliance reasoning 

purposes? How to automatically transform the extracted information into a logic-based 

representation (consisting of logic facts) that would be ready for automated reasoning? 

How to handle missing information or information not available in BIMs? 

Objective 5: Develop a logic-based information representation and compliance reasoning 

schema for representing, both, regulatory information and design information to prepare for 

utilizing the inference-making capabilities of logic reasoners for supporting ACC in the 

construction domain.  

Research Questions: How to represent the types of regulatory information and design 

information into a formal information representation schema that could be used to guide 

the information processing and automated compliance reasoning processes? This 

representation schema is required to be generalized and flexible to allow for the deep 

representation of all information (i.e., all concepts and relations) in a regulatory provision 

regardless of the type, length, and complexity of the provision (sentence). 
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Objective 6: Integrate and implement all developed methods and algorithms in one platform: 

a proof-of-concept prototype system that conducts ACC based on regulatory text and a BIM 

(.ifc file).  

Research Questions: How to integrate all developed methods and algorithms in one 

platform with a sufficient performance (in terms of precision and recall) in 

noncompliance detection? 

1.7 Research Methodology and Tasks 

The methodology is composed of seven main tasks, as illustrated in Figure 1.2.  
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Figure 1.2 Research Methodology and Tasks 

1.7.1 Task 1 – Literature Review 

A literature review was conducted in six main research fields that are related to the scope of 

the dissertation: automated compliance checking in the construction domain, NLP, 

information extraction from BIMs, automated reasoning, semantic modeling and 

semantic-based NLP and reasoning, and machine learning algorithms. Concepts, 

methods/techniques, and tools/systems in these fields were analytically-reviewed, as follows:  

 For automated compliance checking in the construction domain, the literature review 
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focused on reviewing existing efforts in terms of: (1) existing ACC efforts in academia 

and industry, (2) types of approaches utilized in the existing ACC efforts, (3) state of the 

art and gaps in existing ACC efforts; and (4) the need for automated rule extraction.  

 For NLP, the literature review focused on: (1) basic concepts and techniques in NLP, (2) 

different types and levels of NLP, (3) grammars and theories that support NLP, (4) textual 

information extraction, (5) previous NLP work in the construction domain, and (6) 

evaluation methods for NLP tasks. 

 For information extraction from BIMs, the literature review focused on: (1) data schema 

for BIMs, with a focus on Industry Foundation Classes (IFC), (2) different types of 

approaches for information extraction from BIMs, and (3) information requirements for 

information extraction from IFC-based BIMs. 

 For automated reasoning, the literature review focused on: (1) different types of 

formally-defined logic and their advantages and limitations, (2) logic programming, 

especially Prolog, which is the most widely-used logic programming language, and (3) 

existing efforts in conducting automated reasoning in the construction domain. 

 For semantic modeling and semantic-based NLP and reasoning, the literature review 

focused on: (1) the methods for ontology development, (2) previous ontological modeling 

efforts in the construction domain, (3) semantic information processing tasks in NLP, (4) 

the relation between semantic modeling and building information modeling, and (5) role 
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of semantic modeling in automated reasoning.    

 For machine learning algorithms, the literature review focused on the main types of 

machine learning algorithms and their characteristics.  

1.7.2 Task 2 – Method and Algorithm Development for Automated Information 

Extraction from Building Codes 

This task aimed at developing a semantic, rule-based NLP method and algorithm for 

automatically extracting regulatory information from building codes for supporting ACC in 

the construction domain. 

1.7.2.1 Subtask 2.1 – Method/Algorithm Development 

This task focused on experimenting with different combinations of semantic NLP techniques 

to develop an information extraction method and algorithm that could achieve sufficient 

performance. The extracted information was represented in a domain-specific, 

computer-understandable format which is referred to as “semantic tuples” hereafter. There 

are two main types of approaches taken in NLP: a rule-based approach and a 

machine-learning (ML)-based approach. A rule-based approach utilizes human knowledge or 

heuristics in the development of the rules that are used for various language processing 

purposes. An ML-based approach applies machine learning algorithms (e.g., support vector 

machines, Naive Bayes, neural networks) on large volume of data for the 

training/development of NLP models (e.g., classifiers in the case of text classification) to 
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achieve the desired language processing objectives. A rule-based approach was taken in this 

dissertation, because of its expected higher performance in comparison to ML-based 

approaches when extracting information for a specific domain. Example NLP techniques 

used include morphological analysis, Part-of-speech (POS) tagging, pattern matching, etc. 

Two types of NLP methods were comparatively experimented with: syntactic NLP and 

semantic NLP. General architecture for text engineering (GATE) platform and tools 

(Cunningham et al. 2011), and Java programming language were utilized to implement 

various semantic NLP techniques. 

1.7.2.2 Subtask 2.2 – Experimental Testing and Evaluation 

This task focused on testing the developed method and algorithm experimentally using 

well-established information extraction evaluation criteria – precision, recall, and F1-measure. 

Precision, here, is defined as the ratio of the number of correctly extracted information 

elements over the total number of information elements extracted. Recall, here, is defined as 

the ratio of the number of correctly extracted information elements over the total number of 

information elements that should be extracted. F1-measure is the harmonic mean of precision 

and recall. These measures were calculated based on a comparison of experimental results 

with a manually-developed gold standard, for information extracted from a 

randomly-selected chapter from an International Building Code. 
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1.7.3 Task 3 – Method and Algorithm Development for Automated Information 

Transformation of Regulatory Information 

This task aimed at developing a semantic, rule-based method and algorithm for automatically 

transforming the extracted regulatory information into logic rules for supporting ACC in the 

construction domain.  

1.7.3.1 Subtask 3.1 – Method/Algorithm Development 

This task focused on developing a rule-based information transformation method and 

algorithm. Two types of rules were used in information transformation: (1) semantic mapping 

rules, and (2) conflict resolutions rules. Semantic mapping rules define how to process the 

information instances according to their semantic meaning. The semantic meaning of each 

information instance is defined by the concept or relation it is associated with. Conflict 

resolution rules resolve conflicts in the transformation between different information 

elements. Python programming language was utilized to implement the information 

transformation method and algorithm.  

1.7.3.2 Subtask 3.2 – Experimental Testing and Evaluation 

This task focused on testing the developed method and algorithm experimentally using 

well-established criteria – precision, recall, and F1-measure. Precision, here, is defined as the 

ratio of the number of correctly generated logic clause elements over the total number of 

logic clause elements generated. Recall, here, is defined as the ratio of the number of 
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correctly generated logic clause elements over the total number of logic clause elements that 

should be generated. F1-measure is the harmonic mean of precision and recall. These 

measures were calculated based on a comparison of experimental results with a 

manually-developed gold standard, for information transformed from the extracted 

information (represented in semantic tuples) to the logic rules.  

1.7.4 Task 4 – Method and Algorithm Development for Semiautomated IFC Extension 

This task aimed at developing a semantic, rule-based and machine learning-based method and 

algorithm for semiautomatically extending the IFC schema with concepts in building codes 

for supporting ACC in the construction domain. 

1.7.4.1 Subtask 4.1 – Method/Algorithm Development 

This task focused on experimenting with NLP techniques, semantic similarity-based 

techniques, and machine learning techniques to develop an algorithm that semiautomatically 

extends the IFC schema with regulatory concepts in building codes. The algorithm should 

provide automation of the following processes in a sequential manner: (1) the extraction of 

regulatory concepts from building codes; (2) the matching of extracted regulatory concepts to 

their most related IFC concepts; (3) the classification of relationships between regulatory 

concepts and their most related IFC concepts; and (4) the integration of the regulatory 

concepts into the IFC schema. User actions should be allowed to fix the possible errors in the 

automated processes.  
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1.7.4.2 Subtask 4.2 – Experimental Testing and Evaluation 

This task focused on testing the developed method and algorithm by testing each of its 

processes. Depending on the nature of the process being tested, evaluation is conducted using 

well-established information processing evaluation criteria – precision, recall, and 

F1-measure, or simple evaluation criteria – adoption rate. Precision, here, is defined as the 

ratio of the number of correctly processed information elements over the total number of 

information elements processed. Recall, here, is defined as the ratio of the number of 

correctly processed information elements over the total number of information elements that 

should be processed. F1-measure is the harmonic mean of precision and recall. Adoption rate, 

here, is defined as the number of automatically selected IFC concepts (most relevant to the 

extracted regulatory concepts) that were adopted divided by the total number of automatically 

selected IFC concepts. These measures were calculated based on a comparison of 

experimental results with a manually-developed gold standard, for information processed 

from building codes. 

1.7.5 Task 5 – Method and Algorithm Development for Automated Information 

Extraction from BIMs and Transformation of Design Information 

This task aimed at developing a semantic, rule-based method and algorithm for automatically 

extracting design information from IFC-based building information models (BIMs) and 

automatically transforming the extracted design information into logic facts for supporting 

ACC in the construction domain. 
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1.7.5.1 Subtask 5.1 – Method/Algorithm Development 

This task focused on experimenting with different combinations of semantic rule-based 

techniques and BIMs information processing techniques to develop an algorithm that extracts 

instances of all ACC-related concepts and relations from BIMs and transforms the extracted 

instances into logic facts. This task included two main processes: (1) extraction of 

ACC-related concepts and relations from BIMs into a tuple format, for intermediate 

representation; and (2) transformation of the extracted BIM information (in tuple format) into 

logic facts that could be directly used for automated reasoning, along with regulatory rules. 

Python and Java programming languages were utilized to implement the various semantic 

rule-based techniques and BIMs information access techniques. 

1.7.5.2 Subtask 5.2 – Experimental Testing and Evaluation 

This task focused on testing the developed method and algorithm using well-established 

information extraction evaluation criteria – precision, recall, and F1-measure. Precision, here, 

is defined as the ratio of the number of correctly extracted information elements over the total 

number of information elements extracted. Recall, here, is defined as the ratio of the number 

of correctly extracted information elements over the total number of information elements 

that should be extracted. F1-measure is the harmonic mean of precision and recall. These 

measures were calculated based on a comparison of experimental results with a 

manually-developed gold standard, for information extracted from IFC-based BIMs. 
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1.7.6 Task 6 – Logic-Based Information Representation and Compliance Reasoning 

Schema Development  

This task aimed at developing a logic-based information representation and compliance 

reasoning schema for representing, both, regulatory information and design information to 

prepare for utilizing the inference-making capabilities of logic reasoners for supporting ACC 

in the construction domain.  

1.7.6.1 Subtask 6.1 – Schema Development 

This task focused on developing a logic-based information representation and compliance 

reasoning schema that could utilize regulatory and design information to conduct automated 

reasoning. The schema should enable the use of logic reasoners to support the automated 

reasoning process. The result of automated reasoning would be an assessment of whether the 

design complies with the code or not, with an analysis of the violated provision/rule. The 

different types of elements/components (e.g., facts, rules) in logic clauses were studied to 

determine the essence of the schema – what elements/components should be used to represent 

what information (e.g., regulatory or design), and how to represent them. Alternative schema 

designs were tested for comparison purposes. Prolog logic programming language was 

utilized to encode the representation schema. 

1.7.6.2 Subtask 6.2 – Experimental Testing and Evaluation 

This task focused on testing the developed information representation and compliance 
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reasoning schemas in noncompliance detection using well established criteria – precision, 

recall, and F1-measure. Precision, here, is defined as the ratio of the number of 

correctly-detected noncompliance instances over the total number of noncompliance 

instances detected. Recall, here, is defined as the ratio of the number of correctly-detected 

noncompliance instances over the total number of noncompliance instances that should be 

detected. F1-measure is the harmonic mean of precision and recall. These measures were 

calculated based on a comparison of experimental results with a manually-developed gold 

standard, for information instances from a BIM test case that were designed to be checked for 

compliance with an International Building Code chapter. 

1.7.7 Task 7 – ACC Prototype Development Integrating All Algorithms 

This task aimed at integrating and implementing all developed methods and algorithms in one 

platform: a proof-of-concept prototype system that conducts ACC based on building code 

text (.txt file) and a BIM design model (.ifc file).  

1.7.7.1 Subtask 7.1 – ACC Prototype System Development 

Guided by the logic-based information representation and compliance reasoning schema, 

which utilizes the inference-making capabilities of formally-defined logic-based reasoners for 

the automated reasoning process, the algorithms and semantic models for automated 

information extraction, automated information transformation, and automated compliance 

reasoning were integrated into a unified system using Java programming language. The 



27 

 

inputs to the integrated system are building code text (.txt file) and a BIM design model (.ifc 

file). The output of the integrated system is a compliance report. 

1.7.7.2 Subtask 7.2 – ACC Prototype System Testing Using a Test Case  

The proof-of-concept prototype system was tested using a manually-developed test case (gold 

standard). The test case included: (1) a selected chapter from the International Building Code 

in text format (.txt format), (2) a building information model containing design information 

(LOD 400) to be checked for compliance with the regulatory provisions in the selected 

chapter (.ifc format), and (3) a compliance report gold standard based on a manual 

comparison of the design information with the regulatory provisions in the selected chapter. 

Testing included comparing the automatically-generated compliance report by the prototype 

system to the manually-generated compliance report. Evaluation was conducted based on 

measures of precision, recall, and F1-measure. Precision, here, is the number of 

correctly-detected noncompliance instances over the total number of detected noncompliance 

instances. Recall, here, is the number of correctly-detected noncompliance instances over the 

total number of noncompliance instances that should be detected. F1-measure is the harmonic 

mean of precision and recall.  

1.8 Contribution and Significance 

1.8.1 Intellectual Merit 

This research explores a new approach to automated code compliance checking in the 
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construction domain. The contribution of the research lies in the following points. 

 Domain-specific, semantic NLP methods for automatically extracting regulatory 

provisions from textual codes are offered that can: (1) help capture domain-specific 

meaning. Domain-specific semantics allow for analyzing complex sentences that would 

otherwise be too complex for automated information extraction and information 

transformation, recognizing domain-specific text meaning, and in turn improving 

performance of information extraction and information transformation. Supported by an 

ontology, NLP concepts and techniques (e.g., tokenization, sentence splitting, 

morphological analysis, part-of-speech tagging, phrase structure grammar) are used to 

facilitate textual document analysis and processing for extraction, transformation, and 

formalization of regulatory rules; and (2) achieve full sentence processing and 

information extraction (i.e., all terms of a sentence are processed), as opposed to partial 

sentence processing and information extraction (i.e., only specific terms/concepts are 

processed/extracted). Full sentence processing/understandability allows for a deeper level 

of NLP, namely natural language understanding. Deep NLP is achieved through a 

combination of domain knowledge (represented in the form of a domain ontology) and 

expert NLP knowledge (represented in the form of IE rules). This study is the first in the 

architectural, engineering, and construction (AEC) domain that addresses automated 

information processing (i.e., information extraction and information transformation) using 
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a semantically-deep NLP approach; and (3) achieve high performance in both information 

extraction and transformation, separately and in combination. 

 Baseline semantic methods/algorithms for extracting and transforming information from 

textual building code documents were provided. Future research could use these 

methods/algorithms as a benchmark and build on this work by adapting the developed 

algorithms to extract and transform information from other types of construction 

documents (e.g., contract documents) or for different purposes (e.g., contract analysis). 

Compared with the author’s initial efforts, future efforts in adapting the rules and/or 

algorithm should be significantly lower.  

 A new IFC extension method is provided which: (1) objectively and semiautomatically 

extends the IFC schema with domain-specific concepts that are extracted from natural 

language documents; and (2) follows the representation convention of existing .ifc files, 

which enables compatibility between newly incorporated information and existing 

IFC-based BIM information.  

 A new BIM information extraction and information transformation method is provided 

that enables direct flow of design information from .ifc files to logic representations. As a 

result, this method allows for direct extraction of IFC-represented data into logic facts. 

This enables information transfer between BIMs and logic programs. In addition to 

supporting ACC, the combined capabilities of building information modeling and logic 
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programming could allow for the use of BIM information in an intelligent way and could 

open the door to more utilization of building information modeling in various automated 

applications in the construction domain such as automated cost analysis, schedule 

analysis, and facility maintenance decision analysis. 

 A new logic-based, semantic schema is provided for representing building code 

provisions and design information in a way that is generalized and flexible. The 

logic-based representation allows for using the powerful reasoning capabilities of 

automated logic reasoners. The semantic representation enables deep reasoning and 

facilitates human understandability and interpretability of the formal representation. The 

proposed information representation and compliance reasoning schema could be 

benchmarked to support other automated applications in the construction domain that 

would benefit from such representation such as automated contract analysis.   

 A novel proof-of-concept prototype system for ACC of building design with building 

codes. Compared to the state-of-art ACC systems, this prototype system has the following 

advantages: (1) compared to the state-of-the-art ACC systems that require manual 

encoding of regulatory information, this prototype system automates the extraction and 

transformation of both regulatory information and design information; (2) the automation 

offered by this prototype system could improve the consistency of the code analysis 

(compared to manual reading and interpretation) and in turn could improve the 

consistency of the compliance checking process; and (3) this prototype system provides 
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logic-represented regulatory information and design information which could be 

leveraged in other types of reasoning systems to conduct more analyses of building 

designs and/or building codes in an automated way. 

1.8.2 Broader Impact 

ACC could have significant benefits to the society by:  

 Reducing the time and cost of compliance checking in the construction domain: Checking 

compliance with applicable laws and regulations has been costly and time-consuming to 

all relevant stakeholders. ACC is expected to enhance the efficiency of the process, and 

consequently reduce the associated time and cost. 

 Improving the accuracy of compliance checking: Automating the compliance checking 

process is expected to reduce the errors of compliance checking by eliminating 

human-caused errors that may occur during manual checking.  

 Supporting other applications of automated information processing in the construction 

domain: The application of this study could be extended to support automated 

information processing and analysis for many other applications and purposes, such as 

analysis of contract documents for the detection of inconsistencies, analysis of project 

documents and records for supporting claim analysis, analysis of daily site reports for 

supporting progress monitoring and project control, etc. 
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 Providing insights into a potentially formal representation of building regulations which 

could better support automated compliance checking than the status quo. This formal 

representation could provide guidance for writing future building codes in a way that 

facilitates automated compliance checking and could open a new direction of research in 

utilizing logic-based reasoning in the construction domain.  

  



33 

 

2 CHAPTER 2 – LITERATURE REVIEW  

This chapter describes the reviewed literature in the following research fields which are 

related to the dissertation scope of work: automated compliance checking (ACC) in the 

construction domain, Natural Language Processing (NLP), information extraction (IE) from 

building information models, automated reasoning, semantic modeling and information 

processing, and machine learning algorithms.  

2.1 Automated Compliance Checking (ACC) in the Construction Domain 

2.1.1 Previous ACC Efforts in the Construction Domain  

There have been significant research efforts to automate the compliance checking process, 

such as the checking of building envelope performance (Tan et al. 2007; Tan et al. 2010), fire 

code compliance (Delis and Delis 1995), facility accessibility code compliance (Han et al. 

1997), requirements of safety and reliability of structures (Garrett and Fenves 1987), 

accessibility (Lau and Law 2004), egress, environmental protection, and energy conservation 

(FIC 2007), building design (Eastman et al. 2009), and construction inspection and quality 

control (Boukamp and Akinci 2007). Larger research and software development efforts for 

automated building code checking led by industry bodies/associations, software companies, 

and/or government organizations include Solibri Model Checker (Corke 2013), EPLAN/BIM 

and AutoCodes led by Fiatech (Fiatech 2011; 2015), CORENET led by the Singapore 

Ministry of National Development (Singapore Building and Construction Authority 2006), 
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REScheck and COMcheck led by the U.S. Department of Energy (US DOE 2011), 

SMARTcodes led by the International Code Council (ICC 2011), and Avolve Software 

(Avolve Software Corporation 2011). 

Existing ACC efforts took various approaches. For example, Fenves et al. (1969) formalized 

the American Institute of Steel Construction (AISC) specifications into decision tables;  

Garrett and Fenves (1987) proposed a strategy to represent design standards using 

information networks and represent design component properties using data items for ACC of 

structural designs; Ding et al. (2006) proposed an approach to represent building codes using 

object-based rules and represent designs using an Industry Foundation Classes (IFC)-based 

internal model for ACC of accessibility regulations; Tan et al. (2010) proposed an approach 

to represent building codes and design regulations using decision tables and incorporate 

simulation results in building information models for ACC of building envelope design; the 

CORENET project of Singapore (Khemlani 2005) used an approach to represent design 

information using semantic objects in the FORNAX library (i.e., a C++ library) and represent 

regulatory rules using properties and functions in FORNAX objects for ACC of building 

control regulations, barrier free access, and fire code, etc.; and the SMARTcodes project 

(ICC 2011) of the International Code Council (ICC) used an approach to represent ICC codes 

in computer-processable tuple format and represent designs using an IFC-based model for 

ACC of designs with ICC codes, etc. 

The most recent ACC project in the U.S. is the AutoCodes project by Fiatech. The 
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AutoCodes Project by Fiatech aims to develop an open-source and nonproprietary ruleset 

library for checking code compliance on building information models (Fiatech 2011). The 

AutoCodes project includes three phases with deliverables: (1) The deliverables for Phase I 

(March 2011 to January 2012) are open source and nonproprietary rulesets for accessibility 

and egress compliance checking (this scope overlaps with ICC’s SMARTcodes project plan 

declared in October 2011); (2) The deliverables for Phase II (March 2012 to October 2014) 

are open source and nonproprietary rulesets for fire and life safety and/or mechanical and 

engineering model-based building codes; and (3) The deliverable for Phase III (called future 

phases in Fiatech’s plan) are open source and nonproprietary rulesets for all rules needed in 

the current compliance checking process (Fiatech 2011). The concluding report of Phase I 

(Fiatech 2012) reported five main findings on building information model authoring, 

jurisdiction reorganization and process transformation, jurisdiction reporting need, education 

of jurisdiction officials, and involvement improvement of jurisdiction officials, respectively. 

However, progress on the open-source and nonproprietary rulesets for accessibility and 

egress was not reported. Phase II of AutoCodes project was said to be making “considerable 

progress by applying innovative technology to enable a digital review process, including 

automated code checking of building information models (BIMs).” (Fiatech 2014). Still, the 

progress on rulesets development has not been explicitly reported. A recent interview with 

AutoCodes project officials in April 2015 indicates that the AutoCodes project now shifted 

focus to defining a modeling matrix (i.e., an information template) for guiding design firms to 
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design models that can be automatically checked with building codes, away from the earlier 

goal of creating rulesets. Instead, another Fiatech project called “U.S. Local Codes in the 

Cloud” project was launched, which aimed to hard-code all local building codes and 

amendments into a database in the cloud and provide annual fee-based subscription to users. 

The “U.S. Local Codes in the Cloud” project is now planned to provide rulesets database to 

AutoCodes project (Fiatech 2015). However, if the subscription is provided for an annual fee, 

then the rulesets would not be entirely open-source and nonproprietary as originally intended. 

The use of a fee, in the author’s view, is related to the big cost needed for manual rule 

encoding. As such, similar to other ACC efforts (e.g., the SMARTcodes project), the main 

gap associated with the AutoCodes project is the need for manual rule encoding which is 

time-consuming, costly, and error-prone.  

2.1.2 Limitations of Previous ACC Efforts in the Construction Domain  

Previous research efforts have undoubtedly paved the way for ACC in the AEC industry. 

However, these efforts are limited in their automation and reasoning capabilities (Zhong et al. 

2012).  

Existing ACC systems require manual effort for extracting requirements from textual 

regulatory documents (e.g., codes) and encoding these requirements in a 

computer-processable rule format. Rules are either hard-coded into the developed systems or 

hand-coded as a rule database or set of files. Accordingly, all existing representations of 

building regulations need to be manually-updated to reflect the current status of the source 

http://www.fiatech.org/images/stories/projects/Project_Resumes/ProjectResume-CodesintheCloud_22Sept13.pdf
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documents that are subject to constant changes (Dimyadi and Amor 2013). This makes the 

automation of compliance checking only semiautomated. For example, the software tools 

developed by OptaSoft for ACC with ICC codes need major manual data entry and 

navigation (OptaSoft 2014). Similarly, Solibri Model Checker implements a ruleset manager 

to manage a set of regulatory rules that are built-in (i.e., currently these are rules for checking 

accessibility based on the International Organization for Standardization (ISO) accessibility 

code and exit path distance based on fire code). Rules could be adjusted by tuning preset 

parameters. But the addition of new rules have to be conducted by Solibri experts (Eastman et 

al. 2009; Corke 2013).  

In terms of reasoning, most of the existing ACC efforts utilized proprietary (thus hidden) 

information representation and reasoning mechanisms. For example, both OptaSoft and 

Solibri use proprietary information representation and reasoning mechanism, which are not 

easily understandable and testable by users. In addition, the use of various information 

representation methods leads to difficulty in interoperability. According to a conservative 

estimate by the national institute of standards and technology (NIST) (Gallaher et al. 2004), 

the lack of interoperability in the U.S. capital facilities industry costs $15.8 billion per year. 

Although few proposals have been made such as the requirement, applies, select, and 

exception (RASE) representation (Hjelseth and Nisbet 2011) and the semantic resource 

description framework (RDF) annotations (Yurchyshyna and Zarli 2009), there is a lack of a 

generalized and flexible schema to allow for deep representation of all information (i.e., all 
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concepts and relations) in a regulatory provision regardless of the type, length, and complexity of 

the provision (sentence). The representation needs to be non-proprietary, non-hidden, and 

user-understandable and testable (Garrett and Palmer 2014).  

2.1.3 Need for Automated Rule Extraction  

The process of manual rule extraction and encoding (referred to as manual rule encoding 

hereafter) is time-consuming, costly, and error-prone (Selvi et al. 2015; Marcinczuk and Ptak 

2012). First, manual rule encoding is time-consuming. For example, the SMARTcodes 

project by ICC started encoding the International Energy Conservation Code (IECC) 2006 in 

a “smart” format in 2006 and only finished the encoding of envelope and lighting provisions 

of the IECC 2006 (less than 32% of the 264 provisions in the IECC 2006) by October 2007 

(ICC 2007). The remaining provisions of the IECC 2006 were still not completed by January 

2011 (ICC 2011). Finally, ICC ended up joining efforts with Fiatech, as part of the 

AutoCodes Project, due to the difficulty and time-consuming nature of manual rule encoding. 

Furthermore, new editions of the ICC codes are published every three years. In the middle of 

this three-year cycle, a supplement to the then current edition of the ICC Codes that contains 

all the approved changes to the code during the first 18-month code change cycle is published 

(ICC 2012). Accumulating changes in a 36-month cycle could lead to a large number of 

changes in provisions in each new edition. For example, from IBC 2003 to IBC 2006, more 

than 450 provisions were changed (ICC 2012). Thus, it is difficult for manual rule encoding 

to catch up with the rate of code updates. This is compounded by two more facts: (a) IECC is 
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only one code out of 13 in the ICC codes family. New versions for all 13 codes are published 

at the same rate. Therefore, all 13 codes will need manual encoding effort to a similar extent 

(effort may vary depending on the size and complexity of each code); and (b) there are many 

other referenced standards in each code, which will also need manual encoding efforts upon 

the publishing of their new versions. For example, IECC 2006 referenced 50 other standards.  

Second, manual rule encoding is costly, because manual rule encoding requires expertise in 

both the interpretation of rules and the writing of rules in the specific formats/languages used 

for encoding. Getting knowledge from an expert into a computable rule is currently a long, 

labor intensive, complex, and costly process (Bell et al. 2009). For example, in Solibri Model 

Checker, rules that were not in the built-in rule configuration tool need to be encoded by 

experts from Solibri, as well as domain experts with knowledge about the domain of the rules 

(Bell et al. 2009). Because manual rule encoding is costly, Solibri provides customized rule 

encoding as a charged service (Corke 2013).  

Third, manual rule encoding is error prone. Construction projects must comply with a 

multitude of regulations, which increases the complexity of manual rule encoding. In one 

dimension, these regulations come from different jurisdictional levels (i.e., federal level, state 

level, and local level). In another dimension, these regulations come from different domains 

(e.g., building code requirements, electrical requirements, and fire protection requirements). 

The encoding of each regulation needs the interpretation of rules by experts with knowledge 

at that specific level and in that specific domain. For example, as shown in Table 2.1, a 
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construction project in the city of Champaign, state of Illinois must comply with more than 

twenty regulations (City of Champaign 2015). Each regulation could contain hundreds to 

thousands of provisions. This level of complexity makes any manual effort for processing the 

provisional information in the regulations quite prone to errors, including rule interpretation 

and encoding.   

To better support ACC, an automated rule extraction and encoding method is needed to 

reduce the time, cost, and errors in the rule extraction and encoding tasks.  
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Table 2.1 Regulations for a Construction Project in Champaign, Illinois 

Regulations to 

comply to for a 

construction project 

in Champaign, 

Illinois 

Federal level State level Local level 

2009 International 

Building Code (IBC) 

2009 IBC Amendments 

2004 Illinois Plumbing 

Code (ILPC) 

2004 ILPC Amendments 

 Champaign-Urbana Public 

Health District Regulations 

2009 International 

Residential Code (IRC) 

2009 IRC Amendments 

1997 Illinois 

Accessibility Code 

Urbana-Champaign 

Sanitary District 

Regulations 

2009 International Fire 

Code (IFC) 

2009 IFC Amendments 

2012 Illinois Energy 

Conservation Code 

(IECC) 

2012 IECC Amendments 

 

2009 International 

Mechanical Code (IMC) 

2009 IMC Amendments 

 Illinois American Water 

Regulations 
 

2009 International Fuel 

Gas Code (IFGC) 

2009 IFGC 

Amendments 

Illinois Dept. of 

Transportation 

Regulations 

 

2008 National Electrical 

Code (NEC) 

2008 NEC Amendments 

Illinois Emergency 

Management Agency 

Radon Program 

Regulations 

 

US Environmental 

Protection Agency 

(EPA) Regulations 

Illinois EPA  Asbestos 

Program Regulations 
 

US EPA Lead-Based 

Paint Regulations 

Illinois State Fire Marshal 

Regulations 
 

EPA Contractor Lead 

Safety Brochure 
  

2010 Americans with 

Disabilities Act (ADA) 
  

1988 Federal Fair 

Housing Act (FHA) 
  

US EPA Asbestos 

Regulations 
  

Occupational Health and 

Safety Regulations 

(OHSA) 

  

http://ci.champaign.il.us/cms/wp-content/uploads/2009/06/2009-INTERNATIONAL-BUILDING-CODE-1.pdf
http://www.c-uphd.org/index.html
http://www.c-uphd.org/index.html
http://ci.champaign.il.us/cms/wp-content/uploads/2009/06/2009-intl-residential-code-amendments.pdf
http://www.u-csd.com/index.htm
http://www.u-csd.com/index.htm
http://www.amwater.com/ilaw/
http://www.dot.state.il.us/
http://www.dot.state.il.us/
http://www.state.il.us/iema/radon/availpub.asp
http://www.state.il.us/iema/radon/availpub.asp
http://www.state.il.us/iema/radon/availpub.asp
http://www.epa.gov/lawsregs/sectors/construction.html
http://www.epa.gov/lawsregs/sectors/construction.html
http://www.epa.gov/lawsregs/sectors/construction.html
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http://ci.champaign.il.us/cms/wp-content/uploads/2010/04/EPA-Lead-Safety-Contractor-Brochure.pdf
http://ci.champaign.il.us/cms/wp-content/uploads/2010/04/EPA-Lead-Safety-Contractor-Brochure.pdf
http://www.ada.gov/
http://www.ada.gov/
http://portal.hud.gov/hudportal/HUD?src=/program_offices/fair_housing_equal_opp/FHLaws/yourrights
http://portal.hud.gov/hudportal/HUD?src=/program_offices/fair_housing_equal_opp/FHLaws/yourrights
http://www2.epa.gov/asbestos
http://www2.epa.gov/asbestos
http://www.osha.gov/index.html
http://www.osha.gov/index.html
http://www.osha.gov/index.html
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2.2 Natural Language Processing (NLP) 

2.2.1 Overview of Natural Language Processing 

Natural language processing (NLP) is a field utilizing artificial intelligence to enable 

computers to understand and process natural language text (and speech) in a human-like 

manner (Cherpas 1992; Marquez 2000). Example NLP tasks include text summarization, 

machine translation, handwriting recognition, speech recognition, semantic role labeling, and 

information extraction (IE) (Marquez 2000; McCallum et al. 2005). NLP, typically, is 

composed of a set of well-defined tasks. Examples are tokenization, part-of-speech (POS) 

tagging, morphological analysis, named entity recognition, and co-reference resolution. 

(Patwardhan 2010).  

NLP techniques are commonly classified into machine learning-based approaches and 

rule-based approaches (using human-developed rules). A machine learning-based approach 

applies machine learning algorithms (e.g., support vector machines, Naive Bayes, neural 

networks) on large volume of data for training/development of NLP models (e.g., classifiers 

in the case of text classification) to achieve the desired language processing objectives. It 

relies heavily on the training/development data and the training rationale is usually difficult 

to be understood/interpreted by human intuitively (Deokar and Sen 2010; Pradhan et al. 

2004). The main essence of a rule-based approach is the utilization of human knowledge or 

heuristics in the development of the rules used for various language processing purposes. A 
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rule-based method is, therefore, less-dependent on a development/training data set which 

allows the method to better generalize to other corpora (Saric et al. 2005; Manning et al. 2009; 

Kim et al. 2010). Rule-based language processing tends to show equal or better performance 

(in terms of precision and recall) than machine learning-based processing (Abney 1997; Pilan 

et al. 2014). However, the initial manual effort that is needed for the development of the rules 

might pose concerns on development efficiency. But the developed rules could be 

generalized and could be highly reusable (Abney 1997; Califf and Mooney 2003), which 

would require much less manual effort in adapting the developed rules for use in processing 

other text in similar domains. So, if the application domain is well-defined and relatively 

small (or at least finite), rule-based language processing is, usually, a more suitable approach 

than machine learning-based processing.  

NLP may be classified into two main levels: shallow NLP and deep NLP. Shallow NLP 

focuses on partial analysis of sentences. Example tasks in shallow NLP are part-of-speech 

(POS) tagging and text chunking, which aim at assigning part-of-speech labels (e.g., noun, 

verb, adjective) to each word of a sentence and dividing sentences into meaningful chunks, 

respectively. Deep NLP aims at achieving complete analysis and processing of sentences. It, 

thus, involves handling of very fine-grained aspects of languages such as anaphora resolution 

(i.e., finding what “she,” “he,” “they,” and “it” are referring to in a sentence) and quantifier 

scope resolution (i.e., resolving scope ambiguities caused by terms like “every,” “some,” “a,” 

“many,” or “a few” in a sentence, such as in the sentence “Every monkey climbed a tree”). 
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An example task of deep NLP is complete parsing of sentences, which requires complete 

understanding of the entire meaning carried by the sentences (Zouaq 2011). With decades of 

development, the general picture in NLP is that it is possible to do shallow NLP at large-scale 

and with reasonable accuracy, but deeper NLP is generally hard, because of the need for 

knowledge representation and inference-making to accurately understand the meaning of a 

natural language text (Wen et al. 2012; Jones 1997). 

2.2.2 Rule-Based NLP Using Pattern-Matching-Based Rules 

Rule-based NLP uses manually coded rules for text processing. These rules are iteratively 

constructed and refined to improve the accuracy of text processing. ML-based NLP uses ML 

algorithms to train text processing models based on the text features of a given training text 

(Tierney 2012). Rule-based NLP tends to show better text processing performance (in terms 

of precision and recall) but requires greater human effort.  

Pattern-matching-based rules are widely-used in NLP tasks such as POS tagging (Abney 

1997; Yin and Fan 2013), information extraction (Califf and Mooney 2003), and text 

understanding (Goh et al. 2006). The idea of pattern-matching-based rules is to define a set of 

results when the matching of a pattern of a specific sequence (or structure like a tree) of 

elements (e.g., characters, tokens, symbols, terms, concepts) occurs. Pattern-matching-based 

rules have a variety of implementations tailored to different purposes and domains. But, they 

all share the same rule schema of “if pattern then result” or the mapping of “from pattern to 



45 

 

result.” For example, in the rules for information extraction from textual documents, the 

result is the recognition and extraction of information element instances. In the rules for 

information transformation from extracted information element instances, the result is the 

transformation of information instances into new representations.  

2.2.3 Phrase Structure Grammar  

When processing natural languages, the expert’s (researcher or system developer) 

understanding of the language structure is essential. Chomsky’s transformational grammar 

assists in such understanding; it dominated linguistic studies in the second half of the 20th 

century. His transformational grammar stimulated a significant amount of theoretical and 

computational research studies in language processing. Phrase structure grammar (PSG) is 

such a transformational grammar; it is defined by “a finite vocabulary (alphabet) Vp, a finite 

set Σ of initial strings in Vp, and a finite set F of rules of the form: X  Y, where X and Y 

are strings in Vp” (Chomsky 1956). An important characteristic of a PSG is that it singles out 

and encodes the most important recursive structure and syntactic constituency of a sentence 

(Levine and Meurers 2006). Using PSG, complex syntactic features of a language could be 

represented by a few or even just one simple symbol. This advantage makes PSG a 

potentially powerful technique for encoding complex language structures. Context free 

grammar (CFG) is a more restricted form of PSG. The restriction of CFG beyond general 

PSG is that the left-hand side of a generative rule (L in LR) has to be a single non-terminal 

(i.e., a symbol that could be further broken down) (Joshi 1991). This restriction further 
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simplifies the representation of complex language structures. However, when relations of 

words that are far from each other become important in language analysis, the representation 

using CFG becomes inefficient due to complexity in such use. Dependency grammar (DG), 

in this case, is more suitable to use. The basic construct for DG is the pairwise relation 

between two words. In each relation, one of the words is called “head” and the other is called 

“dependent.” Parsing with DG is more straightforward than parsing with PSG, because it 

only needs to connect existing nodes (i.e., the words in a sentence), while more 

intermediate-level nodes need to be created as in parsing with PSG. Thus, parsing with DG is 

simpler, but less expressive (Covington 2001).  

2.2.4 Information Extraction 

Information extraction is a subfield/subdiscipline of NLP. Information extraction aims at 

extracting facts and structured information from unstructured natural texts, and filling them in 

pre-defined information templates (Riloff and Lorenzen 1999). It is the “identification, and 

consequent or concurrent classification and structuring into semantic classes, of specific 

information found in unstructured data sources, such as natural language text, making the 

information more suitable for information processing tasks” (Moens 2006).  

Nowadays, as a result of the fast-growing amount of data/information, information extraction 

is in great need. It is especially required where manual information processing would be too 

time-demanding and/or too complex (e.g., extracting information – such as product features 
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and consumer opinion – from the enormous amount of online review data) (Popescu 2007). 

Information extraction applications have been widely used in many domains (Liddy 2003). 

Typical applications of information extraction include text mining (Humphreys et al. 2000; 

Müller et al. 2004), semantic annotation (Liu and Singh 2003), question answering (Banko et 

al. 2002; Magnini et al. 2002), review and opinion mining (Turney 2002; Turney and Littman 

2003; Popescu 2007; Kim and Hovy 2004), decision support (Gupta and Kochenderfer 2004), 

rich information retrieval and exploration (Hauptmann et al. 2003; Wagner et al. 2006), etc. 

Many information extraction systems or approaches have been developed. For example, 

Plake et al. (2005) described a general approach to the task of information extraction from 

free text and proposed methods for learning syntax patterns automatically from annotated 

corpora; Buitelaar et al. (2008) presented the design, implementation, and evaluation of the 

SmartWeb ontology-based annotation (SOBA), a system for ontology-based information 

extraction from heterogeneous data resources, including plain text, tables and image captions; 

Roth-Berghofer et al. (2010) showed how to use SCOOBIE (i.e., an ontology-based 

information extraction system) for generating cases from texts; and Wimalasuriya and Dou 

(2010) developed a comprehensive component-based approach for information extraction 

that promotes reuse.  

Information extraction approaches could be generally categorized into two types: 

syntactic-based and semantic-based. The Little Oxford dictionary (1986) defines syntactic 

knowledge as “the grammatical arrangement of words/rules or analysis of it” and semantic 
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knowledge as “the meaning in language.” Semantic information extraction can be achieved 

through the use of ontologies, which are utilized to represent domain knowledge. 

Ontology-based information extraction and several example systems were described in 

(Wimalasuriya and Dou 2010). Ontology-based information extraction is expected to have 

better performance in comparison to syntactic-based information extraction, because domain 

knowledge represented in an ontology could help to distinguish and disambiguate 

domain-specific terms and meanings (Saggion et al. 2007; Soysal et al. 2010).  

The state-of-the-art semantic information extraction studies have four major focuses: named 

entity extraction, attribute extraction, relation extraction, and event extraction. Named entity 

extraction, attribute extraction, and relation extraction aim at extracting instances of a single 

concept (e.g., named entity) or of two related concepts (Ling and Weld 2012; Pasca 2011; 

Wang et al. 2010). Event extraction aims at extracting instances of multiple concepts 

(Patwardhan 2010). From this perspective, a great need exists in researching complex 

information extraction from text, which should go beyond extraction of information elements 

with pre-defined, fixed number of concepts/relations (e.g., in a terrorist event case, it is 

pre-defined that “victim” is associated with only one concept) to achieve an interpretation 

level information extraction (e.g., information element with a varying number of multiple 

concepts/relations depending on the sentence being extracted from).  

An essential technique for information extraction is pattern matching, which defines the 

actions to take when a specific matching pattern is met in the text. Matching patterns are the 
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patterns expressed by sequences/structures of features. A variety of features could be utilized 

in matching patterns such as tokens, POS tags, text structural information, and semantic 

information. Typically text features are classified into two types: syntactic features and 

semantic features. Syntactic features, such as POS tags, are widely-used for information 

extraction, such as in Afrin (2001). Semantic features benefit information extraction tasks 

beyond solely using syntactic features because they express domain-specific 

meaning/knowledge, such as in Soysal et al. (2010).  

2.2.5 Previous NLP Efforts in the Construction Domain 

In the construction domain, a number of important research efforts utilized NLP techniques. 

For example, Caldas and Soibelman (2003) conducted ML-based text classification of 

construction documents. However, only a few of these efforts conducted some type/level of 

information extraction, such as Abuzir and Abuzir (2002) and Al Qady and Kandil (2010). Al 

Qady and Kandil (2010) used shallow parsers to extract concepts and relations from 

construction contracts. In Al Qady and Kandil (2010), (1) the extraction is only based on 

syntactic features produced by shallow parsing; and (2) information recognition is based on 

specific types of phrases and their roles (produced by shallow parsing) [e.g., noun phrase (NP) 

segment and its role SUBJ (i.e., subject)], which allows for extracting relations between 

concepts. Abuzir and Abuzir (2002) used information extraction techniques to extract terms 

and relations from HyperText Markup Language (HTML) documents for constructing a civil 

engineering thesaurus. In Abuzir and Abuzir (2002), (1) the extraction uses HTML-based 
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document structure features [including title tags, heading tags, and uniform resource 

identifiers (URLs)] and simple lexical syntactic features; and (2) because the main purpose of 

the extraction is thesaurus construction, their information extraction focuses on extracting 

terms.   

2.2.6 Evaluation of NLP Methods 

Precision, recall, and F1-measure are the most widely used evaluation metrics in many NLP 

tasks such as information retrieval (Huang et al. 2005; Manicassamy et al. 2012), information 

extraction (Guo et al. 2012), text classification (Bui and Zeng-Treitler 2014), and machine 

translation (Rathod 2014). Precision is defined as the number of correctly processed 

information elements divided by the total number of information elements processed. Recall 

is defined as the number of correctly processed information elements divided by the total 

number of information elements that should have been processed. A trade-off exists between 

precision and recall, using either indicator alone is not sufficient. F1-measure is defined as a 

weighted combination (harmonic mean) of precision and recall (Makhoul et al. 1999).  

The above definition of these three metrics could be used to evaluate many NLP tasks by 

replacing the meaning of “processed” with the specific NLP task evaluated. For example, in 

the task of information retrieval, precision is defined as the number of correctly retrieved 

documents (i.e., relevant documents) divided by the total number of retrieved documents. 

Recall is defined as the number of correctly retrieved documents divided by the total number 

of documents that should have been retrieved (Van Rijsbergen 1979).  



51 

 

The definitions of precision, recall, and F1-measure are shown in Equations (2.1) to (2.3) 

(Olson and Delen 2008). A true positive (TP) is a correctly processed information element. A 

false positive (FP) is an incorrectly processed information element. A false negative (FN) is 

an information element that should have been processed but was not.  

  
TP

Precision=
TP+FP

  (2.1) 

TP
Recall=

TP+FN
  (2.2) 

2 Precision Recal
F1-measur

l

Precisio
e

n Recall
=

 


  (2.3) 

When evaluating an NLP task using precision, recall, and F1-measure, a gold standard is 

typically used for comparison with the output results of the NLP task (Poibeau and Messiant 

2008). A gold standard is a set of manually-developed standard outputs of an NLP task on a 

specific set of testing data (i.e., a corpus) (Wissler et al. 2014; Deleger et al. 2014). A gold 

standard is typically developed by manual effort (Deleger et al. 2014; Zhai et al. 2013). 

Depending on the intended use of a gold standard, the gold standard development could be 

conducted in various ways, and the researchers typically describe the steps taken in their gold 

standard development (e.g., Bernier-Colborne 2012; Al Qady and Kandil 2010). Because the 

development of a gold standard requires manual interpretation and/or understanding, to 

ensure the correctness and objectivity of the developed gold standard, typically, efforts from 

more than one person are needed so that their interpretation and/or understanding could be 

checked with each other (Wiebe et al. 2005). The agreement on the interpretation and/or 
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understanding among a group of individuals is measured by inter-annotator agreement. 

Different measures could be used to report inter-annotator agreement for different types of 

NLP tasks. For example, Kappa is the best metric for reporting inter-annotator agreement of 

text classification tasks (Carletta 1996; Cunningham et al. 2011). Precision, recall, and 

F1-measure, on the other hand, are typically used for reporting inter-annotator agreement of 

information extraction tasks by treating one of the annotations as a gold standard 

(Cunningham et al. 2011).  

