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ABSTRACT

Carefully crafted computer worms such as Stuxnet and recent data breaches on

retail organizations (e.g., Target, Home Depot) are very sophisticated security

attacks on critical cyber infrastructures. Such attacks are referred to as advanced

persistent threat (APT), and are on constant rise with severe implications. In all

these attacks, the presence of an attacker itself is difficult to detect as they log-in

as legitimate users. Hence, these attacks comprising multiple actions are challeng-

ing to differentiate from benign and therefore common detection techniques have

to deal with high false positive rates. While machine learning and game theoretic

models have been applied for intrusion detection, machine learning techniques

lack the ability to model the rationality of the players, while the game theoretic

approaches rely on the strict assumption of full rationality and complete informa-

tion. This thesis discusses an approach that proposes Q-Learning to model the

decision process of a security administrator which addresses the joint limitations

of using game theory and machine learning techniques for this problem. This work

compares variations of Q-Learning with a traditional stochastic game model by

performing a simulation under different pair of profiles for attackers and defenders

using parameters derived from real incident data of a large computer organization.

Analysis on the strengths and weaknesses of the algorithms, and how the parame-

ters in the algorithms affect the performance are studied. Simulation results show

that Naive Q-Learning, despite the restricted information on the opponent, better

reduces the impact of an attacker compared to Minmax Q-Learning against all

attackers, or Stochastic Games players against less rational opponents.
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CHAPTER 1

INTRODUCTION

Computer systems are tempting targets for attackers. Successful invasion of data

and control can threaten the availability of the computer system and compromise

the integrity and confidentiality of information processed or stored in the system.

To defend systems from exploits, sensors and monitors are deployed at different

layers of the system, and system and user activities are logged and audited to filter

out suspicious or malicious activities and/or trigger an in-depth investigation or

response to a potential attack.

While that type of monitoring and response has been an effective method for

detecting hostile activities against systems, recent analysis shows a change in at-

tack trends against cyber systems. For example, according to [1], attacks are not

only increasing in number, but are also getting more sophisticated and intelligent,

which is accelerating an increase in the number and variety of security measures

applied to systems. However, naive deployment of more security monitors and

policies does not always lead to better detection. While such increments bring

better security coverage, they also increase the complexity of analysis and over-

head in terms of performance degradation. In [2], an analysis of security incidents

shows that a significant portion of alarms that trigger human investigation turn

out to be false positives. In addition, it was shown that most of the incidents were

detected only after actual damage was done. Those observations reveal a need for

an automated intrusion response that can react to malicious actions threatening

a computer system.

In this thesis, we propose a game-theoretic model to emulate the decision-

making process in responding to cyber security incidents. Given an attack model
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and a reward model based on expert knowledge, our approach determines the

optimal action that minimizes damage. We focus on intrusion response; detection

of zero-day attacks and unknown attacks are outside the scope of this paper.

For modeling a security game, there exist different models. In this study, we

use Markov games to model multi-step (multi-state) attacks. The solution of a

Markov game as a stochastic game requires full information about the opponent

in addition to the player’s own information on reward functions [3]. While such

modeling fits economic problems well, players in security games (e.g., attackers

and system security administrators) often need to learn more about the opponents

to supplement shortages in information. System vulnerabilities of attack targets

are hidden from attackers, and system security administrators have no information

about the attackers in terms of their ability and/or intent. In addition, we find it

unrealistic to assume full rationality (an assumption that a player always makes

the best decision that maximizes the reward) in attackers with different abilities.

In order to better model learning in security games, we considered variations

of Q-Learning where Q-Learning [4] is a model-free reinforcement learning tech-

nique, used to learn the optimal policy that maximizes the expected reward (e.g.,

the monetary value of the information exploited or an estimated loss caused by

compromised system availability). We claim that our approach is more realistic

than pure game theoretic approaches [3], as it uses an algorithm that releases the

restrictions on the rationality of the players or the completeness of information.

However, its application is limited to optimizing a Markov decision process that

lacks interaction among multiple players [5]. Littman [6] introduces the Minmax

Q-Learning algorithm for Markov games. Unlike the traditional Markov game,

Minmax Q-Learning does not require full information, and instead reinforces the

decision model by supplementing the shortage of information with learning from

history. Furthermore, [7] applies Naive Q-Learning for players with no informa-

tion about the opponent. Q-Learning algorithms are discussed in more detail in

Chapter 4.

With respect to learning, earlier work has shown the effectiveness of applying
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machine learning for cyber security. However, we find that rationality has been

neglected in the existing machine learning approaches. For the models trained on

the dataset, the model becomes specific to the observations from history. Hence,

such approaches take time to adapt to unforeseen patterns. Q-Learning on the

other hand makes decisions based on a model that was derived from human intelli-

gence. Moreover, assuming the possible incompleteness of the model, the approach

reinforces the model by adapting to the patterns from the previous iterations.

In this paper, the performance of Q-Learning algorithms (MMQL, NQL) for

detecting execution of a multistage attack is evaluated through comparisons of

the cumulative earnings of the attacker after multiple iterations over the game.

Simulating a security game of attackers and defenders with different abilities and

knowledge, we show that Nave Q-Learning has a potential to minimize the loss

against non-fully rational attackers.

The main contributions discussed in this thesis are:

• Motivates the approach through a study of real incidents. From an analysis

of the Target data breach and earlier work on security incidents, we show

the need for automation in incident response.

• Models the battle of an attacker and a defender as a security game. Using

real incident data from the Organization X, we derive an attack model that

reflects both the attacker’s and defender’s perspective, and we use the model

to formulate a security game. In terms of a security game, this model

represents the worst case where the attacker can perform all attacks shown

in the dataset.

• Presents an experimental result showing the possibility of applying Nave

Q-Learning for effectively learning the opponent’s behavior and making

a proper decision. Comparing the performance of different decision mak-

ing algorithms, we present simulation results that show Naive Q-Learning

performing better than algorithms with restricted assumptions, especially
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against irrational attackers, and show that Naive Q-Learning performs as

well as Minmax Q-Learning, despite the relatively limited information.
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CHAPTER 2

MOTIVATION

In this chapter, we study a well-known security breach [8] and a set of incidents at

the National Center of Supercomputing Applications (NCSA). From this study,

we motivate a need for (i) an automated decision process modeling the rational

decision making process and (ii) an approach that models the learning aspects

of interaction in security games by recalling a well-known incidents showing the

limitations of well-known assumptions on the rationality of players and the com-

pleteness of information given to each player in a game.

2.1 Study on Security Incidents

Unlike earlier attacks, whose goal was to invade a target and leave as quickly as

possible after causing damage, recent attacks show that attackers are willing to

remain in the system undetected. Hence, the attack sequences are designed to

consist of a set of actions that are hard to differentiate from legitimate ones. These

type of attacks are often called Advanced Persistent Threats (APT) [9]. In 2013,

around the holiday season, a data breach on the cyber infrastructure of a major

retail company was reported [8]. Through this attack, it was estimated that the

information of 110 million customers, including personal and financial information,

was stolen. Figure 2.1 visualizes the attack timeline based on the senate report [8].

From the initial breach into the system to the removal of malware after confirming

the breach on December 15, the attackers resided in the system undetected for

more than a month. We notice two interesting aspects of that incident. One

is the decision model underneath the attack. The attack consisted of multiple
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Figure 2.1: Attack and detection timeline of the Target data breach [8].

states (phases), and a decision on the next action to be taken had to be made in

each state. From that decision model, we recognized the possibility of applying

game-theoretic approaches to counteract malicious intent. Also, we concentrate

on the fact that the system was able to detect the intrusion but no proper response

was made for easily assuming the alarms as false positives. Often, alarms lack

confidentiality as they rely on limited observation. Instead, an attack has to be

understood as a sequence of events that calls for the detection/response model to

encompass observations from varying dimensions.

In addition, we note the insights from a study of security incidents at a large

computing organization [2]. Among the multiple discoveries, we focus on the fact

that (i) approximately 50% of the incidents were detected only after the actual

damage to the target system has happened, (ii) among roughly 140 alerts per day,

a vast majority turn out to be a false positive only after being investigated by the

security team. In addition, the description on the detection and response process

shows that the process is still heavily dependent on human expertise that uses

the monitoring results for making the decision.

From those observations, we see a need for an automated decision-making pro-

cess to respond to potential attacks. Such a process should provide a decision

based not only on the current observation, but also on results from the past and

the expected result of taking each action available at the decision-making state.

In this thesis, we discuss a method to automatically determine the response, given
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the observations on the system states from a set of monitors.

2.2 Guessing the 2/3 of the Average Game

In [10], Nagel performs a guessing game. In the game, each person is asked to

select an integer from 0 to 100; the person who picked a number closest to 2/3 of

the average would win the game. Under the assumption on complete information

and full rationality, the traditional game-theoretic approach suggests 0 would be

the winning number. When asked to predict 2/3 of the average, a person would

have no chance to win with a value over 66, and if all players are rational enough,

the assumption is that 2/3 of 66 will not win the competition. After a number of

iterations of recursive thinking, the resulting candidate is reduced to 0. However,

the empirical results show that the winning value was not 0 or not close to 0. (The

winning value in this study was 22.) From this study, we claim the traditional

game theoretic model based on an assumption for full rationality (i.e., players

always maximize their reward) and complete information (i.e., each player has

complete information about the reward model and the strategy of the opponent)

does not fit a game when such assumptions are released. We use this study as a

motivation for introducing learning to traditional game theoretic models.
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CHAPTER 3

ATTACK MODEL

In modeling an attack, we are considering parties with a conflict of interests: the

attacker and the defender. The defender, often a system administrator, manages

the system. The main interest of the defender is to secure the cyber infrastructure

from malicious activities. The attacker, on the other hand, is a malicious opponent

who attempts to compromise the target system. We model the interaction between

the attacker and the defender based on the data of actual security incidents.

3.1 Attacker

The attacker is an opponent who accesses the system with the intention of threat-

ening its security. Attacks can vary from a single action to a sequence of activities.

In this thesis, we limit our interest to attacks that consist of multiple activities

that lead to an ultimate goal.

Attack state ASx represents the state of the attack, i.e., the depth/degree of

intrusion. Each attack state is assigned a numeric value (reward) which quan-

tifies the damage to the target system. The bigger the impact, the more severe

the damage to the system and/or the greater the unauthorized control over the

system. Transition from one state to another depends on the result of the action.

Activity A is a set of actions ai available to the attacker. It can lead to malicious

control over the system, or if the attacker decides to remain in the current state,

the transition will result in a loop. The set of available activities in state ASx

is denoted by Ax. Therefore, Ax is a subset of A. The causal relation between

activities and attack states can be represented as a state diagram.
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Transition matrix Pa(s, s
′) is the probability that an action from state s will

lead to a transition to the next state s′. In an attack model, a transition matrix

represents the probability of a successful attack. Depending on the monitoring

system configured on the defender’s side, an attack can be either detected or

missed. The transaction matrix models the uncertainty of the result of an action.

Immediate reward Ra(s, s
′) is the reward of the attacker as a result of a tran-

sition from state s to s′ for performing action a. The reward is a quantitative

representation of the earnings that the attacker can get from a successful attack.

3.2 Defender

The defender is a party that is in charge of making proper responses to secure

the system from malicious attacks. The defender has a set of monitors to protect

the system. The main objective of this player is to make proper responses in

a preemptive manner based on a limited view of the system status, relying on

monitors.