To test the statistical significance of the measures of precision, recall, and F1-measure, 

standard statistical testing techniques could be used to evaluate the confidence intervals of the 

measures (Meystre and Haug 2005; Goutte and Gaussier 2005). Because developing a gold 

standard for an NLP task could be very costly and time-consuming, it is common in NLP 

evaluation that only one testing set is used. In this case, the confidence intervals for the 

precision, recall, and F1-measure could be calculated using the confidence interval 

calculation method for a single proportion (Tetreault and Chodorow 2008). Example 

confidence interval calculation methods for a single proportion include simple asymptotic 

method without continuity correction, asymptotic method with continuity correction, and 

Wilson score method without continuity correction (Newcombe 1998). Wilson score method 

without continuity correction is simpler and more plausible comparing to other methods 

(Newcombe 1998). In the Wilson score method without continuity correction (Wilson 1927), 

the equation for calculating the confidence interval p for a single proportion p0 in a 
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population of size n is: 

𝑝 =
𝑝0+𝑡/2

1+𝑡
±

√𝑝0𝑞0𝑡+𝑡2/4

1+𝑡
  (2.4) 

In Equation (2.4), p0 is the proportion of instances with a certain phenomenon from a 

population of size n, q0 is 1 - p0, t is λ2/n, and λ is the critical value for the corresponding 

confidence level. In estimating the confidence interval for precision in information extraction, 

n is the number of extracted information instances and p0 is the ratio of the number of 

correctly extracted information instances over the total number of information instances 

extracted. For example, if 509 information instances are extracted and 493 information 

instances are correctly extracted, then n is 509, p0 is 96.9%, and λ is 1.96 at 95% confidence 

level. Thus, the confidence interval at the confidence level of 95% is calculated to be [95.0%, 

98.1%] and reported together with the precision as 96.9% (95% confidence interval [95.0%, 

98.1%]). In estimating the confidence interval for recall in information extraction, n is the 

number of information instances that should be extracted and p0 is the ratio of the number of 

correctly extracted information instances over the total number of information instances that 

should be extracted. For example, if 522 information instances should be extracted and 493 

information instances are correctly extracted, then n is 522, p0 is 94.4%, and λ is 1.96 at 95% 

confidence level. Thus the confidence interval at the confidence level of 95% is calculated to 

be [92.1%, 96.1%] and reported together with the recall as 94.4% (95% confidence interval 

[92.1%, 96.1%]). The lower bound (or upper bound) of F1-measure are calculated using the 

lower bounds (or upper bounds) of precision and recall, using the same equation for 
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calculating F1-measure. 

2.3 Information Extraction from Building Information Models 

2.3.1 Building Information Modeling and Industry Foundation Classes (IFC) 

According to the National Building Information Model Standard Project Committee 

(National Institute of Building Sciences 2014), a building information model (BIM) is “a 

digital representation of physical and functional characteristics of a facility. A BIM is a 

shared knowledge resource for information about a facility forming a reliable basis for 

decisions during its life-cycle; defined as existing from earliest conception to demolition.” 

BIM is believed to improve interoperability through structured information and coordinated 

information flow during a building life cycle and between different disciplines (Hamil 2012). 

However, although BIM is intended to be fully interoperable, in reality different BIM 

softwares and platforms are not yet realizing full compatibility and seamless information 

exchange hitherto, which prevents BIM from realizing its full potential (Young et al. 2009).  

Standardization is a primary way to improve interoperability. The current main 

standardization efforts in BIM include Industry Foundation Classes (IFC) and the CIMSteel 

Integration Standards (CIS/2) (Isikdag et al. 2007). The IFC represents the main data model 

to describe building and construction industry data. The IFC schema specifications are 

written using the EXPRESS data definition language (ISO 10303-11 by the ISO TC 184/SC4 

committee) (BuildingSmart 2014). The IFC schema is the data exchange standard to facilitate 
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interoperability in the construction industry (BuildingSmart 2014). The CIS/2 is a product 

model and data exchange file format for structural steel project information (AISC 2014). 

Both IFC and CIS/2 models are defined using Standard for Exchange of Product model data 

(STEP) description methods, which is the official “Standard for Exchange of Product model 

data” – ISO 10303. In contrast to CIS/2 which is focusing on modeling information of 

structural steel framework, IFC schema is designed to cover all subdomains and phases of the 

building and construction industry. Thus, IFC attracted more attention in BIM research. IFC 

schema is neutral and platform independent. It is defined using the STEP description method, 

which is the official data description standard ISO 10303. The IFC schema is registered as 

ISO/PAS 16739 and is registered as an official international standard ISO 16739:2013.  

In the IFC schema, concepts are represented by entities. Non-hierarchical relations between 

concepts are represented through attributes of entities. There are three types of attributes: 

explicit attribute, derived attribute, and inversed attribute. Explicit attribute is an attribute 

whose value is directly visible in a STEP file. Derived attribute is an attribute whose value 

can be computed from an expression, which may refer to other attributes and use functions. 

Inversed attribute is just a name representing the inversed direction of a relationship 

represented by an explicit attribute. In the IFC schema, an attribute adds a property to an 

entity or relates an entity to another entity. For example, the entity “IfcOrganization” in the 

IFC schema has an explicit attribute “addresses,” which relates an organization to one or 

more “addresses.” The use of derived attribute in an IFC schema is mainly in defining 
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attributes of geometric representations and operations. For example, “IfcDimensionCount” is 

a derived attribute of “IfcCurveBoundedPlane,” which is derived from the dimension of the 

basis surface. In the IFC schema, the entity “IfcRelationship” is a direct subtype of “IfcRoot.” 

Subtypes of “IfcRelationship,” which follow the format of “IfcRel…” are designed to be 

designated to represent relationships. For example, “IfcRelCoversSpaces” represents the 

relationship between one or more coverings and a space that those coverings cover. It has two 

attributes: the “RelatedSpace” and the “RelatedCoverings.” The value of the “RelatedSpace” 

attribute represents an “IfcSpace,” and the value of the “RelatedCoverings” attribute 

represents a set of “IfcCoverings” that cover the “IfcSpace” (BuildingSmart 2014). The 

reader should note that any entity in the IFC schema could actually be used like an “IfcRel…” 

entity, and the creation of “IfcRel…” entities grouped under “IfcRelationship” is mainly for 

organizational purpose. 

The specifications of the IFC schema are written using the EXPRESS data definition 

language (BuildingSmart 2014). EXPRESS is an ISO standard product data modeling 

language (ISO 2004). The EXPRESS data definition language has the following five main 

data types: simple data types, aggregation data types, named data types, constructed data 

types, and generalized data types. The simple data types include seven data types: number, 

real, integer, string, Boolean, logic, and binary. The aggregation data types include four data 

types: array, list, bag, and set. The named data types include the entity data type and the 

defined data type. The constructed data types include the enumeration data type and the select 
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data type (ISO 2004). The generalized data types are not used in the IFC schema and are not 

of interest here. Among these data types, entity is the most important data type used in the 

IFC schema. The entity data type in EXPRESS follows an object-oriented data structure to 

represent a concept. Its use in existing IFC schemas (e.g., IFC_2X3_TC1) is extended to 

represent a relation as well (as mentioned earlier). The enumeration data type enumerates 

predefined values for a concept category using simple strings. For example, “swinging,” 

“double acting,” “sliding,” “folding,” “revolving,” and “rollingup” enumerate the predefined 

values for the concept category “door panel operation.” The defined data type defines 

customized data types by adding constraints to an existing data type. For example, “positive 

integer” is a defined data type by adding the “greater than zero” constraint to the “integer” 

data type. The select data type defines a selection among different data types or entity types. 

For example, a select data type “shell” may define a selection among two entity types “closed 

shell” or “open shell.” The aggregation data type defines an ordered or unordered set of any 

data type using list, set, bag, or array. For example, an aggregation data type “name” defines 

an ordered set of strings: “first name,” “middle name,” and “last name” (BuildingSmart 2014; 

ISO 2004). Another important element in EXPRESS language is declaration. Instances of the 

above mentioned data types need to be defined through declarations. For example, 

“IfcAreaMeasure” is a data type declared in IFC2X3 schema which is an instance of the “real” 

data type. Declarations can be used to declare instances of data types, entities, subtype 

constraints, schemas, constants, functions, procedures, and rules.  
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IFC models take three main file formats: STEP file (SPF), eXtensible markup language 

(XML) and ZIP. IFC-SPF is the fundamental STEP file format with the file extension “.ifc.” 

It is the main file format used in exchanging BIM models and has been widely used in 

conducting BIM research (Yang and Eastman 2007; Lee 2009). IFC-XML is the file format 

with the file extension “.ifcXML.” It is intended for interoperability with XML tools 

(Teicholz 2013).  

2.3.2 Previous Efforts in Extracting Information from Building Information Models 

Many efforts have focused on BIM information processing, especially information extraction 

from IFC models. Existing BIM information extraction efforts have taken various different 

approaches. For example, Kim et al. (2013) utilized ifcXML parsers (implemented in Ruby 

programming language) to extract spatial, quantity, material, and relational information of 

building elements from IFC-based BIMs, for automatically generating construction schedules. 

Zhang and Issa (2013) utilized an ontology (implemented in Java programming language) 

that was coded in web ontology language (OWL) to extract partial models of IFC-based 

BIMs based on the IFC schema, for reducing the size and complexity of BIMs. There are also 

existing efforts in extracting information from BIMs to support automated compliance 

checking. These efforts extract BIM information into different types of representations. For 

example, Yurchyshyna et al. (2008) and Pauwels et al. (2011) utilized an Extensible 

Stylesheet Language Transformations (XSLT) transformation method to extract information 

from an IFC-based BIM into a resource description framework (RDF) graph to support 
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regulatory requirement checking, in general. Sinha et al. (2013) utilized Revit Application 

Programming Interface (API) methods to extract building parametric data from Revit BIMs 

for supporting automated compliance checking against energy code criteria. Tan et al. (2010) 

utilized Java classes to extract wall attributes from IFC-based BIMs for supporting automated 

building envelope design checking against building code requirements. Further, the 

development of the ifcOWL ontology enables the extraction of IFC-based BIM information 

based on the domain knowledge captured in the ontology, which could further serve the 

purpose of compliance checking (Beetz et al. 2009; Kadolsky et al. 2014). In addition, 

commercial BIM software implementations such as ArchiCAD, Autodesk Revit, and Solibri 

Model Checker have their proprietary methods to access and extract information from 

IFC-based BIMs.  

2.3.3 IFC Extension and Data Access for Extracting Information from IFC-Based 

Building Information Models  

For information extraction from IFC models to be successfully applicable to automated 

compliance checking tasks, the current IFC schema needs to be extended to capture the 

required concepts and relations for compliance checking purpose. Because of the goal of 

improving interoperability, the extension of an IFC schema is usually a set of coordinated 

efforts led by BuildingSmart (Amann et al. 2015; Lee and Kim 2011). However, this does not 

prevent an IFC schema to be extended upon needs within a specific organization or for a 

specific purpose. Researchers have proposed various ways to extend the IFC schema for ACC 
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purposes. For example, Tan et al. (2010) defined the Extended Building Information Model 

(EBIM) to incorporate building hygrothermal performance simulation results (from a 

simulation software) into an XML-language-represented IFC schema; Niemeijer et al. (2009) 

proposed to use abstract syntax trees of constraints to extend the IFC schema with missing 

concepts and relations; and the Singapore CORENET project extended the IFC schema using 

FORNAX (i.e., a C++ library to derive new data and generate extended views of IFC data) 

objects (Eastman et al. 2009). However, to avoid inconsistency and incompleteness in the 

extension of the IFCs, a more objective and automatic way of extending the IFC schema is 

needed.  

For data access, the Java Standard Data Access Interface (JSDAI) is a standard data access 

interface (SDAI) application programming interface (API) for accessing and processing 

object-oriented data defined in EXPRESS-based data models. There are two types of data 

access methods in JSDAI: early binding and late binding. Early binding requires the 

availability of a specific EXPRESS model (i.e., the specific IFC schema) at the program 

compiling time, and accesses each entity and attribute in the known EXPRESS model with 

specialized access methods. For example, the attribute “OverallHeight” of an entity “IfcDoor” 

is accessed using the specialized method “getOverallHeight.” Late binding, on the other hand, 

does not require the availability of a specific EXPRESS model at the program compiling time, 

and accesses entities and attributes using generalized access methods. For example, the 

attribute “OverallHeight” of an entity “IfcDoor” is accessed using the generalized methods 
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“getExplicit_attributes” and “get.” Late binding is more complex than the early binding; but 

in comparison to early binding, it is independent of specific EXPRESS models and is thus 

more flexible in data access and processing. 

JSDAI could be used to support IFC-based BIM information access. Among the different 

techniques that could help access information in an IFC-based BIM such as Java Toolbox 

IFC2x3/IFC4 (IFC Tools Project 2013), ifcplusplus (ifcPlusPlus 2015), Open IFC tools 

(Open IFC Tools 2010), and IFCToolboX (Eurostep 2002), JSDAI stands out because it 

could access BIMs using their metadata at the EXPRESS model level, which makes it not 

limited to a certain version (or a limited number of versions) of IFC schema(s), as the other 

techniques are. The potential use of JSDAI in accessing IFC-based BIMs was recognized by 

a number of researchers (Vanlande et al. 2008; Isikdag et al. 2007; Steel et al. 2010). As a 

result, JSDAI was used in a few research efforts for accessing IFC-based BIMs, such as in 

Windisch et al. (2012), Cheng and Das (2013), and Grunewald et al. (2010). But the 

utilization of JSDAI in these studies still focused on a specific IFC parser generated using 

JSDAI (i.e., using early binding data access) based on a specific IFC schema (e.g., IFC2x3), 

which made their developed methods/tools limited to extraction based on the specific IFC 

schema version that was used. Late binding data access in JSDAI, on the other hand, could 

enable a more flexible and robust BIM information access (i.e., using any IFC schema 

version), which to the best of the author’s knowledge has not been explored in prior research 

studies yet.  
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2.4 Automated Reasoning 

2.4.1 Logic Reasoning 

With the advancement in computing technology, the field of automated reasoning also 

progressed quickly. A variety of approaches have been developed for reasoning purposes 

such as decision tree, rule-based, and case-based. Example techniques of automated 

reasoning include rewriting, unification, and search strategies. Different techniques have 

different properties and uses. For example, backtracking is a technique to try alternative logic 

clauses and goals (i.e., sub-problems to solve for solving the main problem) for unification 

with facts when unification of the current logic clause and goal with facts fails (Sterling and 

Shapiro 1986). Backtracking guaranties the discovery of all solutions to a problem at the end 

of the solving process. Discovering all solutions to a problem is important for many 

applications such as ACC (because of the need to discover all noncompliance instances). 

However, in applications where a single acceptable solution is sufficient, it would be a waste 

of time and resources to continue searching to find all solutions. So, the decision of using 

backtracking or not depends on the type of application. For search, breadth-first and 

depth-first are the two main strategies. Breadth-first search is more appropriate to use when 

there are infinite paths in the search space or solutions exist at shallow paths. On the other 

hand, when many solutions exist or all paths lead to a solution, depth-first search is more 

appropriate (Poole and Mackworth 2010). When solving problems using automated reasoning, 

it is critical to select from and adjust available techniques to obtain a balance between the 



63 

 

problem-solving efficiency and the quality/completeness of the solution.  

A formally-defined logic could represent and reason about the complicated logic relations in 

construction regulations more efficiently than conventional programming if-then-else logic 

statements. However, formally-defined logic has not been widely-adopted in construction 

regulation rule representation. One reason is the heavy intelligent effort needed to develop a 

general framework that can accommodate different types of regulations. Adopting the 

conventional programming if-then-else logic statements for each type of regulation, on the 

other hand, is relatively straightforward. Logic is essential in many automated reasoning 

systems (Portoraro 2011). Different types of formal logics of varying degrees of descriptive 

capability have been developed, including: propositional logic, predicate logic [e.g., first 

order logic (FOL)], modal logic, and description logic (Zhu et al. 2011; Wang et al. 2008). 

Among the different types of formally-defined logics, FOL is most widely used for logic 

inference-making. FOL has more than one correct and complete proof calculi (i.e., cases 

where the derivable sequents are precisely the valid ones for the calculi), which makes FOL 

suitable for automated reasoning. FOL is based on first order language, which has been used 

mainly for deductive arguments since its creation. First order language was intended to 

“express conditions which things can satisfy or fail to satisfy” (Hodges 2001). The 

development of FOL-based frameworks and methods could be dated back to last century 

(Ryu and Lee 1995; Horton and Spencer 1997), and it is still evolving (Baumgartner and 

Suchanek 2006; Bos 2009; Krotzsch et al. 2015).  
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2.4.2 Horn Clauses and Logic Programming 

Inference-making in FOL is most efficient using Horn Clause (HC) logic clauses. A HC is 

one of the most restricted forms of FOL. Inference-making in FOL is most efficient using HC 

logic clauses, because of such restricted form (Saint-Dizier 1994). A HC is composed of a 

disjunction of literals (predicates) of which at most one is positive. A predicate is the building 

block of a logic clause. A predicate consists of a predicate symbol and one or more 

arguments in parenthesis following the predicate symbol [e.g., the predicate “wall(w)” has 

one predicate symbol “wall” and one argument “w,” where “w” is a variable]. All HCs can be 

represented as rules that have one or more antecedents [i.e., left-hand sides (LHSs)] that are 

conjoined (i.e., combined using ‘and’ operator), and a single positive consequent [i.e., 

right-hand side (RHS)]. For example, “thickness(t) ∧ exterior_basement_wall(w) ∧ has(w,t) ∧ 

greater_than_or_equal(t, quantity(71/2, inches)) ⊃ compliant(t)” is a HC; where “∧” is the 

conjunctive operator (i.e., “A ∧ B” means “A and B”) and “⊃” is the implication operator 

(i.e., “A ⊃ B” means “A implies B”). There are three types of HCs: (1) one or more 

antecedents and one consequent, (2) zero antecedents and one consequent, and (3) one or 

more antecedents and zero consequents. Inference-making using HCs could be automatically 

and efficiently conducted, which makes it suitable for supporting automated reasoning for 

ACC.  

Logic programming is a widespread and important application of HCs (Portoraro 2011). 

Based on HC, logic programming can represent knowledge rules and facts in a ready-to-use 
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manner for automated reasoning. Prolog is the most widely-used logic programming 

language and reasoner. Prolog is declarative in contrast to other non-logical programming 

languages. For example, in typical procedural programming languages like C programming 

language, a programmer has to clearly define how to solve the problem step by step, whereas 

in Prolog, a programmer only needs to define how to represent the problem. The solution 

steps in Prolog are already defined by the built-in reasoner of Prolog through a set of 

organized automated reasoning techniques such as search strategies and backtracking.  

2.4.3 Previous Automated Reasoning Efforts in the Construction Domain 

There have been a few efforts in utilizing automated reasoning in the construction domain, as 

early as 1980s (Alexander and Sidney 1987). Such efforts covered various tasks such as 

concrete structural design (Alexander and Sidney 1987), schedule review and generation 

(Dzeng et al. 2005; Chevallier and Russell 1998; Udaipurwala and Russell 2000), 

construction planning (Kartam et al. 1991), work space arrangement (Akinci et al. 2002), 

inspection planning (Gordon et al. 2008), construction simulation and visualization (Kataoka 

2008; Loch-Dehbi and Plumer 2011; Weldu and Knapp 2012), litigation outcome prediction 

(Mahfouz and Kandil 2012), design team selection (Park and Koo 2011), collaborative design 

(Ugwu et al. 2002), structural damage assessment (Ross et al. 1990), and work condition 

compliance testing (Vries and Steins 2008). Many of these systems use rule-based or 

case-based reasoning. However, they do not have a semantic-based reasoning framework for 

the purpose of analyzing and checking the conformance of a design to applicable regulations. 
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They are limited in the level of knowledge representation and reasoning, if considered for use 

for the purpose of analyzing and checking the conformance of a design to applicable 

regulations. 

2.5 Semantic Modeling and Information Processing 

2.5.1 Overview of Semantic Modeling and Ontologies 

In general, “semantics” studies the meanings of the words (Fritz 2006). A semantic model 

defines data/information entities and relationships between the entities (Hanis and Noller 

2011). Ontology is a widely-used type of semantic model. The term ontology, meaning “the 

study of being or existence,” originated in philosophy. In the computer and the information 

science domains it refers to “an explicit specification of a conceptualization” (Gruber 1995). 

This definition establishes the features of an ontology: (1) an ontology is representing a 

conceptualization (i.e., an abstract, simplified view of a domain of interest); and (2) the 

representation of the conceptualization is explicit. An ontological model consists of concept 

hierarchies, relationships (between the concepts), and axioms (Noy and Hafner 1997). The 

axioms are used together with the concepts and relationships to define the semantic meaning 

of the conceptualization (El-Gohary and El-Diraby 2010). An ontology offers a 

computer-understandable, domain-specific representation of the knowledge in a domain of 

interest, in a reusable, extendable format.  

Ontology could be utilized in any task involving information processing. A processing using 

http://www.tdan.com/authors/index.php?a=223
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ontology is referred to as ontology-based processing or semantic processing. Semantic, 

ontology-based processing is expected to achieve higher performance in comparison to 

non-semantic processing, because domain knowledge (represented in an ontology) could help 

to identify or distinguish domain-specific terms and meanings (Saggion et al. 2007; Soysal et 

al. 2010).  

Many efforts have been made in the area of ontology. For example, Juszczyszyn and 

Kołaczek (2009) proposed a framework for guiding the processes of ontology alignment and 

negotiation in a multi-agent environment; Kołaczek and Juszczyszyn (2010) proposed a 

general framework for decision-making about ontology alignment and negotiation which 

takes into account the properties of the actual communication network and utilizes the 

deontic logic formalism for reasoning; Maynard et al. (2006) discussed existing evaluation 

metrics, and proposed a new one for evaluating the ontology population task; Rubino et al. 

(2004) presented a web ontology language (OWL) ontology of fundamental legal concepts 

developed within the European project for Standardized Transparent Representations in order 

to Extend Legal Accessibility (ESTRELLA); Gruninger and Fox (1995) described a 

methodology for guiding the design of ontologies, as well as providing a framework for 

evaluating the adequacy of these ontologies; Malik et al. (2010) discussed knowledge 

management and semantic annotation and presented a framework for it using the General 

Architecture for Text Engineering (GATE) and ontology. The framework is intended for 

intelligent information retrieval.  
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In the construction domain, there have been several research efforts for developing or 

utilizing ontologies. For example, El-Diraby and Zhang (2006) presented a taxonomy for 

building construction. It is the first attempt to present building construction knowledge in a 

semantic way; Beetz et al. (2009) described an effort to semiautomatically transform an IFC 

model in EXPRESS format into an OWL-represented ontology; El-Diraby and Kashif (2005) 

presented a distributed ontology architecture for knowledge management in highway 

construction as an extension for the e-COGNOS ontology; Anumba et al. (2008) reviewed the 

fundamental concepts and roles of ontologies in the construction project delivery process; and 

El-Gohary and El-Diraby (2010) proposed a domain ontology for infrastructure and 

construction processes. 

2.5.2 Ontology Development and Evaluation  

Ontology development could be conducted by a number of methods such as the Toronto 

Virtual Enterprise (TOVE) method, Enterprise model method, METHONTOLOGY method, 

and IDEF5 method (Jones et al. 1998; Corcho et al. in 2003). The TOVE is a first-order logic 

approach to develop ontology elements in six steps: (1) motivating scenarios, (2) informal 

competency questions, (3) terminology specification, (4) formal competency questions, (5) 

axiom specification, and (6) completeness theorems (Gruninger and Fox 1995). Enterprise 

model method is a skeletal methodology to develop an ontology in four steps (Uschold 1995). 

The METHONTOLOGY is a comprehensive ontology development methodology that builds 

an ontology from scratch (or reusing other ontologies) using seven steps: (1) specification, (2) 
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knowledge acquisition, (3) conceptualization, (4) integration, (5) implementation, (6) 

evaluation, and (7) documentation (Fernandez et al. 1997). The IDEF5 method is a general 

ontology development procedure with five main guidelines: (1) organizing and scoping, (2) 

data collection, (3) data analysis, (4) initial ontology development, and (5) ontology 

refinement and validation (KBSI 1994). Existing methods could be classified into 

task-oriented methods and comprehensive development methods (Jones et al. 1998; 

Vrandeˇci´c 2010). A task-oriented method takes a task as a starting point and focuses on the 

task as the functions of the ontology. A comprehensive development method takes a 

stage-based approach to develop an ontology through well-defined stages or takes an 

evolving prototype approach to iteratively refine a prototype ontology (Jones et al. 1998).  

An ontology could be evaluated using a number of different evaluation methods, and these 

methods were summarized into four general categories: (1) evaluation methods based on 

comparing the ontology to a gold standard; (2) evaluation methods based on the application 

results; (3) evaluation methods based on comparing the ontology with a source of data; and (4) 

evaluation methods based on expert assessment using a set of predefined criteria, standards, 

and requirements (Brank et al. 2005).  

2.5.3 Semantic Modeling and Semantic NLP 

A semantic model aims at capturing the meanings (thus knowledge) of a domain or topic, 

usually in a structured manner. Ontology is a widely-used type of semantic model that 
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captures domain knowledge in the form of concept hierarchies, relationships between 

concepts, and axioms. The axioms are used together with the concepts and relationships to 

define the semantic meaning of the conceptualization. An ontology is easily reusable and 

extendable (El-Gohary and El-Diraby 2010). The use of a semantic model could help in NLP 

tasks. For example, semantic-based information extraction has been shown to achieve better 

performance than syntactic-only information extraction (Zhang and El-Gohary 2011; Soysal 

et al. 2010) and text classification (Zhou and El-Gohary 2014).  

WordNet is a slightly different semantic model than an ontology, which was also frequently 

utilized in semantic research efforts. It is a large lexical database of English where the four 

types of POS words (nouns, verbs, adjectives, and adverbs) are grouped into sets of cognitive 

synonyms (synsets) (Fellbaum 2005). In WordNet, each of the four POS categories is 

organized into a subnet and the synsets are linked to each other using one or more of the 

following conceptual semantic and lexical relations: synonymy, hyponymy (sub-super or is-a 

relation), meronymy (part-whole relation), and antonymy (Fellbaum 2005). Because of the 

abundant, explicitly-defined and well-structured conceptual semantic relations between word 

senses in WordNet, WordNet has been widely used in semantic NLP research, as a “lexical 

database” (Shehata 2009; Kamps et al. 2004), a “lexical dictionary” (Varelas et al. 2005), a 

“semantic dictionary” (Simpson and Dao 2010), or a “domain-independent background 

knowledge model” (Suchanek et al. 2007). The lexical relations in WordNet can assist in 

semantic text processing. The hyponymy and meronymy relations in WordNet correspond 
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well to the is-a and part-whole relations in semantic models. In addition, a synonymy relation 

carries an “equivalency” relation between semantic classes.  

Although semantic relations are generally domain-dependent (Orna-Montesinos 2010), 

WordNet is widely used for domain-specific text processing tasks. This could be attributed to 

two main reasons: (1) a lack of domain-specific lexical/relation databases with coverage 

comparable to that of WordNet. For example, the most relevant lexical/relation database 

effort in the building domain, the International Framework for Dictionaries (IFD) by 

buildingSMART, is still being tested and is currently not openly accessible; and (2) despite 

being general (as opposed to domain-specific), the dictionary-level coverage in WordNet 

could be useful in helping identify basic semantic relations between words or concepts. A 

few research efforts in the AEC domain [e.g., Orna-Montesinos (2010) and Li (2010)] have 

utilized WordNet in text/knowledge processing or analysis.  

Semantic Similarity (SS) is the conceptual/meaning distance between two entities such as 

concepts, words, or documents (Slimani 2013). SS plays an important role in information and 

knowledge processing tasks such as information retrieval (Rodrı´guez and Egenhofer 2003), 

text clustering (Song et al. 2014), and ontology alignment (Jiang et al. 2014).  

SS could be quantitatively estimated using different measures. Some popular measures are: (1) 

Shortest Path Similarity, which utilizes the shortest path connecting two concepts in a 

taxonomy (i.e., concept hierarchy) (Resnik 1995); (2) Leacock-Chodorow Similarity, which 
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utilizes the shortest path connecting two concepts in a taxonomy while penalizing long 

shortest path according to the depth of the taxonomy (Resnik 1995); (3) Resnik Similarity, 

which utilizes the information content measure from information theory to measure the 

information shared by two concepts using the information content of the two concepts’ least 

common subsumer (Resnik 1995); (4) Jiang-Conrath Similarity, which utilizes the 

information content of the two concepts in addition to that of their least common subsumer in 

the taxonomy; and (5) Lin Similarity, which utilizes the ratio between the information content 

of the least common subsumer (in the taxonomy) of the two concepts and the sum of the 

information contents of the two concepts.  

Shortest Path Similarity is simple and intuitive; it approximates the conceptual distance 

between concepts by the number of edges in-between. The main limitation of Shortest Path 

Similarity is its inability to take specificity of concepts into consideration, which leads to 

same similarity results for a concept pair at a shallow taxonomical level and another concept 

pair at a deep taxonomical level as long as the counts of number of edges for both concept 

pairs are the same. This limitation is compensated for in Leacock-Chodorow Similarity by 

taking the maximum depth of the taxonomy into consideration. Thus, using 

Leacock-Chodorow Similarity, if two concept pairs have an equal number of edges, the 

taxonomically deeper pair (i.e., more specific) would have a larger similarity score than the 

taxonomically shallower pair. Resnik Similarity, Jiang-Conrath Similarity, and Lin Similarity 

are information content-based similarity measures. Resnik Similarity is sometimes considered 
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insufficiently-discriminative because different concept pairs could have the same least 

common subsumer. Jiang-Conrath Similarity and Lin Similarity improve upon Resnik 

Similarity by taking the information content of the two concepts into consideration, in 

addition to their least common subsumer. The main limitation of information content-based 

measures, however, is the need of using a text corpus in addition to the taxonomy for 

similarity assessment, which may lead to variability in similarity results depending on the 

corpus that is used.  

When using the above-mentioned measures to evaluate SS between words, WordNet is 

commonly used as the taxonomy. However, when using WordNet, these measures assess SS 

between terms, but not concepts which could be multi-term.  

In addition to ontology and WordNet, outputs from certain NLP tasks could be used in 

semantic analysis of text, such as semantic relation output from semantic parsing and named 

entity output from named entity recognition. Semantic parsing is the task of converting text 

into a formal meaning representation (Clarke et al. 2010). Various methods have been 

developed for semantic parsing (Cai and Yates 2013; Clarke et al. 2010; Farkas et al. 2010). 

However, these development mostly focused on a general domain (in comparison to domain 

specific development) and were thus still limited in performance. The best F1-measures were 

around 80-87% (Lu 2014; Farkas et al. 2010). Named entity recognition is the task of 

recognizing information units from text such as names (including person, organization and 

location names) and numeric expressions (including time, date, money and percent 
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expressions) (Nadeau and Sekine 2007). Various methods have been developed for named 

entity recognition (Nadeau and Sekine 2007) and high performance (i.e., higher than 90% F- 

measure) were achieved for certain categories such as person names (Chieu and Ng 2003; 

Nothman et al. 2012). However, existing named entity recognition methods are still limited; 

they can only recognize a limited set of specific categories (e.g., organization, location) and 

thus cannot be directly used for recognizing all named entities in a domain (Nadeau and 

Sekine 2007).   

2.5.4 Semantic Modeling and Building Information Modeling 

Semantic modeling is important to building information modeling in two ways: (1) Because 

of the object-oriented nature of BIMs, a data schema of BIMs must be a semantic model; and 

(2) semantic models are utilized to help process information in BIMs.  

Data schemas of BIMs are semantic models. As the most popular and ISO-registered BIM 

data schema, the IFC schema provides a common data schema across BIMs. The IFC schema 

was considered having a longer history and more development effort than most other existing 

schemas in the AEC industry (Torma 2015). In addition to IFC, different BIMs schema have 

been developed for different purposes. For example, the Green Building XML (gbXML) data 

schema was developed for green building design, the City Geography Markup Language 

(CityGML) was developed for presenting 3D objects and their visible surfaces in urban 

environments (Anjomshoaa et al. 2015). Because of the need of interoperability among BIMs, 
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research efforts have been conducted to align these data schemas with each other in different 

ways. For example, Delgado et al. (2013) tried to align a CityGML ontology and an IFC 

ontology using 15 ontology matching techniques. Mignard and Nicolle (2014) developed a 

semantic extension to BIM in the ACTIVe3D platform for building an extensible ontology 

that can be instantiated by information based on both the IFC ontology and the CityGML 

ontology. 

Semantic models are used to support information processing in BIMs by providing 

domain-specific knowledge. Similar to the semantic models used in helping with NLP tasks, 

the semantic models used in helping with BIM information processing are mostly ontologies. 

For example, Lee et al. (2014) proposed an ontology to support search automation in BIMs 

for building elements and materials to facilitate cost estimation using BIMs. Costa and 

Madrazo (2015) used ontologies to link building component catalogues with BIMs to 

facilitate building product information service using BIMs. Lee and Jeong (2012) utilized 

ontology-based filters to translate design data in BIMs into domain-specific (e.g., 

architectural, structural, or mechanical) data to facilitate shared understanding among 

designers in different disciplines on the same BIM-based design. Thus, semantic models not 

only lay the foundation for BIMs, but also keep increasing its information processing 

capabilities to support more applications in better ways.  
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2.5.5 Semantic Modeling and Automated Reasoning 

A semantic model offers a meaning-rich representation of the knowledge of a domain that is 

formal and computer-processable. Such representation facilitates enhanced reasoning through 

leveraging the captured domain knowledge. Because ontologies allow for high level 

information and knowledge representation and are key to enable complex automated 

reasoning, the majority of research and development efforts in the area of automated 

reasoning rely on the use of ontologies (Baumgartner and Suchanek 2006; Stenmark and 

Malec 2014; Ivanovic and Budimac 2014). For example, in the biomedical domain, 

ontologies can be used for automated reasoning on knowledge contained in Clinical Practice 

Guidelines and Care Pathways (Ivanovic and Budimac 2014). In the safety engineering 

domain, ontologies can be used for automated reasoning about the location information of 

past accidents (Batres et al. 2014). In the education domain, ontologies can be used for 

automated reasoning in generating multiple choice questions (Al-Yahya 2014).   

2.6 Machine Learning Algorithms 

Machine learning (ML) is a discipline that studies algorithms that can learn from data 

(Kovahi and Provost 1998). The algorithms usually appear as models that take inputs and 

make predictions based on the inputs (Bishop 2006). In any ML application, different ML 

algorithms are usually tried out and tested. Some of the most commonly-used ML algorithms 

are summarized in Table 2.2.   
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Table 2.2 Commonly-used Machine Learning Algorithms 

 
Machine learning algorithm 

Naïve Bayes Perceptron Decision Tree k-NN SVM 

Key feature 
simple but 

effective 
linear flexible similarity-based kernel-based 

Naïve Bayes is a simple statistical ML algorithm. It applies Bayes’ rule to compute 

conditional probabilities of predictions given evidence. It is the simplest type of algorithm 

among the commonly-used ML algorithms. However, Naïve Bayes could outperform more 

complex learning algorithms in some cases (Domingos 2012).  

Perceptron is a linear learning algorithm where predictions are made based on a linear 

combination of feature vectors (Rosenblatt 1958). Perceptron is applicable to problems that 

are linearly separable. The application process of perceptron is iterative: a prediction vector is 

iteratively constructed based on each instance in the training dataset (Freund and Schapire 

1999). 

Decision tree is a ML algorithm that uses a tree to map instances into predictions. In a 

decision tree model, each non-leaf node represents one feature, each branch of the tree 

represents a different value for a feature, and each leave node represents a class of prediction. 

Decision tree is a flexible algorithm that could grow with increased amount of training data 

(Domingos 2012).  

K-Nearest Neighbor (k-NN) is a similarity-based ML algorithm. K-NN predicts the class of 

an instance using the instance’s k nearest instances by assigning it the majority class of those 

k instances’ classes (Cover 1967; Domingos 2012). Depending on the task, k values in 
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different ranges need to be tested to find the best-performing k-NN classifier (Gunavathi and 

Premalatha 2014). K-NN is sensitive to noise (Gunavathi and Premalatha 2014). It performs 

better when utilized in training classifiers using small datasets (Raikwal and Saxena 2012). 

K-NN is typically outperformed by Support Vector Machines (SVM) (with small differences), 

but occasionally could achieve equally or slightly better performance than SVM (Sudha and 

Bhavani 2012) when the influence of the nonlinear relationship between the features and a 

class is not dominating the performance and neither noises nor unbalanced samples in the 

training data are dominating the performance.        

Support Vector Machines (SVM) is a kernel-based ML algorithm that has significant 

computational advantages over standard statistical algorithms. A kernel method is a technique 

for constructing nonlinear features so that nonlinear functional relationships could be 

represented using a linear model. A linear model is much simpler comparing to a nonlinear 

model, both theoretically and practically, giving SVM its computational advantages 

(Cristianini and Shawe-Taylor 2000). Gaussian kernel and polynomial kernel are two 

commonly-used kernels (Hofmann 2006). SVM was found to outperform other ML 

algorithms in many applications such as text classification (e.g., Salama and El-Gohary 

2013a), although in certain cases other algorithms (such as k-NN) outperformed SVM (Vo et 

al. 2015). The infrequent cases where SVM was outperformed by other algorithms are 

usually for tasks and/or data where the influence of the nonlinear relationship between the 

features and a class is not dominating the performance, such as in the case of using spatial 
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and wavelet type of features in classifying human gait patterns in Sudha and Bhavani (2012). 

ML is one type of machine-based reasoning (i.e., inductive reasoning), where the various 

types of ML algorithms induct knowledge from input data (Domingos 2012). In any 

machine-based reasoning, successful reasoning depends on appropriate representations 

(Bundy 2013). What features should be used to represent the data in a ML problem is, thus, 

an important decision.  
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3 CHAPTER 3 – AUTOMATED INFORMATION EXTRACTION FROM 

BUILDING CODES  

3.1 Comparison to the State of the Art 

Many research efforts were conducted for information extraction in various domains (Soysal 

et al. 2010; Sapkota et al. 2012; Hogenboom et al. 2013). The state-of-the-art semantic 

information extraction studies have four major focuses: named entity extraction, attribute 

extraction, relation extraction, and event extraction. Named entity extraction, attribute 

extraction, and relation extraction aim to extract instances of a single concept (e.g., named 

entity) or of two related concepts (Ling and Weld 2012; Pasca 2011; Wang et al. 2010). 

Event extraction aims to extract instances of multiple concepts (Patwardhan 2010). From this 

perspective, the proposed approach is more similar to event extraction because instances of 

multiple concepts in a provisional requirement are extracted. However, compared with event 

extraction, the approach is different in two primary ways. First, the information is extracted 

in a more flexible manner. In the proposed approach, two types of information elements are 

defined: “rigid information elements” and “flexible information elements.” A rigid 

information element has a predefined, fixed number of concepts/relations (e.g., in a terrorist 

event case, it is predefined that “victim” is associated with only one concept). In contrast, a 

flexible information element has a varying number of concepts/relations depending on the 

instance at hand (e.g., in this approach, “subject restriction” has a varying number of multiple 

concepts/relations). Unlike event extraction, the proposed approach can extract the instances 
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of flexible information elements. Second, because a method for extracting information 

elements in a more flexible way is introduced, a deeper level of information extraction is 

performed (i.e., a deeper level toward full sentence interpretation). Shallow NLP conducts 

partial analysis of a sentence or analyzes a sentence from a specific angle of view (e.g., 

part-of-speech tagging, text chunking). Deep NLP aims at full sentence analysis, with a more 

complex understanding of the text toward capturing the entire meaning of sentences (Zouaq 

2011). Correspondingly, shallow information extraction extracts specific type(s) of 

information from a sentence, while deep information extraction aims at extracting all 

information that is expressed by a sentence based on the full analysis of the sentence.  

In terms of information extraction performance, for the four main types of information 

(entities, attributes, relations, and events), state-of-the-art performance results are within the 

range of 80% to 90% for both precision and recall (e.g., Li et al. 2012; Bing et al. 2013; Sun 

et al. 2011; Tang et al. 2012). One of the recent information extraction studies that aimed to 

extract protected health information reported a best performance of 96.68% and 93.77% for 

precision and recall, respectively (Deleger et al. 2013).  

In the construction domain, a number of important research efforts utilized NLP techniques 

(e.g., Caldas and Soibelman (2003) conducted ML-based text classification of construction 

documents); however, only a few of these efforts conducted some type/level of information 

extraction (e.g., Abuzir and Abuzir (2002) and Al Qady and Kandil (2010)). Al Qady and 

Kandil (2010) used shallow parsers to extract concepts and relations from construction 
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contracts. In Al Qady and Kandil (2010), (1) the extraction is only based on syntactic features 

produced by shallow parsing; and (2) information recognition is based on specific types of 

phrases and their roles (produced by shallow parsing) [e.g., NP segment and its role SUBJ 

(i.e., subject)], which allows for extracting relations between concepts. In the proposed 

approach, (1) semantic features are used in addition to syntactic ones; and (2) patterns that 

consist of a variety of syntactic and semantic features are used in information extraction and 

conflict resolution rules, which allows for a deeper level of information extraction (i.e., 

extracting all information of a requirement for further representation in a logic-based rule 

format). Abuzir and Abuzir (2002) used information extraction techniques to extract terms 

and relations from HyperText Markup Language (HTML) documents for constructing a civil 

engineering thesaurus. In Abuzir and Abuzir (2002), (1) the extraction uses HTML-based 

document structure features (including title tags, heading tags, and URLs) and simple lexical 

syntactic features; and (2) because the main purpose of the extraction is thesaurus 

construction, their information extraction focuses on extracting terms. In the proposed 

approach, (1) document structure features are not used (because of dealing with unstructured 

text rather than HTML documents) and the extraction relies on the syntactic and semantic 

features of the text; and (2) because the ultimate purpose is automated reasoning about 

regulatory requirements, information extraction is conducted on a deeper level; not only 

terms/concepts need to be extracted, but also other information elements (e.g., restrictions) 

need to be extracted for extracting all information expressed in a sentence/requirement. As 
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such, compared with these efforts, this research (1) addresses a different application (i.e., 

ACC). NLP methods, algorithms, and results are highly application-dependent (Salama and 

El-Gohary 2013a); (2) tackles a deeper NLP/information extraction task. This research aims 

to automatically process the text to extract regulatory requirements/rules and represent them 

as logic clauses; and (3) taking a deeper semantic approach for NLP. In this research, a 

domain ontology for identifying semantic text features is utilized. Using domain-specific 

semantics and ‘flexible information elements’ to achieve relatively deep semantic NLP 

allows for: (a) analyzing complex sentences that would otherwise be too complex for 

automated information extraction, (b) recognizing domain-specific text meaning, and (c) in 

turn, improving performance of information extraction. 

3.2 Proposed Information Extraction Method and Algorithm 

This section presents the proposed method for automatically extracting information from 

building codes (.txt format, excluding both tables and figures). The method is presented as a 

domain-specific, semantic information extraction method that can be adopted (as is or with 

adaptation) by other researchers in the construction domain. The method is composed of the 

following seven phases (as per Figure 3.1): information representation, preprocessing, feature 

generation, target information analysis, development of information extraction rules 

[information extraction (IE) and conflict resolution (CR) rules], extraction execution, and 

evaluation. The approach is iterative to improve performance.   
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Figure 3.1 Proposed Information Extraction Method 

3.2.1 Phase I – Information Representation 

This phase is proposed to define the representation format for the extracted information. In 

this method, the ultimate representation format is one or more logic rules that could be 

directly used for automated compliance reasoning. For intermediate processing, a new 

ACC-tuple is proposed to represent the extracted information. The use of a tuple format for 

intermediate processing is proposed because it is easy for computer manipulation and 

evaluation (e.g., <Subject, Attribute, Value> is a three-tuple).  

In the ACC-tuple representation, each element is called a “semantic information element,” 

which is: (1) an ontology concept; (2) an ontology relation; (3) a “deontic operator indicator,” 

which is a term indicating an obligation, permission, or prohibition following the semantic 

ACC model in Salama and El-Gohary (2013b); or (4) a “restriction,” which is an element that 

places a constraint on the definition of another semantic information element, where the 

constraint is expressed in terms of ontology concepts and relations. The following types of 

semantic information elements are introduced: a ‘simple semantic information element’ (SIE) 
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versus a ‘complex SIE,’ and a ‘rigid SIE’ versus a ‘flexible SIE.’ A simple SIE is associated 

with a single concept/relation/indicator, whereas a complex SIE is expressed in terms of 

multiple concepts and relations. The simple SIEs are rigid, whereas the complex SIEs are 

flexible. A rigid SIE is an information element with a predefined, fixed number of 

concepts/relations, whereas a flexible SIE has a varying number of concepts/relations 

depending on the instance at hand. Accordingly, in the ACC-tuple, an ontology concept, an 

ontology relation, and a deontic operator indicator are simple (and thus rigid) SIEs, whereas a 

restriction is a complex (and thus flexible) SIE. The use of flexible SIEs is key to providing 

the flexibility needed to facilitate full sentence analysis. A specific word, phrase, or chunk of 

text extracted and mapped according to a SIE is referred to as an “information element 

instance.”  

To prepare for further information transformation into logic rules, a semantic mapping step is 

used to match the extracted information element instances to their respective semantic 

concepts: (1) for ontology concepts and relations, their information element instances are 

mapped to the corresponding concepts and relations. For example, “courts” is mapped to 

“court,” “net area” is mapped to “net_area,” “not less than” is mapped to 

“greater_than_or_equal;” (2) for deontic operator indicators, their instances are mapped to the 

indicated deontic concepts. For example, “shall” is mapped to “obligation;” and (3) for 

restrictions, their instances are decomposed and mapped to one or more ontology concepts 

and relations. For example, “between the insulation and the roof sheathing” is mapped to 
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“relation(between, insulation, roof_ sheathing) .”  

The extracted information element instances (in ACC-tuple format) – after conducting 

necessary semantic mapping – are further transformed to HC-type logic rules (as shown in 

Table 3.1) for logic-based deduction and reasoning about compliance. The method/algorithm 

for information transformation is presented in Chapter 4. 

Table 3.1 Example of Extracted Semantic Information Elements and Their Corresponding 

Logic Representation 

Information 

tuple 

extracted 

from text 

sentences 

Subject airspace 

Subject restriction  relation (between, insulation, roof_sheathing) 

Compliance checking attribute NA 

Deontic operator indicator obligation 

Quantitative relation  provide 

Comparative relation greater_than_or_equal 

Quantity value 1  

Quantity unit/reference inch 

Quantity restriction  NA 

Horn clause logic representation 

∀ (a,i, r, s) ((airspace(a) ^ insulation(i) ^ 

roof_sheathing(r) ^ between(a, i, r) ^ has(a, s)) ⊃ O 

(greater_than_or_equal(s, quantity(1, inch))) 

Note: Universal quantifier (‘∀’ or ‘for all’) asserts that the sentence is true for all instances of a variable; 

Conjunction ‘∧’: ‘A∧B’ indicates that ‘A’ is true and ‘B’ is true; Implication ‘⊃’: ‘A ⊃ B’ indicates that ‘A’ 

implies ‘B’ (if ‘A’ is true then ‘B’ is true); Obligation operator (O): O A indicates that ‘A’ is obligated. 

3.2.2 Phase II – Preprocessing 

This phase is used to prepare the raw (i.e., unprocessed) text for further processing. In the 

proposed method, preprocessing consists of tokenization, sentence splitting, dehyphenation, 

and morphological analysis.  
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3.2.2.1 Tokenization 

Tokenization is the process of dividing the sequences of characters (pure strings) in the text 

into units (sentences or words) (Grefenstette and Tapanainen 1994). This process aims to 

prepare the text for further unit-based processing, such as sentence splitting and POS tagging, 

and is conducted based on parsing the text according to common delimiters (i.e., white spaces 

and punctuations) with disambiguation consideration (e.g., “,” as a delimiter in a number 

instead of punctuation). In the proposed method, tokenization divides the sequences of 

characters into tokens, where a token is a single word, a number, a punctuation mark, a white 

space, or a symbol (e.g., “&,” and “$”). For example, as shown in Figure 3.2, each word, 

number, and punctuation mark was recognized and labeled as a token. 

3.2.2.2 Sentence Splitting 

Sentence splitting is the process of recognizing each sentence of the text. Similar to 

tokenization, sentences are recognized based on typical sentence boundaries (i.e., periods, 

exclamation marks, and question marks) with disambiguation consideration (e.g., recognizing 

“.” as a decimal point in a number instead of a period). In the proposed method, the result of 

sentence splitting is a set of sentence segmentations (with recognized boundaries). For 

example, as shown in Figure 3.2, the boundaries of the sentence were recognized and labeled 

out using the “<sentence>” (i.e., starting of a sentence) or “</sentence>” (i.e., ending of a 

sentence) tags. 
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Original Text 

Habitable rooms shall have a net floor area of not less than 70 square feet.

Preprocessed Text

<Sentence> <Token>Habitable</Token> <Token>rooms(lexical form: room) </Token> 

<Token>shall</Token> <Token>have</Token> <Token>a</Token> <Token>net</Token> 

<Token>floor</Token> <Token>area</Token> <Token>of</Token> <Token>not</Token> 

<Token>less</Token> <Token>than</Token> <Token>70</Token> <Token>square</

Token> <Token>feet (lexical form: foot)</Token> <Token>.</Token> </Sentence>

Feature Generation

Preprocessing

POS Features

(Habitable: JJ) (rooms: NNS) (shall: MD) (have: VB) (a: DT) (net: JJ) (floor: NN) (area: 

NN) (of: IN) (not: RB) (less: JJR) (than: IN) (70: CD) (square: JJ) (feet: NNS) (.: .)

PSG-Based Phrasal Tags

NP: Habitable rooms; a net floor area; not less than 70 square feet

VP: shall have a net floor area of not less than 70 square feet

PP: of not less than 70 square feet

QP: not less than 70

Gazetteer Lists

Comparative 

Relation List: 

{less than, 

greater than, 

greater or equal 

to, at least, at 

most, etc.}

Negation List: 

{no, not, etc.}

Unit List: 

{square feet, 

inch, feet, cubic 

feet, meter, etc.}

Target 

Information 

Analysis Target Information and Their Extraction 

Sequence

Quantity Value and Quantity Unit/Quantity 

Reference -> Subject -> Compliance Checking 

Attribute -> Comparative Relation -> Quantitative 

Relation and Deontic Operator Indicator -> 

Subject Restriction and Quantity Restriction

Development of 

Extraction Rules

Patterns Used in IE Rules

Building Element  (Concept in ontology), Dimensional 

Attribute (Concept in ontology), MD (POS tag), MD + VB 

(POS tags), Negation List, Comparative List (Gazetteer Lists),  

CD (POS tag), Unit List (Gazetteer List)

IE Rules (Partial)

If “building element” is matched, extract the matched text as 

an instance for “subject”.

If “MD + VB” is matched, extract the text matched with 

“VB” as an instance for “quantitative relation”.

CR Rules

If there is one instance for each semantic information element 

(except for subject restriction and quantity restriction, where 

there could be any number of instances (i.e., zero or more)), 

organize those instances into a tuple for the corresponding 

quantitative requirement.

Extraction

Execution

Extracted Semantic Information Element Instances

Subject: Habitable room

Subject Restriction: NA

Compliance Checking Attribute: Net floor area

Deontic Operator Indicator: Required

Quantitative Relation: Has

Comparative Realtion: >=

Quantity Value: 70

Quantity Unit: Square feet

Quantity Restriction: NA

O
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Figure 3.2 Illustrative Example Applying Proposed Information Extraction Method 

3.2.2.3 Morphological Analysis 

Morphology refers to the study of composition and structure of words. Morphological 

analysis (MA) aims to recognize the different forms of a word and to map them to the lexical 

form of that word in a dictionary (Fautsch and Savoy 2009). MA maps various nonstandard 

forms of a word (e.g., plural form of noun, past tense of verb) to its lexical form (e.g., 

singular form of noun, infinitive form of verb). For example, “constructs,” “constructed,” and 

“constructing” are all mapped to “construct.” Additionally, as shown in Figure 3.2, “rooms” 

and “feet” were mapped to their lexical forms “room” and “foot,” respectively. Whereas 

tokenization and sentence splitting are essential for information extraction because the text 
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must be broken down into units for further processing, MA is not essential for information 

extraction but is used to improve the identification of words with the same lexical form. The 

proposed preprocessing methodology incorporates MA because it aids in the recognition of 

ontology concepts. For example, the plural form of a concept could be recognized although 

the ontology uses only the singular form.  

3.2.2.4 Dehyphenation 

Dehyphenation is used to remove hyphens that indicate continuations of words across two 

lines. Doing so prevents a word from not being recognized because of such a hyphen. 

3.2.3 Phase III – Feature Generation 

This phase generates a set of features that describe the text. The proposed method uses 

domain-specific ontology-based semantic features, in addition to syntactic features and 

proposes the use of PSG-based phrasal tags to reduce the number of needed patterns. The 

proposed feature generation methodology consists of POS tagging, phrase structure analysis 

(using PSG), gazetteer compiling, and ontology-based semantic analysis. Syntactic features, 

such as POS tags, are widely used for information extraction, as in Afrin (2001). Semantic 

features benefit information extraction tasks beyond solely using syntactic features because 

they express domain-specific meaning/knowledge, as in Soysal et al. (2010). In the proposed 

method, both syntactic (POS tags, PSG-based phrasal tags, gazetteer terms) and semantic 

features (concepts and relations) are generated; subsequently, these features are used to 
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define patterns (text patterns in the proposed IE and CR rules that aid in the process of pattern 

matching for information extraction).  

3.2.3.1 Part-of-Speech Tagging 

POS tags are the labels assigned to words of a sentence that indicate their lexical and 

functional categories showing the structure inherent in the language. POS tagging aims to tag 

each word with the POS of the word, such as NN (singular nouns), JJ (adjectives), VB (verb), 

CC (coordinating conjunctions) (Galasso 2002). For example, as shown in Figure 3.2, “floor,” 

“Habitable,” and “have” were tagged as NN, JJ, and VB, respectively. In the proposed 

method, the POS tagging process also tags other tokens, such as numbers, punctuations, and 

symbols. 

3.2.3.2 Phrase Structure Analysis 

The proposed phrase structural analysis builds on the POS tagging step and aims to assign 

type labels (phrasal tags) to phrases of a sentence. Examples of phrasal tags are NP (noun 

phrase), VP (verb phrase), and PP (prepositional phrase). For example, as shown in Figure 

3.2, “Habitable rooms,” “shall have a net floor area of not less than 70 square feet,” and “of 

not less than 70 square feet” were assigned NP, VP, and PP tags, respectively. In the method, 

PSG is used to generate phrasal tags. Application-specific PSG rules are derived based on a 

randomly selected sample of text (called, here, “development text,” which is also used for 

text analysis and further development of IE and CR rules). Applying these PSG rules, phrasal 

tags are assigned when a certain combination of POS tags and/or phrasal tags are encountered. 
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For example, the rule “QP  JJR IN CD” states that the phrasal tag “QP” (quantifier phrase) 

should be assigned when the sequence of POS tags “JJR IN CD” is encountered, as in the 

phrase, “less (JJR) than (IN) 0.07 (CD).” The use of phrasal tags together with PSG reduces 

the possible number of enumerations in patterns. For example, the three PSG rules NP  NP 

PP; NP  DT NN; and PP  IN NP together enable the phrasal tag feature NP to match 

many (actually infinite number of) noun phrases expressed by recursively attaching 

prepositional phrases to a base noun, such as “the wall,” “the wall of the room,” “the wall of 

the room in the building,” “the wall of the room in the building with a vent,” “the wall of the 

room in the building with a vent at the bottom.” In this step, PSG is derived from previously 

POS-tagged source text and is subsequently used to assign PSG-based phrasal tags to 

sentences in the source text.  

To empirically study the effect of utilizing PSG-based phrasal tags on the number of patterns, 

an experimental test was conducted for preliminary verification of the proposed method. The 

author developed the patterns for extracting “subjects” two times: one time with PSG-based 

phrasal tags and one time without. Twenty-two (22) and 46 patterns were needed, with and 

without PSG-based phrasal tags, respectively, indicating that the use of PSG-based phrasal 

tags in pattern construction reduces the number of needed patterns in IE rules.  

3.2.3.3 Gazetteer Compiling 

A gazetteer is a set of lists containing names of specific entities (e.g., cities, organizations) 

(Cunningham et al. 2011). In general, a gazetteer list groups any set of terms based on any 
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specific commonality possessed by these terms. In the proposed method, the information that 

a word or phrase belongs to a certain list in the gazetteer is used as a feature for information 

extraction tasks. Different gazetteer lists are available [e.g., lists for currency, data units, and 

cities in the A Nearly-New IE System (ANNIE) Gazetteer of the General Architecture for 

Text Engineering (GATE) platform]. The use of a gazetteer in automated information 

extraction aids in recognizing terms based on those commonalities (Maynard et al. 2004). In 

the proposed method, a gazetteer is used to provide a set of term lists, in which each list has a 

specific function. For example, terms such as “no” and “not” have a function “negation,” and, 

as such, are included in the author’s “negation gazetteer list.” In the proposed method, several 

types of gazetteer lists are compiled and used, such as the “comparative relation gazetteer list,” 

which is composed of terms indicating comparative relations, including “greater than or 

equal,” “less than or equal,” “at most,” and “at least.” For example, as shown in Figure 3.2, 

“not,” “less than,” and “square feet” were in the “negation gazetteer list,” “comparative 

relation gazetteer list,” and “unit gazetteer list,” respectively. The information presented in a 

gazetteer list could have been represented as part of an instantiated ontology (e.g., the list of 

countries could have been represented as instances of the concept “country”). However, for 

computational efficiency, such instances were separated from the ontology (in the form of 

gazetteer lists).  

3.2.3.4 Ontology-Based Semantic Analysis 

Ontologies are used to represent domain knowledge. A construction domain ontology offers a 
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semantic representation of the knowledge in the construction domain and, thus, could aid in 

extracting relevant information based on domain-specific meaning. In the proposed method, 

the concepts and relations of an ontology help extract the semantic features of the text and, 

thus, aid in semantic information extraction. Figure 3.2 shows a partial (and schematic) view 

of the used ontology, including its concepts (e.g., dimensional attribute) and subconcepts (e.g., 

floor area).  

To verify the selection of a semantic approach, by comparing the results of semantic 

information extraction to that of syntactic-only information extraction, an experiment on 

extracting quantitative requirements from a randomly selected section of Chapter 12 of IBC 

2006 – Section 1203 – was conducted. Table 3.2 shows the comparative results in terms of 

precision, recall, and F1-measure. The results show that semantic information extraction 

outperforms syntactic-only information extraction, with an increase in precision from 85% to 

96% and an increase in recall from 81% to 92%. 

Table 3.2 Comparative Testing of Syntactic-Only Information Extraction and Semantic 

Information Extraction: Experimental Results for Section 1203 of Chapter 12 of IBC 2006 

Performance measure Syntactic-only IE Semantic IE 

Precision 85% 96% 

Recall 81% 92% 

F1-measure 83% 94% 

3.2.4 Phase IV – Target Information Analysis 

This phase is proposed to manually analyze the text to identify the types of semantic 

information elements to be extracted and their interrelationships, and the sequence of their 
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extraction. In the proposed method, an approach for separation and sequencing of semantic 

information elements (SSSIE) is proposed to reduce the number of needed information 

extraction patterns.  

3.2.4.1 Identification of Target Information 

In this step of the method, the development text is manually analyzed to identify the types of 

requirements that are expressed in the text (e.g., quantitative requirement). Based on domain 

knowledge (expressed in the ontology), the types of semantic information elements that are 

needed to represent the types of requirements are defined. For example, if the information to 

be extracted is related to terrorist attack events, then the types of semantic information 

elements could include “perpetrator individual,” “perpetrator organization,” “target,” “victim,” 

and “weapon.” For the example in Figure 3.2, the information to be extracted is related to 

quantitative requirements. So the following types of semantic information elements were 

identified: “subject,” “compliance checking attribute,” “deontic operator indicator,” 

“quantitative relation,” “comparative relation,” “quantity value,” “quantity unit,” “quantity 

reference,” “subject restriction,” and “quantity restriction.” 

3.2.4.2 Identification of Extraction Sequence 

This step identifies the sequence of extracting the semantic information elements. The 

experimental studies of this research showed that extracting all semantic information 

elements from a sentence using a single IE rule (i.e., extracting all instances at the same time) 

is not efficient because the amount of possible patterns increases largely as the number of 
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semantic information elements increases. Because some independency exists (but not fully 

independent) among information elements, extracting information elements separately and 

sequentially is proposed. The decision regarding the sequence of extraction for different 

semantic information elements is based on manually analyzing the text and identifying: (1) 

the level of difficulty for extraction: the easiest semantic information element should be 

extracted first and the level of difficulty is positively correlated to a combination of the 

amount of features, the amount of patterns, and the complexity of the patterns; and (2) the 

existing dependencies across the extractions of the different semantic information elements. 

For example, (1) if the extraction of “quantity value” only needs the POS tag “CD” as the 

feature for recognizing cardinal numbers (both appearances of digits and words) and the level 

of difficulty for its extraction is lowest, then it should be extracted first; and (2) if the 

extraction of “subject restriction” depends on the extraction of “subject,” then “subject” 

should be extracted before “subject restriction.” For the example in Figure 3.2, the sequence 

of extraction of semantic information elements was “quantity value” and “quantity 

unit/quantity reference” > “subject” > “compliance checking attribute” > “comparative 

relation” > “quantitative relation” and “deontic operator indicator” > “subject restriction” and 

“quantity restriction.” 

To verify the proposed approach for separation and sequencing of semantic information 

elements (SSSIE), an experiment was conducted to compare the performance results of two 

cases. In the first case, IE rules that extract all semantic information elements from a sentence 
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using a single IE rule (i.e., extracting all instances at the same time) were developed and used. 

In the second case, the proposed method for SSSIE in information extraction was used. For 

both cases, the IE rules were developed based on Chapter 12 and 23 of IBC 2006 and were 

tested using Chapter 19 of IBC 2009. Eighty-seven (87) and 50 patterns were needed for the 

first and second cases, respectively, indicating that using the proposed SSSIE method reduces 

the number of needed patterns in IE rules. Table 3.3 shows the comparative results in terms 

of precision, recall, and F1-measure. The results show significantly stronger performance 

using SSSIE (the second case). The weaker performance in the first case may be partially 

attributed to (1) the fact that enumerating all possible patterns based on a limited 

development text is difficult (if not impossible); and (2) an error in recognizing a single 

semantic information element in a given IE rule affects the extraction result of the entire IE 

rule (and, thus, all other information elements in that rule).  

Table 3.3 Comparative Testing of Information Extraction Using or Not Using Separation and 

Sequencing of Semantic Information Elements (SSSIE): Experimental Results for Chapter 19 

of IBC 2009 

Number of Instances Subject 
Compliance 

Checking Attribute 

Comparative 

Relation 

Quantity 

Value 

Quantity Unit/ 

Reference 
Total 

In gold standard 85 45 85 83 85 383 

Extracted with SSSIE 85 46 79.5 83 83 376.5 

Extracted without SSSIE 55 30 59.5 64 63.5 272 

Correctly extracted with SSSIE 80 43 79.5 81 81 364.5 

Correctly extracted without SSSIE 48 27 59.5 62 61.5 258 

Precision with SSSIE 94.1% 93.5% 100.0% 97.6% 97.6% 96.8% 

Precision without SSSIE 87.3% 90.0% 100.0% 96.9% 96.9% 94.9% 

Recall with SSSIE 94.1% 95.6% 93.5% 97.6% 95.3% 95.2% 

Recall without SSSIE 56.5% 60.0% 70.0% 74.7% 72.4% 67.4% 

F1-measure with SSSIE 94.1% 94.5% 96.7% 97.6% 96.4% 96.0% 

F1-measure without SSSIE 68.6% 72.0% 82.4% 84.4% 82.8% 78.8% 
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3.2.5 Phase V – Development of Information Extraction Rules 

In this phase, a set of rules are developed to automatically execute the information extraction 

process. The proposed method includes the development and use of two types of rules: rules 

for extracting single semantic information elements (IE rules) and rules for resolving 

conflicts in extraction (CR rules). The IE rules recognize target information for extraction, 

while the CR rules define the strategy for handling conflicts in extraction.  

3.2.5.1 Development of Rules for Extracting Single Semantic Information Elements (IE 

Rules) 

The extraction rules (IE rules) utilize pattern matching methods. The left-hand side of the rule 

defines the pattern to be matched and the right-hand side defines the part of the matched 

pattern that should be extracted. Both syntactic (POS tags, PSG-based phrasal tags, and 

gazetteer terms) and semantic (ontology concepts and relations) text features are used in the 

IE rules patterns. If a concept in the ontology is used in an IE rule, all of its subconcepts are 

included in the matching as well. For example, in the following IE rule, “building element” is 

a concept in the ontology: “If ‘building element’ is matched, extract the matched text as an 

instance for ‘subject.’” When applied to the example in Figure 3.2, this IE rule extracts 

“habitable rooms” as an instance of “subject” because “habitable room” matches 

“Habitable_Room” (a subconcept of “building element” in the ontology). Figure 3.3 shows a 

sample IE rule (in English) and its corresponding Java coding [using Java Annotation 

Patterns Engine (JAPE) rules in GATE]. 
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Figure 3.3 Sample Information Extraction Rule (in English and Java Coding) 

To develop these IE rules, the following three tasks are proposed: pattern construction, 

feature selection, and semantic mapping. For pattern construction, the patterns take the 

format of a sequential combination of features (e.g., the pattern “NP VP” usually matches a 

sentence). The construction of such patterns is an iterative, empirical process (using initial 

manual text analysis, initial pattern construction, testing and results analysis, and 

testing-based improvement of constructed patterns). Feature selection aims to select all 

features present in the constructed patterns. In semantic mapping, the extracted information 

element instances are mapped to their semantic counterparts. For example, as shown in 

Figure 3.2, the pattern “MD VB” (i.e., POS tags for “modal verb” “verb”) was constructed 

for the extraction of “quantitative relation,” POS tags were selected as features, “shall have” 

matched this pattern, “have” was semantically mapped to “has,” and “has” was accordingly 

extracted as a “quantitative relation” instance. 
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3.2.5.2 Development of Rules for Resolving Conflicts in Extraction (CR rules) 

In the proposed method, the rules for resolving conflicts in extraction [conflict resolution (CR) 

rules] primarily address the following four types of conflict cases: (1) the number of 

information element instances of a semantic information element in a single sentence is more 

than the required, (2) the number of information element instances of a semantic information 

element in a single sentence is less than the required, (3) there is overlap of extraction results 

for different semantic information elements, and (4) no conflicts, the number of information 

element instances of a semantic information element in a single sentence is equal to the 

required. Each type of conflict case may be handled using one of a set of actions. For conflict 

case 1, one of the following two actions may be used: (1) keep all information element 

instances; or (2) set priority rules and select the information element instances with higher 

priority [e.g., set a higher priority for “not less than” comparing with “above” when 

encountering multiple comparative relation instances. For example, in the sentence part 

“nonabsorbent surface to a height not less than 70 inches above the drain inlet” (Provision 

1210.3 of IBC 2006), the comparative relation instance extracted is only “not less than,” 

although both “not less than” and “above” are recognized as candidate comparative relation 

instances]. For conflict case 2, one of the following three actions may be used: (1) set a 

default information element instance based on domain knowledge (e.g., the default 

comparative relation instance may be set to “greater_than_or_equal” when no information 

element instance is extracted. For example, in the sentence “The outside horizontal clear 
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space measured perpendicular to the opening shall be one and one half times the depth of the 

opening” (Provision 1203.4.1.2 of IBC 2006), the default “greater_than_or_equal” is used as 

a comparative relation instance); (2) use the same instance from the nearest sentence/clause 

(left or right) if those sentences/clauses describe the same content (e.g., in the sentence “The 

openable area between the sunroom addition or patio cover and the interior room shall have 

an area of not less than 8 percent of the floor area of the interior room or space, but not less 

than 20 square feet” (Provision 1203.4.1.1 of IBC 2006), the subject of the first quantitative 

relation should also be used for the second quantitative relation); or (3) drop this sentence. 

For conflict case 3, one of the following three actions may be used: (1) delete all overlapping 

information element instances and keep only the required number, (2) keep all information 

element instances, or (3) delete some overlapping information element instances and keep 

more than the required number. For conflict case 4, one action is used: organize all extracted 

information element instances into a tuple to describe the corresponding requirement. For 

example, as shown in Figure 3.2, the following CR rule (a conflict case 4) was applied: if one 

instance exists for each semantic information element (except for subject restriction and 

quantity restriction, for which the number of instances could be zero or more), organize those 

instances into a tuple for the corresponding quantitative requirement. For each case, defining 

which one of the actions should be executed is determined based on the type of conflict 

pattern. For example, if the subject of a quantitative requirement is a “space,” then the 

comparative relation is usually “greater_than_or_equal” when missing. The conflict patterns 
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and corresponding actions are encoded as CR rules. 

3.2.6 Phase VI – Extraction Execution 

This phase aims to extract the target information element instances from the regulatory text 

using the rules developed in Phase V. For example, as shown in Figure 3.2, “habitable room” 

and “net floor area” were extracted as instances of “subject” and “compliance checking 

attribute,” respectively. 

3.2.7 Phase VII – Evaluation 

Evaluation is conducted by comparing the extracted information with a gold standard. The 

gold standard includes all instances of the target information in the regulatory text source and 

is manually (or semiautomatically with the help of NLP tools) compiled by domain experts. 

Evaluation is conducted using the following measures: precision, recall, and F1-measure. 

Precision, here, is defined as the percentage of correctly extracted information element 

instances relative to the total number of information element instances extracted [Equation 

(3.1)]. Recall, here, is defined as the percentage of correctly extracted information element 

instances relative to the total number of information element instances existing in the source 

text [Equation (3.2)]. A trade-off exists between precision and recall; using either indicator 

alone is not sufficient. F-measure is defined as a weighted combination of precision and 

recall (Makhoul et al. 1999) [Equation (3.3)]. In the proposed method, α is set to 0.5 to give 

equal weights to precision and recall. If the evaluation results are satisfactory (e.g., the 
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F1-measure is greater than 90% or a specific value defined by the user), the process may be 

terminated and the rules (i.e., IE and CR rules) may be considered as final. If the evaluation 

results are not satisfactory, the phases may be iterated for performance improvement. 

Performance improvements in later iterations may be achieved by addressing extraction 

errors in earlier iterations.  

P = (number of correct information element instances extracted)/(total number of information 

element instances extracted)                                                (3.1) 

R = (number of correct information element instances extracted)/(total number of information 

element instances existing)                                                  (3.2) 

𝐹 =
P×R

(1−α)×P+α×R
, where 0 ≤α ≤ 1                                       (3.3) 

3.3 Experimental Testing and Evaluation 

An experiment was conducted to validate the proposed algorithm. Evaluating the algorithm 

(in terms of precision and recall) and achieving satisfactory performance implies the validity 

of the proposed approach and method. Quantitative requirements were extracted from 

randomly selected chapters of IBC 2006 and 2009. The information extraction performance 

of the algorithm was evaluated by comparing the extraction results against a 

semiautomatically (using NLP tools) developed gold standard.    
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3.3.1 Source Text Selection 

IBC was selected because it is the most widely-adopted building code in the United States. 

IBC 2006 (ICC 2006) and IBC 2009 (ICC 2009) were used. Chapters 12 and 23 of IBC 2006 

were randomly selected for development and Chapter 19 of IBC 2009 was randomly selected 

for testing. The following two main types of requirements in IBC were identified: (1) 

“quantitative requirement,” which defines the relationship between an attribute of a certain 

building element/part and a specific quantity value (or quantity range). For example, 

“Occupiable spaces, habitable spaces and corridors shall have a ceiling height of not less than 

7 feet 6 inches (2286 mm)” (Provision 1208.2 of IBC 2006) states that the “ceiling height” 

attribute of these spaces should be greater than or equal to 7’6”; and (2) “Existential 

requirement,” which requires the existence of a certain building element/part. For example, 

“The unit (efficiency dwelling unit) shall be provided with a separate bathroom containing a 

water closet, lavatory and bathtub or shower” (Provision 1208.4 of IBC 2006) states that an 

efficiency dwelling unit should have a bathroom with water closet, lavatory, and bathtub or 

shower. The decision was made to experiment with the extraction of quantitative 

requirements because: (1) most of the requirements identified in these chapters are 

quantitative requirements (e.g., on average, quantitative requirements represent 41% of the 

requirements in Chapters 12 and 23 of IBC 2006 and Chapter 19 of IBC 2009); and (2) the 

sentences describing quantitative requirements appear more complex than those describing 

existential requirements, implying that they are more difficult to extract. In Chapters 12 and 
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23 of IBC 2006, 304 sentences containing quantitative requirements were recognized, 

forming the development text. 

3.3.2 Ontology Development 

An application-oriented and domain-specific ontology for buildings was developed. In 

developing the ontology, a simplified version of the methodology by El-Gohary and 

El-Diraby (2010) was used. Also, concepts from existing construction ontologies [e.g., the 

IC-PRO-Onto (El-Gohary and El-Diraby 2010)] and from the Industry Foundation Classes 

(IFC) (IAI 2007) were reused as applicable/necessary.  

The simplified methodology that was used included the following main steps: (1) Defining 

the domain, purpose, and intended users: The domain of the ontology is building design. The 

purpose of the ontology is for supporting automated compliance checking of building designs 

with building codes (i.e., Chapter 12 and 23 of IBC 2006, and Chapter 19 of IBC 2009). The 

intended users of the ontology are designers and building authorities; (2) Identifying the main 

concepts in the domain of interest: The main concepts related to building design were 

identified based on a review of: domain literature [e.g., General Service Administration (GSA) 

PBS-P100 Facilities Standards for the Public Building Services (2015)], building codes (e.g., 

international building codes), existing construction ontologies [e.g., the IC-PRO-Onto 

(El-Gohary and El-Diraby 2010)], and Industry Foundation Classes (IFC) (IAI 2007). 

Examples of the identified concepts are building element, quantity, material, and space. 
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Following the principle of minimal ontological commitment (Gruber 1995), the intent was 

not to cover all concepts in the domain, but to only cover the essential concepts that would 

enable ACC; (3) Organizing the concepts into a concept hierarchy (taxonomy): The identified 

concepts were organized into a concept hierarchy, in an iterative manner. The whole 

hierarchy was checked for consistency after addition of each new concept, and adjusted as 

needed. For example, wood structural panel sheathing was added as a subconcept of 

sheathing, but when structural sheathing was added, wood structural panel sheathing was 

moved down into a subconcept of structural sheathing; (4) Ontology coding: The ontology 

was coded in web ontology language (OWL) (i.e., .owl format) using the GATE Ontology 

Editor. OWL was selected because it is the most widely-used semantic Web language; (5) 

Ontology implementation: the ontology was implemented/applied in information extraction; 

and (6) Ontology evaluation: An application-oriented ontology evaluation method was used 

(as discussed in the following paragraphs). 

As a result, the developed ontology included 360 concepts arranged in a concept hierarchy. 

For example, “foundation wall” is a subconcept of the concept “wall,” and “exterior 

foundation wall” is a subconcept of the concept “foundation wall.” At this phase, the 

developed ontology includes a concept hierarchy only and is, thus, mainly a taxonomy (not a 

full ontology). A snapshot of the ontology is included in Figure 3.4.  
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Figure 3.4 A Snapshot of Part of the Developed Ontology 



107 

 

Because the ontology was developed as an application-oriented ontology, the evaluation of 

the ontology was conducted in an application-oriented way. Application-oriented ontology 

evaluation uses the ontology in an application and then evaluates the results of the application 

(Brank et al. 2005; Salama and El-Gohary 2013b). “This is elegant in the sense that the 

output of the application might be something for which a relatively straightforward and 

nonproblematic evaluation approach already exists” (Brank et al. 2005). In this case, the 

ontology was applied in information extraction, and the ontology was evaluated based on the 

evaluation results of information extraction (i.e., based on concrete measures of precision and 

recall). 

3.3.3 Information Representation 

For building codes, a nine-tuple format was used for intermediate information representation: 

<Subject, Subject Restriction, Compliance Checking Attribute, Deontic Operator Indicator, 

Quantitative Relation, Comparative Relation, Quantity Value, Quantity Unit/Reference, 

Quantity Restriction>.” Following the semantic model of ACC as presented in (Salama and 

El-Gohary 2013b), the semantic information elements are defined as follows [for further 

elaboration on the semantic model, including these concepts, the reader is referred to Salama 

and El-Gohary (2013b)]. A “subject” is an ontology concept; it is a “thing” (e.g., building 

object, space) that is subject to a particular regulation or norm. A “compliance checking 

attribute” is an ontology concept; it is a specific characteristic of a “subject” by which its 

compliance is assessed. A “deontic operator indicator” is an indicator; it matches to (or 
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indicates) the type of deontic modal operator (i.e., obligation represented by O, permission 

represented by P, and prohibition represented by F) applicable to the current requirement. A 

“quantitative relation” defines the type of relation for the quantity. For example, in the 

sentence “The court shall be increased 1 foot in width and 2 feet in length for each additional 

story” (Provision 1206.3 of IBC 2006), the quantitative relation is “increase,” which 

semantically describes that the relation between “width of the court” and “1 foot” is 

“increased for each additional story.” A “comparative relation” is a relation, such as 

greater_than_or_equal, less_than_or_equal, greater_than, less_than, or equal, that is 

commonly used to compare quantitative values (i.e., comparing an existing value with a 

required minimum or maximum value). A “quantity value” is a value or a range of values that 

defines the quantified requirement. A “quantity unit” is the unit of measure for the “quantity 

value.” A “quantity reference” is a reference to another quantity (which presumably includes 

a value and a unit). For example, in the sentence “The bearing area of headed anchors shall 

be not less than one and one-half times the shank area,” “shank_area” is the “quantity 

reference.” A “quantity value” + “quantity unit” pair or “quantity value” + “quantity 

reference” pair forms a “quantity.” A “restriction” places a constraint on the definition of a 

“subject,” “compliance checking attribute,” “comparative relation,” pair of “quantity value” 

and “quantity unit,” pair of “quantity value” and “quantity reference,” or the full requirement. 

A “subject restriction” (and, similarly, “quantity restriction”) places a constraint on the 

definition of a “subject” (or “quantity”), such as by defining the properties of the “subject” 



109 

 

(or “quantity”). An “exception” defines a condition where the requirement does not apply. 

Each extracted requirement (1) has one and only one instance of each of the following 

semantic information elements: subject, comparative relation, quantity value, and quantity 

unit/reference; (2) has at most one instance of each of the following semantic information 

elements: compliance checking attribute, deontic operator indicator, and quantitative relation; 

and (3) has zero, one, or more instances of each of the following semantic information 

elements: subject restriction and quantity restriction. Table 3.4 shows examples of the 

nine-tuple representation. 

Table 3.4 Examples of Semantic Information Elements and Information Element Instances 

Semantic information 

element 

Extracts of example 

sentence 1 

Extracts of example 

sentence 2 

Extracts of example 

sentence 3 

Requirement 

A minimum of 1 inch of 

airspace shall be provided 

between the insulation and 

the roof sheathing. 

The minimum net area of 

ventilation openings shall 

not be less than 1 square 

foot for each 150 square 

feet of crawl space area. 

Courts shall not be less 

than 3 feet in width. 

Subject airspace ventilation_opening court 

Subject restriction 
relation (between, 

insulation, roof_sheathing) 
N/A N/A 

Compliance checking 

attribute 
N/A net_area width 

Deontic operator 

indicator 
obligation obligation obligation 

Quantitative relation provide N/A N/A 

Comparative relation greater_than_or_equal greater_than_or_equal greater_than_or_equal 

Quantity value 1 1 3 

Quantity 

unit/reference 
inch square_foot feet 

Quantity restriction NA 

relation (for_each, 150, 

square_feet, 

crawl_space_area) 

NA 
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3.3.4 Development of Gold Standard  

The gold standard was developed semiautomatically. First, all sentences that include a 

number (the appearance of both digit form and word form of a number to ensure 100% recall 

of sentences describing quantitative requirements) were extracted automatically. 

Subsequently, the author and four other researchers (i.e., the annotators) manually deleted 

false positive sentences and identified all semantic information element instances for each 

sentence. The annotation was conducted in four steps: (1) an excel sheet for recording the 

extracted information element instances was prepared and sent to all annotators; (2) a short 

15-minute presentation was given to the annotators to outline the objective of the annotation, 

explain each semantic information element and demonstrate the extraction of example 

semantic information element instances (for each semantic information element) from 

Chapter 12 of IBC 2006; (3) a short 15-minute warm-up and question and answer session was 

conducted where example sentences from Chapter 12 of IBC 2006 were used to train the 

annotators in this annotation task and clear up any doubts or confusion. Whenever an 

annotator asked a question, the answer was broadcasted to all annotators together with the 

question; and (4) the annotators conducted the extraction task independently in the same 

session. The inter-annotator agreement between each two annotator was evaluated. Table 3.5 

shows the inter-annotator agreement results. A gold standard was then developed based on 

the agreement between annotators and discrepancy resolution. Two main methods were used 

for discrepancy resolution: (1) if the majority (i.e., at least three) of the annotators achieved 
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agreement, then the agreed on annotation was used; (2) if the majority (i.e., at least three) of 

the annotators did not achieve agreement, then a discussion was conducted until they 

achieved agreement and the agreed annotation was used. Because of the unambiguous nature 

of quantitative requirements, along with the well-defined information representation that is 

used in the proposed method, there was a majority agreement in formulating the gold 

standard. The annotation guidelines are shown in Appendix A. 

Table 3.5 Inter-Annotator Agreement on Chapter 19 of IBC 2009 for Information Extraction 

Annotator A B C D E 
Average 

annotators 

A - 91% 94% 92% 90% 92% 

B 91% - 91% 89% 85% 89% 

C 94% 91% - 94% 88% 92% 

D 92% 89% 94% - 87% 91% 

E 90% 85% 88% 87% - 88% 

Average 

annotators 
92% 89% 92% 91% 88% 90% 

3.3.5 Tool Selection  

Many off-the-shelf tools are available today for supporting various NLP tasks including 

information extraction, such as the Stanford Parser by the Stanford NLP Group and General 

Architecture for Text Engineering (GATE) by the University of Sheffield (2013). GATE was 

selected to implement the information extraction algorithm because (1) GATE has been 

widely and successfully used in IE, such as in Soysal et al. (2010); and (2) it embeds many 

other NLP tools in the form of plug-ins, such as the Stanford Parser and OpenNLP tools. The 

following built-in GATE tools were utilized in the experiments: (1) ANNIE system for 
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tokenization, sentence splitting, POS tagging, and gazetteer compiling; (2) the built-in 

morphological analyzer for morphological analysis; (3) the built-in ontology editor for 

ontology building and editing; and (4) JAPE transducer for writing the IE and CR rules.  

3.3.6 Applying the Information Extraction Method 

The IE and CR rules were developed based on Chapters 12 and 23 of IBC 2006 and were 

subsequently tested on Chapter 19 of IBC 2009. The ANNIE Hepple POS Tagger was used to 

generate POS tag features (Table 3.6 provides a sample). A total of 53 POS tag symbols exist 

in the set of Hepple POS Tags used. The Penn Treebank phrasal tag labels were used for 

phrase structure analysis. The following three gazetteer lists were compiled: comparative 

relation list, unit list, and negation list. In addition, the GATE built-in gazetteer lists of 

numbers and ordinal were used. Table 3.7 shows the number of patterns, features, and CR 

rules for Chapters 12 and 23 of IBC 2006. The IE and CR rules (developed based on Chapters 

12 and 23 of IBC 2006) are intended to support automated extraction of quantitative 

requirements from any building code. The rules were applied to Chapter 19 of IBC 2009 for 

testing and evaluation. 

 

 

 



113 

 

Table 3.6 Sample POS Tags and Phrasal Tags 

Part of speech tag/phrasal tag Meaning 

ADVP Adverb phrase 

CC Coordinating conjunction 

CD Cardinal number 

DT Determiner 

IN  Prepositional or subordinating conjunction 

JJR Comparative adjective 

MD Modal verb 

NN Singular or mass noun 

NNS Plural noun 

NP Noun phrase 

PP Prepositional phrase 

QP Quantifier phrase 

RB Adverb 

VB Base form verb 

VP Verb phrase 

 

Table 3.7 Number of Patterns, Features, and CR rules for Chapters 12 and 23 of IBC 2006 

Number Subject 
Subject 

restriction 

Compliance 

checking 

attribute 

Deontic 

operator 

indicator 

Quantitative 

relation 

Comparative 

relation 

Quantity 

value 

Quantity 

unit/ 

reference 

Quantity 

restriction 

Extraction 

patterns 
NA 29 NA 10 9 2 24 24 48 

Features 

selected 
10(304)* 47 1(99)* 8 7 5 28 31 60 

CR rules 2 2 5 0 0 4 8 8 9 

*Number in parenthesis represents subconcepts 

Additionally, the IE and CR rules are potentially reusable in extracting quantitative 

requirements from other types of documents/text. They may be reused as is or 

adapted/extended based on additional development text. To test the potential reusability of 

the IE and CR rules developed, they were applied (as is, without any modification) to a 

different type of text. The following document was randomly selected from the Web, with the 
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only criterion being that the document contains quantitative requirements: “Procedures 

(Section 700.4) in traffic cabinet ground rod specifications.” The rules were used to extract 

quantitative requirements from the randomly selected text, and performance was evaluated 

against a manually-developed gold standard. Table 3.8 shows the results in terms of precision, 

recall, and F1-measure. As per Table 3.8, the overall F1-measure is greater than 90%. 

Considering the selection of this testing text is completely random, the high performance 

achieved indicates that the developed IE and CR rules well captured the regularity in 

quantitative requirement-related expressions and thus have a good potential of reusability. 

Table 3.8 Testing Reusability of IE Rules and CR Rules  

Number of 

instances 
Subject 

Subject 

restriction 

Compliance 

checking 

attribute 

Deontic 

operator 

indicator 

Quantita

tive 

relation 

Compara

tive 

relation 

Quantity 

value 

Quantity 

unit/ 

reference 

Quantity 

restriction 
Total 

In gold 

standard 
24 0 18 17 16 13 25 25 6 144 

Extracted 24 0 18 17 17 17 24 24 7 148 

Correctly 

extracted 
21 0 17 17 11 13 24 24 6 133 

Precision 87.5% NA 94.4% 100.0% 64.7% 76.5% 100.0% 100.0% 85.7% 89.9% 

Recall 87.5% NA 94.4% 100.0% 68.8% 100.0% 96.0% 96.0% 100.0% 92.4% 

F1-measure 87.5% NA 94.4% 100.0% 66.7% 86.7% 98.0% 98.0% 92.3% 91.1% 

3.3.7 Results and Discussion 

Table 3.9 summarizes the information extraction results. For Chapter 19 of IBC 2009, on 

average, 96.9% (95% confidence interval [95.0%, 98.1%]), 94.4% (95% confidence interval 

[92.1%, 96.1%]), and 95.6% (95% confidence interval [93.5%, 97.1%]) precision, recall, and 

F1-measure, respectively, were achieved. When calculating the precision and recall for 
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“subject restriction” and “quantity restriction” instances, the correctness of extracting one 

restriction instance is calculated as a ratio of the number of correctly extracted concepts and 

relations to the total number of concepts and relations in that restriction (because each 

restriction instance may include multiple concepts and relations). When calculating the 

precision and recall for “comparative relation” instances, partial extraction correctness for the 

following comparative relations was considered: “greater than or equal” and “less than or 

equal.” For example, in the following case, the instance was calculated as “half-correctly 

extracted,” i.e., 0.5: “above” (greater_than) was extracted, whereas the gold standard 

included “at or above” (greater_than_or_equal).  

Although only “subject restriction,” “comparative relation,” and “quantity restriction” 

showed a perfect performance value (100.0% for precision), all precision and recall values 

were greater than or equal to 90.0% except for the recall of “subject restriction.”  

Table 3.9 Experimental Results for Chapter 19 of IBC 2009 

Number of 

instances 
Subject 

Subject 

restriction 

Compliance 

checking 

attribute 

Deontic 

operator 

indicator 

Quantita

tive 

relation 

Compara

tive 

relation 

Quantity 

value 

Quantity 

unit/ 

reference 

Quantity 

restriction 
Total 

In gold 

standard 
85 18 45 48 58 85 83 85 15 522 

Extracted 85 15 46 47 57 79.5 83 83 13.5 509 

Correctly 

extracted 
80 15 43 46 54 79.5 81 81 13.5 493 

Precision 94.1% 100.0% 93.5% 97.9% 94.7% 100.0% 97.6% 97.6% 100.0% 96.9%. 

Recall 94.1% 83.3% 95.6% 95.8% 93.1% 93.5% 97.6% 95.3% 90.0% 94.4% 

F1-measure 94.1% 90.9% 94.5% 96.8% 93.9% 96.7% 97.6% 96.4% 94.7% 95.6% 

An error analysis resulted in five findings. First, the reasons for the relative low recall of 
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“subject restriction” are as follows: (1) The patterns are more complex. For example, one 

pattern for “subject restriction” typically involves several phrases, whereas one pattern for 

other elements such as “subject” could be as simple as corresponding to just one concept in 

the ontology; and (2) The number of instances for “subject restriction” used in rule 

development is significantly less (at least 30% less) than that for other types of semantic 

information elements. These two reasons combined together led to false negatives (i.e., 

instances that should have been extracted but were not extracted) such as the subject 

restriction instance “constructed with stud-bearing walls” in the part of sentence “In detached 

one- and two-family dwellings three stories or less in height and constructed with 

stud-bearing walls....” (Provision 1908.1.8 of IBC 2009). Second, errors in the extraction of 

“subject,” which lead to false negatives, are the result of inner errors of the tools used. For 

example, GATE failed to recognize the term “connection” although it exists in the ontology, 

which resulted in a false negative of a subject instance “connection.” No existing NLP tool 

achieves 100% performance, even for relatively simple NLP tasks such as POS tagging, and 

any error in POS tagging, for example, may further cause an error in information extraction 

because the IE rules include POS-features in its patterns. Third, errors in extraction of 

“compliance checking attribute,” which lead to false negatives and positives, are due to inner 

errors of the tools used and the limitations of CR rules. For example, one CR rule states that 

if no “compliance checking attribute” was extracted and extra “subject” candidates were 

extracted, then place the “subject” candidate that is closest to the “quantity value” as the 
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attribute. This rule lead to an incorrect extraction of “clearance” as the compliance checking 

attribute instance (i.e., a false positive, meaning it should not be extracted but was extracted) 

in the sentence “The steel reinforcement shall be in the form of rods, structural shapes or pipe 

embedded in the concrete core with sufficient clearance to ensure the composite action of the 

section, but not nearer than 1 inch to the exterior steel shell” (Provision 1915.4 of IBC 2009). 