Attack state DSx represents the state of the attack from the defender’s per-

spective. The observations that defenders use rely on the monitoring systems,

and lack the granularity needed to reveal the details of users’ actions.

Defender action D is a set of actions (d) available to the defender in a given

state. For security incident detection and response, a monitor detects changes in

system status. However, such detections do not directly map to the attacker’s

definite actions. The monitor may miss an action (false negative) or misidentify

a benign action as malicious (false positive). Hence, the defender needs to take

an appropriate action while relying on imperfect information. Assuming that

there are proper responses for each action, we abstract the defender action to ei-

ther “Response” or “No Response,” where “No Response” is useful for monitored

events that are hard to differentiate from benign ones, and/or events that do not

cause immediate harm to the system.

9



Table 3.1: Timeline of Sample Attacks of Security Incidents at NCSA

ID Time Event

1

09:52 log in from known host using public key authentication
09:59 changed “authorized key”
10:05 logged in from new host / updates “known hosts”
11:19 download malware from remote host
11:20 attempt root escalation

2
17:34 log in through WinVNC exploit
17:49 download malware from remote host
17:52 connection to blacklisted command & control systems

3

07:38 access network with weak credentials
07:39 download malware from remote host
07:40 start bruteforce ssh scan
09:15 attempt SSH scan on a DDoS black list

3.3 Attacker-Defender Interaction

While each attacker has a logic flow for making decisions, his or her decisions are

not independent, but are related to the opponent’s decision process. Hence, we

model the interaction between the two players. We discuss the interaction in more

detail in Section 3.4 using the attack model derived from the NCSA incidents.

3.4 Example: NCSA Incidents

In [2], it was shown that 62% of the incidents in the study were detected only

after attacks have already damaged the system, for the monitoring relies heavily

on alerts from the IDS; no significant evidence is available until the actual attack

has started. Analyzing the incidents at NCSA, we find a common pattern in

the attack phase. For example, as shown in the sample incidents summarized in

Table 3.1, suppose a malware file has to be downloaded for an attack to progress.

Unless the attacker has downloaded well-known malware whose signature will

match the malware detection database, the monitoring system will report the

event as a general file download. Since downloading of a file is a general action

often performed by benign users, it would be difficult to use a file download as
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the basis for determining that an attack is occurring. However, once the malware

has been executed, the system has already been exploited, with visible damage.

Hence, it would be ideal if a useful decision on the response could be made at the

download phase.

(a) Attack model from the attacker’s perspective.

(b) Attack model from the
defender’s perspective.

(c) Snapshot of the security game.

Figure 3.1: State diagram representations of the attack phase (a, b) and a
snapshot of the security game (c). Note that although (a) and (b) both
represent the same attack model, they have different numbers of states and
actions, because the defender has a limited view of the attacker’s actions.
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Figure 3.1 represents the attack model from the attacker’s and defender’s per-

spectives. Figure 3.1a models an attack in four phases. AS0.0 is a base state.

It is the default state, in which the attacker has not taken any malicious action.

In this state, an attacker cannot be differentiated from a benign user. Using

stolen credentials or already exploited backdoors, attackers gain access to the sys-

tem, which leads to AS1.0. In AS1.0, the attacker has four options: to download

malware (well-known, rare, or new) or download benign software. Downloading

benign software would not give immediate benefit to the attacker, but we model it

to represent a case in which the attacker is trying to obfuscate the user profile. A

successful download leads to AS2.X . Once the attacker has reached AS2.1, AS2.2,

or AS2.3, he or she can execute the malware and exploit the system. Our goal is to

be able to make a proper response before the exploit happens. Figure 3.1b depicts

the defender’s view of the same attack model depicted in Figure 3.1a. Because of

the limitations of the monitoring system, the defender has a limited view of the

files downloaded in AS2.X . If the malware has a known signature predefined in

the monitoring system, the file can be recognized as malware (d2). Otherwise, a

malware download will be seen as a benign file download (d3).

In Figure 3.1c, we show a subset of the security game. Once an attacker has

taken an action, the defender chooses his or her action based on the information

from the monitoring system. An attacker’s action results in a transition to the

intended state only if the defender does not make a proper response. Once the

defender has responded to the observed action, the attacker is forced to transit

to the default state. Assuming a zero-sum game, a successful attack will result in

an immediate reward, and the defender will have a symmetric loss. As a result of

the execution of the attack, the attack state will change accordingly. Otherwise,

if the defender detects the attack and makes a proper response, the attack state

will be reset to the default for the identified attacker. In that case, a reward will

be assigned to the defender, with an equivalent loss to the attacker.
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CHAPTER 4

GAME MODEL

In this chapter, the interaction of an attacker and a defender is discussed in

terms of games. We refer to [3], [6] and [11] for the definitions and equations for

formulating the game. The game consists of two rational players with conflict,

and their goal is to maximize their reward by deriving the optimal policy for each

state. The comparison of different methods is summarized in Table 4.1.

4.1 Stochastic Game

First we define the terminologies used for solving the game as a Stochastic game

[3].

Set of actions A contains all possible actions, a that are available to the player.

We use o for the opponent’s action.

Reward Rt(s, a, o) defines the immediate reward based on the attack state s and

player’s action, a and the opponent’s action o in the tth iteration.

A stochastic game that consists of multiple stages is often called a Markov

game. In a Markov game, the concepts of quality of state and value of state are

introduced to represent the expected reward of the player’s decision.