Fourth, the errors in the extraction of “deontic operator indicator” and “quantitative relation,” 

which lead to false negatives, are due to the result of missing patterns in IE rules (which were 

missed because the patterns are not common) and limitations of CR rules. Fifth, the errors in 

the extraction of “comparative relation,” “subject restriction,” “quantity restriction,” 

“quantity value,” and “quantity unit/reference,” which lead to false negatives, are the result of 

missing patterns in IE rules. Future work is needed to further explore how to improve the 

proposed IE and CR rules to avoid/reduce these errors, and, consequently, improve the IE 

results. The problems of missing patterns and limitations of CR rules could be solved through 

the development/adjustment of IE and CR rules based on more corpuses. However, further 

exploration is required to find out how many more corpuses could be sufficient to produce 

enough patterns for IE rules and to avoid the current limitations of the CR rules – and 

whether the increase in development corpuses would result in significant improvement in 

precision and recall.    
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4 CHAPTER 4 – AUTOMATED INFORMATION TRANSFORMATION OF 

REGULATORY INFORMATION 

4.1 Comparison to the State of the Art 

In recent years, a number of research efforts, in domains such as software engineering 

(Breaux and Anton 2008; Kiyavitskaya et al. 2008) and legal compliance (Wyner and Peters 

2011), have been studying the extraction of regulatory rules from textual documents. Most of 

these efforts (1) require manual annotation or mark-up of textual documents; and (2) aim at 

processing text at a coarser granularity level, i.e., process text into text segments rather than 

term-level concepts/relations. On the other hand, the proposed approach in this dissertation (1) 

does not require manual annotation or mark-up of textual documents; and (2) aims at 

processing text into concepts and relations at the term level (i.e., aims at performing a deeper 

level of NLP). To the best of the author’s knowledge, the only work that has taken a 

somewhat similar approach to the proposed one – since it also does not require manual 

annotation/mark-up and aims at term-level processing, in addition to utilizing a semantic and 

logic-based approach – is that by Wyner and Governatori (2013). Wyner and Governatori 

(2013) have conceptually explored and analyzed the use of semantic parsing and defeasible 

logic for regulatory rule representation. In comparison, the proposed approach (1) utilizes 

both syntactic and semantic text features in an integrated way rather than utilizing only 

semantic information: the use of syntactic text features in addition to semantic ones allows 

for handling more complex expressions, (2) uses a domain ontology for capturing 
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domain-specific semantic information rather than using generic semantic information 

produced through generic semantic parsing: capturing and using semantic text features based 

on domain-specific meaning allows for unambiguous interpretation of 

concepts/relations/terms (e.g., “bridge” as an infrastructure instead of the card game) and 

identification of implicit semantic relations (e.g., “fly ash” is a type of “cementitious 

material”), (3) uses first order logic (FOL) rather than defeasible logic: FOL is the most 

widely used in automated reasoning and has been extensively verified for expressivity and 

simplicity, and (4) has advanced to the stages of implementation, testing, and evaluation: this 

allows for assessing the validity of the proposed approach using measures of precision and 

recall. 

4.2 Proposed Information Transformation Method and Algorithm  

The proposed information transformation takes a rule-based, semantic NLP approach. It 

utilizes pattern-matching-based rules to automatically generate logic rules based on the 

extracted information instances and their associated patterns of information tags. Both 

syntactic information tags (i.e., tags tagging syntactic text features, e.g., ‘adjective’ is 

represented using the POS tag ‘JJ’) and semantic information tags (i.e., tags tagging semantic 

text features, e.g., ‘compliance checking attribute’ is represented using the semantic tag “a”) 

are used in defining the patterns. A number of NLP techniques (e.g., POS tagging, term 

matching) are used to identify the syntactic information tags of each extracted information 

instance, and a semantic model (an ontology that represents domain knowledge) is used to 
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identify the semantic information tags. The tagged information instances are transformed into 

HC-type logic clauses using a set of semantic mapping (SM) rules and conflict resolution 

(CR) rules. SM rules define how to process the extracted information instances, based on 

their associated types of information tags and the context of the information tags, so that the 

extracted information instances could be transformed correctly into logic rules. CR rules 

resolve potential conflicts that may exist in the processing of different information tags. A 

bottom-up method is utilized to handle complex sentence components. A “consume and 

generate” mechanism is proposed to implement the bottom-up method and execute the SM 

rules. The following subsections present the proposed information transformation method 

(Figure 4.1) in more detail.  

 

Figure 4.1 The Proposed Information Transformation Method 

4.2.1 The Source: Extracted Information Instances  

The information source for the information transformation process is the set of input 

information instances that were obtained from the preceding information extraction process. 
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Information instances have been labeled with information tags during information extraction, 

with the following changes/improvements: (1) in addition to semantic information tags, 

syntactic information tags and combinatorial information tags are also generated for further 

use in information transformation; and (2) instead of the top-down method for handling 

complex sentence components (processing larger chunks of texts first, then breaking them 

down to process smaller chunks of texts), a bottom-up method (processing smaller chunks of 

texts first, then aggregating them to process larger chunks of texts) is adopted because – in 

the experiments – it has shown to achieve better performance in handling complex sentence 

components (Zhang and El-Gohary 2013). As such, in the information transformation process, 

the following three types of information tags (information tags are shown using single quotes 

hereafter) are defined and used: (1) semantic information tags, (2) syntactic information tags, 

and (3) combinatorial information tags.  

Semantic information tags are information tags that are related to the meaning and context of 

the labeled information instances. Instances of semantic information tags are recognized 

based on the concepts and relations in the domain ontology. For example, in the developed 

ontology, both “transverse reinforcement” and “vertical reinforcement” are subconcepts of 

the concept ‘subject’. Therefore, the appearances of “transverse reinforcement” (or 

“transverse reinforcements”) and “vertical reinforcement” (or “vertical reinforcements”) in 

Chapter 19 of IBC 2009 are extracted as instances of the semantic information tag ‘subject’. 

The decision on which concepts and relations are essential to extract and transform is based 
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on the type of requirement (e.g., quantitative requirements) that is being checked. For 

example, ‘comparative relation’ is one example of a semantic information tag that is essential 

in the context of compliance checking of quantitative requirements.   

Syntactic information tags are information tags that are related to the grammatical role of the 

labeled information instances. Instances of syntactic information tags are recognized based on 

their syntactic features. Syntactic information tags carry information that is more general than 

those carried by semantic information tags. For example, the syntactic information tag ‘noun’ 

is describing the labeled information instance as a noun, while semantically the noun could 

possibly belong to a ‘subject,’ ‘compliance checking attribute,’ or another semantic 

information tag. In the proposed method, POS tags are mainly used as the syntactic features 

for syntactic information tags. For example, ‘JJ’ is the POS tag for adjective. It is a syntactic 

information tag for an information instance that describes properties/attributes of a noun. For 

example, the adjective “habitable” in “habitable room” is describing the functional property 

of “room.”  

Combinatorial information tags are compound information tags that are composed of multiple 

semantic and/or syntactic information tags. For example, the combination of ‘past participle 

verb’ (POS tag ‘VBN’) and ‘preposition’ (POS tag ‘IN’) is a combinatorial information tag 

(combining two syntactic information tags) that describes a directional passive verbal relation 

represented by bigrams like “provided by” and “located in.” The combination of ‘adjective’ 

(syntactic information tag - POS tag ‘JJ’) and ‘subject’ (semantic information tag ‘s’) is 
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another example of a combinatorial information tag (combining syntactic and semantic 

information tags) that describes a ‘subject’ with a certain property.  

4.2.2 The Target: Logic Clauses 

The target of the information transformation process is the set of output logic rules which are 

used to represent the requirements in construction regulations. A HC FOL format is used for 

such representation, in order to facilitate further automated reasoning using logic programs. 

One single HC represents one requirement. The RHS of the HC indicates the compliance 

result(s). The LHS of the HC encodes the conditions for the requirement using one or more 

predicates. Each predicate defines either a concept information instance [e.g., court(c)] or a 

relation information instance [e.g., has(c,w)]. The logic clause elements in a concept 

predicate are called concept logic clause elements. The logic clause elements in a relation 

predicate are called relation logic clause elements. Table 4.1 shows the source and target for a 

sample sentence.   

Table 4.1 A Transformation Example 

Requirement 

sentence 
Courts shall not be less than 3 feet in width. 

Source – 

information  

tag 

Subject 

Compliance 

Checking 

Attribute 

Comparative 

Relation 

Quantity 

Value 

Quantity 

Unit 

Quantity 

Reference 

Source – 

information 

instance 

court width not less than 3 feet N/A 

Target –  

logic  

clause 

width(width) ^ court(court) ^ has(court,width) ^ 

greater_than_or_equal(width,quantity(3,Feet)) ⊃ compliant_width_of_court(court). 
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4.2.3 Semantic Mapping Rules 

The semantic mapping (SM) rules define how to process the extracted information instances 

according to their semantic meaning. The semantic meaning of each information instance is 

defined by: (1) the information tag it is associated with. For example, in Table 4.1, ‘subject’ 

defines the semantic meaning of “court,” i.e., it defines that “court” is the ‘subject’ of 

compliance checking; and (2) the context of the extracted information instance, reflected by 

the information tags of its surrounding information instances. For example, in the following 

sentence, the semantic meaning of “not less than” (instance of ‘comparative relation’) is 

defined by the information tag of its surrounding information instance “for each”: “The 

minimum net area of ventilation openings shall not be less than 1 square foot for each 150 

square feet of crawl space area” (Provision 1203.3.1 of IBC 2006). “For each,” here, 

indicates that “not less than” (relation) is not simply a relationship between “net area” 

(instance of ‘compliance checking attribute’) and “1 square foot” (instance of ‘quantity value’ 

+ ‘quantity unit’), but it is also restricted by “150 square feet of crawl space area” (instance of 

a ‘quantity value’ + ‘quantity reference’). The interpretation of this requirement is that the 

quantity requirement on “minimum net area of ventilation openings” will increase 1 foot for 

each additional “150 square feet of crawl space area.”  

The semantic meanings of information instances are utilized in patterns on the LHS of SM 

rules. For the example in Table 4.1, the corresponding SM rule pattern is ‘subject’ + ‘modal 

verb’ + ‘negation’ + ‘be’ + ‘comparative relation’ + ‘quantity value’ + ‘quantity unit’ + 
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‘preposition’ + ‘compliance checking attribute’. An SM rule with this LHS pattern will 

transform the information instances into the logic clause shown in the last row of Table 4.1. 

A sample action defined on the RHS of this SM rule is: “Generate predicates for the ‘subject’ 

information instance, the ‘attribute’ information instance, and a ‘has’ information instance. 

The two arguments of the ‘has’ information instance are from the ‘subject’ predicate and the 

‘attribute’ predicate, respectively.” Accordingly, the following logic clause elements are 

generated for the following statement, since “court” is recognized as a ‘subject’ information 

instance and “width” as an ‘attribute’ information instance.  

 Sentence: “Courts shall not be less than 3 feet in width” (Provision 1206.3 of IBC 

2006) 

 Logic Clause Elements: court(court) ^ width(width) ^ has(court,width) 

The information transformation method is intended to process each term of a sentence in a 

sequential manner. In general, sequential processing for information transformation normally 

requires information instances that are matched by patterns (in SM rules) to be strictly located 

next to each other. Such a rigid processing requirement could cause difficulty in processing 

sentences with different structures. To avoid that, the proposed SM rules do not follow such a 

rigid requirement. Instead, the SM rules allow for “look-back searching” (i.e., searching to 

the left of the matched words) and “look-ahead searching” (i.e., searching to the right of the 

matched words) to find instances that match certain information tags in a pattern. For 

example, in the following pattern, the instance of the first ‘subject’ does not have to be 
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located right next to the instance of ‘preposition’: “ ‘subject’ + ‘preposition’ + ‘subject.’ ” It 

is only required to be the ‘subject’ instance that is closest to the ‘preposition’ instance from 

the left. “Look-back searching,” here, searches to the left of the matched word for 

‘preposition’ to find the closest ‘subject’ instance when the later part of the pattern 

“ ‘preposition’ + ‘subject’ ” is matched. This allows for more flexibility in the use of SM 

rules to handle sentence complexities (e.g., those incurred by cases such as tail recursive 

nested clauses). For example, an SM rule uses the following pattern P1 to match the last three 

information instances in InS1, finds the first information instance in InS1 through “look-back 

searching,” and generates the logic clause elements LC1 for the part of sentence S1, where ‘s’ 

stands for ‘subject,’ ‘VBP’ for ‘non-3rd person singular present verb,’ ‘dpvr’ for ‘directional 

passive verbal relation,’ and ‘VB’ for ‘base form verb:’ 

 Pattern P1: ‘non-3rd person singular present verb’ ‘directional passive verbal relation’ 

‘base form verb’ 

 Information Instances InS1: (‘connection’, ‘s’) … (‘are’, ‘VBP’), (‘designed_to’, 

‘dpvr’), (‘yield’, ‘VB’) 

 Sentence S1: “Connections that are designed to yield shall be capable of …” 

 Logic Clause Elements LC1: connection(connection) ^ yield(yield) ^ 

designed_to(connection,yield) 

In the proposed method, application-specific SM rules are developed based on a randomly 

selected sample of text (called “development text,” which is also used for text analysis and 
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further development of CR rules). For developing a set of SM rules for information 

transformation, a three-step, iterative method that shall be applied to each sentence is 

proposed: (1) find all relations in a sentence [e.g., “of” and “not exceed” in the sentence 

“Spacing of transverse reinforcement shall not exceed 8 inches.” (Provision 1908.1.4 of IBC 

2009)]; (2) for each relation, run the existing SM rule set to check if the rule set can generate 

the corresponding logic clause elements correctly and define the subsequent action based on 

the following three cases: (a) if the corresponding logic clause elements are correctly 

generated, then move to check the next relation, (b) if the corresponding logic clause 

elements are incorrectly generated, then create a new SM rule with a more specific pattern 

(i.e., a longer pattern with more features) than the applied SM rule and add it to the rule set 

with a higher priority, and (c) if the corresponding logic clause elements are not generated, 

then create a new SM rule and add it to the rule set; and (3) after all relations have been 

checked, run the updated SM rule set on all checked sentences and check if errors have been 

introduced due to the added SM rules. If errors have been introduced, then identify the 

source(s) of errors [i.e., the rule(s) that introduced the errors] and adjust those rules as 

necessary. 

4.2.4 Conflict Resolution Rules 

The conflict resolution (CR) rules resolve conflicts between information tags. Two types of 

CR rules are used: deletion CR rules and conversion CR rules. Deletion CR rules resolve 

conflicts between information tags by deleting certain information instances. For example, 
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the following deletion CR rule CR1 is used to delete redundant information instances InS2 

from the set of extracted information instances InS3 for the sentence S2, where ‘cr’ stands for 

‘candidate restriction’ and ‘s’ for ‘subject’: 

 Deletion CR Rule CR1: “if an information instance has the tag ‘subject’ and it 

subsumes its following information instance(s), then delete its following information 

instance(s).” 

 Information Instances InS2: (‘exterior’, ‘cr’), (‘basement’, ‘cr), (‘wall’, ‘cr’) 

 Information Instances InS3: (‘exterior basement wall’, ‘s’), (‘exterior’, ‘cr’), 

(‘basement’, ‘cr’), (‘wall’, ‘cr’) 

 Sentence S2: “The thickness of exterior basement walls and foundation walls shall be 

not less than 71/2 inches.” (Provision 1909.6.1 of IBC 2009) 

Conversion CR rules resolve conflicts between information tags by converting information 

tags of information instances into other types of information tags. For example, the following 

conversion CR rule CR2 is used to convert information tags in information instances InS4 to 

information tags in information instances InS5 for the sentence S3, where ‘s’ stands for 

‘subject,’ ‘I’ for ‘inter clause boundary relation,’ ‘a’ for ‘compliance checking attribute,’ and 

‘IN’ for ‘preposition:’ 

 Conversion CR Rule CR2: “if ‘with’ is directly followed by an information instance 

that has the information tag ‘compliance checking attribute’ and ‘with’ has the 
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information tag ‘inter clause boundary relation’, then convert the information tag of 

‘with’ to ‘preposition’.” 

 Information Instances InS4: (‘wall segment’, ‘s’), (‘with’, ‘I’), 

(‘horizontal_length_to_thickness_ratio’, ‘a’)  

 Information Instances InS5: (‘wall segment’, ‘s’), (‘with’, ‘IN’), 

(‘horizontal_length_to_thickness_ratio’, ‘a’) 

 Sentence S3: “Wall segments with a horizontal length-to-thickness ratio less than 2.5 

shall be designed as columns.” (Provision 1908.1.3 of IBC 2009) 

In the proposed rule-based information transformation, the CR rules are executed before the 

SM rules, after the information instances have been extracted by the information extraction 

process. The development of CR rules is needed when conflicts between SM rules cannot be 

resolved by adjusting SM rule patterns and actions. For developing a set of CR rules for 

information transformation, a five-step methodology is proposed: (1) find information tags 

that are the sources of errors through pattern analysis of conflicting SM rules, (2) for each 

conflict, create a new candidate CR rule to resolve the conflict, (3) try the candidate rule and 

empirically analyze whether the rule was successful in resolving the conflict without 

introducing new conflicts, (4) if the trial was successful, then add the candidate CR rule as a 

new rule to the existing CR rule set, and if the trial was unsuccessful, then iterate Steps 3 and 

4 until a successful trial is found, and (5) after each new CR rule is added, check all SM rules 

and update them as necessary according to the changes in information tags caused by the new 
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CR rule.  

4.2.5 Bottom-up Method for Handling Complex Sentence Components 

Due to the variability of natural language expressions and structures, sentences used in 

regulatory provisions could be very complex. For example, phrases and clauses could be 

continuously attached/nested to a sentence to constantly enrich it with more relevant 

information. Complex sentences are difficult to process for information extraction and 

transformation. Complex sentence components are intermediately-processed segments of text 

that are: (1) expressed using a variety of natural language structure patterns, and (2) 

composed of multiple concepts and relations. Complex sentence components are more likely 

to result in complex sentence structures by embedding in or attaching more concepts and 

relations to a sentence. Figure 4.2 shows a complex sentence from IBC 2006. Two methods 

were explored in handling complex sentence components: top-down method and bottom-up 

method (Figure 4.3). The top-down method starts from the top level (i.e., full sentence) and 

proceeds down to identify and process complex sentence components. The bottom-up method 

starts from the lowest level (i.e., single terms/concepts/relations in a sentence) and proceeds 

up to identify and process complex sentence components. The bottom-up method is 

employed in the proposed information transformation approach, because it has shown to 

achieve better performance than the top-down method (Zhang and El-Gohary 2013).  



131 

 

 

Figure 4.2 A Sample Sentence with Information Tags 

 

Figure 4.3 Illustration of Top-Down Method and Bottom-Up Method 

In the bottom-up method, the SM rules are used to process sentences starting from the lowest 

level, i.e., starting from information instances (which correspond to single 

terms/concepts/relations in a sentence). The information instances in the source text are put 

into lists – one list for each sentence and are processed one by one until all information 

instances have been processed. The order of the instances in the list is determined based on 
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their order in the original sentence.  

To apply the bottom-up method, a new “consume and generate” mechanism to execute the 

SM rules in a sequential manner is proposed. This mechanism follows the heuristics of the 

“sliding window” method in computational research [i.e., a sequence of data is sequentially 

processed, segment by segment, and each segment has a predefined fixed length (i.e., the 

“window size”)] and the mechanism of transcription in genetics domain (i.e., a sequence of 

DNA is sequentially transcribed, segment by segment, and each segment has a length of 

about 17 base-pair). The “consume and generate” mechanism processes all text segments that 

match an SM rule pattern, where each segment matches a pattern of one SM rule and each 

pattern consists of information tags for a sequence of information instances. However, in 

comparison to the “sliding window” method, the segment length in the proposed “consume 

and generate” mechanism is not fixed across patterns to allow for flexibility in capturing 

complex sentence structures. The length of each segment is determined according to the 

number of information tags in the corresponding SM rule pattern. For example, the following 

pattern P2 has a segment length of three and matches the information instances InS6 for the 

part of sentence S4 to generate logic clause elements LC2, where ‘a’ stands for ‘compliance 

checking attribute’ and ‘s’ for ‘subject’:  

 Pattern P2: ‘compliance checking attribute’ ‘of’ ‘subject’ 

 Information Instances InS6: (‘area’, ‘a’), (‘of’, ‘OF’), (‘space’, ‘s’) 
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 Sentence S4: “The net free ventilating area shall not be less than 1/150 of the area of 

the space ventilated …” (Provision 1203.2 of IBC 2006) 

 Logic Clauses Elements LC2: space(space) ^ area(area) ^ has(space, area) 

The “consume and generate” mechanism allows for backward matching: if information 

instances extracted from a segment of text match the later part of a pattern, then the 

information instance(s) extracted from preceding text are checked for matching of the earlier 

part of the same pattern, and corresponding logic clauses are generated if the check succeeds. 

For example, the following information tags InT1 are associated with the five information 

instances from the part of sentence S5. After the first three information instances InS7 are 

processed based on matching with the pattern P3, two information instances “or” and “space” 

remain. These two remaining information instances only match the later part (i.e., second and 

third information tags) of the pattern P4 for ‘conjunctive subject.’ Normally, this partial 

matching would not initiate the processing of the information instances. However, under the 

proposed backward matching mechanism, the preceding information instance “interior room” 

is checked for the matching of the earlier part of the pattern for “conjunctive subject” (i.e., 

the first information tag: ‘subject’). Since “interior room” matches ‘subject,’ the SM rule for 

“conjunctive subject” gets applied and the two remaining information instances are processed 

to generate the logic clause elements LC3 [where “v” is the disjunctive operator (i.e., “A v B” 

means “A or B”)]. 
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 Information Tags InT1: ‘compliance checking attribute’, ‘of’, ‘subject’, ‘conjunctive 

term’, ‘subject’ 

 Sentence S5: “…the floor area of the interior room or space…” (Provision 1203.4.1.1 

of IBC 2006) 

 Information Instances InS7: “floor area,” “of,” “interior room”  

 Pattern P3: ‘compliance checking attribute’ + ‘of’ + ‘subject’  

 Pattern P4: ‘subject’ + ‘conjunctive term’ + ‘subject’  

 Logic Clause elements LC3: interior_room(Interior_room) v space(Interior_room) 

4.2.6 Evaluation 

Results are evaluated in terms of precision, recall, and F1-measure. Precision, here, is the 

number of correctly generated logic clause elements divided by the total number of generated 

logic clause elements. Recall, here, is the number of correctly generated logic clause elements 

divided by the total number of logic clause elements that should be generated. F1-measure is 

the harmonic mean of precision and recall, assigning equal weights to precision and recall.  

4.3 Experimental Testing and Evaluation 

For testing and validation, the proposed information transformation method was empirically 

implemented in transforming information instances of quantitative requirements, which were 

automatically extracted from the IBC 2009, into logic rules.  
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4.3.1 Source Text Selection 

In alignment with the information extraction work (Chapter 3), IBC 2006 and IBC 2009 were 

used for testing and evaluation. The SM and CR rules were developed based on Chapters 12 

and 23 of IBC 2006, and the proposed information transformation algorithm was tested in 

processing information instances of quantitative requirements that were extracted from 

Chapter 19 of IBC 2009 (Chapter 3).  

4.3.2 Tool Selection 

The proposed information extraction algorithm (Chapter 3) and information transformation 

algorithm were combined into one computational platform. The representation of Prolog was 

selected for logic clause representation, in order to facilitate future FOL-based compliance 

reasoning. Prolog is an approximate realization of the logic programming computational 

model on a sequential machine (Sterling and Shapiro 1986). It is the most popular logic 

programming language with a reasoner. The syntax of B-Prolog was used. B-Prolog is a 

Prolog system with extensions for programming concurrency, constraints, and interactive 

graphics. It has bi-directional interface with C and Java (Zhou 2012). For information 

transformation, the SM rules and CR rules were implemented using Python programming 

language (v2.7.3). The “re” module (i.e., regular expression module) in Python was used for 

pattern matching, so that each extracted information instance could be used for subsequent 

processing steps based on their information tags (example tags are shown in Figure 4.2). The 
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ontology developed in Chapter 3 was used to facilitate semantic information transformation.  

4.3.3 Information Representation 

Each requirement rule in IBC 2006 and IBC 2009 is represented as one single HC-type FOL 

rule, implemented as a B-Prolog rule. A B-Prolog rule has the form: “H :- B1, B2, …, Bn. 

(n>0).” H, B1, …, Bn are atomic formulas. H is called the head, and the RHS of ‘:-’ is called 

the body of the rule. A fact is a special kind of rule whose body is always true (Zhou 2012). 

For the detailed syntax of B-Prolog the reader is referred to Section 7.3.1. Instances of 

concepts are represented using unary predicates. For example, the information instance “floor” 

is represented by the predicate “floor(F),” with “floor” being the predicate name and the 

variable “F” (all variables in B-Prolog start with capitalized letter) being the argument for the 

predicate. Instances of relations are represented using binary or n-ary predicates. For example, 

“provided with” is a relation which is represented as the predicate “provided_with(A,B),” 

while the variables “A” and “B” could be defined in the predicates interior_space(A) and 

space_heating_system(B). An example rule is shown in Figure 4.4. 
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Requirement Rule from Regulatory Document (IBC 2006)

Interior spaces intended for human occupancy shall be 

provided with active or passive space heating systems 

capable of maintaining a minimum indoor temperature of 

68 DegreeF at a point 3 feet  above the floor on the design 

heating day. 

Logic Clauses (B-Prolog Rules)

compliant_space_heating_system_of_interior_space(Spac

e_heating_system) :-

interior_space(Interior_space),occupancy(Occupancy),hu

man(Occupancy),intended_for(Interior_space,Occupancy)

,space_heating_system(Space_heating_system),provided_

with(Interior_space,Space_heating_system),(active(Space

_heating_system);passive(Space_heating_system)),minim

um_indoor_temperature(Minimum_indoor_temperature),h

as(Space_heating_system,Minimum_indoor_temperature),

point(Point),greater_than_or_equal(Minimum_indoor_tem

perature,quantity(68,DegreeF)),at(Minimum_indoor_temp

erature,Point),floor(Floor),above(Point,Floor,quantity(3,fe

et)),design_heating_day(Design_heating_day),on(Minimu

m_indoor_temperature,Design_heating_day).

Information Extraction and 

Information Transformation

 

Figure 4.4 An Example Illustrating the Transformed B-Prolog Rule Representation 

4.3.4 Information Tags 

A total of 40 information tags were developed for use in the SM rules and CR rules for 

information transformation. A total of 17, 22, and 1 semantic information tags, syntactic 

information tags, and combinatorial information tags were used, respectively.  

Two main types of semantic information tags were defined (as per Figure 4.5): essential 

information tags and secondary information tags. Essential information tags are tags for 

information that must be defined for this specific type of requirement. Six main types of 

essential information tags were defined for quantitative requirements: subject, compliance 
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checking attribute, comparative relation, quantity value, quantity unit, and quantity reference 

(defined in Chapter 3).   

Secondary information tags are tags for information that are not necessary for this specific 

type of requirement, but may exist in defining the requirement. Two main types of secondary 

information tags were defined for quantitative requirements: restriction and exception. A 

‘restriction’ is a concept that places a constraint on the ‘subject,’ ‘compliance checking 

attribute,’ ‘comparative relation,’ pair of ‘quantity value’ and ‘quantity unit,’ pair of ‘quantity 

value’ and ‘quantity reference,’ or the full requirement. A ‘subject restriction’ is a concept 

that places a constraint on the ‘subject.’ Two subtypes of ‘subject restriction’ were further 

defined: ‘possesive subject restriction’ and ‘nonpossesive subject restriction.’ A ‘possesive 

subject restriction’ places a possessive constraint on the ‘subject,’ thereby restricting the 

‘subject’ to one that possesses certain building parts or properties. For example, in the 

following requirement sentence, “having windows opening on opposite sides” is a 

‘possessive subject restriction’ on “court”: “Courts having windows opening on opposite 

sides shall not be less than 6 feet in width” (Provision 1206.3 of IBC 2006). A ‘nonpossesive 

subject restriction’ places a nonpossesive constraint on the ‘subject,’ thereby restricting the 

‘subject’ to one that does not possess certain building parts or properties. A ‘compliance 

checking attribute restriction’ places a constraint on the ‘compliance checking attribute,’ 

thereby restricting the ‘compliance checking attribute’ to a more specific type. For example, 

in the following requirement sentence, “to the outdoors” is a ‘compliance checking attribute 



139 

 

restriction’ on “minimum openable area”: “The minimum openable area to the outdoors shall 

be 4 percent of the floor area being ventilated” (Provision 1203.4.1 of IBC 2006). A 

‘comparative relation restriction’ places a constraint on the ‘comparative relation,’ thereby 

restricting the ‘comparative relation’ using new conditions. For example, in the following 

requirement sentence, “for each 150 square feet of crawl space area” is a ‘comparative 

relation restriction’ on “not less than”: “The minimum net area of ventilation openings shall 

not be less than 1 square foot for each 150 square feet of crawl space area” (Provision 

1203.3.1 of IBC 2006). A ‘quantity restriction’ places a constraint on the ‘quantity value’ + 

‘quantity unit’/’quantity reference’ pair, thereby specifying the properties (e.g., range) of the 

pair. A ‘full requirement restriction’ places a constraint on the whole quantitative requirement, 

thereby restricting the quantitative requirement with new preconditions. An ‘exception’ 

defines a condition where the described requirement does not apply.   

For syntactic information tags, the Hepple POS Tagger was used to generate POS tag features. 

Some additional syntactic features that were not in the Hepple POS Tagger (e.g., the 

preposition “of”) were also defined. Each selected POS type and defined syntactic feature 

represents a syntactic information tag such as adjective (POS tag ‘JJ’) and preposition “of” 

(the literal “OF”).  

One combinatorial information tag was defined for use in this implementation and was called 

‘directional passive verbal relation’, which is the combination of ‘past participle verb’ (POS 

tag ‘VBN’) and ‘preposition’ (POS tag ‘IN’). Combinatorial information tags are expressive 
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and flexible. Thus, more combinatorial information tags may be defined and used if more 

complex information tags are needed to capture complex meanings or patterns. 
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Figure 4.5 Semantic Information Tags 

4.3.5 Development of Gold Standard 

The gold standard for Chapter 19 of IBC 2009 was developed semiautomatically. In the 

information extraction work (Chapter 3), all sentences that include a number (both 

appearances of digits and words forms of a number) were automatically extracted to ensure a 

100% recall of sentences describing quantitative requirements. Then, the annotators (i.e., the 

author and four other researchers) manually deleted false positive sentences. After that, the 

annotators manually coded the logic clauses based on the extracted information instances 

from each sentence. The annotation was conducted in four steps: (1) an excel sheet for 

recording the logic clauses was prepared and sent to all annotators; (2) a short 15-minute 
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presentation was given to the annotators to outline the objective of the annotation, explain 

concept logic clause element and relation logic clause element, and demonstrate the 

identification of example concept logic clause elements and relation logic clause elements 

from Chapter 12 of IBC 2006; (3) a short 15-minute warm-up and question and answer 

session was conducted where example extracted information instances from Chapter 12 of 

IBC 2006 were used to train the annotators in this annotation task and clear up any doubts or 

confusion. Whenever an annotator asked a question, the answer was broadcasted to all 

annotators together with the question; and (4) the annotators conducted the identification task 

independently in the same session. The inter-annotator agreement between each two 

annotator was evaluated. Table 4.2 shows the inter-annotator agreement results. A gold 

standard was then developed based on the agreement between annotators and discrepancy 

resolution. Two main methods were used for discrepancy resolution: (1) if the majority (i.e., 

at least three) of the annotators achieved agreement, then the agreed on annotation was used; 

(2) if the majority (i.e., at least three) of the annotators did not achieve agreement, then a 

discussion was conducted until majority annotators achieved agreement and the agreed 

annotation was used. For Chapter 19, 62 sentences containing quantitative requirements were 

recognized. Correspondingly, 62 logic clauses were coded. In these 62 logic clauses, 1,901 

logic clause elements were identified, including 568 logic clause elements for describing 

concepts and 1,333 logic clause elements for describing relations between concepts. The 

annotation guidelines are shown in Appendix B. 
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Table 4.2 Inter-Annotator Agreement on Chapter 19 of IBC 2009 for Information 

Transformation 

Annotator A B C D E 
Average 

annotators 

A - 85% 88% 88% 87% 87% 

B 85% - 86% 92% 84% 87% 

C 88% 86% - 86% 89% 87% 

D 88% 92% 86% - 85% 88% 

E 87% 84% 89% 85% - 86% 

Average 

annotators 
87% 87% 87% 88% 86% 87% 

4.3.6 Applying the Information Transformation Method 

The proposed information transformation method was implemented using Python 

programming language. The processing steps of an example sentence, the pseudo codes for 

the main algorithm and the “consume and generate” mechanism are shown in Figure 4.6, 

Figure 4.7, and Figure 4.8, respectively.  
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Figure 4.6 An Example Illustrating the Processing of A Sample Sentence 
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Figure 4.7 Pseudo Code for Main Information Transformation Algorithm 
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Figure 4.8 Pseudo Code for “Consume and Generate” Mechanism 

As shown in Figure 4.6, the information extraction process tags the original sentence with 

information tags (from Part I to Part II). The main information transformation algorithm then 

represents each information instance in the tagged sentence into a four-tuple (from Part II to 

Part III). The CR rules in the main algorithm then process the information instance tuple list 

to resolve conflicts between tuples (from Part III to Part IV). The “consume and generate” 

code then executes the set of SM rules to process each tuple in the list and generate logic 

clause elements based on matching of SM rule patterns (from Part IV to Part V). For each 

information instance, the four-tuple is used to store: (1) the information instance itself, (2) the 

location of the information instance in the corresponding sentence (represented by the starting 
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point of the information instance in the sentence), (3) the length of the information instance in 

terms of number of letters, and (4) the information tag of the information instance (e.g., 

‘Interior’, 0, 15, and ‘s’ for the first information instance in Part III of Figure 4.6).  

In the main algorithm (Figure 4.7), the CR rules are executed through the function “resolve 

conflicts.” Then, the SM rules are executed using the “consume and generate” code to 

process the conflict-free information instances for each sentence of the source text file (in the 

format of a list of four tuples) to generate and display the corresponding logic rule. As shown 

in Figure 4.8, the “consume and generate” code checks through the patterns for each SM rule 

(PATTERN1, PATTERN2, PATTERN3…) and generates logic rules as a result of matching to 

SM rules. In case of no matching, the default negative step length enables backward 

matching. 

The SM rules that were developed in the experiments were classified into four main types:  

simple SM rules, multiple action SM rules, multiple condition SM rules, and complex SM 

rules. A simple SM rule is the simplest type where a strict SM pattern directly maps to a logic 

clause. For multiple action SM rules, other actions (called “supportive actions”) such as 

“look-ahead searching” and “look-back searching” are involved in addition to mapping SM 

patterns to logic clauses. For multiple condition SM rules, the mapping from SM patterns to 

logic clauses are encoded in subrules to handle subtly different cases in rule conditions such 

as the existence/non-existence status of certain information instances. A complex SM rule is a 

combination of the first three types of rules; it utilizes both supportive actions and subrules to 
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support mappings from SM patterns to logic clauses.  

The logic clauses generated from the SM rules were classified into three main types: single 

predicate logic clauses, multiple predicate logic clauses, and compound predicate logic 

clauses. A single predicate logic clause includes only one single predicate [e.g., 

“space(Space)”]. A multiple predicate logic clause includes more than one predicate [e.g., 

“space(Space), area(Area), has(Space, Area)”]. A compound predicate logic clause has 

predicate(s) that embed other predicate(s) as argument(s) [e.g., “greater_than_or_equal(T, 

quantity(71/2, inches))”].  

4.3.7 Results and Discussion 

The proposed information transformation algorithm was tested in transforming information 

instances of quantitative requirements, which were automatically extracted from Chapter 19 

of IBC 2009 (see Chapter 3), into logic rules. The following two experiments were conducted 

for comparing the performances of two methods of information representation: (1) using 

essential semantic information tags only, and (2) using both essential and secondary semantic 

information tags.  

In Experiment #1, only the essential semantic information tags were used: ‘subject’, 

‘compliance checking attribute’, ‘comparative relation’, ‘quantity value’, ‘quantity unit’, and 

‘quantity reference’. A subset of the gold standard (including logic clause elements 

corresponding to the essential semantic information instances) was used as the gold standard 
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for Experiment #1. A total of 53 and 11 SM and CR rules, respectively, were developed. 

In Experiment #2, both essential and secondary information tags were used. Figure 4.2 shows 

examples of some of the information tags that were used. A total of 297 and 9 SM and CR 

rules, respectively, were encoded. The gold standard of Experiment #2 (the full gold standard 

set) contains 177% more logic clause elements than those in the gold standard of Experiment 

#1. This shows that for quantitative requirements, the source text contains much secondary 

information instances. 

Table 4.3 shows the patterns of the most applied SM rules (i.e., rules applied at least three 

times) in the experiments. The patterns of the rest of the applied SM rules are shown in 

Figure 4.9.  

Table 4.3 Patterns of the Most Applied SM Rules in the Experiments 

SM rule pattern Action 
Condition 

case 
Logic clause generated SM rule type 

[‘a’ ‘s’ ‘cr’] (a) ‘OF’ 

(b) [‘a’ ‘s’ ‘cr’] (c) 

    a(A),c(C),has(C,A) Simple 

‘dpvr’ (a) [‘s’ ‘cr’] (b)  look-back search for attribute or 

subject (s); look-back search for 

negation (n) 

n exists s(S),b(B),not a(S,B) Complex 

n not exists s(S),b(B),a(S,B) 

‘c’ (a) ‘v’ (b)  look-back search for attribute or 

subject (s); look-ahead search for 

unit or reference (u); look-back 

search for negation (n) 

n exists not a(S, quantity(b,u)) Complex 

n not exists a(S, quantity(b,u)) 

‘I’ ‘s’ skip     Multiple action 

‘c’ (a) ‘v’ (b) ‘u’ (c) 

‘IN’ (d) ‘s’ (e) 

look-back search for attribute or 

subject (s) 

  distance(Distance),s(S),e(E), 

d(S,E,Distance),a(Distance, 

quantity(b,c)) 

Multiple action 

[‘a’ ‘s’ ‘cr’] (a) ‘CC’ 

(b) [‘a’ ‘s’ ‘cr’] (c) 

    (a(A);c(A))  Simple 
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Table 4.3 (cont.) 

SM Rule Pattern Action 
Condition 

Case 
Logic Clause Generated SM Rule Type 

[‘VB’ ^ ‘be’] (a) ‘IN’ 

(b) [‘cr’ ‘a’ ‘s’] (c) 

look-back search for subject or 

attribute (s)  

  s(S),c(C),b(S,C) Multiple action 

[‘a’ ‘s’ ‘cr’] (a) ‘IN’ 

(b) [‘a’ ‘s’ ‘cr’] (c) 

    a(A),c(C),b(A,C) Simple 

‘Except’ mark the beginning of exception     Multiple action 

‘n’ (a) ‘c’ (b) ‘v’ (c) 

‘u’ (d) 

look-back search for attribute or 

subject (s) 

  s(S),not b(S,quantity(c,d)) Multiple action 

[‘a’ ‘s’] (a) ‘OF’ (b) 

‘v’ (c) [‘u’ ‘a’] (d) 

  pattern 

preceded by 

[‘a’ ‘s’ ‘cr’] 

(e) [‘Has’ 

‘NoHas’ 

‘IN’ ‘OF’ ^ 

‘between’] 

(f) 

a(A),e(E),equal_to(E, 

quantity(c,d))  

Multiple 

condition 

otherwise a(A),equal_to(A, 

quantity(c,d)) 

‘VBP’ (a) ‘VBN’ (b) look-back search for attribute or 

subject (s)  

  b(S) Multiple action 

I’ ‘CC’ skip     Multiple action 

‘s’ (a) ‘MD’ (b) ‘Has’ 

(c) ‘a’ (d) 

look-back search for attribute or 

subject (s) 

pattern 

preceded by 

‘IN’ 

s(S),d(D),has(S,D) Complex 

otherwise a(A),d(D),has(A,D) 

‘TO’ (a) ‘VB’ (b) [‘s’ 

‘cr’ ‘a’] (c) 

look-back search for attribute or 

subject (s)  

s not exists c(C),a_b(C) Complex 

 (1) ‘’: A pair of single quotes encloses information tags 

 (2) ^: A caret separates optional information tags from exceptions 

 (3) (a) , (b) , (c) , etc., show the mapping of components (in SM patterns) to logic clause elements (in generated logic  

    clauses), where an upper case represents a variable 

 (4) Contents in the “logic clause generated” column are case-sensitive 
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Figure 4.9 Patterns of the Rest of the SM Rules Applied in the Experiments 

The overall performance results of Experiment #1 and Experiment #2 are summarized in 

Table 4.4 and Table 4.5, respectively.  
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Table 4.4 Experimental Results Using Essential Information Tags Only 

Measure Concepts Relations Total 

Number of logic clause elements in gold standard 334 749 1,083 

Total number of logic clause elements generated 328 786 1,114 

Number of logic clause elements correctly generated 324 706 1,030 

Precision  98.8% 89.8% 92.5% 

Recall 97.0% 94.3% 95.1% 

F1-measure 97.9% 92.0% 93.8% 

Table 4.5 Experimental Results Using Both Essential and Secondary Information Tags 

Measure Concepts Relations Total 

Number of logic clause elements in gold standard 570 1,349 1,919 

Total number of logic clause elements generated   569 1,367 1,936 

Number of logic clause elements correctly generated 568 1,333 1,901 

Precision  99.8% 97.5% 98.2% 

Recall 99.6% 98.8% 99.1% 

F1-measure 99.7% 98.2% 98.6% 

A comparison between the results of Experiment #1 and those of Experiment #2 is 

summarized in Table 4.6. The number of information tags in Experiment #2 increased 400% 

from that used in Experiment #1. The increase in the number of SM rules was of similar 

magnitude (460%). Through analysis, the causes of this increase in the number of SM rules 

were found to be: (1) the use of more information tags increases the length of patterns in SM 

rules, which in turn increases the specificity of each pattern; and (2) the use of more 

information tags increases the complexity of patterns in SM rules, which in turn increases the 

possible number of patterns. In contrast to SM rules, the number of CR rules decreased from 

Experiment #1 to Experiment #2. This results from the use of more information tags, which 

leads to better distinguishable information instances, and in turn leads to less conflicts 

between information instances.  
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Table 4.6 Comparative Summary of Experiment #1 and Experiment #2 

Measure Experiment #1 Experiment #2 Increase 

Number of information tags used 8 40 + 400% 

Number of semantic mapping (SM) rules used 53 297 + 460% 

Number of conflict resolution (CR) rules used    11 9 - 18% 

Number of logic clause elements built 1,114 1,936 + 174% 

Precision 92.5% 98.2% 6% 

Recall 95.1% 99.1% 4% 

F1-Measure 93.8% 98.6% 5% 

The algorithm achieved 92.5% (95% confidence interval [90.8%, 93.9%]) and 98.2% (95% 

confidence interval [97.5%, 98.7%]), 95.1% (95% confidence interval [93.7%, 96.2%]) and 

99.1% (95% confidence interval [98.5%, 99.4%]), and 93.8% (95% confidence interval 

[92.2%, 95.0%]) and 98.6% (95% confidence interval [98.0%, 99.0%]) overall precision, 

recall, and F1-measure for Experiment #1 and Experiment #2, respectively. Both precision 

and recall improved in Experiment #2, because the use of more information tags could: (1) 

better distinguish and capture the variations in expressions; and (2) help define SM rules with 

more specificity in patterns. Based on the comparative analysis, the following conclusion can 

be drawn: the use of more information tags helps in improving the performance of 

information transformation. 

The precisions of relation logic clause elements are lower than other precision and recall 

values across Experiment #1 and Experiment #2. Through analysis, four main causes for this 

relatively lower performance of precision (89.8% and 97.5% for Experiment #1 and 

Experiment #2, respectively) of relation logic clause elements are recognized: (1) Structural 

ambiguity caused by conjunctive terms: For example, in the following part of sentence, there 
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are two possible syntactic uses of “and” – either linking “wall piers” and “such segments” or 

linking the preceding clause and the following clause: “…shear wall segments provide lateral 

support to the wall piers and such segments have a total stiffness…” (Provision 1908.1.3 of 

IBC 2009). The ability of the SM rules to handle structural ambiguity is limited by the 

development text, which may lead to both false positive and false negative errors; (2) errors 

from incorrect tagging during IE: For example, “professional” (in “registered design 

professional”) was incorrectly tagged as an adjective instead of noun and resulted in a false 

negative instance. This is due to the imperfection of state-of-the-art NLP methods and tools; 

and (3) Errors caused by certain SM rules: For example, an SM rule selects the immediate 

left neighbor of a preposition as the first argument of that preposition. In cases where the 

immediate left neighbor of a preposition is not its real first argument, this SM rule causes 

errors. For example, in the following part of sentence, “gypsum concrete” was mistakenly 

identified as the first argument rather than “clear span” which resulted in both a false positive 

and a false negative: “clear span of the gypsum concrete between supports” (Provision 1914.2 

of IBC 2006). 
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5 CHAPTER 5 – SEMIAUTOMATED IFC EXTENSION  

5.1 Comparison to the State of the Art 

Among the existing construction regulatory ACC efforts, building information models (BIMs) 

were mostly utilized as the representation of design information (Eastman et al. 2009). Due to 

the lack of a fully developed all-inclusive BIM data/information schema that can sufficiently 

represent project information for ACC needs in different areas (e.g., fire safety, structural 

safety, and sustainability), existing ACC efforts typically went into one of two directions for 

preparing BIMs: either creating their own BIM or extending existing BIMs. 

One of the important ACC projects, the Construction and Real Estate NETwork (CORENET) 

project of Singapore (Khemlani 2005), developed their own semantic objects in FORNAX 

library (i.e., a C++ library) to represent building design information. In the U.S., the General 

Services Administration (GSA) design rule checking efforts defined the BIM modeling 

requirements in a well-documented building information modeling guide and allowed users 

to choose their own BIM authoring tool to define building models according to the guide 

(Eastman et al. 2009). In addition, many of the existing research efforts proposed or 

implemented the idea of extending BIMs to fulfill their specific information needs. For 

instance, Nguyen and Kim (2011) and Sinha et al. (2013) extended existing BIMs in 

Autodesk Revit Architecture by creating new project parameters such as “area of opening in 

firewall” and “width of opening in firewall;” Kasim et al. (2013) extended existing BIMs 

through adding new data items into IFC-represented BIMs directly; Nawari (2011) proposed 
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the development of appropriate information delivery manuals (IDM) and model view 

definitions (MVDs) for the ACC domain to achieve the required level of detail on 

IFC-represented BIMs; and Tan et al. (2010) extended IFC in eXtensible markup language 

(ifcXML) to develop an extended building information modeling (EBIM) in XML. 

These existing efforts to extend BIMs for ACC deepened the understanding of BIM modeling 

requirements for ACC. However, the model extension methods were mostly ad-hoc and 

subjective (i.e., relying on subjective developments or extensions by individual software 

developers and/or researchers); and the resulting models were usually still missing essential 

compliance checking (CC)-related information that are needed to achieve complete 

automation in CC (Martins and Monteiro 2013; Niemeijer et al. 2009). In addition, such 

ad-hoc and subjective developments/extensions lack generality and objectivity, which are 

essential to full automation of CC at a broader scale. As a result, a more generalized and 

objective method is needed to extend BIMs for facilitating ACC. Despite the potential of 

using ontology alignment and ontology mapping techniques (using semantic similarities) in 

developing a generalized IFC extension method, to the best of the author’s knowledge there 

was little empirical exploration of this approach. The work of Delgado et al. (2013) and Pan 

et al. (2008) are the closest to this approach.  

Delgado et al. (2013) evaluated 15 ontology matching techniques in matching geospatial 

ontologies with BIM-related ontologies (including an ontology for IFC) to discover 

correspondences of concepts between each pair of ontologies [e.g., between City Geography 
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Markup Language (CityGML) ontology and IFC ontology]. The 15 techniques were 

classified into three categories: string-based techniques, WordNet-based techniques, and 

matching systems techniques. The alignment between CityGML ontology and IFC ontology 

is conceptually and technically similar to extending the IFC. In their experimental results: (1) 

string-based techniques showed the best performance [100% precision (i.e., the number of 

correctly found correspondences divided by the total number of correspondences found), 57.1% 

recall (i.e., the number of correctly found correspondences divided by the total number of 

correspondences that should be found), and 23.2% F1-measure (i.e., the harmonic mean of 

precision and recall)] among the three tested techniques; (2) within the WordNet-based 

techniques, the synonym distance technique showed 41.6% precision, 14.2% recall, and 21.2% 

F1-measure; and (3) within the matching systems techniques, the association rule ontology 

matching approach (AROMA) showed 40% precision, 5.7% recall, and 10% F1-measure. 

These results show that further research is needed to investigate whether the use of other 

semantic relations in WordNet (such as hyponymy), in addition to synonymy, would result in 

higher levels of performance.   

Pan et al. (2008) conducted semiautomated mapping of AEC ontologies, including an IFC 

ontology, using relatedness analysis techniques. In their ontology mapping, three types of 

features were used to provide expert guidance: (1) corpus-based features: co-occurrence 

frequencies between two concepts, (2) attribute-based features: attribute value structures of 

ontologies, and (3) name-based features: stemmed terms of the concept names to use for 
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direct term-based matching. Further research is needed to explore how different types of 

semantic relations among concepts could be leveraged in IFC concept mapping.  

5.2 Proposed IFC Extension Method and Algorithm 

The proposed method for semiautomated IFC extension with regulatory concepts includes 

four primary phases (Figure 5.1): regulatory concept extraction, IFC concept selection, 

relationship classification, and regulatory concept integration. The proposed method is 

semiautomated, where concept extraction, concept matching and similarity assessment for 

IFC concept selection, relationship classification of concepts, and regulatory concept 

integration into IFC class hierarchy are conducted automatically and the user checks the 

results of each phase and removes/fixes errors as necessary.  
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Figure 5.1 The Proposed IFC Extension Method 

5.2.1 Regulatory Concept Extraction 

5.2.1.1 Proposed Concept Extraction Approach 

To conduct ACC in a fully automated way, all concepts related to regulatory requirements in 
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a relevant regulatory document must be incorporated into a BIM schema (e.g., IFC schema). 

The regulatory concept extraction phase aims to automatically extract all concepts from a 

selected, relevant regulatory document. The proposed extraction method utilizes 

pattern-matching-based extraction rules. After all concepts are automatically extracted from a 

textual regulatory document, they get displayed to the user, where the user can review all 

concepts and manually remove those concepts that are incorrect or irrelevant to regulatory 

requirements. The extent of manual effort is minimal, as it only requires a review of the 

extracted concepts to remove clearly incorrect/irrelevant concepts (e.g., given these two 

concepts, the “reinforced” is incorrect, while “reinforced gypsum concrete” is the correct 

concept).  

5.2.1.2 Concept Extraction Rules 

The concept extraction rules are pattern-matching based. Each concept extraction rule has a 

LHS and a RHS. The LHS of a rule defines the pattern to be matched and the RHS defines 

the concept that should be extracted. The patterns are composed of POS features (i.e., POS 

tags). For example, Figure 5.2 shows an example concept extraction (CE) rule for extracting 

four-term concepts like “thermally isolated sunroom addition.” Ten selected POS tags from 

Penn Treebank tag set (Santorini 1990) are also listed in Figure 5.2. Only flattened patterns 

are utilized in the CE rules to avoid recursive parsing. Flattened patterns are patterns that 

include only terminal symbols (i.e., symbols that cannot be further broken down), which are 

analogous to leaf nodes in a tree-like structure. For example, in Table 5.1, the patterns P1, P2, 
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P3, and P4 are flattened because they only contain POS tags (i.e., “NN,” which is the POS tag 

for singular noun). Non-flattened patterns, on the other hand, are patterns that include 

non-terminal symbols (i.e., symbols that could be further broken down). For example, in 

Table 5.1, the “NN NP” pattern in rule R2 is non-flattened because it contains non-terminal 

symbols (i.e., “NP,” which is a phrase level tag for noun phrase that could be further broken 

down). Recursive parsing is avoided, in the proposed method, to enhance computational 

efficiency and matching flexibility, because: (1) recursive parsing increases time 

complexities of parsing algorithms. For example in Table 5.1, to match the pattern P4, the 

number of trials for applying rules R1 and R2 using recursive parsing are minimum 4 and 

maximum 8, higher than the number of trials for applying rules R1, R3, R4, and R5 using 

non-recursive parsing which are minimum 1 and maximum 4; and (2) recursive parsing is 

less flexible. For example, if only P1 and P3 should be matched while P2 and P4 should not, 

this is easy to achieve through applying R1 and R4 using non-recursive parsing, whereas it is 

difficult to achieve using recursive parsing.  
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Figure 5.2 An Example CE Rule and Its Meaning 

Table 5.1 Sample of Patterns and Concept Extraction Rules 

Pattern/Rule Number Pattern/Rule 

P1 NN NN 

P2 NN NN NN 

P3 NN NN NN NN 

P4 NN NN NN NN NN 

R1 NP → NN NN 

R2 NP → NN NP (non-flattened) 

R3 NP → NN NN NN 

R4 NP → NN NN NN NN 

R5 NP → NN NN NN NN NN 

5.2.1.3 Development of POS Pattern Set 

The development of the set of POS patterns to use in the CE rules is conducted based on 

“development text,” following the algorithm shown in Figure 5.3. A development text is a 
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sample of regulatory text (Chapter 12 of IBC 2006 was used in this dissertation) that is used 

to identify common POS patterns in the text for developing the POS pattern set. The 

algorithm is executed after (1) the gold standard of regulatory concepts for the development 

text (i.e., a list of all regulatory concepts in the development text) is created, and (2) the POS 

tags for all sentences in the development text are generated. The algorithm incrementally 

processes concepts in the gold standard using two levels of loops: the outer loop accesses 

each sentence in the gold standard and the inner loop accesses each concept in the sentence 

being accessed. In the processing of each concept, the POS pattern for the concept is first 

tentatively collected into the POS pattern set. Then the POS pattern set is used to extract 

concepts from all sentences. The precision (i.e., the number of correctly extracted concepts 

divided by the total number of extracted concepts), recall (i.e., the number of correctly 

extracted concepts divided by the total number of concepts that should be extracted), and 

F1-measure (harmonic mean of precision and recall) are then calculated for the result. If the 

recall and F1-measure increase comparing to the previous recall and F1-measure (without the 

tentatively added POS pattern), then the addition of the POS pattern into the POS pattern set 

is committed. This process iterates through all concepts in all sentences. The algorithm 

iteratively improved recall and F1-measure of extraction by incorporating more POS patterns.  
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Figure 5.3 Flow Chart of the POS Pattern Set Development Algorithm 
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5.2.1.4 Exclusion Word Removal 

Exclusion words are defined, here, as words (unigram, bigram, or multigram) that match 

certain POS patterns in the CE rules but should not be extracted as concepts. The POS tags of 

these exclusion words usually introduce ambiguity because they carry more than one lexical 

or functional category/meaning, which may introduce false positives (i.e., incorrectly 

extracted concepts) in concept extraction. For example, “VBG” (POS tag for both “verb 

gerund” and “present participle”) is useful to extract “verb gerund” concepts like “opening,” 

but it introduces false positives when incorrectly extracting “present participle” words like 

“having” as concepts. To avoid introducing false positives during concept extraction, an 

exclusion word list is used.  

5.2.2 IFC Concept Selection 

5.2.2.1 Proposed Concept Selection Approach 

The IFC concept selection phase aims to (1) automatically find the most related concept(s) in 

the IFC schema [called F-concept(s) hereafter] to each extracted regulatory concept (called 

R-concept hereafter) and (2) accordingly, allow the user to select the F-concept(s) for each 

R-concept. In the targeted IFC extension method, the extension of the IFC schema is an 

incremental process; each R-concept is added to the IFC schema one by one, incrementally. 

As a result, an R-concept that gets selected (and thus added) to the IFC schema becomes part 

of the schema (i.e., becomes an F-concept for the following automated selection step). The 

automated IFC concept selection method includes four steps/techniques (as shown in Figure 
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5.4): (1) Step 1: stemming, which reduces words to their stems (i.e., base or root form); (2) 

Step 2: term-based matching, which aims to find all F-concepts that share term(s) with an 

R-concept; and (3) Step 3: semantic-based matching, which aims to find all semantically 

related F-concepts to an R-concept. Semantic-based matching is used, to add a deeper level of 

searching, if the term-based matching fails to find candidate concepts; and (4) Step 4: 

semantic similarity (SS) scoring and ranking, which measures the SS between each candidate 

F-concept (from Step 2 and Step 3) and the R-concept, and accordingly ranks all candidate 

F-concepts related to that one single R-concept for final F-concept user selection. The same 

process is repeated for all R-concepts and their related candidate F-concepts.  
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 Figure 5.4 Steps for IFC Concept Selection Method 

5.2.2.2 Stemming 

Stemming is utilized in both term-based and semantic-based matching. Concepts are 

stemmed before matching to avoid incorrect mismatching due to variant word forms (rather 

than variant meaning). For example, with stemming applied, “foot” could be matched to “feet” 
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(the stem of “feet” is “foot”).  

5.2.2.3 Term-Based Matching 

For term-based matching, three types of matching are used, based on the following two 

heuristic rules, H1 and H2: (1) “First Term Term-Based Matching”: the first term in the 

R-concept is terminologically matched against all F-concepts to find related F-concepts, (2) 

“Last Term Term-Based Matching”: the last term in the R-concept is terminologically 

matched against all F-concepts to find related F-concepts, and (3) “First and Last Term 

Term-Based Matching”: the first and last terms in the R-concept are terminologically 

matched against all F-concepts to find related F-concepts. Which type of matching to use 

depends on two main factors: (1) the number of terms in the concept name of the R-concept, 

whether the concept name is unigram (i.e., concept name with only one term), bigram (i.e., 

concept name with two terms), or multigram (i.e., concept name with three or more terms); 

and (2) the types of POS patterns in the concept name of the R-concept, whether the pattern is 

“N” (i.e., a POS pattern with only one POS tag and the POS tag is a noun), “NN” (i.e., a POS 

pattern starting with a noun and ending with a noun), or “JN” [i.e., a POS pattern starting 

with a prenominal modifier (e.g., adjective) and ending with a noun]. The matching strategy 

is illustrated in Figure 5.5. For example, the R-concept “interior space” is a bigram and its 

POS pattern (“JJ NN”) matches “JN;” therefore, last term matching is used to find matching 

concepts that contain the term “space” (i.e., the last term in the R-concept).  
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 H1: The term that has a nominal POS tag (i.e., noun) is the primary meaning-carrying 

term in a multi-term concept name.  

 H2: The terms that have non-nominal POS tags (e.g., “JJ”) are the secondary 

meaning-carrying terms in a multi-term concept name, which add to or constrain the 

meaning as modifiers.  

Extracted Regulatory 

Concept (R-Concept)

Unigram
Bigram or 

Multigram

“N” “NN” “JN”

First Term 

Matching

First Term 

Matching 

and Last 

Term 

Matching

 Last Term 

Matching

 

Figure 5.5 Term-Based and Semantic-Based Matching Strategy 

5.2.2.4 Semantic-Based Matching 

In semantic-based matching, the semantic relations of WordNet (Fellbaum 2005) are utilized 

to find concept matches beyond term-based matching. Three types of these relations are used: 

hypernymy, hyponymy, and synonymy. These three types were selected because they are 

most relevant to the superclass-subclass structure of the IFC class hierarchy. Hypernymy is a 
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semantic relation where one concept is the hypernym (i.e., superclass) of the other. For 

example, “room” is a hypernym of “kitchen.” Hyponymy is the opposite of hypernymy where 

one concept is the hyponym (i.e., subclass) of the other. For example, “kitchen” is a hyponym 

of “room.” Synonymy is the semantic relation between different concepts who share the same 

meaning. For example, “gypsum board,” “drywall,” and “plasterboard” all share the same 

meaning of “a board made of gypsum plaster core bonded to layers of paper or fiberboard.” 

Three types of matching are used, which semantically match the first term, the last term, or 

the first term and last term in the R-concept, respectively, against all F-concepts to find 

related F-concepts: “first term semantic-based matching,” “last term semantic-based 

matching,” and “first and last term semantic-based matching.” To conduct the semantic 

matching, the hypernyms, hyponyms, and synonyms of the first/last term are determined, 

based on WordNet, and then term-matched against all F-concepts to find related F-concepts. 

Similar to term-based matching, which type of matching to use depends on (1) the number of 

terms in the concept name of the R-concept and (2) the POS pattern types in the concept 

name of the R-concept. The matching strategy is illustrated in Figure 5.5.  

5.2.2.5 Semantic Similarity Scoring and Ranking 

The proposed SS scoring method follows heuristic rules H3, H4, and H5.  

 H3: In a multi-term concept name, the contribution of each term’s carried meaning to 

the meaning of the whole concept decreases from right to left; the first term 

contributes the least to the meaning of the whole concept. 
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 H4: The length of a concept name is related to its level in a concept hierarchy. The 

shorter the length of a concept name is, the more general the concept is; and thus the 

higher its level in a concept hierarchy. The longer the length of a concept name is, the 

more specific the concept is; and thus the lower its level in a concept hierarchy. A 

superconcept is, thus, likely to have a shorter concept name length than its 

subconcept.  

 H5: The difference in length between two concept names (where the length is 

measured in number of terms) is indicative of the closeness of the two concepts in a 

concept hierarchy; the smaller the difference, the closer the two concepts are, and vice 

versa. Sibling concepts are, thus, likely to have a small difference between their 

concept name lengths.  

Based on these heuristic rules, Equation (5.1) and Equation (5.2) are proposed as two 

alternative functions for SS scoring, where SSRF1 and SSRF2 are the concept-level SS scores 

between an R-concept and an F-concept, SSRmFk is the term-level SS score between the mth 

term in the R-concept and the kth term in the F-concept, m is the ordinal number for the term 

Rm in R-concept, k is the ordinal number for the term Fk in F-concept, LF is the length of 

F-concept measured in number of terms, and LR is the length of R-concept measured in 

number of terms. 

𝑆𝑆𝑅𝐹1 =
1

𝐿𝐹
∑

2𝑘

𝐿𝐹(𝐿𝐹+1)

𝐿𝐹

𝑘=1
𝑆𝑆𝑅𝑚𝐹𝑘                        (5.1) 
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𝑆𝑆𝑅𝐹2 =
1

|𝐿𝑅−𝐿𝐹|+1
∑

2𝑘

𝐿𝐹(𝐿𝐹+1)
𝑆𝑆𝑅𝑚𝐹𝑘

𝐿𝐹

𝑘=1
                   (5.2) 

Any existing term pair SS measure, such as the Shortest Path Similarity measure or the 

Leacock-Chodorow Similarity measure, can be used (after testing) to compute SSRmFk. In 

Equation (5.1) and Equation (5.2), each term-level SS score (i.e., SSRmFk) is discounted using 

the factor 
2

( 1)F F

k

L L 
. This term-level discount factor is based on heuristic rule H3. The 

concept-level SS score between the R-concept and the F-concept (i.e., SSRF) is determined by 

further discounting the summation of all discounted term-level SS scores (of all term pairs 

formed between the matching term of R-concept and each term of the F-concept). In 

Equation (5.1), the concept-level discount factor is 
1

FL
, which linearly discounts the 

summation using the length of the F-concept. This discount favors concepts at higher levels 

in a concept hierarchy and follows heuristic rule H4 to identify higher-level concepts based 

on the lengths of concept names. In Equation (5.2), the concept-level discount factor is 

1

| | 1R FL L 
, based on the absolute length difference between the concept names of R-concept 

and F-concept. This discount favors concepts at similar levels in a concept hierarchy and 

follows heuristic rule H5. 

Accordingly, the proposed SS scoring method is summarized in Figure 5.4. Combinations of 

different concept-level SS scoring functions [i.e., Equation (5.1) and Equation (5.2)] and 

term-level SS scoring functions (i.e., existing similarity measures such as Shortest Path 

Similarity) should be experimentally tested to select the best-performing combination. 
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Separate testing is conducted for term-based matched F-concepts (i.e., F-concepts found 

using term-based matching, from Step 2) and semantic-based matched F-concepts (i.e., 

F-concepts found using semantic-based matching, from Step 3). The experimental testing and 

results are presented and discussed in the Experimental Testing and Evaluation section 

(Section 5.3).   

For SS ranking, all candidate F-concepts related to one single R-concept are ranked according 

to their SS scores, in order of decreasing score. A threshold value or a maximum permitted 

value is further used to filter the most related F-concept(s) among the candidate concepts. 

The threshold is the minimum SS score below which a candidate F-concept is considered 

semantically not related (and thus ineligible for selection for this R-concept). The maximum 

permitted value is a natural number (default is 1) that defines at most how many number of 

F-concepts could be selected for a single R-concept. Both, threshold value and maximum 

permitted value, are set by the user. For example, using term-based matching, a number of 

F-concepts were found to match “exterior wall” through the matching term “wall,” such as 

“wall” and “curtain wall.” Then, the SS scores were computed between “exterior wall” and 

each of the matched F-concepts, such as “wall” and “wall,” and “wall” and “curtain wall.” 

The candidate F-concepts were ranked according to the SS scores and the highest scored 

candidates were automatically selected, according to the default maximum permitted value. If 

the maximum permitted value is set to 1 and Equation (5.1) is used, “wall” is selected 

because of its highest SS score. Following a similar process, but using semantic-based 
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matching, “window” was selected as the match to “skylight.” 

5.2.3 Relationship Classification 

5.2.3.1 Proposed Classification Approach 

The relationship classification phase aims to classify the relationship between each pair of 

R-concept and F-concept. ML techniques are used to automatically predict the relationship 

between a concept pair based on the concept features of the pair. 

5.2.3.2 Types of Relationships 

Four types of relationships are considered (Table 5.2): (1) equivalent concept, indicating that 

the R-concept and the F-concept are equivalent (e.g., “diameter” and “diameter dimension”); 

(2) superconcept, indicating that the R-concept is a superconcept of the F-concept (e.g., 

“lighting” and “surface style lighting”); (3) subconcept, indicating that the R-concept is a 

subconcept of the F-concept (e.g., “exterior wall” and “wall”); and (4) associated concept, 

indicating that the R-concept and the F-concept are associated (bidirectional relationship) 

(e.g., “floor joist” and “beam”). 

Table 5.2 Types of Relationships Considered 

Relationship type Relationship interpretation1 

Equivalent concept R is equivalent to F 

Subconcept R is subconcept of F 

Superconcept R is superconcept of F 

Associated concept R and F are associated 

1 R means R-concept; F means F-concept 
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5.2.3.3 Types of Features 

The following initial set of eight features were identified, which includes a mix of syntactic 

(i.e., related to syntax and grammar) and semantic (i.e., related to context and meaning) 

features (see Table 5.3): (1) RTermNum: the number of terms in the concept name of the 

R-concept, whether the concept name is unigram, bigram, or multigram; (2) RTermPOS: the 

type of POS pattern in the concept name of the R-concept, whether the pattern is “N,” “NN,” 

or “JN;” (3) RMatchType: the match type of R-concept, in terms of which term in the 

R-concept name matches a term in the F-concept name, whether it is the “first” or “last” term 

in the R-concept name; (4) RelMatchType: the match type between R-concept and F-concept, 

whether it is “term-based” match, “synonym”-based match (i.e., the matched term in the 

F-concept name is a synonym of the matching term in the R-concept name), 

“hyponym”-based match, or “hypernym”-based match; (5) FMatchType: the match type of 

F-concept, in terms of which term in the F-concept name matches the matching term in the 

R-concept name, whether it is “first,” “middle,” or “last;” (6) FTermNum: the number of 

terms in the concept name of the F-concept, whether the concept name is unigram, bigram, or 

multigram; (7) FTermPOS: the type of POS pattern in the concept name of the F-concept, 

whether the pattern is “N,” “NN,” or “JN;” and (8) DOM: the degree of match, which is 

represented as a Boolean value describing if the R-concept and the F-concept match term by 

term, with stemming applied, where one represents match and zero represents no match. 

These features were identified based on the following heuristic rules:  
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 H4 (see above). 

 H6: The type of POS pattern in the name of a concept affects its meaning; and since 

the concept names are all noun phrases, the most distinguishing POS pattern is 

whether the concept has a modifier(s), and if yes, whether the modifier(s) is/are 

nominal (i.e., noun or noun sequences).  

 H7: The match type, in terms of which term in each concept name is matched, affects 

the relationship between the matched concepts.  

 H8: The match type, in terms of the type of relationship between the matched terms in 

both concepts, affects the relationship between the matched concepts.  

 H9: If, in the same domain, two concept names match term by term (with stemming 

applied), then the two concepts are likely to be equivalent.   

Table 5.4 shows some example concept pairs and their features. The final set of features is 

determined after conducting feature selection (as further discussed in the Experimental 

Testing and Results section).  

Table 5.3 The Syntactic and Semantic Features used for the Relationship Classifier 

 

Feature 

RTermNum 
RTerm

POS 

RMatch

Type 

RelMatch

Type 

FMatch

Type 
FTermNum 

FTerm

POS 
DOM 

Possible 

values 

Unigram, 

bigram, 

multigram 

N, NN, 

JN 

First, 

last 

Synonym, 

hypernym, 

hyponym,  

term-based 

First, 

middle, 

last 

Unigram, 

bigram, 

multigram 

N, 

NN, 

JN 

1, 0 
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Table 5.4 Example R-Concepts, Matched F-Concepts, and their Feature Values 

Concept pair Feature and feature values 

R-concept F-concept RTermNum 
RTerm

POS 

RMatch

Type 
RelMatchType 

FMatch

Type 
FTermNum 

FTerm

POS 
DOM 

Door Door Unigram N First Term-based First Unigram N 1 

Exterior 

wall 
Wall Bigram NN Last Term-based First Unigram N 0 

Lighting 
Surface style 

lighting 
Unigram N First Term-based Last Multigram NN 0 

Skylight Window Unigram N First Synonym First Unigram N 0 

Floor joist Beam Bigram N Last Synonym First Unigram NN 0 

Water-proof 

joint 

Structural 

connection 
Bigram NN Last Hypernym Last Bigram JN 0 

 

5.2.4 Regulatory Concept Integration 

5.2.4.1 Proposed Concept Integration Approach 

The regulatory concept integration phase aims to integrate the extracted and matched 

regulatory concepts (R-concepts) into the IFC schema. For the R-concepts that are 

successfully matched with F-concepts, if the relationship between an R-concept and an 

F-concept was classified as a superconcept or subconcept, then the R-concept is 

automatically integrated into the IFC schema using mapping rules. If the relationship between 

an R-concept and an F-concept was classified as an equivalent concept, then no entity for the 

R-concept is created and, instead, a rule that indicates this equivalent relationship is created 

(e.g., a logic rule where F-concept forms the body and R-concept forms the head) to process 

instances of the equivalent R-concepts to F-concepts when needed. If the relationship 

between an R-concept and an F-concept was classified as associated concept, then an entity 

for the R-concept is created as a subentity of a newly created concept called “IfcAccConcept,” 
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instances of the association relations are created using the newly added entities for 

representing regulatory relations described in Section 5.3.4.1. For the regulatory concepts that 

are not matched with any IFC concepts, the corresponding entities of these R-concepts are 

created as subentities of the newly created concept entity “IfcAccConcept.” 

5.2.4.2 Mapping Rules 

The mapping rules for superconcept and subconcept relationships are shown in Figure 5.6. If 

an R-concept is a subtype of an F-concept, then an entity for the R-concept is created with the 

declaration that it is a subtype of the F-concept. If an R-concept is a supertype of an 

F-concept, then an entity for the R-concept is created with the declaration that it is a 

supertype of the F-concept. 



176 

 

mapping

mapping

mapping

mapping

C1 is subtype of C2 

ENTITY IfcC1

   SUBTYPE OF (IfcC2);

END_ENTITY;

Mapping rule:

Application:
Skylight is subtype of 

Window 

ENTITY IfcSkylight

   SUBTYPE OF (IfcWindow);

END_ENTITY;

C1 is supertype of C2 

ENTITY IfcC1

   SUPERTYPE OF (ONEOF 

(IfcC2));

END_ENTITY;

Mapping rule:

Application:
Lighting is supertype of 

Surface Style Lighting 

ENTITY IfcLighting

   SUPERTYPE OF (ONEOF 

(IfcSurfaceStyleLighting));

END_ENTITY;

 

Figure 5.6 Mapping Rules for Regulatory Concept Integration into IFC 

5.3 Experimental Testing and Evaluation 

The proposed method for semiautomated IFC extension was tested on extending the IFC 

class hierarchy (based on schema version IFC2X3_TC1) using regulatory concepts from IBC. 

Two chapters, Chapter 12 of IBC 2006 and Chapter 19 of IBC 2009, were randomly selected. 

Chapter 12 was used for: (1) developing the set of POS patterns for use in regulatory concept 

extraction (Phase 1), (2) selecting the best combination of SS scoring function and SS 

measure for IFC concept selection (Phase 2), and (3) training the ML classifier for 

relationship classification (Phase 3). Chapter 19 was used for testing and evaluating each of 
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the following sub-methods/algorithms: regulatory concept extraction, IFC concept selection, 

relationship classification, and regulatory concept integration. Each submethod/algorithm was 

tested separately.  

5.3.1 Testing and Evaluation of Regulatory Concept Extraction 

5.3.1.1 Gold Standard 

The gold standards of R-concepts for Chapter 12 of IBC 2006 and Chapter 19 of IBC 2009 

were developed manually by the author. A gold standard refers to a benchmark against which 

testing results are compared for evaluation. An R-concept is a concept in a regulatory 

document that defines a “thing” (e.g., subject, object, abstract concept). The longest span for 

each noun phrase was manually recognized and extracted as an R-concept. The longest span 

could be multi-term (e.g., “minimum net glazed area”) or single-term (e.g., “window”). For 

example, concepts in the list L1 were recognized and extracted from Sentence S6. The gold 

standards of Chapter 12 and Chapter 19 include 368 and 821 concepts, respectively. The 

concepts extracted by the algorithm are then compared to the concepts in the gold standard 

for evaluating the algorithm in terms of precision and recall of extracted concepts.    

 S6: “Wall segments with a horizontal length-to-thickness ratio less than 2.5 shall be 

designed as columns.” 

 L1: [‘wall_segments’, ‘horizontal_length-to-thickness_ratio’, ‘columns’] 
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5.3.1.2 Algorithm Implementation 

The proposed regulatory concept extraction method was implemented in Python 

programming language (Python v.2.7.3). The Stanford Parser (version 3.4) (Toutanova et al. 

2003) was selected and used to generate the POS tags for each word. The Stanford Parser 

used Penn Treebank tag set which includes 36 tags. Ten, out of the 36 tags, were used (shown 

in Figure 5.2).  

5.3.1.3 Evaluation Metrics 

Regulatory concept extraction was evaluated in terms of precision, recall, and F1-measure. 

Precision, here, is defined as the ratio between the number of correctly extracted concepts and 

the total number of extracted concepts. Recall, here, is defined as the ratio between the 

number of correctly extracted concepts and the total number of concepts that should be 

extracted (i.e., the number of concepts in the gold standard). F1-measure is defined as the 

harmonic mean of precision and recall. A higher recall is more important than precision 

because the overall method of IFC extension is semiautomated; precision errors could be 

detected and eliminated by the user during user concept selection.    

5.3.1.4 Development Results and Analysis 

The development of the set of POS patterns to use in the CE rules was conducted following 

the algorithm shown in Figure 5.3. Figure 5.7 shows the final set of POS patterns, which 

consists of 39 patterns. These 39 POS patterns were used as conditions for 39 CE rules, one 



179 

 

POS pattern for one CE rule. For example, the pattern “JJ” “JJ” “JJ” “NN” was used for a CE 

rule which extracts three consecutive adjectives followed by a singular/mass noun as a 

concept, such as in the concept “minimum net glazed area.” 

Table 5.5 shows the performance of extracting R-concepts from the development text 

(Chapter 12 of IBC 2006). Through error analysis two sources of errors were found: (1) POS 

tagging error, which accounted for 38.1% of the errors. For example, “herein” was 

incorrectly tagged as “NN” instead of the correct tag “RB,” and was thus incorrectly 

extracted; and (2) ambiguity of the POS tag “VBG” between gerund and present participle, 

which accounted for 61.9% of the errors. For example, “being” is a present participle and 

thus does not represent a concept, but it was extracted because the POS tag “VBG” was 

included in the POS patterns for representing gerund. While addressing the first source of 

errors depends on the improvement of existing POS taggers, the second source was addressed 

by adding the false positive present participle terms (e.g., “having,” “being,” “involving”) to 

the exclusion word list. Membership in the exclusion word list prevents a word/phrase from 

being extracted in spite of matching a POS pattern in the set. The performance of regulatory 

concept extraction using the exclusion word list is shown in Table 5.5. Precision increased, 

from 93.4% to 97.1%, without decreasing recall.  
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Figure 5.7 The Set of Flattened POS Patterns Developed 

Table 5.5 Performance of Extracting R-Concepts from Development Text (Chapter 12 of IBC 

2006) 

Method 

Number of 

R-Concepts in 

gold standard 

Number of 

extracted 

R-concepts 

Number of 

correctly extracted 

R-concepts 

Precision Recall 
F1- 

measure 

Without exclusion 

word list 
368 391 365 93.4% 99.2% 96.2% 

With exclusion 

word list 
368 376 365 97.1% 99.2% 98.1% 

5.3.1.5 Testing Results and Discussion 

The regulatory concept extraction algorithm was tested on Chapter 19 of IBC 2009. The 

precision, recall, and F1-measure are 89.4%, 94.2%, and 91.7%, and 88.7%, 94.2%, and 

91.4%, with and without the use of exclusion word list, respectively. Table 5.6 shows the 
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performance results. Through error analysis, when using the exclusion word list, four sources 

of errors were found: (1) POS tagging errors, which accounted for 20.7% of the errors. For 

example, “corresponding” was incorrectly tagged as “NN” (as opposed to “VBG”); and, thus, 

“force_level_corresponding” was incorrectly extracted as a concept; (2) ambiguity of POS 

tag “VBG” between gerund and present participle, which accounted for 8.7% of the errors. 

For example, “excluding” was incorrectly extracted as a concept because the POS tag for 

present participle was “VBG” (although it does not represent a meaningful nominal concept); 

(3) word continuation using hyphen, which accounted for 27.2% of the errors. For example, 

“pro_vide” was incorrectly extracted as a concept because the word continuation in “pro-vide” 

led to “pro” and “vide” be tagged as two words with the tags “JJ” and “NN;” and (4) missing 

POS patterns, which accounted for 43.5% of the errors. For example, 

“concrete_breakout_strength” and “breakout_strength_requirements” were incorrectly 

extracted as two concepts (instead of one concept, 

“concrete_breakout_strength_requirements”) because the POS pattern “JJ” “JJ” “JJ” “NN” 

“NNS” was missing.  

Preventing errors from source (1) requires improvement of POS taggers. Preventing errors 

from source (3) requires a better word continuation representation manner instead of using 

hyphen, in order to avoid confusion with hyphens used for conjoining noun modifiers. 

Preventing errors from sources (2) and (4) could be partially prevented by further developing 

the exclusion word list and POS pattern set, respectively. The use of the developed exclusion 
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word list [to prevent errors from source (2)] prevented 6 instances of false positives and 

increased precision from 88.7% to 89.4%. More terms could be added, iteratively, to the 

exclusion word list to further enhance performance. Similarly, errors from source (4) could 

be prevented by adding more patterns to the POS pattern set until all possible POS patterns 

are included. While theoretically this POS pattern set is infinite (e.g., infinite number of “JJ” 

before a “NN”), in practice this POS pattern set is quite limited [e.g., words with more than 7 

prenominal modifiers (e.g., white thin high strong stone north exterior ancient wall) are 

seldom (if not never) seen].  

To test the effect of iterative development of the exclusion word list and POS pattern set, 

three more experiments were conducted to: (1) add the false positive present participle terms 

(identified as a result of initial testing) to the exclusion word list and use it in further testing; 

(2) add the missing POS patterns (identified as a result of initial testing) to the pattern set and 

use it in further testing; and (3) use both, the extended exclusion word list and the extended 

POS pattern set, in further testing. Table 5.7 shows the performance results of the three 

experiments. The results show that the use of the extended exclusion word list and the POS 

pattern set both improve the performance of concept extraction, with the latter showing a 

larger improvement.  
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Table 5.6 Performance of Extracting R-Concepts from Testing Text (Chapter 19 of IBC 

2009) 

Method 

Number of 

R-concepts in 

gold standard 

Number of 

extracted 

R-concepts 

Number of 

correctly extracted 

R-concepts 

Precision Recall 
F1- 

measure 

Without exclusion 

word list 
821 871 773 88.7% 94.2% 91.4% 

With exclusion 

word list 
821 865 773 89.4% 94.2% 91.7% 

 

Table 5.7 Performance of Regulatory Concept Extraction after Improvements 

Method 

Number of 

R-concepts 

in gold 

standard 

Number of 

extracted 

R-concepts 

Number of 

correctly 

extracted 

R-concepts 

Precision Recall 
F1- 

measure 

Baseline condition (from Table 5.6) 821 865 773 89.4% 94.2% 91.7% 

With extended exclusion word list 821 856 774 90.4% 94.3% 92.3% 

With extended POS pattern set 821 860 784 91.2% 95.5% 93.3% 

With both extended exclusion word 

list and extended POS pattern set 
821 851 785 92.2% 95.6% 94.0% 

5.3.2 Testing and Evaluation of IFC Concept Selection 

5.3.2.1 Gold Standard 

The gold standards of F-concepts for Chapter 12 of IBC 2006 and Chapter 19 of IBC 2009 

were developed manually by the author. The F-concepts were initially identified using the 

matching and ranking algorithms and then filtered manually. The gold standards of Chapter 

12 and Chapter 19 include 343 and 588 F-concepts, respectively.   

5.3.2.2 Algorithm Implementation 

The proposed IFC concept selection method and algorithm were implemented in Python 

programming language (Python v.2.7.3). The Porter Stemmer (Porter 1980) was used for 
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stemming. The “re” (regular expression) module in python was utilized to support the 

matching algorithms. The hypernymy, hyponymy, and synonymy relations in WordNet were 

utilized through the Natural Language Toolkit (NLTK) (Bird et al. 2009) WordNet interface 

in python.  

5.3.2.3 Evaluation Metrics 

IFC concept selection was evaluated in terms of adoption rate. Adoption rate, here, is defined 

as the number of automatically selected F-concepts that were adopted divided by the total 

number of automatically selected F-concepts.  

5.3.2.4 Development Results and Analysis 

For term-based matched F-concepts, Table 5.8 shows the results of testing combinations of 

different concept-level SS scoring functions and term-level SS scoring functions. Table 5.9 

shows some example concepts that were extracted and matched using the different 

combinations. For concept-level SS scoring, Equation (5.1) and Equation (5.2) were tested. 

As shown in Table 5.8, Equation (5.1) consistently outperformed Equation (5.2). Equation 

(5.1) prefers shorter F-concepts and, thus, tends to select F-concepts that are higher in the 

concept hierarchy (most likely a superclass). In comparison, Equation (5.2) prefers 

F-concepts with similar length to the R-concept and, thus, tends to select F-concepts that are 

at a similar level in the concept hierarchy to the R-concept. However, an F-concept located at 

a similar level to the R-concept may deviate a lot in meaning because concepts at similar 

level in a concept hierarchy could belong to different branches of the hierarchy. A matched 
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higher-level F-concept, thus, usually has higher relatedness to the R-concept than a matched 

similar-level F-concept. For example, using Shortest Path Similarity (for term-level SS 

scoring), Equation (5.1) resulted in matching of “net_free_ventilating_area” and 

“quantity_area,” whereas Equation (5.2) resulted in the matching of 

“net_free_ventilating_area” and “annotation_fill_area_occurrence.” “Quantity_area” was 

correctly a superconcept of “net_free_ventilating_area” and was adopted. On the other hand, 

the meaning of “annotation_fill_area_occurrence” was far from that of 

“net_free_ventilating_area” despite being at a similar level in the concept hierarchy. Based 

on these experimental results, Equation (5.1) was selected for concept-level SS scoring for 

term-based matched F-concepts. 

For term-level SS scoring, the following five existing SS measures were tested: Shortest Path 

Similarity, Jiang-Conrath Similarity, Leacock-Chodorow Similarity, Resnik Similarity, and 

Lin Similarity (see Section 2.5.3). The Shortest Path Similarity is the simplest among the five 

tested measures, and achieved the best adoption rate of 87.1%. The Shortest Path Similarity 

and Leacock-Chodorow Similarity are based on shortest path between two concepts in a 

taxonomy. The other three SS measures are based on information content of the two concepts’ 

least common subsumer (i.e., the lowest-level concept that is a superconcept of both 

concepts). The performance drop from the Shortest Path Similarity to the other similarity 

measures (except for Leacock_Chodorow Similarity) shows the advantage of a shortest path 

measure in comparison to an information content of the least common subsumer measure. 
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Empirically, this is because the length of path between two concepts is more distinctive than 

the information content of their least common subsumer. For shortest path measures, the 

Leacock-Chodorow Similarity takes the depth of the taxonomy into consideration, in addition 

to the use of shortest path. The performance drop from the Shortest Path Similarity to the 

Leacock-Chodorow Similarity indicates that the absolute taxonomy depth is not a distinctive 

feature in the context of concept matching. Based on these experimental results, the Shortest 

Path Similarity was selected for term-level SS scoring for term-based matched F-concepts. 

Table 5.8 Performances of Different SS Scoring Methods for Term-Based Matched 

F-Concepts 

Proposed 

concept-level SS 

scoring function 

Term-level SS scoring 

function 

Number of related 

F-concepts found 

Number of related 

F-concepts adopted 

Adoption 

rate 

Eq. (5.1) Shortest Path Similarity 286 249 87.1% 

Eq. (5.2) Shortest Path Similarity 286 225 78.7% 

Eq. (5.1) Jiang-Conrath Similarity 286 244 85.3% 

Eq. (5.2) Jiang-Conrath Similarity 286 224 78.3% 

Eq. (5.1) Leacock-Chodorow Similarity 286 237 82.9% 

Eq. (5.2) Leacock-Chodorow Similarity 286 202 70.6% 

Eq. (5.1) Resnik Similarity 286 246 86.0% 

Eq. (5.2) Resnik Similarity 286 228 79.7% 

Eq. (5.1) Lin Similarity 286 246 86.0% 

Eq. (5.2) Lin Similarity 286 224 78.3% 

 

 

 

 

 

 



187 

 

Table 5.9 Examples of Matched R-Concepts and F-Concepts Using Different SS Scoring 

Methods for Term-Based Matched F-Concepts  

Extracted 

R-concept 

Proposed 

concept-level SS 

scoring function 

Matched F-concept 

using Shortest Path 

Similarity1 

Matched F-concept using 

Leacock-Chodorow 

Similarity1 

Matched F-concept 

using Jiang-Conrath 

Similarity1 

Exterior wall 
Eq. (5.1) Wall Wall Wall 

Eq. (5.2) Curtain wall Curtain wall Curtain wall 

Lighting 

Eq. (5.1) 
Surface style 

lighting 
Light source 

Surface style 

lighting 

Eq. (5.2) 
Surface style 

lighting 
Light source 

Surface style 

lighting 

Conditioned 

space 

Eq. (5.1) Space Space Space 

Eq. (5.2) Interior space Space program Interior space 

Dwelling unit 

entrance door 

Eq. (5.1) Door Door Door 

Eq. (5.2) Door Door lining properties Door 

Net free 

ventilating 

area 

Eq. (5.1) Quantity area Quantity area Quantity area 

Eq. (5.2) 
Annotation fill area 

occurrence 

Annotation fill area 

occurrence 

Annotation fill area 

occurrence 

1 italicized concepts were not adopted 

For semantic-based matched F-concepts, Table 5.10 shows the results of testing combinations 

of different concept-level SS scoring functions and term-level SS scoring functions. Table 

5.11 shows some examples of concepts that were extracted and matched using the different 

combinations. As shown in Table 5.10, for concept-level SS scoring, Equation (5.1) and 

Equation (5.2) did not show any variability in performance. Since both functions performed 

equally, for consistency with term-based matching of F-concepts, Equation (5.1) was selected 

for concept-level SS scoring for semantic-based matched F-concepts.  

For term-level SS scoring, the Shortest Path Similarity outperformed all other SS measures. 

This is consistent with the results obtained for term-based matched F-concepts. Based on the 

experimental results, the Shortest Path Similarity was selected for term-level SS scoring for 
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semantic-based matched F-concepts. 

Thus, the same term-level SS scoring function (Shortest Path Similarity) and concept-level 

SS scoring function [Equation (5.1)] were selected for both term-based matching and 

semantic-based matching algorithms. This shows consistency of performance across both 

types of matching.  

Table 5.10 Performances of Different SS Scoring Methods for Semantic-Based Matched 

F-Concepts 

Proposed 

concept-level 

SS scoring 

function 

Term-level SS scoring 

function 

Number of 

related  

F-concepts 

found 

Number of 

related  

F-concepts 

adopted 

Adoption 

rate 

Eq. (5.1) Shortest Path Similarity 114 94 82.5% 

Eq. (5.2) Shortest Path Similarity 114 94 82.5% 

Eq. (5.1) Jiang-Conrath Similarity 114 92 80.7% 

Eq. (5.2) Jiang-Conrath Similarity 114 92 80.7% 

Eq. (5.1) Leacock-Chodorow Similarity 114 93 81.6% 

Eq. (5.2) Leacock-Chodorow Similarity 114 93 81.6% 

Eq. (5.1) Resnik Similarity 114 93 81.6% 

Eq. (5.2) Resnik Similarity 114 93 81.6% 

Eq. (5.1) Lin Similarity 114 93 81.6% 

Eq. (5.2) Lin Similarity 114 93 81.6% 
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Table 5.11 Examples of Matched R-Concepts and F-Concepts Using Different SS Scoring 

Methods for Semantic-Based Matched F-Concepts 

Extracted 

R-concept 

Proposed 

concept-level 

SS scoring 

Function 

Matched 

F-concept using 

Shortest Path 

Similarity1 

Matched 

F-Concept using 

Leacock-Chodorow 

Similarity1 

Matched 

F-Concept using 

Jiang-Conrath 

Similarity1 

corrosion-resistant 

wire cloth 

screening 

Eq. (5.1) hardware cloth hardware cloth hardware cloth 

Eq. (5.2) hardware cloth hardware cloth hardware cloth 

squirrels 
Eq. (5.1) rodents rodents rodents 

Eq. (5.2) rodents rodents rodents 

outdoors 

Eq. (5.1) 

outside 

horizontal clear 

space 

outside horizontal 

clear space 

outside 

horizontal clear 

space 

Eq. (5.2) 

outside 

horizontal clear 

space 

outside horizontal 

clear space 

outside 

horizontal clear 

space 

installed shower 

heads 

Eq. (5.1) 
contaminant 

sources 
contaminant source light source 

Eq. (5.2) 
contaminant 

sources 
contaminant source light source 

1 italicized concepts were not adopted 

5.3.2.5 Testing Results and Discussion 

The proposed IFC concept selection method and algorithm [using Equation (5.1) and Shortest 

Path Similarity] were tested in automatically selecting F-concepts for the extracted 

R-concepts (from Phase I). The testing results are summarized in Table 5.12. The total 

adoption rate is 84.5%. The adoption rates for term-based and semantic-based matched 

F-concepts are 84.8% and 82.7%, respectively, both which are close to the training 

performance (87.1% and 82.5%, respectively). This shows initial stability in the performance 

of the proposed IFC concept selection method. 
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Table 5.12 Testing Results of IFC Concept Selection Method 

Concept 

matching type 

Concept-level SS 

scoring function 

Term-level SS 

scoring function 

Number of related 

F-concepts found 

Number of related 

F-concepts adopted 

Adoption 

rate 

Term-based  

matching 
Eq. (5.1) 

 

Shortest Path 

Similarity 

 

598 507 84.8% 

Semantic-based 

matching 
98 81 82.7% 

Total 696 588 84.5% 

5.3.3 Testing and Evaluation of Relationship Classification 

5.3.3.1 Gold Standard 

The aim of the classifier is to predict the relationship between each pair of R-concept and 

F-concept. Two gold standards, one for training and one for testing, were developed manually 

by the author and verified by three other researchers. The training and testing gold standards 

included pairs of concepts from Chapter 12 of IBC 2006 and Chapter 19 of IBC 2009, 

respectively. The training data set was used for feature selection, ML algorithm selection, and 

classifier training. The testing data set was used for evaluating the classifier’s performance. 