Value of state V (s) is the expected reward when the player, starting from

state s, follows the optimal policy. It is equivalent to the maximum reward that

the player can expect, assuming that the opponent’s action o will be the action

that minimizes the expected reward. The player maximizes the value of state by

deriving the optimal policy, i.e., the probability distribution among the actions

13



Table 4.1: Comparison on Different Approaches

MG [3] QL [4] MMQL [6] NQL [11]

Number of Agents multiple single multiple multiple
Required Opponent Info full n/a limited no

Learning no yes yes yes
Adapt to Opponent no n/a partial partial

available to the player in a given state.

V (s) = max
π

min
o′∈Os

∑
a′∈As

π(s, a′)Q(s, a′, o′) (4.1)

Quality of state Q(s, a, o) is the expected reward each player can gain by taking

actions a and o from state s and then following the optimal policy from then on.

The quality of state is a sum of the immediate reward from this iteration (Rt−1)

and the reward expected as a result of transitioning to state s′ (V t(s′)), which was

derived from the previous t iterations. Note that the value of state is weighted by

a discount factor (γ).

Qt+1(s, a, o) = Rt+1(s, a, o) + γV t(s′) (4.2)

Discount factor γ is assigned by the user’s intention on balancing between

future and current rewards. A myopic player, who only considers current reward,

is modeled by a value of 0 while 1 is assigned for a player who strives for a long-

term high reward.

Optimal policy π is the set representing the probability distribution of actions

(π(s, .)) available at each state(s). It is chosen to maximize the value of state

(V (s)) which represents the expected reward of the player if the player follows

the optimal policy. The notation π(s, a) indicates the likelihood of taking action

a in state s where π is the overall distribution that maximizes the value of state
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(V (s)).

π(s, .) = arg max
π′(s,.)

min
o∈Os

∑
a′∈As

π(s, a′)Q(s, a′, o′) (4.3)

4.2 Minimax Q-Learning (MMQL)

To solve stage-based games, a Markov game assumes full rationality and complete

information about the opponent. However, an empirical study involving a guessing

game has shown that the assumption on complete information and full rationality

is not realistic in all cases [10].

In a security game, the assumption of complete information and rationality is

even more unrealistic. In security games, players generally make decisions with

limited information, and compensate for their lack of information with learning

[12]. To account for that characteristic of security games, we apply Minimax

Q-Learning as a decision-making algorithm. Instead for a need of complete infor-

mation on the attack model, the Minmax Q-Learning algorithm allocates partial

weight on its earlier results to combine knowledge of history, the actual earnings

on the current iteration, and the future expected reward.

Quality of state for Minimax Q-Learning is defined as follows to embed the

learning aspect into the algorithm.

Qt+1(s, a, o) = αQt(s, a, o) + (1 − α)Rt+1(s, a, o) + γV t(s′) (4.4)

Learning rate α leverages the ability of the player by assigning a real value

between 0 and 1. A learning rate of zero represents full learning ability for the

player while a rate of one models the case where the player only considers only

the most recent information. In full learning, the player would not consider the

immediate reward R(s, a, o) and the expected future award V (ns) but keep the

quality of state constant. To account for the absence of prior results to learn from
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at the initial stage of the game, an α of 1.0 is assigned; α then decays as Q(s, a,

o) accumulates information on the performance of previous iterations [6].

Exploration rate exp is a distinct parameter for Q-Learning which determines

the degree of variation from the optimal policy. Unlike the Markov game, in which

the optimal solution is known from the initial iteration, Q-Learning has to learn

the optimal policy by trial and error. The exploration rate determines the relative

rate of the action not following the optimal policy to learn the results of different

actions. An exp value closer to 0 results to a Makov game while a value closer to

1 means that the player will take random actions.

4.3 Naive Q-Learning (NQL)

In a security game, information about the opponent is not always available. The

attacker often has information about the target system from public resources.

However, the amount of information is limited. Similarly, the defender is playing

a game against an unspecified opponent. In order to model this situation, Naive

Q-Learning from [7] is applied. Naive Q-Learning optimizes the strategy without

information about the opponent, such as the opponent’s action o. It utilizes

limited information of the immediate reward and its own information to derive

the optimal policy.

Quality of state is updated accordingly to reflect the limited information. Note

that the opponent’s action is no longer considered for differentiating the Quality

of state.

Qt+1(s, a) = αQt(s, a) + (1 − α)Rt+1(s, a) + γV t(s′) (4.5)

Value of state is the maximum expected reward when following the optimal

policy. Note that because of the lack of information about the opponent, o is no

longer considered.

V (s) = max
π

∑
a′∈As

π(s, a′)Q(s, a′) (4.6)
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Optimal policy is the optimal policy that maximizes the value of state (V (s)).

Note that the quality of state (Q) is only defined for s and a but not o.

π(s, .) = arg max
π′(s,.)

∑
a′∈As

π(s, a′)Q(s, a′) (4.7)
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CHAPTER 5

EXPERIMENT

To evaluate and analyze the game, a simulation was performed. The simulation

started with initialization of the value and quality of all states, optimal policy

and the learning rate (α). For Q-Learning, initially there is no information that

the algorithm can learn from. Therefore, α is set to 1.0 indicating that initially,

the decision relies on the rationality (game model) only. As shown in Figure 5.1,

the Markov game would evaluate the game model and determines the optimal

policy before determining what action to take. Once the model has converged to

a convergence coefficient (ε), the optimal policy is fixed. Q-Learning, on the other

hand, needs to take actions before updating the quality and value of state. The

next action is decided based on the exp value. A random action is chosen with

a probability of exp; otherwise the action follows the optimal policy. Once the

opponent’s action has been determined in a similar manner, the quality of state

is updated. Then through the use of linear programming, the optimal policy (π)

and the value of state (V (s)) can be derived. Recall that the optimal policy is

the probability distribution of available actions at a given state that maximizes

the value of state.