In each gold standard, the relationship between each R-concept and F-concept was defined. 

Four types of relationships were defined, as per Table 5.2. Table 5.13 shows some example 

concept pairs and their corresponding relationships.  

Table 5.13 Examples of Matched R-Concepts and F-Concepts and Corresponding 

Relationships 

Concept pair 
Relationship 

Extracted R-concept Matched F-concept 

Diameter Diameter dimension Equivalent 

Skylight Window Subconcept 

Lighting Surface style lighting Superconcept 

Water-proof joint Structural connection Associated concept 
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5.3.3.2 Algorithm Implementation 

The proposed relationship classification algorithm was developed and tested in the Waikato 

Environment for Knowledge Analysis (Weka) data mining software system (Hall et al. 2009). 

A program for generating the ML features was developed using Python programming 

language (Python v.2.7.3). The following ML algorithms were tested: (1) 

weka.classifiers.bayes.NaiveBayes for Naïve Bayes; (2) weka.classifiers.trees.J48 for 

Decision Tree (DT); (3) weka.classifiers.lazy.IBk for k-NN; and (4) 

weka.classifiers.functions.SMO for SVM. Tenfold cross-validation was applied to each 

training experiment, which randomly split the data to a training subset and a testing subset ten 

times and averaged the results from the ten rounds of training and testing.  

5.3.3.3 Evaluation Metrics 

Relationship classification was evaluated in two ways: (1) the performance across all 

relationships was evaluated, together, in terms of precision, and (2) the performance for each 

type of relationship was evaluated, separately, in terms of precision, recall, and F1-measure. 

In the first case, precision is defined as the number of correctly classified concept pairs 

divided by the total number of classified concept pairs. In the second case, precision is 

defined as the number of correctly classified concept pairs in a relationship type divided by 

the total number of concept pairs that are classified into that relationship type. Recall is 

defined as the correctly classified concept pairs in a relationship type divided by the total 

number of concept pairs that should be classified into that relationship type. F1-measure is 
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the harmonic mean of precision and recall.  

5.3.3.4 ML Algorithm Selection, Feature Selection, and Classifier Training  

The training data set was used for feature selection and classifier training. The results of 

testing the four ML algorithms, prior to feature selection, are summarized in Table 5.14. 

While three out of the four ML algorithms achieved a precision greater than 85%, k-NN 

achieved the best precision of 90.98% (using the Polynomial kernel) followed by SVM with a 

precision of 90.71%.  

A “leave-one-out” feature analysis was used for feature selection. Feature selection, in this 

dissertation, aims to select, based on performance, a subset (or the full set) of the 

complete/initial feature set (the eight features, see Table 5.3) for use in representing the 

concepts. The “leave-one-out” feature analysis is a method to analyze the contribution of 

each feature by comparing the performances with and without that feature. The analysis was 

conducted using the top-three performing ML algorithms (k-NN, SVM, and DT). The feature 

analysis results are summarized in Table 5.15. The bold highlighted values indicate the 

precision values that outperformed the baseline precision (where all eight features were used). 

The results show that four out of the eight features (RTermNum, RTermPOS, RelMatchType, 

FTermNum) were not discriminating when using DT, one out of the eight features 

(FTermNum) was not discriminating when using k-NN, and all eight features were 

discriminating when using SVM. Using only the discriminating features (i.e., RMatchType, 

FMatchType, FTermPOS, and DOM for DT, RTermNum, RTermPOS, RMatchType, 
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RelMatchType, FMatchType, FTermPOS, and DOM for k-NN, and all eight features for 

SVM), DT achieved a precision of 87.43%, k-NN achieved a precision of 91.26%, and SVM 

achieved a precision of 90.71%. This difference shows that, in comparison to DT, k-NN and 

SVM were able to achieve higher performances with larger feature sizes. This may indicate 

that the additional features used by k-NN and SVM provided better discriminating ability to 

the classifiers. As such, based on the experimental results, the aforementioned seven 

discriminating features and the k-NN algorithm were selected for training the classifier.  

The results also show that the following four features were discriminating for all three 

algorithms: RMatchType, FMatchType, FTermPOS, and DOM. DOM was discriminating 

because a term-by-term match could provide a strong indication of concept equivalency. The 

fact that RMatchType and FMatchType were discriminating shows that the arrangement of 

terms could affect the meanings of concepts and that the locations of the matching terms in a 

concept pair could affect the relationship between the two concepts in the pair. In addition to 

these four features, the following three features were discriminating for k-NN and SVM: 

RTermNum, RTermPOS, and RelMatchType. The fact that these features were 

discriminating in k-NN and SVM but not in DT may be attributed to the different types of 

ML algorithms. More importantly, the fact that the RelMatchType is discriminating shows 

that the semantic features could benefit the task of concept relationship classification and 

result in further improvement of precision.  
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Table 5.14 Results of Testing Different Machine Learning Algorithms (Prior to Feature 

Selection) 

Metric 
Machine learning algorithm 

K-NN SVM Decision Tree Naïve Bayes 

Total number of relationship instances 366 366 366 366 

Number of correctly classified 

relationship instances 
333 332 315 279 

Precision 90.98% 90.71% 86.07% 76.23% 

 

Table 5.15 Leave-One-Out Feature Analysis Precision Results 

ML 

algorithm 

Precision result when feature excluded 

None RTermNum RTermPOS RMatchType RelMatchType FMatchType FTermNum FTermPOS DOM 

k-NN 90.98% 89.07% 89.89% 86.34% 88.80% 86.89% 91.26% 90.44% 88.25% 

SVM 90.71% 89.34% 89.62% 87.43% 88.25% 86.89% 90.44% 90.44% 87.43% 

Decision 

Tree 
86.07% 86.89% 86.61% 81.15% 86.61% 84.70% 86.89% 86.07% 81.98% 

Note: bolded precision results are higher than the baseline precision (none of the features excluded) 

5.3.3.5 Testing Results and Discussion 

The testing data set was used for testing and evaluating the performance of the classifier. The 

testing results are summarized in Table 5.16. The overall precision across all relationships is 

87.94%. This is close to the overall training precision (91.26%), which shows the initial 

stability in the performance of the relationship classifier. The subconcept relationship type 

achieved the best precision of 93.4% and the best recall of 93.4%. The analysis of the results 

shows that in many cases, the R-concept was a bigram or multigram (e.g., “structural 

concrete”) whose last term matched with the only term in a unigram F-concept (e.g., 

“concrete”). This pattern has a strong predictive effect. Comparing to the subconcept 

relationship type, the superconcept relationship type shares a similar pattern but did not 

achieve a performance as high. The precision and recall for the superconcept relationship 
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type were 88.5% and 75.4%, respectively. One observation was that the classifier tends to 

prefer subconcept relationship types over superconcept relationship types, when both the 

R-concept and the F-concept were bigram or multigram. For example, there were six cases 

where a superconcept relationship was incorrectly classified as a subconcept relationship, but 

zero cases where a subconcept relationship was incorrectly classified as a superconcept 

relationship. This could be due to the fact that there were only two instances of 

bigram/multigram concept pairs with superconcept relationship in the training data set. The 

equivalent relationship type achieved a precision of 91.9% and recall of 86.1%. The 

associated relationship type achieved a precision of 62.5% and recall of 80.0%, which is the 

lowest among the four types of relationships. This is probably because: (1) the size of the 

training data was limited for this relationship type, and (2) the associated relationship 

includes more semantic types than the other types of relationships and has more variability in 

the expression of concepts. Thus, while the data set might provide enough variability for 

concepts related to the other relationship types, the associated relationship may require more 

data. Overall, the precision is 87.94%, which is considered a good performance [within the 

range of 80% to 90% (Spiliopoulos et al. 2010)].  
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Table 5.16 Relationship Classifier Testing Results 

Relationship 

type 

Number of 

relationship 

instances in 

gold standard 

Number of 

classified 

relationship 

instances 

Number of 

correctly 

classified 

relationship 

instances 

Precision Recall 
F1- 

Measure 

Equivalent 

concept 
79 74 68 91.9% 86.1% 88.9% 

Subconcept 241 241 225 93.4% 93.4% 93.4% 

Superconcept 61 52 46 88.5% 75.4% 81.4% 

Associated 

concept 
50 64 40 62.5% 80.0% 70.2% 

Total 431 431 379 87.94% 87.94% 87.94% 

 

5.3.4 Testing and Evaluation of Regulatory Concept Integration 

5.3.4.1 Gold Standard 

The gold standard of an extended IFC schema was developed by manually adding regulatory 

concepts in Chapter 19 of IBC 2009 to the IFC_2X3_TC1 schema (BuildingSmart 2014). The 

regulatory concepts were added based on their relationship with the IFC concepts as 

described in Section 5.2.4. As a result, in addition to the original concept entities from the 

IFC_2X3_TC1 schema, the extended IFC schema includes 743 concept entities of regulatory 

concepts from Chapter 19 of IBC 2009. These additional concept entities include: (1) A 

concept entity “IfcAccConcept,” which was added as a subtype of “IfcObject;” (2) 241 

concept entities that were added as subtypes of original entities in the IFC_2X3_TC1 schema. 

For example, “IfcThinEdge” was added as a subtype of “IfcEdge;” (3) 61 concept entities 

that were added as supertypes of original entities in the IFC_2X3_TC1 schema. For example, 

“IfcConnections” was added as a supertype of “IfcStructuralConnection;” (4) 50 concept 
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entities that were added as direct subtypes of “IfcAccConcept,” which were identified as 

associated concepts of original entities in the IFC_2X3_TC1 schema. For example, 

“IfcBasement” was added as a subtype of “IfcAccCocnept,” which was identified as an 

associated concept of “IfcBasementWall;” and (5) 390 concept entities that were added as 

direct subtypes of “IfcAccConcept” because they were extracted from Chapter 19 of IBC 

2009 but were not matched with any original entities in the IFC_2X3_TC1 schema. For 

example, “IfcWallPier” was added as a direct subtype of “IfcAccConcept.” Table 5.17 shows 

some examples of the additional concept entities in the extended IFC schema. 

Table 5.17 Examples of the Additional Concept Entities in the Extended IFC Schema 

Added concept entity Supertype entity in extended schema Subtype entity in extended schema 

IfcAccConcept IfcObject - 

IfcThinEdge IfcEdge - 

IfcSkylight IfcWindow - 

IfcConnections - IfcStructuralConnection 

IfcLighting - IfcSurfaceStyleLighting 

IfcBasement IfcAccConcept - 

IfcWallPier IfcAccConcept - 

In addition to the original “IfcRel…” entities designated to represent relations from the 

IFC_2X3_TC1 schema, the extended IFC schema includes six new entities for representing 

regulatory relations in Chapter 19 of IBC 2009: “IfcAccRelation,” “IfcAccUniRelation,” 

“IfcAccBiRelation,” “IfcAccTriRelation,” “IfcAccHasUniQuantity,” and 

“IfcAccHasBiQuantity.” The relation entity “IfcAccRelation” was added as a subtype of 

“IfcRelationship.” “IfcAccUniRelation,” “IfcAccBiRelation,” and “IfcAccTriRelation” were 

added as subtypes of “IfcAccRelation” for representing relations for one entity, relations 



198 

 

between two entities, and relations among three entities, respectively. 

“IfcAccHasUniQuantity” and “IfcAccHasBiQuantity” were added as subtypes of 

“IfcAccRelation” for representing quantitative relations with one quantity reference or one 

value and unit set and quantitative relations with two quantity references or two values and 

unit sets, respectively.  

5.3.4.2 Algorithm Implementation 

The proposed regulatory concept integration method was implemented in Python 

programming language (Python v.2.7.3). Three main functions were developed and used for 

integrating regulatory concepts into the IFC schema based on three types of relationships of 

regulatory concepts with IFC concepts: subconcept, superconcept, and associated concept. 

The creation of rules for regulatory concepts that are equivalent concepts with IFC concepts 

were not included in the Python program.  

5.3.4.3 Evaluation Metrics 

Regulatory concept integration was evaluated in terms of precision, recall, and F1-measure. 

Precision, here, is defined as the ratio between the number of correctly integrated concepts 

and the total number of integrated concepts. Recall, here, is defined as the ratio between the 

number of correctly integrated concepts and the total number of concepts that should be 

integrated (i.e., the number of concepts in the gold standard). F1-measure is defined as the 

harmonic mean of precision and recall. 
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5.3.4.4 Testing Results and Discussion 

The proposed regulatory concept integration method and algorithm were tested in 

automatically integrating the extracted regulatory concepts into the IFC_2X3_TC1 schema 

(BuildingSmart 2014). The testing results are summarized in Table 5.18. As shown in the 

Table, all regulatory concepts were successfully integrated into the IFC schema which led to 

a 100% performance for all precision, recall, and F1-measure. This shows initial 

effectiveness of the proposed regulatory concept integration method.  

Table 5.18 Performance of Integrating R-Concepts from Chapter 19 of IBC 2009 into the 

IFC_2X3_TC1 Schema 

Relationship Type 

Number of 

integrated 

R-concepts in 

gold standard 

Number of 

integrated 

R-concepts 

Number of 

correctly 

integrated 

R-concepts 

Precision Recall 
F1- 

measure 

Subconcept 241 241 241 100% 100% 100% 

Superconcept 61 61 61 100% 100% 100% 

Associated 

concept 
50 50 50 100% 100% 100% 

Non 390 390 390 100% 100% 100% 

Total 742 742 742 100% 100% 100% 

 

  



200 

 

6 CHAPTER 6 – AUTOMATED INFORMATION EXTRACTION FROM 

BUILDING INFORMATION MODELS AND TRANSFORMATION OF 

DESIGN INFORMATION 

6.1 Comparison to the State of the Art 

To conduct ACC, design information needs to be automatically extracted from BIMs into a 

representation that can be directly used for automated compliance reasoning.  

Existing BIM information extraction efforts have taken various different approaches for 

various purposes. For example, Kim et al. (2013) utilized ifcXML parsers (implemented in 

Ruby programming language) to extract spatial, quantity, material, and relational information 

of building elements from IFC-based BIMs, for automatically generating construction 

schedules. Zhang and Issa (2013) utilized an ontology (implemented in Java programming 

language) that was coded in web ontology language (OWL) to extract partial models of 

IFC-based BIMs based on the IFC schema, for reducing the size and complexity of BIMs. 

There are also existing efforts in extracting information from BIMs to support automated 

compliance checking. These efforts extract BIM information into different types of 

representations. For example, Yurchyshyna et al. (2008) and Pauwels et al. (2011) utilized 

Extensible Stylesheet Language Transformations (XSLT) transformation method to extract 

information from an IFC-based BIM into a Resource Description Framework (RDF) graph to 

support regulatory requirement checking in general. Sinha et al. (2013) utilized Revit 

Application Programming Interface (API) methods to extract building parametric data from 
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Revit BIMs, for supporting automated compliance checking against energy code criteria. Tan 

et al. (2010) utilized Java classes to extract wall attributes from IFC-based BIMs, for 

supporting automated building envelope design checking against building code requirements. 

Further, the development of the ifcOWL ontology enables the extraction of IFC-based BIM 

information based on the domain knowledge captured in the ontology, which could further 

serve the purpose of compliance checking (Beetz et al. 2009; Kadolsky et al. (2014). In 

addition to these research efforts, commercial BIM software implementations such as 

ArchiCAD, Autodesk Revit, and Solibri Model Checker have their proprietary methods to 

access and extract information from IFC-based BIMs.  

The BIM extraction methods can be largely categorized into two types: IFC-based and 

proprietary data format-based. From the IFC-based BIM extraction methods, two subtypes 

could be defined: XML-based and EXPRESS-based. Both XML and EXPRESS are official 

schema used for IFC-based BIM data representation. However, because the EXPRESS 

schema is the default data schema, and BIM data represented using the EXPRESS schema is 

much smaller (usually 1/3 to 1/4 in size) than the XML-based BIM data (BuildingSmart 

2015), extracting information from EXPRESS-based BIMs is slightly preferred than 

extracting information from XML-based BIMs. 

When used for automated compliance checking, BIM extraction efforts are dependent on the 

source and target representation of the extracted information. The proprietary extraction 

methods and in-house extraction methods used in commercial softwares cannot be used to 
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fulfil the IFC-based BIM extraction need in this dissertation because of the differences in 

representing source and target information. The XSLT transformation method and 

ifcOWL-based extraction methods, which represent the state-of-the-art IFC-based BIM 

extraction methods, are more relevant to the scope in this dissertation. The author could have 

adapted those methods. However, the author decided to take a different approach for the 

following two reasons: (1) Extraction from EXPRESS-based data is preferred than extraction 

from XML-based data, and extraction from EXPRESS-based data is feasible because of the 

existing data access methods for EXPRESS data such as JSDAI; and (2) Extraction into a 

logic format is preferred than extraction into an ontology, because logic is the final 

representation used for reasoning.  

To enable automated reasoning for supporting ACC, another issue related to BIM extraction 

is the alignment of design information with regulatory information. For example, in the ACC 

effort of Yurchyshyna et al. (2008), project information are extracted into an RDF 

representation. Then, the RDF-represented project information was aligned with the 

RDF-represented regulatory rules using similarity measures between the two. In the effort of 

Beetz et al. (2009), an ifcOWL ontology was converted from the EXPRESS schema of IFC, 

which could be used to support extraction of IFC-based BIM, into an RDF representation. 

When used in the context of ACC, those RDF representations of building information need to 

be linked to regulatory information algorithmically or manually (Kadolsky et al. 2014). 

Comparing to these efforts, the alignment of design and regulatory information is conducted 
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as an automated internal process in logic, because the representations of both the design 

information and the regulatory information are in the same logic format (Chapter 7). The 

domain knowledge in building regulations, when needed to align concepts and relationships, 

could be directly formalized into logic rules.   

In this chapter, a BIM information extraction and transformation method is proposed for 

automatically extracting all BIM information (i.e., entities and their attributes, excluding 

detailed geometric representation information) from IFC-based BIMs, and transforming the 

extracted information into logic facts that could be directly used for logic-based automated 

reasoning. The proposed method utilizes the Java Standard Data Access Interface (JSDAI) 

and a set of transformation rules. The chapter presents the details of the proposed method and 

its testing results using a BIM test case. 

6.2 Proposed BIM Information Extraction and Transformation Method and 

Algorithm  

The proposed method for IFC-based BIM information extraction and transformation includes 

two main phases (as per Figure 6.1): (1) BIM information extraction: extracting BIM 

information from an .ifc file into a tuple-format, and (2) BIM information transformation: 

transforming the extracted tuple-represented information into logic facts. Figure 6.2 shows an 

example of the inputs and outputs of information extraction and transformation.  
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Figure 6.1 The Proposed BIM Information Extraction and Transformation Method 
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(measurewithunit,20,[valuecomponent,unitcomponent],[0.01745329251994328,siunit18]);

(door,6652,[globalid,ownerhistory,name,objecttype,objectplacement,representation,tag,overallheight,overallwidth],[‘1hOSvn6

df7F8_7GcBWlRGQ’,ownerhistory33,‘M_Single-Flush:1250mm x 2010mm:1250mm x 2010mm:146596’,‘1250mm x 

2010mm’,localplacement6651,productdefinitionshape6646,‘146596’,2.009999999999999,1.25]);

(derivedunit,39357,[userdefinedtype],[‘inches’]);

(pipecolumn,40655,[],[]);

(basement,40656,[],[]);

(accbirelation,40657,[typename,relatingelement,relatedelement],[‘used_in’,pipecolumn40655,basement40656]);

(minimumdiameter,40660,[],[]);

(accbirelation,40661,[typename,relatingelement,relatedelement],[‘has’,pipecolumn40655,minimumdiameter40660]);

(measurewithunit,40662,[valuecomponent,unitcomponent],[3.0,derivedunit39357]);

(acchasuniquantity,40663,[relatingelement,quantity],[minimumdiameter40660,measurewithunit40662]);

#20=IFCMEASUREWITHUNIT(IFCRATIOMEASURE(0.01745329251994328),#18);

#6652=IFCDOOR('1hOSvn6df7F8_7GcBWlRGQ',#33,'M_Single-Flush:1250mm x 2010mm:1250mm x 2010mm:146596',

     $,'1250mm x 2010mm',#6651,#6646,'146596',2.009999999999999,1.25);

#39357=IFCDERIVEDUNIT($,$,'inches');

#40655=IFCPIPECOLUMN($,$,$,$,$,$,$,$);

#40656=IFCBASEMENT($,$,$,$,$);

#40657=IFCACCBIRELATION($,$,$,$,'used_in',#40655,#40656,$);

#40660=IFCMINIMUMDIAMETER();

#40661=IFCACCBIRELATION($,$,$,$,'has',#40655,#40660,$);

#40662=IFCMEASUREWITHUNIT(IFCREAL(3.0),#39357);

#40663=IFCACCHASUNIQUANTITY($,$,$,$,#40660,#40662,$,$,$);

BIM

(.ifc file)

Information 

Tuples

measure_with_unit(measure_with_unit20). has_value_component(measure_with_unit20,0.01745329251994328).

has_unit_component(measure_with_unit20,s_i_unit18). door(door6652). has_global_id(door6652,1hosvn6df7f8_7gcbwlrgq). 

has_owner_history(door6652,ownerhistory33).

has_name(door6652,m_single-flush:1250mm_x_2010mm:1250mm_x_2010mm:146596). 

has_object_type(door6652,1250mm_x_2010mm). has_object_placement(door6652,local_placement6651).

has_representation(door6652,product_definition_shape6646). has_tag(door6652,146596). 

has_overall_height(door6652,2.009999999999999). has_overall_width(door6652,1.25). derived_unit(derived_unit39357).

has_user_defined_type(derived_unit39357,inches). pipe_column(pipe_column40655). basement(basement40656).

acc_bi_relation(acc_bi_relation40657). has_type_name(acc_bi_relation40657,used_in). 

has_relating_element(acc_bi_relation40657,pipe_column40655). has_related_element(acc_bi_relation40657,basement40656).

minimum_diameter(minimum_diameter40660). acc_bi_relation(acc_bi_relation40661).

has_type_name(acc_bi_relation40661,has). has_relating_element(acc_bi_relation40661,pipe_column40655).

has_related_element(acc_bi_relation40661,minimum_diameter40660). measure_with_unit(measure_with_unit40662).

has_value_component(measure_with_unit40662,3.0). has_unit_component(measure_with_unit40662,derived_unit39357).

acc_has_uni_quantity(acc_has_uni_quantity40663). 

has_relating_element(acc_has_uni_quantity40663,minimum_diameter40660). 

has_quantity(acc_has_uni_quantity40663,measure_with_unit40662).

Logic 

Facts

BIM Information Extraction

BIM Information Transformation – Initial Transformation 

measure_with_unit(measure_with_unit20). has_value_component(measure_with_unit20,0.01745329251994328).

has_unit_component(measure_with_unit20,s_i_unit18). door(door6652). has_global_id(door6652,1hosvn6df7f8_7gcbwlrgq). 

has_owner_history(door6652,ownerhistory33). has_name(door6652,m_single-

flush:1250mm_x_2010mm:1250mm_x_2010mm:146596). has_object_type(door6652,1250mm_x_2010mm). 

has_object_placement(door6652,local_placement6651). has_representation(door6652,product_definition_shape6646). 

has_tag(door6652,146596). has_overall_height(door6652,2.009999999999999). has_overall_width(door6652,1.25). 

pipe_column(pipe_column40655). basement(basement40656). used_in(pipe_column40655,basement40656).

minimum_diameter(minimum_diameter40660). has(pipe_column40655,minimum_diameter40660). 

has_quantity(minimum_diameter40660, quantity(3.0, inches)).

Logic 

Facts

BIM Information Transformation – Alignment Transformation 

 

Figure 6.2 Example Illustrating the Inputs and Outputs of BIM Information Extraction and 

Transformation 

6.2.1 BIM Information Extraction 

6.2.1.1 Information Representation 

This phase aims to define the representation format of the extracted BIM information. In this 
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method, the ultimate representation format is logic facts that could be directly used in a logic 

programming platform for automated reasoning. For intermediate processing, a tuple format 

is proposed to represent the extracted information. The use of a tuple format for intermediate 

processing is proposed to facilitate computer manipulation; the simple and clear structure of 

tuple format facilitates efficient information processing. A four-tuple was used for 

intermediate information representation: <entity name, entity line ID, attribute name list, 

attribute value list>. An entity name is the name of an entity. An entity line ID is the line 

number of the entity in the .ifc file, which is used to identify the entity and distinguish it from 

other entities. An attribute name list includes the names of the explicit attributes of an entity, 

where the explicit attributes of an entity include both the explicit attributes in the entity’s own 

definition and the explicit attributes in the definitions of its supertypes. Derived attributes are 

not processed because they are mostly representing geometric representation details. Inversed 

attributes are not processed because the relationship identified by these inversed attributes are 

already represented in explicit attributes. An attribute value list includes the values of the 

explicit attributes of an entity. Table 6.1 shows some example information tuples.  
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Table 6.1 Examples of BIM Information Tuples 

Entity name Entity 

Line 

ID 

Attribute name 

list 

Attribute value list 

DOOR 6652 Globalid 1hOSvn6df7F8_7GcBWlRGQ 

Ownerhistory Ownerhistory33 

Name M_Single-Flush:1250mm x 

2010mm:1250mm x 

2010mm:146596 

Description N/A 

Objecttype 1250mm x 2010mm 

Objectplacement Localplacement6651 

Representation Productdefinitionshape6646 

Tag 146596 

Overallheight 2.009999999999999 

Overallwidth 1.25 

MEASUREWITHUNIT 20 Valuecomponent 0.01745329251994328 

Unitcomponent Siunit18 

SIUNIT 18 Dimensions Dimensionalexponents39126 

Unittype Planeangleunit 

Prefix N/A 

Name Radian 

6.2.1.2 Information Extraction 

This phase aims to extract the entity name, entity line ID, attribute name list, and attribute 

value list of each entity in an .ifc file into the four-tuple format. The entities and attributes are 

extracted using their metadata (i.e., their EXPRESS data types). This allows full information 

extraction of all entities and their attributes using a small set of extraction rules. The Java 

Standard Data Access Interface (JSDAI) is also used for information extraction. This allows 

for information extraction based on any IFC schema (original or extended). The information 

extraction method includes five steps: (1) processing the IFC schema [in this dissertation, it is 

the extended IFC schema (Chapter 5)], (2) searching the IFC schema for the entities in 
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the .ifc file, (3) searching the IFC schema for the attributes of the entities in the .ifc file, (4) 

finding the data types of the attributes, and (5) extracting the values of the attributes based on 

their data types, using a set of extraction rules.  

The IFC schema is processed into a collection of entity definitions. Each entity definition 

describes the name of an entity, the line ID of an entity, the data type of an entity, the 

attributes of an entity, and the supertypes of an entity. The collection of entity definitions 

supports the searching of entities and attributes in the following steps.  

For searching the IFC schema for the entities in the .ifc file, each entity in an .ifc file is 

processed one by one. The definition of each entity is searched for in the collection of entity 

definitions. The information in its entity definition are used as follows: (1) the entity name 

and entity line ID are directly extracted into the first two elements of the entity’s 4-tuple, 

respectively; (2) the data type of the entity (whether an aggregation data type or not) is used 

to decide on the use (or not) of recursive search and processing (on its subentities); and (3) 

the supertypes of the entity are used for extracting the information of the entity’s attributes 

(described in the following step). 

For searching the IFC schema for the attributes of the entities in the .ifc file, inheritance is 

taken into consideration. Searching the attributes of an entity includes searching both the 

direct attributes of the entity (i.e., explicit attributes), as well as the indirect attributes of the 

entity (i.e., the attributes of the entity’s supertypes). The attributes of an entity’s supertypes 
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are accessed in a recursive manner. For example, if an entity B is the supertype of an entity A, 

and an entity C is the supertype of the entity B; then at the time A is processed, in addition to 

the direct attributes of A, the attributes of B (supertype of A) and C (supertype of supertype of 

A) are accessed as well. The names of all direct and indirect attributes are extracted as a list in 

the third element of the entity’s 4-tuple.  

For finding the data types of the attributes of an entity, each attribute of the entity is searched 

for in the collection of entity definitions. The data type of each attribute is extracted from the 

corresponding entity definition and compared with the data types of the EXPRESS data 

definition language.  

The values of the attributes are extracted based on their data types, using a set of extraction 

rules: (1) If an attribute is of a simple data type (i.e., integer, real, number, Boolean, logical, 

binary, or string), then the data value of the attribute is extracted. For example, if the “value 

component” attribute of a “measure with unit” (i.e., IFC entity to represent a quantity) is “0.6” 

(i.e., a real number), then “0.6” is extracted as a real number; (2) If an attribute is of the 

enumeration data type, then the enumeration value is extracted as a string. For example, if the 

“panel operation” attribute of a “door style” is “revolving” (i.e., an enumeration data), then 

“revolving” is extracted as a string; (3) If an attribute is of the entity data type, then the name 

and line ID (i.e., line number) of the entity are extracted and concatenated as a string. For 

example, if the “related space” attribute of a relation entity “covers spaces” is a “space” (i.e., 

an entity), then “space” (i.e., the entity name) and 1000 (i.e., the entity line ID) are extracted 
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and concatenated as a string “space1000;” and (4) If an attribute is of the aggregation data 

type (i.e., an aggregation of multiple values), then the multiple values in the aggregation are 

processed recursively according to their corresponding data types. For example, if the 

“related covering” attribute of a relation entity “covers spaces” is an aggregation (i.e., a set) 

of two “coverings” (i.e., entities), then the name and line ID of each covering entity are 

extracted and concatenated as a string (i.e., “covering2001,” “covering2002”).  

The information extraction algorithm is illustrated in Figure 6.3. The dashed boxes show the 

two subroutines in the algorithm which allow recursive processing at the entity level and the 

attribute level, respectively. Table 6.1 shows some examples of the extracted information 

tuples.  
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Initialize variables;
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Subroutine S1

Subroutine S2

 

Figure 6.3 The Proposed BIM Information Extraction Algorithm 

The Java Standard Data Access Interface (JSDAI) is used for information extraction. 
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Between the two data access types of early binding and late binding, late binding is selected, 

because it does not require one specific EXPRESS model (i.e., a specific IFC schema) but 

can be used for supporting information extraction based on any EXPRESS model (e.g., IFC 

2X3, IFC_2X3_TC1, IFC4, any extended IFC). This use of late binding could support 

information extraction using the extraction rules based on EXPRESS data types, which is the 

key to avoid the need of knowing a specific BIM data schema beforehand. For all described 

five steps, JSDAI is used to access the entities and attributes in the .ifc file.  

6.2.1.3 Algorithm Implementation 

The BIM information extraction algorithm was implemented using JSDAI (JSDAI 

4.1.505.v201112201320) in Java Standard Edition Development Kit jdk1.7.0_40 (Oracle 

2015). The late binding data access type in JSDAI was used to access each entity and each 

attribute of an entity. Tail recursion was used for the recursive access of aggregation types of 

entities and attributes. For processing the input IFC schema (Step 1), the JSDAI Express 

compiler (JSDAI ExpressCompilerCore 4.1.11.v201112201318) was used to parse the input 

IFC schema and generate the collection of entity definitions in the form of Java classes and 

methods. For searching the IFC schema for the entities in the .ifc file (Step 2), the JSDAI 

model access methods are used to extract entity instances and JSDAI late binding entity 

access methods are used to access the entity definitions. The name of each entity was 

extracted by consulting the collection of entity definitions. The line number of each entity 

was extracted using the “getPersistentLabel” method of entity in JSDAI. For searching the 
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IFC schema for the attributes of the entities in the .ifc files (Step 3), finding the data types of 

the attributes (Step 4), and extracting the values of the attributes based on their data types 

(Step 5), JSDAI late binding attribute access methods are used to get the names, datatypes, 

and values of the attributes. The name of each attribute of an entity was extracted using the 

“getName” method of “explicit attribute” object in JSDAI. The data type of each attribute 

was extracted using the “getActualType” method in JSDAI. The value of each attribute was 

extracted using the “get” method of “entity definition” object in JSDAI.  

6.2.1.4 Evaluation Metrics 

The evaluation is conducted by comparing the extracted BIM information (in the 4-tuple 

format) with those in a manually-developed gold standard. The gold standard includes all 

information tuples that represent all BIM information in a test case. Evaluation is conducted 

using the following two measures: precision and recall. Precision, here, is defined as the 

number of correctly extracted information tuples divided by the total number of information 

tuples extracted. Recall, here, is defined as the number of correctly extracted information 

tuples divided by the total number of information tuples that should have been extracted.  

6.2.2 BIM Information Transformation 

6.2.2.1 Information Representation 

This phase aims to define the ultimate representation format of the design information. The 

ultimate representation format is first order logic facts that could be directly used in a logic 
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programming platform for automated reasoning [i.e., logic facts that are aligned with the 

logic rules (e.g., for ACC reasoning it would be logic rules that represent regulatory 

requirements)]. Following the representation in Chapter 4, B-Prolog syntax is used. A logic 

fact is a concept fact or a relation fact. A concept fact defines a constant as an instance of a 

certain concept. For example, “window(window1)” defines the constant “window1” as an 

instance of the concept “window.” A relation fact defines a relationship between an instance 

of a concept and an instance of another concept or a value. For example, 

has(transverse_reinforcement1, spacing1) defines the association relation between an 

instance of transverse reinforcement “transverse_reinforcement1” and an instance of spacing 

“spacing1.” A logic rule defines an implication relation with one or more antecedents (i.e., 

predicates) that are conjoined and a single consequent (i.e., predicate). For example, the 

following logic rule (LR1) is a logic rule that defines the implication relation that “if spacing 

of transverse reinforcement is not greater than 8 inches, then the spacing is compliant with 

requirements” (Provision 1908.1.3 of IBC 2009): 

“compliance_spacing_of_transverse_reinforcement(Spacing) :- 

spacing(Spacing),transverse_reinforcement(Transverse_reinforcement),has(Transverse_reinf

orcement,Spacing),not greater_than(Spacing,quantity(8,inches)).” 

6.2.2.2 Information Transformation 

This phase aims to transform the extracted tuple-represented entities and attributes into logic 

facts. A semantic rule-based method is used for the transformation. This information 
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transformation method includes two main steps: (1) initial transformation: transformation of 

entities and attributes into concept facts and relation facts; and (2) alignment transformation: 

further semantic transformation of the predicates of the concept facts and relations facts to be 

aligned with the predicates of the regulatory rules.  

Initial transformation aims to transform the entities (concept or relation instances) and their 

attributes into concept facts and relation facts. Prior to transformation, entity names and 

attribute names are segmented in preparation for the following alignment transformation step. 

For example, “TRANSVERSEREINFORCEMENT” is segmented to 

“transverse_reinforcement” for the following alignment with LR1. Three main transformation 

rules are then used for the transformation: (1) an entity is transformed into a concept fact (i.e., 

a predicate) by using the name of the entity as the name of the predicate, and using the name 

of the entity concatenated with the line ID of the entity as the argument (i.e., an entity 

constant) of the predicate. The use of these entity line IDs satisfies three purposes: (a) 

identifying instances, (b) distinguishing instances, and (c) establishing links between the 

logic facts and their corresponding entities in their IFC source file. For example, in Figure 6.2, 

the pipe column entity is transformed into a concept fact “pipe_column(pipe_column40655),” 

with the name of the entity “pipe_column” being the predicate name and the concatenation of 

the entity name and the entity line ID “pipe_column40655” as the predicate argument; (2) an 

attribute of an entity is transformed into a relation fact (i.e., a predicate), using the name of 

the attribute preceded by “has_” as the name of the predicate, using the corresponding entity 
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constant as the first argument of the predicate, and using the value of the attribute as the 

second argument of the predicate (if the value is not a reference to another entity). For 

example, in Table 6.1, the attribute name “overallheight” (in the attribute name list) for the 

“door” entity is transformed into a relation fact “has_overall_height(door6652, 

2.009999999999999);” and (3) if the value of an attribute is a reference to another entity, 

then the referred entity constant is used as the second argument of the predicate. For example, 

in Table 6.1, the attribute name “ownerhistory” (in the attribute name list) for the “door” 

entity is transformed into a relation fact with the referred entity constant owner_history33 as 

the second argument: “has_owner_history(door6652,owner_history33).”  

Alignment transformation aims to further transform the predicates of the logic facts (concept 

facts and relations facts) to be aligned with the predicates of the logic rules. For example, the 

predicates of the logic facts F1 to F4 need to be aligned with the predicates of the logic rule 

LR2. A set of semantic transformation (SeTr) rules are used to conduct the transformation. 

Two types of SeTr rules (in the format of logic rules) are used: static SeTr rules and dynamic 

SeTr rules. A static rule is defined as a rule that only uses static predicates. A dynamic rule is 

defined as a rule that uses at least one dynamic predicate(s). A static predicate is a predicate 

that cannot be updated during execution. A dynamic predicate is a predicate that can be 

updated during execution. Static rules are used when data (constants) are transformed from an 

argument in a predicate to an argument in another predicate. For example, the SeTr rule R1 

transforms logic facts F1 to F4 into one single logic fact F5. Dynamic rules are used when 
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data (constants) are transformed from an argument in a predicate to the name of another 

predicate. For example, the SeTr rule R2 further transforms the logic fact F5 to logic fact F6. 

As a result of the transformation, logic fact F6 becomes aligned with logic rule LR2. The use 

of SeTr rules enables the use of domain knowledge for the flow of design information. For 

example, based on the domain knowledge that “skylight” is a subconcept of “window,” a 

static SeTr rule could be formalized as “window(X) :- skylight(X),” which enables the 

instances of skylight to be able to instantiate rules for windows. In the state-of-the-art ACC 

efforts that use ontology as the main representation of information, such function is achieved 

through matching ontologies [e.g., through similarity value measurements (Yurchyshyna et al. 

2007)]. 

 SeTr R1: acc_bi_relation(Name, Y, Z) :- acc_bi_relation(X), 

has_type_name(X,Name), has_relating_element(X,Y), has_related_element(X,Z).   

 SeTr R2: SeTrRule2 :- findall((Term, Name, Y, Z), acc_bi_relation(Name, Y,Z), Xs), 

sort(Xs, Xs1), foreach((Term, Name,Y,Z) in Xs1, (Term =.. [Name, Y, Z], 

assert(Term))). 

 F1: acc_bi_relation(acc_bi_relation40657). 

 F2: has_type_name(acc_bi_relation40657,used_in). 

 F3: has_relating_element(acc_bi_relation40657,pipe_column40655). 

 F4: has_related_element(acc_bi_relation40657,basement40656). 

 F5: acc_bi_relation(used_in, pipe_column40655, basement40656). 
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 F6: used_in(pipe_columns40655, basement40656).  

 LR2: compliance_minimum_diameter_of_pipe_column(Minimum_diameter):- 

pipe_column(Pipe_column),used_in(Pipe_column,Basement),basement(Basement),as(

Pipe_column,Secondary_steel_member),secondary_steel_member(Secondary_steel_

member),has(Pipe_column,Minimum_diameter),minimum_diameter(Minimum_diame

ter),greater_than_or_equal(Minimum_diameter,quantity(4,inches)). 

6.2.2.3 Algorithm Implementation 

The information transformation algorithm was implemented using the Java Standard Edition 

Development Kit jdk1.7.0_40 (Oracle 2015). The segmentation of entity names and attribute 

names was implemented using regular expression-based matching methods in Java. The 

segmented entity names and attribute names were stored in a parallel list. The transformation 

of tuple-represented entities and attributes into logic facts was implemented using string 

processing methods in Java. The SeTr rules were implemented in B-Prolog logic 

programming language (Zhou 2012).   

6.2.2.4 Evaluation Metrics 

The evaluation is conducted by comparing the transformed BIM information (represented as 

logic facts, including concept facts and relation facts) with those in a manually-developed 

gold standard. The gold standard includes the ground truth of concept facts and relation facts. 

For practicality, a Python program (Python v.2.7.3) was developed to conduct this 

comparison (matching) in an automated way. The evaluation was conducted using the 
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following measures: precision and recall. Precision, here, is defined as the number of 

correctly transformed logic facts divided by the total number of logic facts transformed. 

Recall, here, is defined as the number of correctly transformed logic facts divided by the total 

number of logic facts that should have been transformed.  

6.3 Experimental Testing and Evaluation  

To evaluate the proposed BIM information extraction and information transformation method, 

a BIM test case was used to test: (1) the extraction of the BIM information from the .ifc file 

into the information tuples; and (2) the transformation of the information tuples into logic 

facts. An extended IFC schema was used for the information extraction. The extracted 

information tuples and transformed logic facts were compared with those in a 

manually-developed gold standard and were evaluated in terms of precision and recall (as 

described in the Sections 6.2.1.4 and 6.2.2.4). In developing the gold standard of logic facts, 

the logic facts were aligned with a regulatory rule testing set (that represent regulatory 

requirements, which are intended to support automated compliance reasoning). The test case 

design information were at a level of development (LOD) of 400 (BIMForum 2013). For 

example, in addition to height and thickness of walls (i.e., LOD 300), reinforcement 

information of walls were included too (Figure 6.4).  
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Figure 6.4 Example Reinforcement Information of Wall in the BIM Test Case 

6.3.1 BIM Test Case 

A BIM test case based on the Duplex Apartment Project from buildingSMARTalliance of the 

National Institute of Building Sciences (East 2013) was developed. Design information were 

added in the BIM model, based on the extended IFC schema in Section 5.3.4. The test case 

included design information for each provision in Chapter 19 of IBC 2009. The design 

information included both compliant and noncompliant design information to test the 

performance of information extraction and transformation in both scenarios. For example, the 

following regulatory provision (RP1) is a complex provision that contains three quantitative 

requirements: “In dwellings assigned to Seismic Design Category D or E, the height of the 

wall shall not exceed 8 feet (2438 mm), the thickness shall not be less than 71/2 inches (190 

mm), and the wall shall retain no more than 4 feet (1219 mm) of unbalanced fill” (Provision 

1908.1.8 of IBC 2009). Thus, five information sets were created for RP1 which correspond to 
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the scenarios that (1) only height is noncompliant, (2) only thickness is noncompliant, (3) 

only unbalanced fill is noncompliant, (4) all three attributes are noncompliant, and (5) no 

attributes are noncompliant. In total, 146 design information sets were created for the 63 

provisions in Chapter 19 of IBC 2009. While any tool that supports accessing IFC 

information can fulfill the purpose, JSDAI was selected to add design information to the .ifc 

file of the test case. Figure 6.5 provides a snapshot of the software interface showing the 

addition of the following example concept and relation facts: an instance of “pipe column,” 

an instance of “basement,” an instance of “minimum diameter,” the “used_in” relation 

between the pipe column instance and the basement instance, the “has” relation between the 

“pipe column” instance and the “minimum diameter” instance, a quantity with the value of 

“3.0” and the unit of “inches,” and the quantitative relation between the “minimum diameter” 

instance and the quantity.  
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Figure 6.5. Software Interface Snapshot Showing an Example of the Addition of Concept and 

Relation Facts for the BIM Test Case Development 

6.3.2 Results and Discussion 

The information extraction results are summarized in Table 6.2. A total of 1,603 information 

tuples were extracted and compared to those in the gold standard. A 100% (95% confidence 

interval [99.8%, 100%]) precision and recall was achieved.   

Table 6.2 BIM Information Extraction Testing Results  

Extracted 

item 

Number correctly 

extracted 

Total number 

extracted 

Total number in 

gold standard 
Precision Recall 

Information 

tuple 
1,603 1,603 1,603 100% 100% 

The information transformation results are summarized in Table 6.3. A total of 4,075 and 

1,496 logic facts were transformed before and after the alignment transformation, 

respectively, and were compared to those in the gold standard. A 100% (95% confidence 
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interval [99.8%, 100%]) precision and recall was achieved. Figure 6.6 provides a snapshot of 

the output of the developed BIM information extraction and transformation software, 

showing partial transformation results (i.e., logic facts) after alignment transformation. These 

logic facts are ready for importing in any logic programming platform for automated 

logic-based reasoning.     

Table 6.3 BIM Information Transformation Testing Results  

Transformed 

item 

Number 

transforme

d before 

alignment 

transformat

ion 

Number 

correctly 

transformed 

after alignment 

transformation 

Total number 

transformed 

after alignment 

transformation 

Total 

number 

in gold 

standard 

Precis

ion 
Recall 

Concept facts 810 688 688 688 100% 100% 

Relation facts 3,265 808 808 808 100% 100% 

Logic facts 

(total) 
4,075 1,496 1,496 1,496 100% 100% 
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Figure 6.6 Software Output Snapshot Showing Partial BIM Information Transformation 

Results (Logic Facts) After Alignment Transformation 
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7 CHAPTER 7 – LOGIC-BASED INFORMATION REPRESENTATION 

AND COMPLIANCE REASONING SCHEMA 

7.1 Comparison to the State of the Art 

The state-of-the-art ACC in the AEC industry mostly relies on the use of proprietary rules for 

representing regulatory requirements. For example, the CORENET project coded regulatory 

rules in C++ programs, the Solibri model checker uses a proprietary proforma-based format 

to code regulatory rules, and several ACC research efforts coded regulatory rules for specific 

subdomains such as fall protection (Zhang et al. 2013), building envelope performance (Tan 

et al. 2010), and accessibility (Lau and Law 2004). Such rules could be very effective in 

reasoning about compliance with a specific set of requirements and specific regulatory 

sections in a certain period of time, but such rigid and static representation requires great 

effort in (1) adaptation to different regulatory codes/sections and (2) maintenance/update 

across different time periods and in response to code revisions/updates. The use of 

proprietary rules, thus, becomes effort-intensive and time-consuming because of the large 

number of codes/regulations and the frequent revisions/updates of codes/regulations (Delis 

and Delis 1995; Dimyadi and Amor 2013).  