Using the simulator, we compared the performances of the algorithms by as-

suming a random, Makov, Minimax Q-Learning and Naive Q-Learning attacker

and pairing with a Markov, Minimax Q-Learning and Naive Q-Learning defend-

ers. We did not consider the unrealistic situation in which a defender is a random

player. For the attacker, on the other hand, a random player is a considerable as-

sumption for modeling unprofessional attackers such as script kiddies. To compare

the performance of different algorithms, we evaluated the accumulated immediate
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Figure 5.1: Simulator flow chart. While the Q-Learning algorithms reinforces
the model by trying different actions and updating the model with the empirical
results, a Markov game provides the optimal action from the model
precomputed optimal policy.

reward of the attacker. In addition, we studied how the parameters affect the per-

formance of the Q-Learning based players. Table 5.1 summarizes the parameters

used in this simulation.

Table 5.1: Summary of Parameters

Meaning Range of Value

exp
exploration rate to explore
all possible actions

0.1/0.2/0.3/0.4/0.5

α
learning rate to leverage
between learning and rationality

0.2/0.5/0.8

γ
discount factor to leverage
between current and future rewards

0.9

decay
speed of decay for
the leaning rate from 1.0 to alpha

0.999
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CHAPTER 6

EXPERIMENTAL RESULTS

6.1 Comparison between Algorithms

First, we compare how each of the algorithms with varying parameters performs

against different opponents. Figure 6.1a provides an overview of the comparison.

We represent the accumulated reward of the attacker using a heat map in which

a lighter (i.e., closer to white) color indicates higher reward. Looking at the first

column, we confirm that the defender, on average, shows the best performance

when the decision-making is based on Markov games. In addition, we find low

variance within the column. From that observation, we see that when the defender

has full information about the attacker and hence is playing a Markov game, the

attacker’s choice of algorithm does not make a significant difference. That insight

becomes obvious when we consider the assumption upon which the algorithm

relies.

However, the same insight does not always apply to all algorithm pairs. An

interesting observation is that Naive Q-Learning performs better than Minmax

Q-Learning, despite the limited information. Comparing the second and third

columns, we find that attacker performance when played against a Naive Q-

Learning defender (third column) is represented by a darker color (lower accu-

mulated reward). In addition, as shown in the upper-right corner of Figure 6.1a,

we find that NQL performs better than the Markov game when played against a

random attacker. Because the Markov game and Minmax Q-Learning algorithms

have more information about the opponent, they are able to formulate a more

accurate model.
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(a) Comparison for different algorithm pairs (b) Performance of Markov defender

(c) Performance of MMQL defender

(d) Performance of NQL defender

Figure 6.1: Comparison on attacker’s accumulated rewards.
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On the other hand, as these models assume the rationality of the opponent,

they cannot adapt well to the behavior of a random (irrational) attacker. Naive

Q-Learning lacks the information about the opponent that would be needed to

formulate a complete game model, and hence makes decisions based on its own

decision model; that gives it the flexibility to adapt to the attacker’s empirical

behavior. By observing the changes of the optimal policy, we confirm that Naive

Q-Learning defenders converge to an optimal policy that has higher probability

for counteraction against attacks with higher immediate reward.

Figures 6.1b through 6.1d show, in detail, how the attacker’s performance

changes for different combinations of algorithms, exploration rates (exp), and

learning rates (α). In Figure 6.1b, we confirm the insignificant impact of the pa-

rameters (exp and α) on the performance. While different exploration rates and

learning rates are applied, the rows have low variance for the defender’s algorithm

driving the game.

From Figures 6.1c and 6.1d, we can see how the parameters affect the perfor-

mance of the decision-maker. When the attacker is playing the strongest algorithm

(MG), the parameters have no impact. That claim can be confirmed by observing

the consistent color across columns in the last row of both figures. While the

different columns stand for different parameter pairs, no difference in attacker

performance was found.

As defined in Section 4.2, Q-Learning introduces a new parameter called the

exploration rate (exp). This rate defines the ratio of actions that are randomly

chosen (rather than being chosen by following the optimal policy). From looking

at Figures 6.1c and 6.1d, we find that there is no single trend for exp, but rather it

depends on the algorithms for both players. When the defender is playing MMQL

against an NQL attacker, as shown in the upper-half of Figure 6.1c, a higher

exploration rate of the attacker leads to a higher accumulated reward, while a

higher exp rate of the defender lowers the accumulated reward of the attacker.

On the other hand, the lower-half of Figure 6.1d shows that when the defender is

deploying NQL against an MMQL attacker, the defender reduces the accumulated
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Figure 6.2: Comparison of value of state at initial state. The label indicates the
learning rate pair (learning rate of the attacker, learning rate of the defender).

reward of the attacker with a smaller exploration rate, while the attacker gains

more with a higher exploration rate. For both cases, we find that the defender

only needs a minimal exploration rate to assure discovery of all possible actions.

We find that deviating from the defender’s optimal policy does not benefit the

defender.

Studying the impact of the learning rate, namely the relative weight between the

game model and the learning model, we find no clear pattern in the accumulated

reward. Instead, we find a potential relationship to the time to convergence, which

we discuss in Section 6.2.

6.2 Time to Convergence for Different Learning Rates

In Figure 6.2, we can see how the learning rate affects the time to convergence.

When we assume that the attacker is playing the game under a consistent strategy,

the time to convergence indicates the time it takes for the defender to derive

the strategy that minimizes the loss. From Figure 6.1b to Figure 6.1d, we saw

that the learning rate of the players did not have a significant impact on the

accumulated reward of the attacker. To confirm how the learning rate affects the
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decision-making process, we compare the values of the state at the initial state

of the attack model. That value of state (V (s0)) represents the expected reward

that the attacker can earn when the attacker follows the optimal policy from the

starting state and thereafter. Once V (s0) becomes constant, we claim that the

optimal policy of the defender becomes constant. Note that this analysis does not

assign meanings to the value of state for its nature of representing the expected

reward, not the actual reward that has or could be earned.

From the formulation of Minmax Q-Learning algorithms, a zero-sum game is

expected to converge [6]. In this experiment, we checked whether the learning rate

affects the time to convergence. Recall that a low learning rate indicates intensive

learning, as more weight is assigned to the previous quality of state than to the

sum of the immediate reward and the future expected reward. From Figure 6.2,

we observe two things. One is that the expected reward of the attacker is larger if

the defender’s learning rate is larger than or equal to that of the attacker. That

insight can be confirmed in the figure through comparison of “0.8 0.5,” “0.2 0.5,”

and “0.5 0.5,” and comparison of “0.8 0.8” and “0.2 0.8.” Recall that “0.8 0.5” is

interpreted as “Attacker with learning rate 0.8 against a defender with learning

rate 0.5”. Based on that observation, we can verify that if both parties apply

Minmax Q-Learning for decision-making, then it is more likely for the defender

to be able to protect the system against a Minmax Q-Learning attacker when the

defender weights learning more than rationality. Another observation from the

figure is that the game converges faster for the attackers with lower learning rates.

The learning rate of the opponent (the defender, in this case) also affects the time

to convergence of the player. While there is a slight deviation between 0.5 and

0.8, a lower learning rate for the defender (opponent) also accelerates the time

to convergence of the attacker. A similar analysis for Naive Q-Learning players

is not applicable, because the Naive Q-Learning algorithm is not guaranteed to

converge.
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Table 6.1: Optimal Policy of the Defender

Defender
Defender Optimal Policy

na o1 o2 o3 o4 o5

Makov
AS0 0.4 0.6
AS1 0.4 0.6
AS2 0.4 0.6

MMQL
AS0 0.64 0.36
AS1 0.64 0.36
AS2 0.6 0.4

NQL
AS0 1.0
AS1 1.0
AS2 1.0

6.3 Change in Optimal Policy

Table 6.1 summarizes the optimal policy of different defenders when played against

a Markov attacker. Noting that a successful attack in a2, a4 and a5 results to

an immediate reward of 2 while 1 on the others, we conclude that Minimax Q-

Learning results to a more passive optimal policy while the Minimax Q-Learning

defender is protecting the system against aggressive attackers.

From analysis on the final optimal policy, we find that none of the attacker

algorithms assign a probability to taking no action. In security games, the actions

from attackers do not purely consist of malicious actions. There are intervals

between attacks, and some intelligent attackers hide their malicious intentions

by executing benign activities. While our approach was intended to model those

intentions, the simulation results show that the algorithm considered the cost of

a false negative (i.e., missing a malicious action) to be higher than the cost of

responding to a false positive. Such a decision can change based on the reward

model defined in the game model.
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CHAPTER 7

RELATED WORK

7.1 Intrusion Detection System (IDS)

An Intrusion Detection System (IDS) is a hardware or software system that mon-

itors cyber infrastructure to detect suspicious activity to alert system/network

administrators [13]. Based on what the IDS concentrates on, it can be classified

as either a Network based Intrusion Detection System (NIDS) or a Host based

Intrusion Detection System (HIDS). NIDS scans the traffic that enters or leaves

a network and tries to detect any malicious action. The detector can identify the

host operating systems, applications from the packets, and detect attacks from

the application to network layer. HIDS, on the other hand, monitors individual

hosts. Depending on the type of monitors that are deployed on each host, the

IDS can monitor network traffic for that host, system logs, running processes,

file access/modifications etc. and the detector determines malicious actions from

such data collected from different hosts. The type of attacks that HIDS can detect

includes malicious code execution that can permit unauthorized access or escalate

privileges, and can also detect buffer overflow by monitoring certain sequences of

instructions or memory access points. Moreover HIDS type systems can also per-

form network traffic analysis but are limited to the traffic to and from the hosts

that are being monitored. An HIDS can also perform files system monitoring.

However, as Sharma et al. [2] claim, the use of such monitoring is limited for the

overhead and performance degradation. Signature based IDS is the traditional

IDS that detects attacks from known signatures. It seeks to find known attacks

by looking for specific patterns or signatures within available information. For
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instance, an IDS system checks the hash value of files being transmitted into the

system and sees if the value matches any of those in the malware hash registry.

Also, it can check the file type and can generate alerts if any executable file is

downloaded. However, for the need of a reference to compare to, such detection

is limited to specified, well-known attacks but is not capable of new, unfamiliar

or obfuscated attacks [14]. With the varying attacks, each of which is getting

sophisticated, the traditional IDS faces a limitation on defining all the possible

signatures which asks for an alternative approach.

7.2 Learning in Cyber Security

With the computer systems getting complicated and customized, attackers can

no longer rely on common knowledge for performing an attack. Instead, to deter-

mine the system status and vulnerabilities, attackers probe the system and learn

about the system from side channels. Bethecourt [12] presents a probe response

attack for locating network sensors. By probing an IP address that would lead

to reporting the monitoring results to the Internet Storm Center (ISC), and later

checking the reports the paper claims that the attacker can identify the identity

of the sensors within less than a week. In [15], Shmatikov and Wang show how

the attackers gain knowledge about the detection by generating detectable attacks

and monitoring how a collaborative intrusion detection system generates an alert.

Jana and Shmatikov [16], on the other hand, demonstrates a side channel attack

where the authors show the possibility of exploiting the memory footprints to

exploit the secret of applications through inference.