To avoid the reliance on proprietary rules, few researchers explored the development of 

generalized representations/schemas for the formalization of regulatory requirements. For 

example, Hjelseth and Nisbet (2011) proposed the requirement, applies, select, and exception 
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(RASE) method to capture and represent regulatory requirements in the AEC industry; 

Yurchyshyna et al. (2010; 2008) developed a conformity-checking ontology that captures 

regulatory information together with building-related knowledge and expert knowledge on 

checking procedures; Beach et al. (2013) extended the RASE method for representing 

requirements in the UK’s building research establishment environmental assessment method 

(BREEAM) and the code for sustainable homes (CSH); and Dimyadi et al. (2014) utilized the 

drools rule language (DRL) to represent regulatory rules.  

These efforts contributed to the improvement of flexibility and reusability of regulatory 

representations for ACC. However, they are still limited in terms of: (1) automated regulatory 

information extraction and transformation: the state of the art in ACC still requires major 

manual efforts in extracting regulatory information from textual regulatory documents and 

transforming/encoding these information into a computer-processable rule format; and (2) 

automated reasoning: the state-of-the-art ACC efforts still use ad-hoc reasoning 

schema/methods, with lack of support for complete automation in reasoning. For example, in 

Hjelseth and Nisbet (2011), (1) the extraction of regulatory information and their encoding 

into the RASE representation is still manually conducted and (2) no specific mechanism for 

reasoning about the RASE-represented regulatory requirements was proposed. For the 

ontology-based effort by Yurchyshyna et al. (2010; 2008), (1) the extraction of regulatory 

information and their encoding into SPARQL Protocol and RDF Query Language (SPARQL) 

queries is also manually conducted and (2) the reasoning in their ontology-centered approach 
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was implemented by matching resource description framework (RDF)-represented design 

information with SPARQL queries-represented regulatory information, but a set of expert 

rules need to be manually defined through document annotations (i.e., annotations by content 

and external sources) to organize the SPARQL queries and enable reasoning, resulting in 

ad-hoc reasoning and lack of full automation. In the work by Beach et al. (2013) and Dimyadi 

et al. (2014), (1) the extraction of regulatory information and their encoding into the extended 

RASE representation and DRL rules, respectively, is still manually conducted by experts, and 

(2) the mechanism of reasoning (e.g., sequence of rule execution) was not specified.  

There is, thus, a need for a “standard, generalized approach for formally representing building 

regulations in a digital format that would facilitate a variety of forms of reasoning about those 

codes in combination with digital building information models” (Garrett and Palmer 2014). 

The needed representation approach should also facilitate automated information extraction 

and information transformation to support complete automation of ACC.  

In an automated reasoning system, the representation schema and reasoning mechanism 

influence each other. Reasoning needs affect the requirements and structure of the 

representation and successful reasoning depends on appropriate representations. Finding the 

right representation is, thus, a key to successful reasoning (Bundy 2013).  

FOL representation and reasoning can provide a generalized reasoning method to facilitate 

complete automation in ACC reasoning (Kerrigan and Law 2003; Halpern and Weissman 
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2007). A limited number of research efforts have used FOL-based representation and 

reasoning in the AEC industry. Jain et al. (1989) introduced an information representation 

method that used FOL-based reasoning to support structural design. Rasdorf and 

Lakmazaheri (1990) used a FOL approach to (1) designing structural members according to 

the American Institute of Steel Construction (AISC) specifications, and (2) checking the 

compliance of designed structural members with the specifications. Kerrigan and Law (2003) 

used a FOL approach to supporting regulatory compliance assessment with Environmental 

Protection Agency (EPA) regulations. Outside of the AEC industry, a number of efforts have 

proposed the use of FOL for supporting conformance reasoning, such as compliance 

checking (Awad et al. 2009), policy auditing (Garg et al. 2011), and law verification 

(DeYoung et al. 2010). Despite the importance of these efforts, there are three main 

knowledge gaps in the area of FOL-based ACC. First, there is a lack of knowledge on which 

assumption is better-suited for ACC – a closed world assumption or an open world 

assumption in noncompliance detection. For example, Rasdorf and Lakmazaheri (1990) 

followed a closed world assumption for noncompliance detection, while Kerrigan and Law 

(2003) used an open world assumption; but there are no efforts that compared both 

assumptions in terms of performance in ACC applications. Second, there is a lack of 

knowledge on how to use a closed world assumption model in noncompliance detection 

without introducing many false positives. A closed world assumption can typically lead to a 

high number of false positives, because missing information would result in failure to deduce 
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compliance. For example, Denecker et al. (2011) chose to drop the closed world assumption 

because they could not avoid the false positives caused by missing information. Third, there 

is a need for further ACC-specific computational and reasoning support for using existing 

logic-based reasoners. For instance, there is a need for further built-in logic rules or functions 

to identify the sequence of checking different regulatory requirements. For example, Kerrigan 

and Law (2003) used control elements (i.e., functions) to specify the sequence of checking 

provisions for each regulation; but, this approach is limited because these control elements 

must be specified by a domain expert for every regulation. 

7.2 Proposed Information Representation and Compliance Reasoning Schema 

The proposed information representation and compliance reasoning (IRep and CRes) schema 

aims to provide a schema for formal representation of regulatory information and design 

information in the form of semantic-based (ontology-based) logic clauses (LCs). Automated 

compliance reasoning is enabled by the schema, because LCs can be directly used for 

logic-based automated reasoning. Two alternative subschema designs, Alternative I and 

Alternative II, were developed based on a closed world assumption and an open world 

assumption in noncompliance detection, respectively. The logic-based representation and 

reasoning is supported by a building ontology, where the predicates of the LCs link to the 

concepts and relations of the ontology. The ontology captures the concepts and relationships 

of the domain knowledge to support the representation and reasoning process. Activation 

conditions for checking compliance with regulatory rules were used in Alternative I. The 
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ontology-based LCs and the activation conditions were used in Alternative I to avoid the 

problem of missing information causing false positives in closed world assumption schemas. 

A support module was also developed, as part of the schema, to provide ACC-specific 

reasoning support.  

As such, the proposed IRep and CRes schema is composed of two main modules (as per 

Figure 7.1): a data module (which is dynamic) and a support module (which is fixed). The 

data module consists of information LCs. An information LC could be a regulatory 

information LC or a design information LC. Regulatory information LCs and design 

information LCs are used to represent applicable regulatory requirements and existing design 

information, respectively. They are automatically created/updated from semantic information 

elements that are automatically extracted from corresponding regulatory documents (e.g., 

IBC 2009) and design information sources (e.g., a BIM), and automatically transformed into 

the LC format. Information LCs are, thus, dynamically-created/updated based on applicable 

regulatory documents (i.e., building codes) and design information sources.  

The support module was developed to provide reasoning support to the data module, and 

consists of functional built-in LCs. The functional built-in LCs are used for implementing 

basic arithmetic functions (such as unit conversion) and defining reasoning 

sequences/strategies (such as the sequence of checking different regulatory requirements). 

The functional built-in LCs would be predefined (built-in) in an ACC system and, thus, 

would be fixed across different compliance checking instances.  



231 

 

 

Figure 7.1 The Proposed IRep and CRes Schema 

7.2.1 Main Features of the Proposed Information Representation and Compliance 

Reasoning Schema 

The proposed IRep and CRes schema is characterized by three main features. First, the 

representation is semantic. A semantic representation is essential to leverage domain 

knowledge in the reasoning process in order to handle the complex relations involved in 

compliance reasoning and enable deep reasoning. This is important because the relations in 

regulatory provisions could be very complex. For example, Figure 7.2 shows the many 

relations involved in one single regulatory provision in IBC 2006, leading to a very complex 

regulatory provision. The semantic representation is supported by an ontology that is used in 

a deep manner (i.e., the ontology supports deep information extraction, information 
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transformation, and the IRep and CRes schema). The semantic representation also facilitates 

human understandability and interpretability of the formal representation, which is essential 

to facilitate usability and allow for human testing and verification of the information 

representation and the reasoning results. Second, the representation is logic-based. A 

logic-based representation was selected to take advantage of the well-matured logic-based 

reasoning techniques. Logic-based reasoning is well-suited for ACC problems because: (1) 

The binary nature (“satisfy or fail to satisfy”) of the smallest reasoning units (i.e., LCs) fits 

the binary nature (“compliance or noncompliance”) of ACC tasks; (2) A variety of automated 

reasoning techniques such as search strategies and unification mechanisms are available in 

ready-to-use reasoners; (3) Many formally-defined logics have sufficient expressiveness to 

represent concepts and relations involved in ACC; and (4) once the information is properly 

represented in a logic format, the reasoning becomes completely automated. Among the 

existing types of logic, FOL was selected because “a FOL sentence can mostly be translated 

into an English sentence which is guaranteed to be true if and only if the FOL sentence is true 

in interpretation” (Hodges 2001). This: (1) enables isomorphism: one-to-one mapping 

between an English regulatory requirement and a logic clause (LC); and (2) as a result allows 

for traceability: maintaining traceability is important to identify the sources of LCs and, thus, 

to facilitate human verification and ensure trustworthiness of the LCs and the results. Third, 

the representation is generalized and flexible. The generalization and flexibility are achieved 

through generalized regulatory compliance checking concepts and flexible semantic 
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information elements. Generalized regulatory compliance checking concepts (e.g., “subject” 

and “compliance checking attribute”) are used, which enables the schema to represent 

regulatory provisions of any type/topic (e.g., building envelope performance, facility 

accessibility). Flexible information elements (e.g., “subject restriction,” as represented in 

Chapter 3 and Chapter 4) are used, which enables the schema to represent all information (i.e., 

all concepts and relations) in a regulatory provision regardless of the length and complexity 

of the provision (sentence). Generalization and flexibility are important to sustain utility and 

robustness of the proposed schema across different types of regulatory documents and 

different types of provisions.  

g
rea

ter_

th
a
n
_

o
r_

eq
u
al_

to
_

1
/3

0
0

_
o

f

warm_side

between

provide

lo
c
ate

d
_

in
u
p
p
er

h
as

has

less_than_or_equal

Ventilation1 Area1

Area2

Attic1

Vapor_Retarder1

ASTM_E_96

Ventilator1

Transmission_Rate1

Ventilation2

Area3

1 perm

Insulation1

has

has

Side1

in
st

al
le

d
_

o
n

has

in_accordance_with

g
rea

ter_
th

a
n
_

o
r_

eq
u
al_

to
_

0
.5

_
tim

es

Space_Portion1

Space1

ventilate
Vent1

ab
o
v

e

Distance1

between

3 feet

g
re

a
te

r_
th

a
n

_
o

r_
eq

u
al

Ventilation3

has

balance_of

Regulatory 

Provision from 

IBC 2006

Semantic

Representation of

the Regulatory

Provision

The minimum required net free ventilating area shall be 1/300 of the area of the space ventilated, provided a vapor retarder 

having a transmission rate not exceeding 1 perm in accordance with ASTM E 96 is installed on the warm side of the attic 

insulation and provided 50 percent of the required ventilating area provided by ventilators located in the upper portion of the 

space to be ventilated at least 3 feet above eave or cornice vents, with the balance of the required ventilation provided by 

eave or cornice vents.

p
ro

v
id

e

Figure 7.2 An Example Provision and the Involved Relations 



234 

 

 

7.2.2 Semantic Information Elements and their Link to the Logic Clauses 

The predicates in the LCs are semantic; they are linked to a set of “semantic information 

elements” (presented in Chapter 3). The semantic information elements are, in turn, linked to 

a building ontology. A semantic information element (see Figure 7.3) is a “subject,” 

“compliance checking attribute,” “deontic operator indicator,” “quantitative relation,” 

“comparative relation,” “quantity value,” “quantity unit,” “quantity reference,” “restriction,” 

or “exception” (see Chapter 3 for definitions). A semantic representation is essential to (1) 

distinguish the ACC-specific meaning of the different predicates by linking the predicates to 

the semantic information elements, and (2) associate further AEC-specific meaning to the 

different predicates by linking the semantic information elements to the ontology concepts 

and relations. For example, by linking the predicate 

“transverse_reinforcement(transverse_reinforcement)” to the “subject” and “spacing(spacing)” 

to the “compliance checking attribute,” we can distinguish that the former is the subject of the 

regulatory requirement, while the latter is the compliance checking attribute of this subject. In 

turn, by linking the “transverse_reinforcement” (i.e., name of the predicate) to ontology 

concepts, we can further recognize that “transverse_reinforcement(transverse_reinforcement)” 

is a type of “building element.” The use of semantic-based LCs also plays a central role in 

identifying and formalizing the activation conditions (as described in the following section).  

The recognition, extraction, and transformation of the semantic information elements into the 
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predicates are automatically conducted during preceding information extraction and 

information transformation processes – both aided by the ontology for capturing the semantic 

features of the text. The details of the information extraction and information transformation 

methods and algorithms are presented in Chapter 3 and Chapter 4, respectively.  
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Figure 7.3 Semantic Information Element 

7.2.3 Information Logic Clauses 

7.2.3.1 Regulatory Information Logic Clauses 

Two alternative subschemas were developed. Alternative I implements a closed world 

assumption (i.e., the assumption that what is not known to be true is false) for noncompliance 

detection, which means that the design information that are not found to be compliant are 

regarded as noncompliant. Alternative II implements an open world assumption (i.e., the 

assumption that what is not known to be true is unknown) for noncompliance detection, 

which means that design information must be explicitly found to be noncompliant to be 

regarded as noncompliant. The two alternatives differ in two primary ways: (1) in the way 

regulatory information LCs are represented, and (2) in the way regulatory information LCs 
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are executed.  

Alternative I 

In Alternative I, regulatory information LCs are represented using logic rules. Two types of 

regulatory information LCs are represented (as per Figure 7.4): primary regulatory 

information LCs and secondary regulatory information LCs (are called primary and 

secondary LCs hereafter). Each regulatory requirement (a provision could include multiple 

requirements as explained above) is represented as one primary LC and is supported by three 

secondary LCs. For example (see Figure 7.4), regulatory provision RP2 (here the provision 

has one requirement about “spacing”) is represented using PLC1, SLC1, SLC2, and SLC3.  

 RP2: “Spacing of transverse reinforcement shall not exceed 8 inches” (from Provision 

1908.1.3 of IBC 2009).  
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(check_spacing_of_transverse_reinforcement(spacing) ∧ compliance_spacing_of_transverse_reinforcement(spacing)) ⊃ 

output(spacing,Of,Transverse_reinforcement,Is,Compliant,With,Section,1908-1-3,Rule19)

(spacing(spacing) ∧ transverse_reinforcement(transverse_reinforcement) ∧ has(transverse_reinforcement,spacing)) ⊃ 
check_spacing_of_transverse_reinforcement(spacing)

Primary Logic Clause PLC1

Secondary Logic Clause SLC1

Secondary Logic Clause SLC2

(spacing(spacing) ∧ transverse_reinforcement(transverse_reinforcement) ∧ has(transverse_reinforcement,spacing) ∧ 

¬ greater_than(spacing, quantity(8,Inches))) ⊃ compliance_spacing_of_transverse_reinforcement(spacing)

Regulatory Information LCs Using Alternative I
1

1 
All variables are universally quantified, but quantifiers are not shown.

Design Information LCs

transverse_reinforcement(Transverse_reinforcement101). 

spacing(Spacing103). 

has(Transverse_reinforcement101, Spacing103).

has_quantity(Spacing103, 6, Inches). 

(spacing(spacing) ∧ transverse_reinforcement(transverse_reinforcement) ∧ has(transverse_reinforcement,spacing) ∧
greater_than(spacing,quantity(8,Inches))) ⊃ output(spacing,Of,Transverse_reinforcement,Is,Noncompliant,With,Section,

1908-1-3,It,Should,Be,Less,Than,Or,Equal,To,8,Inches,Rule20)

Logic Clause LC1

Logic Clause LC2

(spacing(spacing) ∧ transverse_reinforcement(transverse_reinforcement) ∧ has(transverse_reinforcement,spacing) ∧
¬ greater_than(spacing,quantity(8,Inches))) ⊃ output(spacing,Of,Transverse_reinforcement,Is,Compliant,With,Section,1908-1-

3,Rule19)

Regulatory Information LCs Using Alternative II
1

Secondary Logic Clause SLC3

(check_spacing_of_transverse_reinforcement(spacing) ∧ ¬ compliance_spacing_of_transverse_reinforcement(spacing)) ⊃ 

output(spacing,Of,Transverse_reinforcement,Is,Noncompliant,With,Section,1908-1-3, 

It,Should,Be,Less,Than,Or,Equal,To,8,Inches,Rule20)

Partial OntologyReinforcement

Building Element Quantity

Building Element Component

Transverse Reinforcement

Spacing

 

Figure 7.4 Alternative I and Alternative II of the Proposed IRep and CRes Schema (in First 

Order Logic) 

A primary LC is the core representation of a requirement. It represents the compliance case. 

The premise of a primary LC represents the conditions of the requirement (e.g., the 

conditions that would make the spacing of transverse reinforcement compliant) and the 
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conclusion of a primary LC represents the consequent result which is the compliance with the 

requirement (e.g., the compliance of the spacing of the transverse reinforcement). As such, 

compliance is deduced from primary LCs (compliance case), while noncompliance cases are 

inferred based on compliance cases (i.e., if a subject is not compliant with a primary LC, then 

it is noncompliant – following a closed-world assumption). As mentioned in the preceding 

subsection, the predicates in the primary LCs are linked to “semantic information elements,” 

where the instances of these semantic information elements were automatically recognized, 

extracted, and transformed into these LCs during the preceding ontology-based information 

extraction and information transformation processes. Semantic information elements are, in 

turn, linked to ontology concepts and relations. For example (see Figure 7.4), the predicates 

to the left of “⊃” in the primary rule PLC1 are the premise conditions of the LC, where each 

predicate represents an ontology concept or an ontology relation (a partial view of the 

ontology is also shown in Figure 7.4). For example, the predicate 

“transverse_reinforcement(transverse_reinforcement)” represents the concept “transverse 

reinforcement” (subconcept of “building element” which is a “subject”), the predicate 

“spacing(spacing)” represents the concept “spacing” (subconcept of “quantity,” which is a 

“compliance checking attribute”), and the predicate “has(transverse_reinforcement, spacing)” 

represents the relation “transverse reinforcement”-“has”-“spacing,” which is a relation 

between a “subject” and a “compliance checking attribute.” The conclusion of a primary LC 

is one single predicate that takes the following standardized pattern: 
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“compliance_ComplianceCheckingAttribute_of_Subject(complianceCheckingAttribute),” 

where the ComplianceCheckingAttribute and the Subject are the “compliance checking 

attribute” and the “subject” of the requirement, respectively. For example (see Figure 7.4), 

the following predicate represents the conclusion of PLC1, which is automatically 

constructed during information transformation from the extracted “subject” (“transverse 

reinforcement”) and the extracted “compliance checking attribute” (“spacing”) of the 

requirement: “compliance_spacing_of_transverse_reinforcement(spacing).” If multiple 

regulatory requirements exist in one regulatory provision, each of the regulatory requirements 

is represented in a separate primary LC and reported separately. For example, for regulatory 

provision RP1, the “height,” “thickness,” and “unbalanced_fill” of the “wall” instance are 

represented in three separate primary LCs and reported separately. 

 RP1: “In dwellings assigned to Seismic Design Category D or E, the height of the wall 

shall not exceed 8 feet (2438 mm), the thickness shall not be less than 71/2 inches (190 

mm), and the wall shall retain no more than 4 feet (1219 mm) of unbalanced fill.” 

(Provision 1908.1.8 of IBC 2009) 

 RP2: “Spacing of transverse reinforcement shall not exceed 8 inches.” (Provision 

1908.1.3 of IBC 2009) 

A regulatory document includes one or more regulatory provisions (e.g., a sentence in IBC 

2009), and a regulatory provision includes one or more regulatory requirements [(e.g., a 

sentence describing minimum requirements of both width and height of a door includes two 
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requirements (one requirement about the width and one about the height)]. For example, 

regulatory provision RP1 includes three regulatory requirements about the “height,” 

“thickness,” and “unbalanced fill” of the “wall,” while RP2 includes only one regulatory 

requirement about the “spacing” of the “transverse reinforcement.”   

Each primary LC is supported by three secondary LCs: (1) one for representing the 

conditions that activate the checking of the requirement, and (2) two for representing the 

consequences of the compliance checking result. Activation conditions (1) help prevent 

missing information from leading to false positives because missing information would lead 

to failure in activation, and (2) avoid exhaustive search over all design information LCs and 

thus lead to higher computational efficiency (during software implementation). The 

activation conditions for each regulatory requirement define the premise conditions of the 

requirement, which are generated from the respective primary LC by separating the premise 

conditions [e.g., “spacing(spacing) ∧ transverse_reinforcement(transverse_reinforcement) ∧ 

has(transverse_reinforcement, spacing)”] from the consequent prescription [e.g., 

“¬greater_than(spacing, quantity(8,Inches))”]. The semantic representation helps recognize 

the premise conditions of a regulatory requirement in a primary LC through the semantic 

information elements. The consequences for each requirement are also linked to instances of 

semantic information elements that are automatically recognized, extracted, and transformed 

into these secondary LCs during information extraction and information transformation 

processes. A “compliance checking result” could be compliance or noncompliance, and a 
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“compliance checking consequence” is the outcome or effect of the “compliance checking 

result” such as a suggested corrective action. For example, the checking of the regulatory 

requirement represented in PLC1 is activated using SLC1. If any information in the body of 

SLC1 is missing (e.g., the relation between the spacing and the transverse reinforcement is 

missing), then the checking with PLC1 would not be activated, which would avoid a blind 

activation of SLC3 that would lead to a false positive noncompliance. For the checking result, 

using SLC2 and SLC3, an output message including whether the result is compliant or 

noncompliant is printed out, together with the relevant provision number (i.e., “1908.1.3”) 

and the regulatory requirement rule ID. If the result is noncompliant, a corrective suggestion 

on how to fix the noncompliance is provided (i.e., “the spacing should be less than or equal to 

8 inches”). The modeling of compliance checking consequences allows for deep compliance 

reasoning (i.e., not only finding instances of noncompliance but also offering an analysis of 

the noncompliance and providing suggestions for corrective actions).  

Alternative II 

In Alternative II, each regulatory requirement is represented using two logic rules, one for 

representing the compliance case and one for explicitly representing the noncompliance case. 

As such, noncompliance cases are explicitly represented instead of being inferred based on 

compliance cases – following an open world assumption). For example, in Figure 7.4, LC1 

and LC2 are two LCs representing the compliance case and noncompliance case of a 

regulatory requirement, respectively. As such, the premise of LC1 represents the conditions 
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of compliance with a requirement, whereas that of LC2 represents the conditions of 

noncompliance with the same requirement. Different from Alternative I, there is no need to 

use secondary LCs for representing activation conditions and consequences of compliance 

checking results, because compliance and noncompliance cases are represented separately. 

As such, the conclusions of LC1 and LC2, represent both the “compliance checking results” 

(compliant or noncompliant) and the “compliance checking consequences” (e.g., a corrective 

suggestion on how to fix the noncompliance). Similar to Alternative I, predicates in the LCs 

link to ontology concepts or relations.  

Different from Alternative I, if multiple regulatory requirements exist in one regulatory 

provision, the compliance cases of all regulatory requirements (of that single regulatory 

provision) are represented in one single regulatory information LC and reported jointly in one 

single compliance instance; there is no need to separate the multiple requirements because 

compliance and noncompliance cases are represented separately. For example, for the 

regulatory provision RP1, all three regulatory requirements (i.e., for “height,” “thickness,” 

and “unbalanced_fill”) for the “wall” instance are represented in one single regulatory 

information LC and reported jointly in one single compliance instance. To avoid the 

enumeration of all possible combinations of noncompliance cases (e.g., height is compliant 

but thickness is not, thickness is compliant but height is not, etc.), the noncompliance case of 

each regulatory requirement is represented separately. For example, the noncompliance cases 

for “height,” “thickness,” and “unbalanced_fill” are represented separately.  
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7.2.3.2 Design Information Logic Clauses 

Design information LCs, in both Alternative I and Alternative II, are represented using logic 

facts. Each single design fact (e.g., Transverse_reinforcement101 is an instance of transverse 

reinforcement) is represented as one single design information LC (logic fact). A design fact 

could be a concept fact or a relation fact. A concept fact is represented by a design 

information LC consisting of a unary predicate, with the name of the concept as the name of 

the predicate. For example (see Figure 7.4), 

“transverse_reinforcement(Transverse_reinforcement101)” is a unary predicate that 

represents an instance of the concept “transverse reinforcement” and “spacing(Spacing103)” 

is a unary predicate that represents an instance of the concept “spacing.” A relation fact is 

represented by a design information LC consisting of a binary or n-nary predicate, with the 

name of the relation as the name of the predicate. For example, 

“has(Transverse_reinforcement101, Spacing103)” is a binary predicate that represents the 

relation that “Transverse_reinforcement101” has a “Spacing103” and 

“has_quantity(Spacing103, 6, Inches)” is a n-nary predicate which indicates that the quantity 

for “Spacing103” is 6 inches. Similar to regulatory information LCs, the recognition, 

extraction, and transformation of the concepts and relations into predicates are automatically 

conducted during the preceding information extraction and information transformation 

processes.  
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7.2.4 Functional Built-in Logic Clauses 

Six types of functional built-in LCs were developed and included in the IRep and CRes 

schema, as per Table 7.1: unit conversion LCs, quantity comparison LCs, quantity conversion 

LCs, sum of quantities LCs, quantity arithmetic computation LCs, and rule checking LCs.  

Table 7.1 Functional Built-in Logic Clauses 

Logic clause (LC) type Function 

Unit conversion LCs Define the conversion factors betweent units. 

Quantity comparison LCs 
Implement quantity comparison functions for basic comparative 

relations such as “greater than or equal.” 

Quantity conversion LCs 

Implement the conversions of quantities between different units based 

on the corresponding conversion factors defined in unit conversion 

LCs. 

Sum of quantities LCs 
Implement the function of summing up a list of enumerated quantities 

for calculations of total quantities. 

Quantity arithmetic 

computation LCs 

Define arithmetic operations on quantity values and quantity units. 

Rule checking LCs Initiate the checking and define the sequence of checking. 

7.3 Software Implementation 

7.3.1 Logic Programming Language 

The proposed IRep and CRes schema was implemented in B-Prolog logic programming 

language. A FOL-based programming language is needed for representation to allow for 

automated reasoning. B-Prolog is a Prolog system with extensions for programming 

concurrency, constraints, and interactive graphics. It has a bi-directional interface with C and 

Java (Zhou 2012). Prolog is a logic platform that is based on HC representation and reasoning; 

it uses a “near-HC format” that allows clauses having two or more positive literals (e.g., 
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“¬B1 ∧ B2 ⊃ H,” where B1, B2, and H are predicates). Although B-Prolog was selected in 

this dissertation, any other FOL-based programming language could be selected to represent 

the IRep and CRes schema instead; the proposed schema does not rely on any specific 

FOL-based programming language.  

B-Prolog is a good fit for representing the IRep and CRes schema because: (1) B-Prolog 

builds in classic Prolog, which is the most widely-used logic programming language and 

reasoner (Costa 2009); (2) the built-in classic Prolog in B-Prolog has an underpinning 

reasoner that enables automated inference-making through well-developed unification, 

backtracking, depth-first search, and rewriting techniques (Portoraro 2011); and (3) the 

compatibility of B-Prolog with C and Java programming languages renders further ACC 

system user interface development and implementation smoother. The syntax in B-Prolog 

differs from the original FOL syntax, as summarized in Table 7.2. When another logic 

programming language is used, such as Answer Set Programming (ASP) or Datalog, the 

syntax of some functions may need to be adjusted. The slight difference in reasoning 

implementations across different FOL-based programming languages may also cause certain 

advantages or limitations in the reasoning. The discussion of the potential advantages and 

limitations of the different FOL-based programming languages is outside the scope of this 

dissertation. 
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Table 7.2 Syntax of FOL and B-Prolog 

Element Syntax in FOL Syntax in B-Prolog 

Conjunction ∧ , 

Disjunction  ∨ ; 

Negation  ¬ not 

Implication  ⊃ :- 

Constant String starting with an upper-case letter String starting with a lower-case letter 

Variable  String starting with a lower-case letter String starting with an upper-case letter 

Universal 

quantifier 

∀ - 

Existential 

quantifier 

∃ - 

Predicate pred(arg1,arg2,…) pred(arg1,arg2,…) 

Function fun(arg1,arg2,…) fun(arg1,arg2,…) 

Rule pred1(arg1,arg2,…)∧pred2(arg1,arg2,…)

…∧predn(arg1,arg2,…)⊃predh(arg1,arg

2,…) 

predh(arg1,arg2,…) :- pred1(arg1,arg2,…), 

pred2(arg1,arg2,…)…, 

predn(arg1,arg2,…). 

Fact pred(arg1,arg2,…) pred(arg1,arg2,…). 

Directive - :- pred1(arg1,arg2,…), 

pred2(arg1,arg2,…)…, 

predn(arg1,arg2,…). 

7.3.2 Regulatory Information Logic Clauses 

7.3.2.1 Alternative I 

In Alternative I, regulatory information LCs (represented in the schema in the form of logic 

rules) are implemented as B-Prolog rules. The built-in “writeln()” predicate in B-Prolog is 

used for the output function. For executing the regulatory LCs, the user specifies the list of 

subjects (e.g., building elements such as walls and doors) or subjects and attributes to check 

and accordingly the subjects in the specified list are sequentially checked one by one. By 

default, a “select all” option is used if a user does not desire to specify specific subjects to 
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check. The sequence of checking in Alternative I is, thus, called subject-oriented. In the 

implementation of Alternative I, the search strategy is defined as follows: “for each selected 

subject instance, search through all regulatory information LCs to check if the activation 

conditions are satisfied, and if satisfied, then check the instance against the matched 

regulatory information LC.” The reasoning is supported by functional built-in LCs in the 

support module. An example of the implementation, corresponding to the example in Figure 

7.4, is shown in Figure 7.5. 
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transverse_reinforcement(transverse

_reinforcement101). 

spacing(spacing103). 

has(transverse_reinforcement101, 

spacing103).

has_quantity(spacing103, 6, inches). 

Quantity Comparison LCs: 

greater_than(A,quantity(V,U)) :- 

has_quantity(A,V1,U1),U1==U,V1>V.

greater_than(A,quantity(V,U)) :- has_quantity(A,V1,U1),U1\

==U,convert_quantity(V1,U1,U,V2),!,V2>V.

Quantity Conversion LCs: 

convert_quantity(V1,U1,U2,V2) :- factor(U1,U2,R),V2 is 

V1*R.

convert_quantity(V1,U1,U2,V2) :- factor(U2,U1,R),V2 is V1/

R.

convert_quantity(0,U1,U2,0).

Unit Conversion LCs: 

factor(inch,inches,1). 

factor(feet,inches,12).

Sum of Quantities LCs: ...

Quantity Arithmetic Computation LCs: ...

Rule Checking LCs: 

checklist(L) :- foreach(X in L, check(X)).

spacing103,of,transverse_reinforcement,is,compliant,with,section,1908-1-3,rule19

Partial Ontology

check_spacing_of_transverse_reinforcement(X) :- compliance_spacing_of_transverse_

reinforcement(X) -> writeln((X,of,transverse_reinforcement,is,compliant,with,section,

1908-1-3,rule19)). 

check(X) :- (spacing(X),transverse_reinforcement(Transverse_reinforcement),

has(Transverse_reinforcement,X)) -> check_spacing_of_transverse_reinforcement(X);true, ...

Primary Logic Clause PLC2

Secondary Logic Clause SLC4

Secondary Logic Clause SLC5

compliance_spacing_of_transverse_reinforcement(Spacing) :- spacing(Spacing),

transverse_reinforcement(Transverse_reinforcement), 

has(Transverse_reinforcement,Spacing), not  greater_than(Spacing, quantity(8,inches)).

Regulatory Information LCs Using Alternative I

Automated 
Reasoning

Design Information LCs

Functional Built-in LCs

check_spacing_of_transverse_reinforcement(X) :- not 

compliance_spacing_of_transverse_reinforcement(X) -> 

writeln((X,of,transverse_reinforcement,is,noncompliant,with,section,1908-1-

3,it,should,be,less,than,or,equal,to,8,inches,rule20)). 

Secondary Logic Clause SLC6

Note: “!” is the cut operator in B-Prolog which prevents a goal from being backtracked, “is” is the assignment operator in B-Prolog, and “->” is the symbol for representing 

implication within the body of a rule.

Figure 7.5 Alternative I of the Proposed IRep and CRes Schema (in B-Prolog Language) 

7.3.2.2 Alternative II 

In Alternative II, regulatory information LCs (represented in the schema in the form of logic 

rules) are implemented as B-Prolog directives. In comparison to B-Prolog rules, B-Prolog 

directives execute upon loading without conditions. B-Prolog directives were used instead of 

B-Prolog rules to allow for the execution of LCs upon loading, since activation conditions are 
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not used in Alternative II. In each directive, (1) the built-in “findall” predicate is used to 

leverage the inherent depth-first search strategy and backtracking techniques of B-Prolog to 

find all instances of the subject that satisfy the premise conditions of the requirement in the 

directive; (2) the “sort” predicate is used to sort the matched instances and remove duplicated 

instances; and (3) the “foreach” predicate is used to report the output results for each matched 

instance. In contrast to Alternative I, for executing the regulatory LCs in Alternative II, the 

user does not specify what subjects to check. All subjects that satisfy premise conditions in 

the regulatory information LCs are detected and checked. The sequence of checking follows 

the sequence of regulatory information LCs (i.e., the directives), which in turn follows the 

sequence of regulatory provisions in the original regulatory document. The sequence of 

checking in Alternative II is, thus, called regulation-oriented. An example of the 

implementation, corresponding to the example in Figure 7.4, is shown in Figure 7.6. 
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Design Information LCs

transverse_reinforcement(transverse

_reinforcement101). 

spacing(spacing103). 

has(transverse_reinforcement101, 

spacing103).

has_quantity(spacing103, 6, inches). 

Quantity Comparison LCs: 

greater_than(A,quantity(V,U)) :- 

has_quantity(A,V1,U1),U1==U,V1>V.

greater_than(A,quantity(V,U)) :- has_quantity(A,V1,U1),U1\

==U,convert_quantity(V1,U1,U,V2),!,V2>V.

Quantity Conversion LCs: 

convert_quantity(V1,U1,U2,V2) :- factor(U1,U2,R),V2 is 

V1*R.

convert_quantity(V1,U1,U2,V2) :- factor(U2,U1,R),V2 is V1/

R.

convert_quantity(0,U1,U2,0).

Unit Conversion LCs: 

factor(inch,inches,1). 

factor(feet,inches,12).

Sum of Quantities LCs: ...

Quantity Arithmetic Computation LCs: ...

Rule Checking LCs: ...

spacing103,of,transverse_reinforcement101,is,compliant,with,section,1908-1-3,rule19

Partial Ontology

:- findall((Spacing,Transverse_reinforcement),(spacing(Spacing),transverse_reinforcement

(Transverse_reinforcement),has(Transverse_reinforcement,Spacing),greater_than

(Spacing,quantity(8,inches))), Xs), sort(Xs, Xs1),foreach((Spacing, Transverse_reinforcement)

 in Xs1, (writeln((Spacing,of,Transverse_reinforcement,is,noncompliant,with,section,1908-1-3,

it,should,be,less,than,or,equal,to,8,inches,rule20)))).

...

Logic Clause LC3

Logic Clause LC4

…

:- findall((Spacing, Transverse_reinforcement), (spacing(Spacing),transverse_reinforcement

(Transverse_reinforcement),has(Transverse_reinforcement,Spacing),not greater_than

(Spacing,quantity(8,inches))), Xs), sort(Xs, Xs1),foreach((Spacing, Transverse_reinforcement)

 in Xs1, (writeln((Spacing,of,Transverse_reinforcement,is,compliant,with,section,1908-1-3,

rule19)))).

Regulatory Information LCs Using Alternative II

Automated 
Reasoning

Functional Built-in LCs

Note: “!” is the cut operator in B-Prolog which prevents a goal from being backtracked, “is” is the assignment operator in B-Prolog, and “->” is the symbol for 

representing implication within the body of a rule.

 

Figure 7.6 Alternative II of the Proposed IRep and CRes Schema (in B-Prolog Language) 

7.3.3 Design Information Logic Clauses 

Design information LCs (represented in the schema in the form of logic facts), in both 

Alternative I and Alternative II, are implemented as B-Prolog facts.  
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7.3.4 Functional Built-in Logic Clauses 

The six types of functional built-in LCs in the IRep and CRes schema were implemented in 

B-Prolog syntax, as shown in Figure 7.5 and Figure 7.6.  

One single rule checking LC is used in Alternative I and no rule checking LCs are used in 

Alternative II [not needed since the checking is initiated in each directive utilizing the 

inherent (“findall”) search strategies in B-Prolog]. As shown in Figure 7.5, the rule checking 

LC in Alternative I is: “checklist(L) :- foreach(X in L, check(X)).” This rule checking LC 

initiates the checking of subjects (in the user-specified list or default “select all” list), 

sequentially, one by one following the sequence in the list. In total, 71 functional built-in LCs 

were developed and used for Alternative I, and all 71 LCs except one (the rule checking LC) 

were used for Alternative II. 

7.4 Experimental Testing and Evaluation   

To empirically test the proposed IRep and CRes schema, Alternative I and Alternative II 

were tested in representing and reasoning about the quantitative regulatory requirements in 

Chapter 19 of IBC 2009 and the design information of the BIM test case (discussed in 

Section 6.3.1) for checking the compliance of the design. The results of noncompliance 

detection under each subschema alternative were evaluated in terms of precision and recall. 

To highlight the potential advantages of ACC using the proposed schema, the time efficiency 

of automated checking was also empirically tested.  
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7.4.1 Testing of Compliance Reasoning  

The evaluation of representation and compliance reasoning, in terms of noncompliance 

detection, was conducted in two ways: (1) evaluating the performance of noncompliance 

detection using perfect information (i.e., LCs that contain no errors), and (2) evaluating the 

performance of noncompliance detection using imperfect information (i.e., LCs that contain 

errors).  

7.4.1.1 Evaluation Metrics 

The evaluation of compliance reasoning is conducted by comparing the noncompliance 

detection results with those in a manually-developed gold standard. The gold standard 

includes all noncompliance instances manually detected by the author. The evaluation was 

conducted using the following measures: precision, recall, and F1-measure. Precision, here, is 

the number of correctly detected noncompliance instances divided by the total number of 

noncompliance instances that have been detected. Recall, here, is the number of correctly 

detected noncompliance instances divided by the total number of noncompliance instances 

that should be detected. F1-measure is the harmonic mean of precision and recall.  

7.4.1.2 Testing Using Perfect Information 

A gold standard was manually developed and used for evaluation. A gold standard refers to a 

benchmark against which testing results are compared for evaluation. 

For testing Alternative 1, both regulatory information LCs and design information LCs were 
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manually represented/coded based on Gold Standard I (i.e., the gold standard of Alternative I). 

Gold Standard I was composed of two subparts: (1) the gold standard of regulatory 

information LCs in Chapter 19 of IBC 2009 under Alternative I, which included 264 LCs (in 

the form of B-Prolog rules), consisting of 66 primary LCs and 198 secondary LCs (i.e., three 

secondary LCs for each primary LC), and (2) the gold standard of design information LCs in 

the BIM test case, which included 1,442 LCs (in the form of B-Prolog facts). For example, 

Figure 7.5 shows the gold standard for representing provision RP2 and a set of design 

information, where PLC2 is one of the 264 LCs and “spacing(spacing103)” is one of the 

1,442 LCs. The reasoning was then conducted automatically using the B-Prolog reasoner.  

For testing Alternative II, the same testing procedure was followed, except that both 

regulatory information LCs and design information LCs were manually coded based on Gold 

Standard II (i.e., the gold standard of Alternative II). Gold Standard II was composed of two 

subparts: (1) the gold standard of regulatory information LCs in Chapter 19 of IBC 2009 

under Alternative II, which included 137 LCs (in the form of B-Prolog directives), and (2) the 

gold standard of design information LCs in the BIM test case, which included 1,442 LCs (in 

the form of B-Prolog facts). For example, Figure 7.6 shows the gold standard for representing 

provision RP2 and a set of design information, where LC3 is one of the 137 LCs and 

“spacing(spacing103)” is one of the 1,442 LCs.  

7.4.1.3 Testing Using Imperfect Information 

The testing using imperfect information was conducted using a similar procedure to that of 
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testing using perfect information, except that a set of automatically-coded regulatory 

information LCs were used instead of the manually-coded ones. These automatically-coded 

LCs were automatically generated from Chapter 19 of IBC 2009 using algorithms for 

automated information extraction (to automatically extract information from regulatory 

documents into semantic tuples, as presented in Chapter 3) and automated information 

transformation (to automatically transform the semantic tuples into LCs, as presented in 

Chapter 4). The use of automatically-coded regulatory information LCs allows for evaluating 

the performance of compliance reasoning using imperfect information (i.e., because the 

automatically-coded LCs contain errors). For both alternatives, Alternative I and Alternative 

II, 21 of the regulatory requirements contained errors. While the same information extraction 

algorithm was used for both Alternative I and Alternative II, the information transformation 

algorithm was slightly modified for Alternative II due to the differences in terms of 

regulatory information representation. In Alternative II, the transformation results are 

B-Prolog directives instead of B-Prolog rules.  

7.4.2 Testing of Time Performance  

To compare the time efficiency of the two alternative subschemas, the durations of automated 

compliance reasoning using perfect information, under Alternative I and Alternative II were 

calculated using the time keeping predicates in B-Prolog. Since Alternative I is 

subject-oriented while Alternative II is regulation-oriented, the duration of compliance 

reasoning is measured differently for each alternative. For Alternative I, the duration is 
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measured from the time of initializing the compliance reasoning about the first design fact to 

the time of finishing compliance reasoning about the last design fact (design information LC 

No. 1,442). For Alternative II, the duration is measured from the time of initializing 

compliance reasoning with the first regulatory requirement to the time of finishing 

compliance reasoning with the last regulatory requirement (regulatory information LC No. 

137).  

7.4.3 Results and Discussion 

7.4.3.1 Results of Compliance Reasoning Performance 

Results Using Perfect Information 

The experimental results are summarized in Table 7.3. When using perfect information, on 

the testing data, both Alternative I and Alternative II achieved 100% precision, recall, and 

F1-measure in noncompliance detection. This shows that the proposed IRep and CRes 

schema is effective in supporting ACC. The compliance checking results and suggestions for 

fixing noncompliance instances were also correctly reported in the output.  
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Table 7.3 Experimental Results  

Subschema Parameter/measure 
Results 

  

 

 

Alternative I 

(closed 

world 

assumption) 

Number of noncompliance instances in gold 

standard 

79 79 

Number of noncompliance instances detected 79 89 

Number of noncompliance instances correctly 

detected 

79 78 

Precision of noncompliance detection 100% 87.6% 

Recall of noncompliance detection 100% 98.7% 

F1-measure of noncompliance detection 100% 92.8% 

 

 

Alternative 

II  

(open world 

assumption) 

Number of noncompliance instances in gold 

standard 

79 79 

Number of noncompliance instances detected 79 62 

Number of noncompliance instances correctly 

detected 

79 61 

Precision of noncompliance detection 100% 98.4% 

Recall of noncompliance detection 100% 77.2% 

F1-measure of noncompliance detection 100% 86.5% 

Figure 7.7 shows the checking results of “wall1” to “wall5” using Alternative I. For example, 

“wall1” has “height3,” “thickness1,” and “unbalanced_fill1;” and “wall2” has “height4,” 

“thickness2,” and “unbalanced_fill2,” where Rule43 and Rule44 focus on height checking, 

Rule43-1 and Rule45 focus on thickness checking, and Rule43-2 and Rule46 focus on 

unbalanced fill checking. Figure 7.8 shows the checking results of “wall1” to “wall5” using 

Alternative II, where Rule44, Rule 45, and Rule 46 represent the noncompliance cases of 

“height,” “thickness,” and “unbalanced fill,” respectively, and Rule 43 represents the 

compliance cases of all three regulatory requirements jointly.   
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Figure 7.7 Sample Compliance Checking Results Using Alternative I 

 

Figure 7.8 Sample Compliance Checking Results Using Alternative II 

Results Using Imperfect Information 

When using imperfect information, on the testing data, Alternative I and Alternative II 

achieved 87.6% (95% confidence interval [79.2%, 93.0%]), 98.7% (95% confidence interval 

[93.2%, 99.8%]), and 92.8% (95% confidence interval [85.6%, 96.3%]) and 98.4% (95% 

confidence interval [91.4%, 99.7%]), 77.2% (95% confidence interval [66.8%, 85.1%]), and 

86.5% (95% confidence interval [77.2%, 91.8%]) precision, recall, and F1-measure in 

noncompliance detection, respectively. The recall of Alternative I outperformed that of 

Alternative II, while the precision of Alternative II outperformed that of Alternative I. This 

reflects the trade-off between precision and recall.  

In Alternative I, a high recall is achieved because it can block some errors in information 
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extraction and information transformation from propagating to false negatives in 

noncompliance detection results; a total of 39 incorrect regulatory information LCs caused by 

errors in information extraction and information transformation occurred, yet only 1 of them 

propagated into a false negative in noncompliance detection. Errors in predicates other than 

quantity comparison predicates [e.g., greater_than(Spacing,quantity(8,inches)) in Figure 7.5] 

could be blocked from leading to false negatives. Because, in Alternative I, all selected 

design subjects are checked, noncompliance instances are less likely to be missed. However, 

most of these information extraction and information transformation errors still lead to false 

positives, which makes the precision relatively lower than recall.  