In addition, a set of recent attacks motivates a need for learning on the detector

side. One example is the Target data breach discussed in Section 2.1. From this

attack, we have learned that attackers are designing sophisticated attacks for

a specific target. For such attacks that are hard to differentiate from benign

activities, traditional IDS approaches face limitations. Another example is the

Stuxnet attack. Stuxnet is a worm discovered in June 2010 that was targeting
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Table 7.1: Stuxnet’s novel characteristics [17]

Aspect Stuxnet Common Malware
Targeting Extremely selective Indiscriminate

Type of target Industrial control systems Computers
Size 500 KBytes Less than 1 Mbyte

Probable initial infection vector Removable flash drive Internet and other networks
Exploits Four zero-days Possibly one zero-day

the control system of Iran’s nuclear facilities. It is known to spread via MS

Windows, and target Siemens industrial control systems, and is the first discovered

malware that intruded industrial systems. As shown in Table 7.1, Stuxnet differs

from ordinary malware. While malwares from the past try to infect as many

computers as possible, Stuxnet targets a specific system. Also while common

malware has exploited possibly a single zero-day vulnerability, Stuxnet is known

to have exploited four zero-day attacks. For such characteristics of Stuxnet, Chen

et al. [17] claim that the attack has become more sophisticated. It targeting

a specific system requires remarkable knowledge of the system, and the creators

would have needed to know the target configuration. Also from an observation

on the number of exploits included in this attack, we can easily determine the

amount of effort involved in designing this attack. For such workload put into an

attack, it is getting difficult to detect such an attack from traditional approaches

and this trend requires a change in detection methods.

7.3 Anomaly Based Intrusion Detection

To overcome the limitation of the signature based IDS approach on detecting

attacks that are growing in size and variation, anomaly based IDS has become a

hot topic in the research area of computer security. Before we discuss previous

work utilizing computational intelligence, we briefly introduce common algorithms

applied to security problems. We summarize the models based on the discussions

in [18] and [19].

Figure 7.1 [19] compares the four common algorithms, Naive Bayes (NB), Hid-
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Figure 7.1: Comparison of common machine learning algorithms

den Markov models (HMM), Maximum Entropy model (ME), and Conditional

Random Fields (CRF). The naive Bayes model classifies a variable in dependence

of several feature values by modeling the joint probability. Comparing the con-

ditional probability among available outputs, the classifier labels the output with

the highest joint probability.

The maximum entropy model, on the other hand, models the conditional prob-

ability. Based on the principle of maximum entropy1, the model aims to find the

output label that maximizes the conditional entropy.

While the naive Bayes model and the maximum entropy model might be effec-

tive for modeling single class variables, such an approach has limitations on mod-

eling the multistate attacks discussed in Chapter 2. The hidden Markov model

expands the naive Bayesian model to predict a sequence of output variables. Un-

like the naive Bayes model that depended only on the observation variables, HMM

brings the output variable from the previous state in computing the joint prob-

ability. However, this model is only applicable for a certain number of cases for

assuming the conditional independence between observation variables.

Conditional random fields can be understood as a sequence version of the max-

imum entropy model. Similar to the extension from a naive Bayes model to a

hidden Markov model, CRF models the conditional probability of the sequence

1If incomplete information about a probability distribution is available, the only unbiased
assumption that can be made is a distribution which is as uniform as possible given the available
information [19].
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of states, given an observation vector and outputs a sequence of labels that max-

imizes the conditional entropy.

Amor et al. [20] proposed a naive Bayesian learning model for intrusion de-

tection and compared the performance with a model that utilizes a decision tree.

Like many other similar work, it uses data from KDD ’99 [21] which contains net-

work intrusion logs ranging from Denial of Service (DoS), user to root, remote to

user and probing attacks. In this model a subset of the 41 features in the dataset

is given as an input and the model is trained. Then for the test or unlabeled

data, the attack class is chosen to maximize the joint probability. Experimental

results show that the accuracy of the naive Bayes model turns out to be similar

to a decision tree model despite the weak assumption of the NB model of the

independence assumption.

While Amor has shown that the naive Bayes model performs well despite the

weak assumption it is based on, there are other works that implement anomaly

based intrusion detection. Ourston et al. [22] model a detector using a hidden

Markov model. HMM is an expanded probabilistic model of the NB, that elimi-

nates the independence assumption and models a sequence of output states. The

work is based on the fact that a network attack can be modeled into different

phase of attacks. Here it is divided into probing, consolidating, exploiting and

then compromised state.

Gupta et al. [23], on the other hand, present a different model for anomaly

based intrusion detection. It not only utilizes a different algorithm but also ap-

plies a layered approach for better accuracy. In this model, the authors train a

conditional random field, which models the conditional probability for a sequence

of output classes given a sequence of input sequences. For a layered approach,

the paper borrows the concept from the airport security model where a number

of checks is performed in a sequential manner. The detector is layered on the

attack class and each layer is trained with relevant features for each output class.

Then for classification, each event is evaluated for the first attack class and any

that does not pass the filter are considered malicious. Only the events that pass
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through all four filters are labeled normal. This model compares to HMMs for less

computational overhead. Gupta et al. show that while use of conditional random

fields itself might not have improved the performance in a significant manner,

layering the detector takes the main part of boosting the detection performance.

7.4 Game Theory for Cyber Security

Modeling attacker intent or attack flow in a graphical model has been a well-

studied problem in security. For the applicability and variation of game theoretic

models, numerous approaches exist for modeling security as a game. Bier [24] pro-

vides a good study of a defender securing a set of potential targets with limited

resource. Bier solves the problem in a resource constrained environment to an-

swer policy questions to better secure the physical target against threat of terror.

Though this paper solves a physical security problem, it provides a good frame-

work for cyber security games. Liu et al. present a game theoretic model to infer

attacker intent, objectives, and strategies (AIOS)[25]. Considering the incomplete

knowledge of each players on the opponents, the authors choose a Bayesian game

model. The model also introduces the state of the attack. The attack state is

normally predicted from observable events.