In Alternative II, a higher precision is achieved because some false positives are blocked 

since noncompliance cases are explicitly represented (following an open world assumption), 

whereas in Alternative I noncompliance cases are inferred based on compliance cases (i.e., if 

a primary LC is not compliant, then it is noncompliant – following a closed-world 

assumption). Such explicit representation, however, makes the representation quite sensitive 

to information extraction and information transformation errors. Any preceding information 

extraction or information transformation error is highly likely to cause a failure to activate the 

checking in relevant logic directives in Alternative II, which would result in a drop in recall. 

Alternative I is, thus, more suitable for ACC applications, because recall of noncompliance 

instances is more important than precision. Overall the F1-measure of Alternative I is also 

higher than that of Alternative II.  
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7.4.3.2 Results of Time Performance 

Automated compliance reasoning about the BIM test case with quantitative regulatory 

requirements of Chapter 19 of IBC 2009 using the proposed IRep and CRes schema took 

fractions of a second. The experiments were conducted using a laptop with a random access 

memory (RAM) of 3.73 gigabytes (GB) and an Advanced Micro Devices (AMD) C-50 

processor with 1.00 gigahertz (GHZ). With an increase in the central processing unit (CPU) 

speed and/or RAM, the time taken for automated compliance reasoning using the proposed 

IRep and CRes schema could be further reduced. Under Alternative I, compliance reasoning 

took only 55% (0.515 seconds) of the time taken under Alternative II (0.936 seconds). The 

main reason for this difference is the increased amount of design facts to search in 

Alternative II, because the representation under Alternative II exhaustively searched all 

design facts (even the ones not related to building elements) to detect those satisfying premise 

conditions of each regulatory information LC, whereas the representation under Alternative I 

only searched from the set of subjects (i.e., building elements) in the list (the default “select 

all” list was used).  
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8 CHAPTER 8 – PROTOTYPE SYSTEM IMPLEMENTATION AND 

EXPERIMENTAL TESTING 

The proposed ACC method was implemented in a proof-of-concept prototype system named 

Semantic Natural Language Processing-based Automated Compliance Checking (SNACC) 

system. The SNACC system was implemented using Java programming language (Oracle 

1999), General Architecture for Text Engineering (GATE) tools (Cunningham et al. 2012), 

Python programming language (Python 2.7.3), B-Prolog logic programming platform and 

reasoner (Zhou 2012), and Java Standard Data Access Interface (JSDAI) tools.  

8.1 System Architecture 

The system architecture is illustrated in Figure 8.1. It is composed of three main modules: (1) 

regulatory information extraction and transformation module, (2) design information 

extraction and transformation module, and (3) compliance reasoning module. The regulatory 

information extraction and transformation module is composed of regulatory information 

extraction and regulatory information transformation submodules. At the core of the 

regulatory information extraction submodule is the information extraction algorithm, 

including the information extraction rules and the conflict resolution rules. The syntactic 

features in the patterns of the rules are generated using GATE’s Processing Resources (e.g., 

tokenizer), while the semantic features are generated from an ontology using GATE’s 

Processing Resources (e.g., gazetteer). The information extraction algorithm interacts with 

the Processing Resources using GATE’s application program interface (API) in Java. 
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Figure 8.1 System Architecture of the SNACC System 

At the core of the regulatory information transformation submodule is the information 

transformation algorithm, including the semantic mapping rules and the conflict resolution 

rules. The syntactic and semantic features in the patterns of the rules are extracted from the 

information tags of the semantic information tuples. The information transformation 

algorithm interacts with the other modules of the SNACC system (in Java) through Jython.  

The design information extraction and transformation module is composed of the BIM 

information extraction and the BIM information transformation submodules. At the core of 

the BIM information extraction submodule is the BIM information extraction algorithm, 
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including the entity and attribute extraction rules. The data types of the entities and attributes 

in the conditions of the rules are extracted from the BIM. At the core of the BIM information 

transformation submodule is the BIM information transformation algorithm, including the 

transformation rules (for initial transformation and alignment transformation). To execute the 

transformation rules for alignment transformation, the information transformation algorithm 

interacts with B-Prolog reasoner through B-Prolog’s interface with Java.  

At the core of the compliance reasoning module is the compliance reasoning algorithm, 

including the functional built-in logic clauses. The compliance reasoning algorithm controls 

and supports the reasoning about the logic rules and logic facts using the reasoner in 

B-Prolog. The compliance reasoning algorithm interacts with B-Prolog reasoner through the 

B-Prolog’s interface with Java. A user interacts with all the three modules through a 

graphical user interface.  

8.2 System Implementation 

The main platform of the SNACC system was built using Java programming language 

(Java Standard Edition Development Kit 6u45). The regulatory information extraction 

algorithm was implemented using the GATE’s Processing Resources and Java programs. The 

following Processing Resources were used: (1) Java Annotation Patterns Engine (JAPE) rules 

for encoding the information extraction rules; (2) the English Tokenizer, Sentence Splitter, 

POS Tagger, and Gazetteer in the A Nearly-New Information Extraction (ANNIE) system for 
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tokenization, sentence splitting, POS tagging, and gazetteer compiling; (3) the Morphological 

Analyzer for morphological analysis; and (4) the Flexible Gazetteer for generating semantic 

features based on the ontology. The conflict resolution rules were coded as Java conditional 

statements. The information extraction algorithm interacts with the Processing Resources 

using GATE’s API 7.0.  

The regulatory information transformation algorithm was implemented using the Python 

programming language (Python 2.7.3). The semantic mapping rules and conflict resolution 

rules were coded as Python conditional statements. The “re” module (i.e., regular expression 

module) in Python was used for both extracting the syntactic and semantic features from the 

information tuples and conducting pattern matching. The information transformation 

algorithm interacts with the other modules of the SNACC system (in Java) through Jython 

2.2.1.  

The BIM information extraction and transformation algorithm was implemented in Java 

programs and B-Prolog rules. The Java Standard Data Access Interface (JSDAI) runtime 

(JSDAI4.1.505.v201112201320) was used to access the information in IFC-based BIMs (.ifc 

files) for entity and attribute extraction. String processing methods in Java were used for 

initial transformation. Static rules and dynamic rules in B-Prolog were used for alignment 

transformation. The rules for entity extraction, attribute extraction, and initial transformation 

were coded as Java conditional statements. The rules for alignment transformation (i.e., SeTr 

rules) were coded as B-Prolog rules.  
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The logic-based automated reasoning algorithm was implemented in Java. The functional 

built-in logic clauses were encoded in B-Prolog. The automated reasoning algorithm interacts 

with the logic clauses and logic reasoner through B-Prolog’s bi-directional interface 7.8 with 

Java programming language.  

The graphical user interface of the SNACC system is shown in Figure 8.2 to Figure 8.10. The 

SNACC system requires the download of the GATE tool and the availability of a building 

ontology to execute the regulatory information extraction and transformation algorithms. As 

the first two steps of executing the SNACC system, an installed GATE and a building 

ontology must be specified (Figure 8.2, Figure 8.3). 

 

Figure 8.2 Graphical User Interface of the SNACC System for GATE Selection 
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Figure 8.3 Graphical User Interface of the SNACC System for Ontology Selection 

A user could then select the regulatory document (.txt file) (Figure 8.4) and the BIM (.ifc file) 

(Figure 8.5) for automated compliance checking. The information extraction and information 

transformation algorithms for regulatory information (Figure 8.6 and Figure 8.7) and design 

information (Figure 8.8 and Figure 8.9) could be executed in parallel. After all information 

have been extracted and transformed, pressing the “check compliance” button activates the 

automated reasoning process using B-Prolog (Figure 8.10). The compliance checking results 

are then automatically displayed to the user in the text field of the graphical user interface (as 

shown in Figure 8.10). 
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Figure 8.4 Graphical User Interface of the SNACC System for Regulatory Text Selection 

 

Figure 8.5 Graphical User Interface of the SNACC System for .ifc File Selection 



267 

 

 

Figure 8.6 Graphical User Interface of the SNACC System for Regulatory Information 

Processing (a) 

 

Figure 8.7 Graphical User Interface of the SNACC System for Regulatory Information 

Processing (b) 
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Figure 8.8 Graphical User Interface of the SNACC System for Design Information 

Processing (a) 

 

Figure 8.9 Graphical User Interface of the SNACC System for Design Information 

Processing (b) 
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Figure 8.10 Graphical User Interface of the SNACC System for Automated Compliance 

Checking 

8.3 Data for System Testing 

The SNACC system was tested in checking the compliance of the BIM test case with Chapter 

19 of IBC 2009. IBC was selected because it is predominantly adopted in the United States. 

Chapter 19 of IBC 2009 was then randomly selected. For the test case, it was developed 

based on the Duplex Apartment Project from buildingSMARTalliance of the National 

Institute of Building Sciences (East 2013). Design information were added in the BIM model, 

based on the extended IFC schema. The test case included design information for each 

provision in Chapter 19 of IBC 2009. The design information included both compliant and 

noncompliant design information. If a provision has more than one requirement, then 

compliant and noncompliant design information for each requirement is included. For 
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example, the following regulatory provision (RP1) is a complex provision that contains three 

quantitative requirements: “In dwellings assigned to Seismic Design Category D or E, the 

height of the wall shall not exceed 8 feet (2438 mm), the thickness shall not be less than 71/2 

inches (190 mm), and the wall shall retain no more than 4 feet (1219 mm) of unbalanced fill” 

(Provision 1908.1.8 of IBC 2009). Thus, five information sets were created for RP1 which 

correspond to the scenarios that (1) only height is noncompliant, (2) only thickness is 

noncompliant, (3) only unbalanced fill is noncompliant, (4) all three attributes are 

noncompliant, and (5) no attributes are noncompliant. 

8.4 Evaluation Metrics 

The ACC prototype system was evaluated using precision, recall, and F1-measure of 

noncompliance detection. Precision, here, is defined as the number of correctly detected 

noncompliance instances divided by the total number of noncompliance instances detected. 

Recall, here, is defined as the number of correctly detected noncompliance instances divided 

by the total number of noncompliance instances that should be detected. F1-measure is the 

harmonic mean of precision and recall. A manually-developed gold standard was used for the 

evaluation. A gold standard refers to a benchmark against which testing results are compared 

for evaluation. The gold standard includes the ground truth of compliant and noncompliant 

instances. For example, Figure 8.11 shows the ground truth of a “thickness” instance for an 

exterior basement wall in the gold standard (checked for compliance with Provision 1909.6.1 

of IBC 2009).  
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Building Information Model

…

#39357=IFCDERIVEDUNIT($,$,'inches');

#39993=IFCTHICKNESS();

#39994=IFCEXTERIORBASEMENTWALLS($,$,$,$,$,$,$,$);

#39995=IFCACCBIRELATION($,$,$,$,'has',#39994,#39993,$);

#39996=IFCMEASUREWITHUNIT(IFCREAL(25.5),#39357);

#39997=IFCACCHASQUANTITY($,$,$,$,#39993,#39996,$,$,$);

...

Regulatory Text

...

Provision 1909.6.1

The thickness of exterior basement walls and 

foundation walls shall be not less than 71/2 

inches.

...

Compliance Checking Results

...

exterior_basement_wall39994,is,noncompliant,with,section,1909-6-1,thickness,should,be,not,less_than,71/2,inches,rule82

...

Information Tuples

...

(exterior_basement_wall/foundation_wall, N/

A, thickness, obligation, be, not less_than,  

7½, inches, N/A)

...

Regulatory

 Information 

Extraction

Automated Reasoning

Information Tuples

...

(derivedunit,39357,[userdefinedtype],[‘inches’]);

(thickness,39993,[],[]);

(exteriorbasementwall,39994,[],[]);

(accbirelation,39995,[typename,relatingelement,relatedelement],[‘has’,exteriorbasementwall39

994,thickness39993]);

(measurewithunit,39996,[valuecomponent,unitcomponent],[25.5,derivedunit39357]);

(acchasuniquantity,39997,[relatingelement,quantity],[thickness39993,measurewithunit39996]);

...

BIM

 Information 

Extraction

Regulatory

 Information 

Transformation

BIM

 Information 

Transformation

Logic Rules

...

compliance_thickness_of_exterior_basement

_wall(Thickness) :- 

thickness(Thickness),(exterior_basement_wal

l(Exterior_basement_wall);foundation_wall(

Exterior_basement_wall)),has(Exterior_base

ment_wall,Thickness),not 

less_than(Thickness,quantity(71/2,inches)).

...

Logic Facts

…

thickness(thickness39993).

exterior_basement_wall(exterior_basement_wall39994).

has(exterior_basement_wall39994,thickness39993).

has_quantity(thickness39993,quantity(25.5,inches)).

...

 

Figure 8.11 Gold Standard of an Example Provision and Design Information 

8.5 Results and Discussion 

The testing results are summarized in Table 8.1. As shown in Table 8.1, the precision, recall, 

and F1-measure of noncompliance detection is 87.6% (95% confidence interval [79.2%, 

93.0%]), 98.7% (95% confidence interval [93.2%, 99.8%]), and 92.8% (95% confidence 

interval [85.6%, 96.3%]), respectively. The relevant provision numbers and rule ID numbers 
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for the compliant and noncompliant instances were also correctly reported. For each 

noncompliance instance, a suggestion on how to fix the noncompliance case was also 

correctly reported (partially shown in Figure 8.10).  

Table 8.1 Noncompliance Detection Testing Results 

Parameter/measure Result 

Number of noncompliance instances in gold standard 79 

Number of noncompliance instances detected 89 

Number of noncompliance instances correctly detected 78 

Recall of noncompliance detection 98.7% 

Precision of noncompliance detection 87.6% 

F1-measure of noncompliance detection 92.8% 

These high performance results show that the proposed ACC system is promising. In addition, 

the fact that the proposed ACC system achieved higher recall (98.7%) than precision (87.6%) 

shows its suitability for the ACC application; in noncompliance detection, recall is more 

important than precision. Recall errors are more critical because they might result in missing 

noncompliance instances, whereas precision errors could be easily double-checked and 

filtered out by the user. The system achieved a high recall for two main reasons: (1) the 

information representation schema for automated reasoning follows the closed world 

assumption and therefore blocks certain errors in information extraction and information 

transformation from propagating into noncompliance detection results; and (2) the subjects 

(e.g., building elements) for checking are specified in a list and sequentially checked one by 

one, which ensures that all subjects in the list are checked for compliance and avoids false 

negatives.  
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An error analysis was also conducted to identify the sources of the errors in noncompliance 

detection. The noncompliance detection errors originated from errors in regulatory 

information extraction and regulatory information transformation; there were no errors in 

BIM information extraction, BIM information transformation, and compliance reasoning. 

Five main sources of errors are recognized: (1) limitations of GATE’s Processing Resources: 

for example, the Flexible Gazetteer in GATE failed to recognize the term “bar” although it 

exists in the ontology; (2) limitations of conflict resolution rules in regulatory information 

extraction: for example, one conflict resolution rule states that if no “compliance checking 

attribute” was extracted and extra “subject” candidates were extracted, then place the “subject” 

candidate that is closest to the “quantity value” as the attribute. This rule led to an incorrect 

extraction of “clear height” as the compliance checking attribute instance in the sentence 

“Transverse reinforcement shall be extended beyond the pier clear height for at least 12 

inches” (Provision 1908.1.3 of IBC 2009); (3) missing patterns in information extraction 

rules in regulatory information extraction: for example, the pattern for “the percentages of the 

total weight of cementitious materials” was missing in the information extraction rules for 

extracting quantity reference. Therefore, “the percentages of the total weight of cementitious 

materials” was not extracted as a quantity reference from the following part of sentence: “the 

maximum weight of fly ash, other pozzolans, silica fume or slag that is included in the 

concrete shall not exceed the percentages of the total weight of cementitious materials 

permitted by ACI 318, Section 4.4.2” (Provision 1904.4.2 of IBC 2009); (4) structural 
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ambiguity caused by conjunctive terms in regulatory information transformation: for example, 

in the following part of sentence, there are two possible syntactic uses of “or,” either linking 

“structural shapes” and “pipe” or linking “structural shapes” and “pipe embedded in the 

concrete core with sufficient clearance”: “structural shapes or pipe embedded in the concrete 

core with sufficient clearance…” (Provision 1915.4 of IBC 2009). The ability of the semantic 

mapping rules to handle structural ambiguity is limited by the development text, which may 

lead to errors in regulatory information transformation; and (5) limitations of certain semantic 

mapping rules in regulatory information transformation: for example, a semantic mapping 

rule selects the immediate left neighbor of a preposition as the first argument of that 

preposition. In cases in which the immediate left neighbor of a preposition is not its real first 

argument, this semantic mapping rule causes errors. For example, in the following part of 

sentence, “approved agency” was mistakenly identified as the first argument for the 

preposition “on” rather than “strength tests”: “strength tests for shotcrete shall be made by an 

approved agency on specimens...” (Provision 1913.10 of IBC 2009). 
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9 CHAPTER 9 – CONCLUSIONS, CONTRIBUTIONS, LIMITATIONS, AND 

RECOMMENDATIONS FOR FUTURE RESEARCH 

9.1 Conclusions 

9.1.1 Conclusions for the Proposed Regulatory Information Extraction Method and 

Algorithm 

A semantic, rule-based NLP method and algorithm for automatically extracting regulatory 

information from building codes for supporting ACC in the construction domain was 

developed. A set of pattern-matching-based IE rules and CR rules are used in information 

extraction. The patterns are represented in terms of syntactic and semantic text features. NLP 

techniques are utilized to capture the syntactic features of the text, and a domain ontology is 

used to capture the semantic ones. PSG-based phrasal tags are used in syntactic analysis to 

reduce the number of needed patterns. Information elements are extracted separately and 

sequentially to further limit the number of needed patterns. The information extraction is 

relatively deep; it aims to achieve full sentence analysis to extract all information of a 

requirement for further representation in a logic-based rule format.  

The proposed algorithm was tested in extracting quantitative requirements from IBC 2009. A 

comparison of the extracted information element instances with those in a semiautomatically 

developed gold standard showed an average precision, recall, and F1-measure of 96.9%, 

94.4%, and 95.6% respectively. A preliminary reusability testing of the IE and CR rules on a 
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randomly selected piece of text from the Internet also achieved an F1-measure greater than 

90%, which shows the good potential of reusability of the rules. These high performance 

results indicate that the proposed information extraction approach is promising. An error 

analysis also pinpointed the sources of errors in the experimental results and identified 

potential solutions for the possibility of further performance enhancement.  

9.1.2 Conclusions for the Proposed Regulatory Information Transformation Method 

and Algorithm 

A semantic, rule-based method and algorithm for automatically transforming the extracted 

regulatory information into logic rules for supporting ACC in the construction domain was 

developed. A set of semantic mapping (SM) rules and conflict resolution rules (CR) are used 

in information transformation. CR rules resolve conflicts between information instances, 

while SM rules transform the information instances into logic clause elements. The SM rules 

use context-aware and flexible information patterns. Both syntactic and semantic information 

tags are utilized in the patterns. Syntactic information tags (e.g., POS tags) are generated 

using NLP techniques. A semantic model helps recognize the semantic information tags of 

each extracted information instance. A “consume and generate” mechanism was proposed to 

handle complex sentence components and execute the SM rules. The information 

transformation method, thus, processes almost all terms of a sentence. Such full sentence 

processing enables deep NLP towards natural language understanding.  
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The proposed information transformation algorithm was tested in transforming information 

instances of quantitative requirements, which were automatically extracted from Chapter 19 

of IBC 2009, into logic clauses. The transformation results were compared with a 

manually-developed gold-standard. The results showed 98.2%, 99.1%, and 98.6% precision, 

recall, and F1-measure, respectively. This high performance shows that the proposed 

information transformation method is promising. An error analysis also pinpointed the 

sources of errors in the experimental results and identified potential solutions for the 

possibility of further performance enhancement.  

9.1.3 Conclusions for the Proposed IFC Extension Method and Algorithm 

A semantic, rule-based and machine learning-based method and algorithm for 

semiautomatically extending the IFC schema with concepts in building codes for supporting 

ACC in the construction domain was developed. The proposed method utilizes semantic 

natural language processing (NLP) techniques and machine learning techniques, and is 

composed of four primary methods that are combined into one computational platform: (1) a 

method for concept extraction that utilizes POS-pattern-matching-based rules to extract 

regulatory concepts from regulatory documents, (2) a method for identifying and selecting 

the most related IFC concepts to the extracted regulatory concept, which utilizes term-based 

and semantic-based matching algorithms to find candidate related IFC concepts and a 

semantic similarity (SS) scoring and ranking algorithm to measure the SS between each 

candidate IFC concept and a regulatory concept, (3) a machine learning classification method 
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for predicting the relationship between the extracted regulatory concepts and their most 

related IFC concepts based on the syntactic and semantic features of their terms, and (4) a 

mapping rule-based method for integrating the regulatory concepts into the IFC schema based 

on their relationship with IFC concepts.  

The proposed IFC extension method was evaluated on extending the IFC schema with 

regulatory concepts from Chapter 19 of IBC 2009, using a manually-developed gold standard. 

Each of the four methods were evaluated separately, and achieved 91.7%, 84.5%, 87.94% 

and 100% F1-measure, adoption rate, precision, and F1-measure, respectively. The 

performance results indicate that the proposed IFC extension method is potentially effective. 

The results also show that semantic features of the concept terms and their interrelationships 

are helpful in IFC extension and result in performance improvement. An error analysis also 

pinpointed the sources of errors in the experimental results and identified potential solutions 

for the possibility of further performance enhancement. 

9.1.4 Conclusions for the Proposed BIM Information Extraction and Transformation 

Method and Algorithm 

A semantic, rule-based method and algorithm for automatically extracting design information 

from IFC-based building information models (BIMs) and automatically transforming the 

extracted design information into logic facts for supporting ACC in the construction domain 

was developed. The proposed method utilizes late binding data access in Java Standard Data 
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Access Interface (JSDAI) to extract all entities and their attributes from an .ifc file into 

information tuples using their metadata at the EXPRESS model level (i.e., EXPRESS 

datatypes). Data type-based transformation rules are used to transform all extracted BIM 

information into logic facts, while static and dynamic logic rules are used to align the logic 

facts with regulatory information.  

The proposed BIM information extraction and transformation method was evaluated using a 

BIM test case. The design information in the .ifc file of the test case was automatically 

extracted into semantic tuples and transformed into logic facts. The extracted information 

tuples and transformed logic facts were compared with those in a manually-developed gold 

standard, and the results were evaluated in terms of precision and recall. The results showed 

100% precision and recall for both information extraction and information transformation. 

This indicates that the proposed method is effective and the flow of design information 

from .ifc files directly to logic format is feasible.  

9.1.5 Conclusions for the Proposed Information Representation and Compliance 

Reasoning Schema 

A logic-based information representation and compliance reasoning (IRep and CRes) schema 

for representing, both, regulatory information and design information to prepare for utilizing 

the inference-making capabilities of logic reasoners for supporting ACC in the construction 

domain was developed. The schema formalizes the representation of regulatory information 
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and design information in the form of semantic-based (ontology-based) logic clauses that 

could be directly used for automated compliance reasoning. The proposed schema was 

implemented in the B-Prolog platform. B-Prolog was selected to utilize its embedded classic 

Prolog logic programming language; its automated reasoning facilities such as search 

strategies, backtracking, and unification mechanisms; and its constraint solving capabilities. 

Two alternative subschemas, Alternative I and Alternative II, were proposed and tested, 

following a closed world assumption and an open world assumption in noncompliance 

detection, respectively. Activation conditions were used in Alternative I to avoid false 

positives caused by missing information. A reusable support module was developed for 

ACC-specific computational and reasoning support. 

The proposed IRep and CRes schema was tested in representing and reasoning about 

quantitative regulatory requirements in Chapter 19 of IBC 2009 and design information in a 

two-story duplex apartment test case. Two experiments were conducted to test the schema 

using perfect information and imperfect information. Using perfect information, on the 

testing data, both Alternative I and Alternative II achieved 100% recall, precision, and 

F1-measure in noncompliance detection. It took less than one second to automatically check 

the 1,442 design facts in the BIM test case with the quantitative regulatory requirements in 

Chapter 19 of IBC 2009. Using imperfect information, on the testing data, Alternative I and 

Alternative II achieved 87.6%, 98.7%, and 92.8%, and 98.4%, 77.2%, and 86.5% precision, 

recall, and F1-measure, respectively. Alternative I blocks some false negatives and thus 
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results in a higher recall, while Alternative II blocks some false positives and thus results in a 

higher precision. Because high recall is more important than high precision in ACC, to avoid 

missing noncompliance instances, Alternative I is more suitable for ACC applications. The 

final proposed IRep and CRes schema (following Alternative I), thus, achieved 87.6% and 

98.7% precision and recall, respectively, on the testing data, for noncompliance detection. 

This shows that the proposed IRep and CRes schema combined with the proposed automated 

regulatory information extraction and regulatory information transformation algorithms could 

achieve high recall and precision in noncompliance detection. An error analysis also 

pinpointed the sources of errors in the experimental results.  

9.1.6 Conclusions for the Prototype System 

All developed methods and algorithms were successfully integrated and implemented in one 

platform (Java platform), forming a proof-of-concept prototype system that conducts ACC 

based on building code text (.txt file) and a BIM design model (.ifc file): the Semantic 

Natural Language Processing-based Automated Compliance Checking (SNACC) system.  

To evaluate the SNACC system, a test case was used which included (1) a randomly selected 

Chapter 19 of IBC 2009, (2) a BIM (i.e., .ifc file) containing design information to be 

checked for compliance with the regulatory provisions in the selected chapter (see Section 

6.3.1 for used test case), and (3) a compliance report gold standard based on a manual 

comparison of the design information with the regulatory provisions in the selected chapter. 
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The experimental results showed that the automatically-generated compliance report by the 

prototype system achieved 87.6% precision, 98.7% recall, and 92.8% F1-measure in 

noncompliance detection. This high recall in noncompliance detection shows that the 

SNACC system is promising. An error analysis identified that all errors were attributed to 

errors in the regulatory information extraction and regulatory information transformation 

modules, no errors were attributed to the design information extraction and transformation 

module or the compliance reasoning module.  

9.2 Contributions to the Body of Knowledge 

9.2.1 Contributions of the Proposed Regulatory Information Extraction Method and 

Algorithm 

This research contributes to the body of knowledge in four main ways. First, this research 

offers a domain-specific, semantic NLP method that can assist in capturing domain-specific 

meaning and shows that ontology-based semantic IE outperforms syntactic-only IE (in terms 

of precision and recall). Domain-specific semantics allow for the analysis of complex 

sentences that would otherwise be too complex for automated IE, the recognition of 

domain-specific text meaning, and in turn the improvement of IE performance. Second, this 

research offers relatively efficient-to-develop rule-based NLP methods that can benefit from 

expert NLP knowledge encoded in the form of IE and CR rules. This research shows that the 

efficiency of algorithm development for rule-based methods can be enhanced through the 
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following two main techniques: (1) use of PSG-based phrasal tags, and (2) separation and 

sequencing of semantic information elements (SSSIE) during extraction. Both PSG-based 

phrasal tags and the SSSIE method reduce the number of patterns needed in IE rules, 

resulting in fewer IE rules for extraction being required and, thus, reduced human effort to 

develop IE rules. Third, this research shows that deep NLP can be successfully achieved if 

both domain knowledge (represented in the form of a domain ontology) and expert NLP 

knowledge (represented in the form of IE and CR rules) are captured and integrated in a 

single platform. The research shows that semantic, rule-based deep NLP can provide high IE 

performance results (96.9% and 94.4% precision and recall, respectively). Fourth, and most 

importantly, this study is the first in the AEC domain that addresses automated IE using a 

semantically deep NLP approach. It offers baseline semantic IE methods/algorithms for 

extracting information from textual construction documents. Future research could use these 

methods/algorithms as a benchmark and build on this work by adapting the developed 

algorithms to extract information from other types of documents (e.g., contract documents) or 

for different purposes (e.g., contract analysis). The IE rules, CR rules, and algorithms 

developed in this study are potentially reusable (as the experimental results showed). 

Compared with the author’s initial efforts, future efforts in adapting the rules and/or 

algorithms should be significantly lower. Once the rules/algorithms are adapted (if needed), 

the process of information extraction is fully automated. 
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9.2.2 Contributions of the Proposed Regulatory Information Transformation Method 

and Algorithm 

This research contributes to the body of knowledge in four main ways. First, a 

domain-specific, semantic NLP-based information processing method that can achieve 

full-sentence processing as opposed to partial-sentence processing (i.e., only specific terms or 

concepts are processed) is offered. Domain-specific semantics allow for analyzing complex 

sentence structures that would otherwise be too complex and ambiguous for automated ITr, 

recognizing domain-specific text meaning, and in turn allowing for processing and 

understandability of full sentences. Full sentence processing and understandability allows for 

a deeper level of NLP, namely, natural language understanding. Second, this research shows 

that a hybrid approach that combines rule-based NLP methods and semantic NLP methods 

could achieve high performance for the combination of IE and ITr from/of regulatory text in 

spite of the complexity inherent in natural language text. Domain-specific expert NLP 

knowledge (encoded in the form of rules) along with domain knowledge (represented in the 

form of an ontology) facilitates deep text processing and understandability. This research 

shows high performance for rule-based, semantic ITr. Third, a new context-aware and 

flexible way of utilizing pattern-matching-rule based methods is offered. This way of 

utilizing pattern-matching based rules captures the details (in terms of the expression and 

language structure) of complex sentence components through the use of context-aware 

semantic mapping rules and flexible pattern lengths. Fourth, a new mechanism (consume and 
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generate mechanism) for processing and transforming complex regulatory text into logic 

clauses is offered. The proposed mechanism follows the bottom-up method, which has shown 

based on the experimental results to outperform the top-down method in ITr. The high 

performance that the mechanism achieved verifies that the bottom-up method is suitable for 

such ITr tasks. 

9.2.3 Contributions of the Proposed IFC Extension Method and Algorithm 

This research contributes to the body of knowledge in four main ways. First, this research 

offers a method for automated concept extraction that utilizes POS-pattern-matching-based 

rules to extract regulatory concepts from natural language regulatory documents. The set of 

POS patterns that was developed captures natural language knowledge, which allows for the 

recognition of concepts based on the lexical and functional categories of their terms. The 

pattern set includes only flattened patterns to avoid recursive parsing, which allows for 

efficient computation. The set of POS patterns are also generalized, and thus can be used to 

extract concepts in other domains. Second, this research offers a matching-based method for 

identifying and selecting the most related IFC concepts to the extracted regulatory concepts. 

The proposed method leverages both syntactic and semantic knowledge, which allows for the 

recognition of related concept pairs based on the syntactic and semantic similarities of their 

terms. As part of this method, two new concept-level semantic similarity (SS) scoring 

functions are offered. In the context of schema extension, existing SS scoring functions allow 

for measuring SS at the term-level. These proposed two functions further allow for measuring 



286 

 

SS at the concept-level. Third, this research offers an automated machine learning 

classification method for classifying the relationships between the extracted regulatory 

concepts and their most related IFC concepts. The classification results show that semantic 

features could benefit the task of relationship classification and result in further improvement 

of precision. The proposed method is also generalized and can be used to classify the 

relationships between any two concepts, based on eight syntactic and semantic features of 

their terms, into the following four types: equivalent concept, superconcept, subconcept, and 

associated concept. Fourth, the experimental results show that the three proposed methods 

could be effectively combined in a sequential way for extending the IFC schema with 

regulatory concepts from regulatory documents. This offers a new method for objectively 

extending the IFC schema with domain-specific concepts that are extracted from natural 

language documents. The proposed combined method is also generalized and can be used to 

extend the IFC schema with other types of concepts (e.g., environmental concepts) from other 

types of documents (e.g., environmental documents) or to extend other types of class 

hierarchies (e.g., of an ontology) in the construction domain or in other domains. 

9.2.4 Contributions of the Proposed BIM Information Extraction and Transformation 

Method and Algorithm 

This research contributes to the body of knowledge by offering a BIM information extraction 

and transformation method that enables direct flow of design information from .ifc files to 

logic representations. As a result, this method allows for direct extraction of IFC-represented 
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data into logic facts. This enables information transfer between BIMs and logic programs. In 

addition to supporting ACC, the combined capabilities of building information modeling and 

logic programming could allow for the use of BIM information in an intelligent way and 

could open the door to more utilization of building information modeling in various 

automated applications in the construction domain such as automated cost analysis, schedule 

analysis, and facility maintenance decision analysis. 

9.2.5 Contributions of the Proposed Information Representation and Compliance 

Reasoning Schema 

This research contributes to the body of knowledge in four main ways. First, the proposed 

schema provides a new way for representing construction regulatory provisions and design 

information in a logic-based, semantic format. The first order logic-based representation 

allows for using a standardized reasoning method to facilitate complete automation in ACC 

reasoning. The semantic representation supports the logic-based representation and reasoning 

by providing the needed description of domain knowledge. This work empirically shows that 

the proposed schema achieved 100% precision and recall in noncompliance detection using 

perfect information, and achieved high precision (87.6%) and recall (98.7%) in 

noncompliance detection using imperfect information. Second, this work offers and compares 

two subschemas – Alternative I and Alternative II – for representing regulatory requirements 

following a closed world assumption and an open world assumption for noncompliance 

detection, respectively. The experimental results show that while both subschemas could 
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support the task of ACC with a relatively high performance – in terms of precision and recall 

of noncompliance detection, Alternative I results in higher recall and is, thus, more suitable 

for ACC applications. Third, the proposed schema (following Alternative I) offers a way to 

help prevent missing information in closed world assumption schemas from leading to false 

positives in noncompliance detection. This is achieved using semantic-based (ontology based) 

logic clauses and compliance checking activation conditions. Fourth, a support module that 

consists of a set of logic clauses was developed, as part of the schema, to provide ACC 

specific computational and reasoning support when using logic-based reasoners. This module 

could be reused by other researchers to support ACC applications. 

9.2.6 Contributions of the Prototype System 

This research contributes to the body of knowledge by showing that all developed methods 

and algorithms can be successfully integrated and implemented in a proof-of-concept 

prototype system: the Semantic Natural Language Processing-based Automated Compliance 

Checking (SNACC) system. This work empirically shows that when tested using Chapter 19 

of IBC 2009 and a BIM test case (see Section 6.3.1 for the test case that was used), the 

prototype system achieved 87.6% precision, 98.7% recall, and 92.8% F1-measure in 

noncompliance detection, which shows that the system is promising. 
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9.3 Limitations and Recommendations for Future Research 

9.3.1 Limitations of the Proposed Regulatory Information Extraction Method and 

Algorithm and Recommendations for Future Research 

Three limitations of the work are acknowledged. First, in compliance with the scope of the 

dissertation, the proposed method/algorithm was only tested in extracting quantitative 

requirements. The types of patterns and extraction conflicts in other types of requirements 

(e.g., existential requirements) may vary and, as a result, information extraction performance 

may vary. In future research, the method/algorithm could be tested on other types of 

requirements such as existential requirements. Second, the proposed method/algorithm was 

only tested on one chapter, primarily because the development of the gold standard for testing 

is highly time intensive. When the method/algorithm is tested on more building codes 

chapters, the results are expected to show similar high performance because the chapter used 

in testing contains large amounts of text (approximately 7,000 words) and because of the 

similarity in text across different chapters of building codes and across different types of 

building codes (e.g., “Building Code and Related Excerpts of the Municipal Code of Chicago” 

versus IBC 2006). However, the results may vary because of the possible variability in the 

syntactic and semantic text features across different chapters and/or codes. In that case, the 

proposed IE and CR rules may be adapted/extended based on additional development text. 

Third, in compliance with the scope of the dissertation, the proposed method/algorithm was 

tested only on building codes. In future research, the proposed method/algorithm could be 
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extended to extract information from other types of regulatory documents (e.g., 

environmental regulations) and contractual documents (e.g., contract specifications). 

9.3.2 Limitations of the Proposed Regulatory Information Transformation Method 

and Algorithm and Recommendations for Future Research 

Three main limitations of this work are acknowledged. First, in compliance with the scope of 

the dissertation, the methodology was only tested on processing quantitative requirements. 

The types of semantic patterns and conflicts in other types of requirements (e.g., existential 

requirements) may vary and, thus, may lead to different performance results. Although the 

processing of other types of requirements is expected to be less or equally complex than that 

of quantitative requirements – and thus is expected to have similar or better performance, the 

proposed information transformation method needs to be tested on other types of 

requirements (e.g., existential requirements) for validation. Second, due to the large amount 

of manual effort required in developing a gold standard, the proposed information 

transformation algorithm was tested only on one chapter of IBC 2009. Similar high 

performance is expected when testing on other chapters of IBC and on other regulatory 

documents, since all regulatory documents share similarities in expressions. However, 

different performance results might be obtained due to the possible variability of text across 

different chapters or different regulatory documents. As such, future research is needed to test 

the proposed information transformation method/algorithm on more chapters of IBC 2009. 

Third, in compliance with the scope of the dissertation, the proposed method/algorithm was 
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tested only on building codes. Future research is needed to test the proposed 

method/algorithm on other types of regulatory documents (e.g., environmental regulations) 

and contractual documents (e.g., contract specifications). 

9.3.3 Limitations of the Proposed IFC Extension Method and Algorithm and 

Recommendations for Future Research 

Two limitations of the proposed semiautomated IFC extension method are acknowledged. 

First, due to the large amount of manual effort required in developing the gold standard for 

each phase, the proposed method was only tested on one Chapter of IBC 2009. Similar high 

performance is expected on other chapters of IBC and other regulatory documents. However, 

different performance results might be obtained due to the possible variability of contents 

across different chapters of IBC 2009 or across different types of regulatory documents. As 

such, in future research, the proposed method needs to be tested on more chapters of IBC 

2009 and on other types of regulatory documents (e.g., EPA regulations). Second, only 

unigram (single terms) semantic-based matching was used for finding semantically related 

F-concepts to an R-concept. While the combinatorial nature of term meanings [i.e., the 

meanings of single terms (e.g., “exterior” and “door”) in a concept name are combined to 

form the overall meaning of the whole concept (e.g., “exterior door”)] renders this unigram 

method effective, there may be cases where bigram (pairs of terms) or multigram (groups of 

three or more terms) matching could be effective. As such, in future research, the 

semantic-based matching method needs to be extended to incorporate semantic relations 
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between bigrams and multigrams to test whether such bigram or mutligram considerations 

could further improve the performance of concept matching.  

9.3.4 Limitations of the Proposed BIM Information Extraction and Transformation 

Method and Algorithm and Recommendations for Future Research 

Two main limitations of the proposed BIM information extraction and transformation method 

are acknowledged. First, due to the large amount of manual effort required in developing the 

gold standard for information extraction and transformation, the proposed method was tested 

only on one BIM test case. Although similar high performance is expected on other test cases, 

further testing and evaluation of the proposed method on more BIM test cases is 

recommended for verification. Second, extracting information from BIM models needs 

further exploration to find out how the different BIM implementation platforms (e.g., 

Autodesk Revit, ARCHIBUS EIM with BIM 4.0, ArchiCAD) and the different levels of 

information completeness in the instances of those BIM models (i.e., what information was 

entered or not entered into the BIM model/platform) may affect the need for extra 

model/information processing (e.g., model extension). As such, future research is 

recommended to test the proposed method on more BIM test cases, different types of BIM 

implementation platforms, and different levels of information completeness.  

http://en.wikipedia.org/wiki/Autodesk_Revit
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9.3.5 Limitations of the Proposed Information Representation and Compliance 

Reasoning Schema and Recommendations for Future Research 

Two main limitations of this work are acknowledged. First, in compliance with the scope of 

the dissertation, the work focused on quantitative regulatory requirements. While the 

literature suggests that qualitative regulatory requirements could be transformed into 

quantitative requirements, the transformation details and its implication on the representation 

and reasoning methodology needs further exploration. Second, due to the large amount of 

manual effort needed in compiling test cases and developing a gold standard, the proposed 

schema was only tested on one chapter of IBC 2009 and one BIM test case. While similar 

performance could be expected on other chapters of IBC 2009, on other regulatory 

documents, and other BIM test cases, more empirical tests on other chapters of IBC 2009, 

other regulatory documents, and other BIM test cases are needed for verification, especially 

when using imperfect information. Future research is recommended to address these 

limitations by: (1) implementing/adapting the proposed schema on qualitative requirements 

and developing corresponding information extraction and information transformation 

algorithms; and (2) testing the proposed schema on more chapters of IBC 2009, other 

construction regulatory documents, and other BIM test cases. 

9.3.6 Limitations of the Prototype System and Recommendations for Future Research 

Two main limitations of this system are acknowledged. First, the SNACC system needs the 
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design information in the input BIM to be sufficient for compliance checking. How 

insufficient design information are to be addressed for ACC still needs investigation, both 

theoretically and empirically. Second, due to the large amount of effort needed in developing 

gold standards, the SNACC system was tested only on one test case. How different types of 

regulatory and design information would affect the performance of the SNACC system needs 

further testing. Future research is recommended to address these limitations by: (1) 

investigating the feasible and/or optimal solutions to address insufficient design information 

in BIM for ACC, both theoretically and empirically; and (2) developing more gold standards 

and test cases using different types of regulatory and design information to further test the 

SNACC system. 
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11 APPENDIX A: ANNOTATION GUIDELINES FOR REGULATORY 

INFORMATION EXTRACTION 

The scheme focuses on the semantic information elements of quantitative requirements. In 

each requirement sentence: (1) there should be one and only one instance of each of subject, 

comparative relation, quantity value, quantity unit, and quantity reference; (2) there should be 

at most one instance of each of compliance checking attribute, deontic operator indicator, and 

quantitative relation; and (3) there could be zero, one, or more instances of each of subject 

restriction and quantity restriction.  

1. Subject 

This semantic information element represents a “thing” (e.g., building object, space) that 

is subject to a particular regulation or norm.  

(Subject: Courts) shall not be less than 3 feet in width. 

2. Compliance checking attribute 

This semantic information element represents a specific characteristic of a “subject” by 

which its compliance is assessed. 

Yards shall not be less than 3 feet in (Compliance checking attribute: width) for one and 

two story buildings. 

3. Deontic operator indicator 

This semantic information element represents a deontic modal operator applicable to the 

current requirement. There are three types: obligation, permission, and prohibition.  

Habitable spaces, other than a kitchen, (Deontic operator indicator: shall) not be less 
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than 7 feet in any plan dimension. 

4. Quantitative relation 

This semantic information element represents the type of relation for the quantity. 

The court shall be (Quantitative relation: increased) 1 foot in width and 2 feet in length 

for each additional story. 

5. Comparative relation 

This semantic information element represents a relation that is commonly used to 

compare quantitative values. There are five types: greater than or equal, less than or equal, 

greater than, less than, and equal.  

Occupiable spaces, habitable spaces and corridors shall have a ceiling height of 

(Comparative relation: not less than) 7 feet 6 inches. 

6. Quantity value 

This semantic information element represents a value or a range of values that defines 

the quantified requirement. 

Every dwelling unit shall have at least one room that shall have not less than (Quantity 

value: 120) square feet of net floor area.  

7. Quantity unit 

This semantic information element represents the unit of measure for the quantity value. 

The unit shall have a living room of not less than 220 (Quantity unit: square feet) of 

floor area. 
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8. Quantity reference 

This semantic information element represents a reference to another quantity (which 

presumably includes a value and a unit). 

The minimum openable area to the outdoors shall be 4 percent of the (Quantity 

reference: floor area being ventilated). 

9. Subject restriction 

This semantic information element places a constraint on the definition of a subject. 

Courts (Subject restriction: having windows opening on opposite sides) shall not be less 

than 6 feet in width. 

10. Quantity restriction 

This semantic information element places a constraint on the definition of a quantity.  

The minimum net area of ventilation openings shall not be less than 1 square foot 

(Quantity restriction: for each 150 square feet of crawl space area). 

 

 

 

 

 

 

 



323 

 

12 APPENDIX B: ANNOTATION GUIDELINES FOR REGULATORY 

INFORMATION TRANSFORMATION 

The scheme focuses on the concept and relation logic clause elements of quantitative 

requirements. The goal of the annotation is to identify the names and arguments of all 

concept logic clause elements and relation logic clause elements in a quantitative requirement. 

Each instance of a concept logic clause is represented by a predicate with one argument. Each 

instance of a relation logic clause is represented by a predicate with one or more arguments.  

1. Concept logic clause 

A concept logic clause represents a concept. A concept is expressed using a noun or 

noun phrase. The determiners are not included in a concept logic clause. Quantity values and 

quantity units are not included in a concept logic clause either. The identified noun or noun 

phrase is used both as the name and the argument of a concept predicate.  

(Concept: Courts) shall not be less than 3 feet in (Concept: width). 

(Concept: Occupiable spaces), (Concept: habitable spaces) and (Concept: corridors) 

shall have a (Concept: ceiling height) of not less than 7 feet 6 inches. 

2. Relation logic clause 

A relation logic clause represents a relation. There are four types of relation logic 

clauses: relation logic clause with one argument, relation logic clause with two arguments, 

relation logic clause with multiple arguments, and compound relation logic clause.  
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2.1 A relation logic clause with one argument represents a description of a concept.   

The minimum openable area to the outdoors shall be 4 percent of the (Relation: floor 

area being ventilated). 

Predicate name: ventilated 

Predicate argument: floor area 

2.2 A relation logic clause with two arguments represents a relation between two concepts.  

(Relation: Kitchens shall have a clear passageway) of not less than 3 feet between counter 

fronts and appliances or counter fronts and walls. 

Predicate name: have 

Predicate arguments: kitchens, clear passageway 

2.3 A relation logic clause with multiple arguments represents a relation between three or 

more concepts. 

A minimum of 1 inch of (Relation: airspace shall be provided between the insulation and 

the roof sheathing). 

Predicate name: between 

Predicate arguments: airspace, insulation, roof sheathing 
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2.4 A compound relation logic clause represents a relation that uses embedded predicates.  

Courts shall (Relation: not be less than 3 feet in width). 

Predicate name: not less than 

Predicate arguments: width, quantity(3, feet)  

 

 