A number of previous works apply traditional game theoretic approach for cy-

ber security problems. In [26] and [27], the authors apply a Markov decision

process (MDP) to secure information sharing in online social networks. In addi-

tion, [28] and [29] apply a Markov game framework for optimal data management

in online social network. Nguyen et al. [30], apply fictitious play [31] for solving

a security game with incomplete information. Similar to [7], information on the

opponent’s payoff matrix is not available, hence the agent derives the belief of its

prediction on the opponent’s strategy by monitoring the result of its own move.

However, such an approach has limitations on applying to a Markov game con-

sisting of numerous states. Alpcan and Basar present a comprehensive study on

modeling security games under different level of information about the opponent
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Table 7.2: Summary of Game Theoretic Approaches for Security Games

Information Repeated Game Attack Type
Lye 2002 [32] complete stochastic battle
Liu 2006 [33] incomplete no (static Bayesian) single

Alpcan 2006 [11] complete/incomplete stochastic single
Zonouz2009 [34] complete yes single
Becker 2011 [35] complete no single

Markov complete stochastic battle
MMQL incomplete stochastic + learning battle
NQL incomplete stochastic + learning battle

[11]. In their model, the interactions of two players are modeled as a stochastic

(Markov) game. Each player has an option of attack/no attack or respond/not

respond. They present a simulation model under three different conditions: per-

fect information about the system (Q learning), partial (action set, transaction

history) information about the opponent (Minimax Q-Learning) and no informa-

tion about the opponent (naive Q learning). In Table 7.2, we compare the works

more relevant to the approach discussed in this thesis.

32



CHAPTER 8

LIMITATIONS AND APPLICATIONS

8.1 Limitations

Unlike many approaches using machine learning [36], [37], our approach is not

intended to detect new attacks. Instead, our game theoretic approach, like other

decision-making applications, suggests a likelihood of taking a certain action to

maximize the benefit of the security administrator.

Also, while our approach is based on the attack and reward model, because of

the lack of agreement on security metrics, there is no true measure for quantifying

the rewards of a successful attack or attack detection. Therefore, the current

configuration relies on expert knowledge to enumerate the potential damage or

overhead for taking a certain action.

One last limitation is that the attack model’s performance depends on expert

knowledge. Because the decision-making process is based on the attack model,

the granularity and completeness of the attack model affect the performance.

That limitation is intrinsic to pure game-theoretic models, and we claim that our

approach can compensate for that shortcoming of the attack model by adding

the ability to learn from past iterations. However, lack of coverage of undefined

actions or states still remains as a limitation.

8.2 Applications

Utilizing Q-Learning for optimizing decisions, the algorithm returns the optimal

policy (i.e., the probability distribution). The optimal policy represents the prob-
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ability distribution of the possible actions that would maximize the benefit of the

defender. An action with high probability indicates either the high potential earn-

ing and/or the high possibility of occurrence according to the previous sequence

of actions. The optimal policy can be used to prioritize the alarms from the mon-

itoring results and/or to implement preemptive defense methods. The reward

model and its optimal policy can be used to assign security scores for each alarm

generated in the monitoring system. Such score can prioritize the alarms upon

severity and probability of true positives. Furthermore, if the prediction from

learning and rationality becomes precise enough, an automatic response method

can be applied from the decision using this approach. While the discussion in

this thesis was focused on automated response upon intrusion detection, we plan

to test and evaluate our work by embedding it in a security analytics testbed

[38]. With real incident data fed into the testbed and factor graph [39] detecting

malicious intentions; our approach will then determine the right response to take.

By combining our game theory based response model with the detection frame-

work, we expect to verify the timeliness of intrusion detection and response and

determine the accuracy and impact of misdetection.
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CHAPTER 9

CONCLUSION

In this thesis, we presented our approach for modeling the decision-making pro-

cess of cyber security monitoring using a game-theoretic approach. To reflect the

realistic conditions of decision-making in a security game, we considered varia-

tions of Q-Learning algorithms. Minmax and Naive Q-Learning, compared to

traditional Markov games, are more realistic when applied to security games, be-

cause they relax the requirement for full information about the opponent. We

compensated for the lack of information by enabling learning of the optimal pol-

icy, which has the advantage that it resembles situations in which attackers probe

system vulnerabilities (through techniques like scanning) and defenders train and

renew security policies and devices based on earlier data. We noted that the rich

literature in online learning theory lacks efforts to reason about the pattern to

capture the rationality of attackers in security games.

From the experiments based on simulation, it was shown that Naive Q-Learning

performs well against irrational (non-Markov) attackers, i.e., random decision-

makers or attackers based on probing and learning. When played against a Markov

attacker, the Naive Q-Learning approach was able to perform at least as well as

a Minmax Q-Learning defender. In the real space of security games, players,

especially the defenders, have limited ability to obtain information about their

opponents. Any parties with access to the system are potential attackers, and

their ability and knowledge not only vary but are hidden. Hence, a Markovian

attacker, which represents the worst case for the defender, is unrealistic. The

simulation results show that despite the limited information on which decisions

are based, our approach is promising compared to the traditional Markov game
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approach and Minmax Q-Learning.

While we present the possibility of Naive Q-Learning as a decision-making logic

in security games, some limitations remain. For the lack of agreement in metrics

that represent impacts, there is no clear definition of the reward model. In the

simulation, the reward was abstracted as the relative severity under an assumption

of a zero-sum game, indicating that a player’s reward is his or her opponent’s

loss. In addition, for the dependency of the parameters to the opponent, it is

necessary to do further study on how to tune the parameters of a Naive Q-Learning

algorithm against an attacker from real data, and to test the approach embedded

in a framework with real-time logs and specific detection logic.
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